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Additivity of mechanical power and the principle of stress
W. BARANSKI @0ODZ)

THE PAPER is devoted to the relation between the principle of stress and the additivity of power
of mechanical interactions. The considerations are based on a different from the classical system
of axioms describing the mechanical interactions. The primitive concept is the power functional
of the mechanical interactions. It is assumed that it is linear and continuous with respect to the
velocity field. The force and moment are defined in terms of the above functional. The principle
of stress is formulated as follows: the power consists of the powers of body and contact for-
ces; the contact forces are identical on the common parts of the boundaries of each pair of
subbodies, while the body forces are identical for every subbody. It is proved that the principle
of stress constitutes a necessary condition of additivity of the power functional of mechanical
interactions, but is not a sufficient condition,

W pracy rozpatrzono zwiazek zasady napreZenia z addytywnoscia mocy oddzialywati mecha-
nicznych. Rozwazania oparto na odmiennym od klasycznego ukladzie aksjomatéw charaktery-
zujacych oddziatywania mechaniczne. Jako pojecie pierwotne przyjeto funkcjonat mocy oddzia-
lywah mechanicznych. Zatozono o nim, Ze jest liniowy i ciagly ze wzgledu na pole predkosci,
Pojecia sily i momentu zdefiniowano przy jego pomocy. Zasade naprezenia sformulowano na-
stepujaco: moc sklada sie z mocy sit masowych i kontaktowych, sity kontaktowe sa identyczne
na czesciach wspblnych brzegéw kazdej pary podcial, natomiast sily masowe sg identyczne dla
kazdego podciala, Wykazano, Zze zasada naprgzenia jest warunkiem koniecznym addytywnosci
funkcjonalu mocy oddziatywan mechanicznych, a nie jest warunkiem dostatecznym,

B pa6ore uccienoBana cBA3h NPHHUMOA HANPSOKEHHSA C 8JUTHTHBHOCTHIO MOLTHOCTH MEXaHH-
yecKHX B3aumofeiicTBuit. lccriemoBaHue OCHOBAHO HAa CHCTEME AKCHOM, XapaKTEPH3YIOMIWX
MeXaHMuecKHe B3auMONEHCTBMA, OT/MUAIoIeiica OT KiaccHueckoil. B KauecTBe OCHOBHOrO
TOHATHA HCIIONB30BaH (DYHKIMOHA MOILIHOCTH MEXaHWYECKHX B3auMmopneHicrBuii, KOTOpBIH
NpPEeoJIaraeTcs, JIMHEHHBIM M HEMPEPLIBHLIM OTHOCHTENIBHO mons cKopocreil, [loHaTas crnl
H MomeHTa chOpMYyJIHPOBaHEI Ha €ro ocHOBe. IIpHHLMI HANPAKEHNA BBIPAKEH CHETYIONMM
06pasoM: MOLLHOCTE COCTOMT M3 MOIIHOCTH MACCOBBIX M KOHTAKTHBIX CHJI; KOHTAKTHBIE CHJIBI
TOM/ISCTBEHHO PABHE! Ha OBLIMX YYACTKAX KpaeBoil NOBEPXHOCTH NPOKHIBOJILHOMR Maphl MOTEN,
TOrJa KaK MaccoBble CHIbI COBNAJAIOT [/ MPOH3BONBHBIX moaren. ITokasaHo, WTo mpEHUMI
HAUPSIKEHUA ABNSACTCA HEOOXOJMMBIM YCIOBHEM 2IUTHBHOCTH (YHKIMOHANA MOLIHOCTH
MEXAaHWYECKUX B3auMOJeifcTBHIl, HO He ABJIAETCA NOCTATOUHBIM YCIIOBHEM.

1. Introduction

THE AmM of the paper is to analyse relations between the principle of stress and the
additivity of the mechanical power. For principal reasons the analysis is based on a mo-
dified as compared with classical, axiomatics of mechanical interactions. A complete pre-
sentation of this axiomatics will be given elsewhere; in Sec. 6 we expose only the axioms
of mechanical interactions necessary for further considerations. The primitive concept is
the functional of mechanical interactions. It is only assumed that it is linear and continu-
ous with respect to the velocity field. The remaining concepts, such as force and moment,
are defined in terms of the above functional. The principle of stress is formulated in
a somewhat more general manner than by W. NoLL and C. TRUESDELL [8]. It is assumed
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that the power consists of the powers of contact and body forces, the contact forces being
identical on the common parts of the boundaries of each pair of subbodies, while the
body forces are identical for each subbody.

Our axiomatics of the geometric structure of the body is modified as compared with
that used by M. GURTIN and W. WiLLIAMSs [4]. The body and the subbodies are defined by
means of topological concepts.

In Sec. 3 we present a few topological theorems and some theorems of the measure
theory and functional analysis. The author is convinced that these theorems are not
original, but has not been able to find them in literature.

2. Notations

classes of subsets: open, closed and borelian,
operations: opening, closure, bounding and completion,
G__ class of closures of open subsets,
Fo class of openings of closed subsets,
K. class of completions of sets of class K,
% symbol of Cartesian product,
pi projection operator from X' X ... X, onto X;, i€ {1, ..., n},
C class of continuous functions,
C? class of functions with continuous derivative of p-th order,
Df, Af domain and image of the function f,
| symbol of restriction of the function domain,
I the identity function,
ut, p=, p* variations: upper, lower and total of the function g,
R  the set of real numbers,
R, n-dimensional Euclidean space,
tr  symbol of trace.

/N\» V quantifiers, general and particular,
B
¢

3. Mathematical preliminaries

Our definitions follow R. ENGELKING [3]. In what follows we shall frequently use the
following, little known theorem on the properties of opening and closure operations.
THeOREM 1. For an arbitrary topological space X and arbitrary sets A and B we hawe

: 0~ _ 40-0- s - 0~ _ 4-0-4 BO-
(I)A{:\xz! = A°°, (")AQ’BQ»(A +B)% = A° 4B

Concerning this theorem see K. KuraTowsk1 and A. Mostowsk1 [7], theorems 1.8(15)
and L8(18).

THEOREM 2. For an arbitrary topological space X the class C (the class of closures of open
subsets) is the greatest Boolean algebra with respect to the operations\/, /\ and b defined
by the formulae

3.1 AVB=A+B, AAB= (4B, A" =A4".

For an arbitrary regular space X the class G_, constitutes a basis of this space.
Prior to proving this theorem we shall prove a few Lemmas.
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LemMA 1. The class G_ is the class of closed domains.

Proof. For an arbitrary closed domain 4, by definition we have 4 = 4°~, Hence
AeG_, since A%°eG.

Let A € G_. Thus, there exists an open set B such that A = B~ whence 4%~ = B°°-,
It follows from Theorem 1(i) that 49~ = B%~ = A; therefore 4 is an closed domain.

LemMA 2. For an arbitrary topological space X we have G_, = F,.

Proof. The theorem follows from the following relation between the opening and
closure operations: A~ = A°.

Proof of Theorem 2. It can be proved that the class G_ is a Boolean algebra (R. Si-
KORSKI [9], § 1, Example B).

Let U be a Boolean algebra with respect to the operations \/, /\, ” and let 4 and B be its
arbitrary elements. We have 4\/ 4* = X and (4\/ 4%) /\ B = B°~. In view of one
of the axioms of Boolean algebras (4\/4%)/\B = B whence B°~ = B and on the basis
of Lemma 1, U = G_. Thus, class G_ is the greatest Boolean algebra with respect to the
operations \/, /\, %

The properties of the basis and Lemma 2 imply that to prove the second part of the

theorem it is sufficient to prove that é: \/ éedc U
AeFy

Let £ € U € G. The one-point set {£} and the closed set U¢ are disjoint; hence, in view
of the regularity of the space they have disjoint neighbourhoods U, and U,. Thus, & eU; =
< U§ < U. Since the set Us is closed, the closure operation implies that U; « Uy U§
whereas we have U; = U;® < Uj in accordance with the opening operation. Hence,
& € Ur® « U and since Ur° € F, % the theorem is proved.

Our terminology of the measure theory and functional analysis follows that of
A. ALexiewicz [1]. The frequently employed concepts of the Radon measure and vector.
Radon measure are the following: by the Radon measure we understand a real set func-
tion constituting a difference of two finite regular Borel measures. By the vectorial Radon
measure we understand every set function g with values in the space #,, such that for
every i = 1, 2, ..., n the superposition p;oa is a Radon measure.

THEOREM 3. Let A be open subset of a compact space X and a a vectorial Radon measure

with values in R,, defined on Borel subsets of the compact space X. The integral f x-da
A

of every continuous function x; X — R, such that x|A® = O vanishes, if and only if, the
measure a vanishes on all Borel subsets of the set A.

Prior to proving this theorem we present a few Lemmas.

LeMMA 3. If u is a Radon measure, then

U>A>F,[(EcU-F,EeB)=|u(E)| < el.
F

AeB ¢>0UeG Fe

Proof. The definition of the Radon measure implies the existence of finite regular

Borel measures u, and u,, such that 4 = u;—pu,. Let & be a positive number. If follows

from the regularity of the measures u,; and p;, that the set 4 has neighbourhoods U; and U,
and contains closed sets F; and F, such that

Nwm@E)<e2,  /\ pa(E) <el2.
EeB EeB

ECU—F, ECU;—F2
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The above conditions are simultaneously satisfied for every Borel set contained in the set
U-F, where U= U,U, and F = F,+F,, since U~F c U;—F, and U-F c U,—F,.
Hence,

D\ KB = [11(B) = plE)| < pa (B) + pafE) < .

ECU-F

LemMA 4. If p is a Radon measure, then

ﬁp"(d) = sup {u(F) : FeF,F < 4},
w(A) =sup{—u(F):FeF,Fc A}.

Proof. Consider a Borel set 4 and a positive number e. The properties of a bounded
real set function constituting a Radon measure g imply (N. DUNFORD and J. SCHWATRZ [2]
II1. 1.8) that there exists a Borel set B contained in A such that u*(4) < u(B)+¢/2.

It follows from Lemma 3 that the set B has a neighbourhood U and contains a closed
set F, such that for every Borel set E contained in the set U~ F we have u(E) < ¢/2. The
set B—F is a Borel set, since it constitutes a difference of two Borel sets, and is contained
in U—F because U o B. Hence u(B—F) < ¢/2. The measures u, and u, are subtractive
(P. HALmMos [5] I1.9.1), whence their difference is also subtractive; therefore u(B) < u(F)+
+¢/2 and p*(A4) < u(F)+e. The inequality

/\ 1 (4) > u(F)

FeF
FCA

follows directly from the definition of the upper variation.
The proof of the second part of the Lemma is very similar.
LeMMA 5. Let A be an open subset of a compact space X and let u be a Radon measure.

The integral [xdu of every continuous real function x such that x|A° =0 vanishes, if and
A

only if, the Radon measure u vanishes on all Borel subsets of the set A.

Proof. The sufficiency of the condition u|B(4) = 0 is obvious. Let F be a closed
set contained in 4. The upper and lower variations u* and u~, respectively, are obviously
regular Borel measures. Hence, for an arbitrary positive number ¢ there exist neighbour-
hoods U, and U, of the set F such that g*(U,—F) < ¢/2 and u~(U,—F) < /2. The set
U = U,U,A constitutes a neighbourhood of the set F and is contained in the neighbour-
hoods U; and U,. In view of the monotonicity of the variations u*(U—F) < &/2 and
u~(U-F)< ¢]2.

Let us now make use of the fact that the compact space is normal. The sets F and U*
are closed and disjoint; consequently, the Urysohn lemma implies the existence of a con-
tinuous function x, defined on the space X with values in the closed interval [0, 1], such
that x,|F = 1 and x,|U® = 0. It can readily be verified that this function satisfies all con-
ditions of the Theorem; hencedf Xodpu = 0. Making use of the properties of the function x,

and the integral, we obtain

|(F)|=| [ xodi| = | [ xodu* — [ xodu™ | < [ xodut+ [ xodi™ <
U-F U-F U-F

UsF U-F
Spr(U-F)+p (U-F)<e.
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Since ¢ is arbitrary, u(F) = 0 and in view of Lemma 4, for an arbitrary Borel subset B
of the set 4 we have p*(B) = u~(B) = 0. Thus u(B) = 0.

Proof of Theorem 3. If x; X — & is a continuous function, then the function f;;
X > A, given by f; = (0,...,0,x,0,...,0) is also a continuous function. If x]4° = 0,

-1 (n—i)

then f;]4° = 0. Making use of Lemma 5 we find now that for every i = 1, ..., n we have
pioa |B(4) = 0, and, consequently, a|B(A4) = 0.

LeMMA 6. A linear functional defined on the Cartesian product X = X, x ... xX, of
linear normed spaces X; is continuous, if and only if, forevery i = 1, ..., nthere exists a con-

tinuous linear functional f; defined on X,, such that f = D, fiop;. If the norm of the space X
=1
is defined by the formula || || = ( Z]Ipiouf)”z, then the norm of the functional f is
i=1

Il = ( Z 1A%
Proof. The first part of the Theorem is the same as in A. ALexiewicz [1], III. 10.3.
Let x be an element of the space X. The first part of the Theorem implies that
n
[f(x)] < 2 |fiopi(x)]. Making use of the properties of the norm of a functional and the
i=1

Holder inequality, we obtain the inequality

@< D A1 12 [l < M]ix]),

i=1
"
where M = (2” ﬁ||3)”z. It follows from the properties of the norm of a functional
i=1

that M > ||f]l.
Let ¢ be a positive number. The properties of the norm of a functional imply that for
every i = 1, ..., n there exists x; € X; such that |[x;]|, < 1 and

£id > Ifll - e M | ]
x = MG fall o mllfD)-

Let

Then x € X and
n n
1/2 12 _
x| = M-t (;; IxfZIA02) " < Mt (}; s " =1
in view of the linearity of the functionals f;,

f) =M1 2 Ifillficx,

whence
@ =M Yl ~e = M-,

thus M is the norm of the functional f.
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THEOREM 4, For every continuous linear functional f defined on the space C, of all contin-
uous functions defined on a compact space X with values in R, there exists exactly one
vectorial Radon measure a defined on the class of Borel subsets of the space X with values
in R,, such that for every function x € C,, f(x) = fx -da. The norm of this functional is

172

1 =1 2{@; oay ()}

Proof, The theorem follows from Riesz theorem (A. ALexiewicz [1], VIII, 2.2.),
Lemma 6 and the fact that the space C, is a Cartesian product of » spaces of continuous
functions.

4. Continuous material body

The continuous material body or briefly body is a set & with the continuum cardinal
number, consisting of elements & called material particles of the body, with the class of
functions described by axioms BI-BV, defined on the Cartesian product % x # with
values in the space %3 and called motions of the body.

BI. For every motion of the body y and every real number 7, the function y,; % —+ %3
called hereafter the configuration of the body ® at instant T moving in accordance with X,
or briefly the configuration of the body, defined by the formula f;\. 2:(&) = x(&, 1), is

a one-to-one function, such that its image (y, is a set of class G_(%;).

BII. For every pair of configurations of the body x;., and yx, the superposition
X1e, © (25;) s a diffeomorphism of class C5(Qxa,,), p > 1 of the subspaces dy;,, and
qx‘h;-

BIII. For every configuration of the body x,. and every motion jx, the function
220 (xit, ) is of class C§(Dy, x &).

BIV. For every motion y the function g,; dy. — %, called hereafter the velocity
Jfield of the body at instant v moving in accordance with x, or briefly the velocity of the

. d g
body, defined by the formula _:e/ﬂ\x; *(x) = F_;x(f, .. X1y 18 bounded.

BV. For every motion y at every instant 7 € &, for every vector a € #; and every
antisymmetric tensor of rank 2 4 € #;, there exist motions x,, ¥, and instants 7, 7,
such that Dy, = Dxltl = Dxnp ilq = R.fr+a and ih, - i'l'-A (in the above formulae
the symbol of the vector a is interpreted as the symbol of a constant function with the
value a; the symbol of the tensor A is interpreted as the symbol of a linear function defined
on the space #; with values Ax).

The axioms BI-BIII constitute the mathematical statement of the concept of the con-
tinuity of the body. The special role of sets of the class G_(£,) in axiom BI follows from
the fact that they are the most general subsets of the space #; on which diffeomorphisms
may be defined. The axiom BIV concerning the boundedness of the velocity field is of
a physical nature. The axiom BV ensures the sufficient number of motions of the body.

THEOREM 5. For every motion of the body y and for every instant © € R the image Ay,
is a compact subspace of the space R.
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Pro of. Consider a configuration y, and set

‘0 0 0] 0 0 -1 010
A,=10 0 1|, A4,=/00 0|, A4,=|-1 00
‘0 -1 0\ 1 0 0 0 00

The axioms BIV-BV imply the existence of real numbers «;, a, and o, such that for every
x € Ay, we have |4;x| < a;, { = 1,2, 3. Onthe other hand it can easily be verified that

3
for every x € &, we have |x| = 2~1/2 (Z |4; xlz)”z. Hence, for every xed y,, |x| <212«
i=1

3 3
2> tx?)m. Thus, the image d, is contained in a sphere of radius 2-1/2( Y a?)” ? and centre
j=1 fa=1

at zero. In view of the Bolzano-Weierstrass theorem this sphere is a compact subspace.
In view of the heredity of the compactness with respect to closed subspaces, Ay, is also
a compact subspace.

THEOREM 6. In a body there exists one and only one topology such that every configuration
of the body . is a homeomorphism of the body and the image of the configuration Uy,.

In this topology every function y.; B — Rs defined by the formula )\ y.(¢) = a—i (&, 1),
tem

where y is a motion of the body, is continuous.

Proof, This theorem follows from axioms BI-BIII and the properties of the diffeo-
morphism. This topology consists of the class of inverse images of open sets in the image
of the configuration of the body; more precisely this topology consists of the class
%7 ' [G(dy,)], where x is an arbitrary motion and 7 an arbitrary instant.

In our further considerations we shall regard the body as a topological space with the
above topology.

5. Subbodies of a continuous material body

The class of subbodies of a continuous material body or briefly the class of subbodies
is a class & of subsets of the body £ satisfying the following axioms.

SI. For every motion of the body y and every instant 7 € £ the class of complements
(with respect to d y,) of the images of the subbodies [¥.(%)]. is a basis of the topological
subspace d y,.

SII. For every motion of the body yx and every instant 7 € Z# the class of images of the
subbodies y,(&) is a Boolean algebra with respect to the operations \/, /\ and ° defined
by the formulae (3.1) in the topology of the subspace d y,.

The necessity of introducing the class of subbodies is due to the necessity of investi-
gating additive set functions. The axiom SI ensures the sufficient number of the subbodies.
The axiom SII is aimed at providing the subbodies with geometric properties of the body
and making it possible to divide the body into two “disjoint” subbodies. The axioms SI
and SII are not contradictory — this statement follows from Theorem 2.
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Evidently & = G_(%), &, is a basis of the body & regarded as a topological space
and & is a Boolean algebra with respect to the operations \/, /\ and ® defined in the to-
pology of the body.

The subbodies 4 and B will be called disjoint if for every motion x and every instant 7,
2:(4) /\ %:(B) = 0, where the operation /\ is defined in the topology of the subspace O ..
Itis obvious that these subbodies are disjoint, if and only if, 4 /\ B = 0, the operation /\
being defined in the topology of the space &.

For every subbody A the pair of subbodies 4 and A4° is a division of the body #
into disjoint subbodies.

Consider a pair of subbodies 4, B and the sets [4, B], {4, B) and {4, B} defined
as follows:

[4,B] = A°B%(A+B)°, <{A,B) = A°B%(A/\B+ A*/\B"°,
{A,B} = (A+ B)?°(A4,A+B)*{B,A+ B)".

The set [4, B] is this part of the boundaries of the subbodies 4 and B for which they are
situated on the opposite sides (Fig. 1). The set {4, B}, called hereafter the common part
of the boundaries of the pair of subbodies 4, B, is the part of the boundaries of the sub-
bodies 4 and B for which these subbodies are situated on the same side (Fig. 1). If the sub-
bodies 4 and B are disjoint, then the set {4, B} is the boundary of the sets [4, B] and
{A, A+B) (Fig. 2). The justification for the above “geometric” interpretation of the sets

‘é <A,B)
A8
W

Fic. 2.

[4, B], <A, B) and {4, B} are the following two theorems.
THEOREM 7. For arbitrary pair of subbodies A, B we have

(i) <4,B) = A%(4/\B+A°/\B"",
(i) <AB)I4,B]=0,
(iii) (4,A+B)[A4,B] =0.
THEOREM 8. For every pair of disjoint subbodies A, B,
) [4.B]=424+B),
(ii) <4,A+B){B,A+B)=0,
(iii) [4,B]{4,B} =0,
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(iv) <4,B>{4,B} =0,
(v) (A4+B)° = (A,A+B)+<(B,A+B)+{A,B},
(vi) A% =<(A,A+B)+[A4,B]+{4,B}.

Proof of Theorem 7. (i) The properties of the closure operation imply that (4°B%)~ <
< A°- B and (4°B°)~ = A°"B*~. Consequently,

(5.1) (A°B°)"(4°B°)” < B°.
For arbitrary subsets C, D of an arbitrary topological space we have the inclusion

(5.2) (C+D)P° cC°+C D +D.

Making use of the inclusions (5.2) and (5.1) we obtain

[(A°B°) ™ +(4°B)]° < (A°B°)™°+(A4°B°)°+ B.
Since, the sets A°B° and A°B° are open domains
[(A°B°)™ + (A°B°)]° = A°B°+ A°B°+ B% ¢ A°+ A°+ BO.
The above inclusion is equivalent to the following:
A%(A/\B+ A*/\B")° c {4,B).

The inverse inclusion is obvious.
(i) For arbitrary subsets C, D of an arbitrary topological space we have the identity
(C°D)~ = (C°D)~ (K. KURATOWSKI [6], 5.4) equivalent to the identity

(5.3) (C”+D)° = (C"+D°%°.
Hence

[(AB)°" +(A+ B)°I° = (AB)°™° = A°B°.
On the other hand

(A,B)[A4,B] = A°B°[(AB)°" + (4 + B)°]°,
therefore

(A,B)y[A,B] = A9BOA°B° = 0.
(iii) The proof consists in applying the relation
{A,A+B)[A,B] = A°B[A + (A + B)°]°,

and the identity (5.3) to the set [4+ (4 + B)].

Proof of Theorem 8. (i) For arbitrary subsets C, D of an arbitrary topological space
we have the inclusion (C+D)° < C°+D-. For subbodies A4, B, therefore, (A+B)° =
< A%+ B. Hence A%(A+ B)° < AB. Since the subbodies 4 and B are disjoint AB = A°B?
and, consequently, 4°(4+ B)° < [A, B). The inverse inclusion is obvious.

(ii) From the properties of a Boolean algebra

[A/\(A+B)+A*/\(A+B)"] = A+B®
while in view of the disjointness of the subbodies 4 and B A+ B® = B®, Therefore

(5.4 (A,A+B) = A%B°,
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and
(A,A+B){B,A+B) = (A%4°) (B%B°) = 0.

The relations (iii), (iv) and (v) follow directly from the definitions of the sets (4, B),
[4, B] and {4, B}.
(vi) After simple transformations we obtain

(A4,A+B)+[4,B]+{4,B} = A°{[B(A+B)*|°+ B(4+ B)*} = A°.

6. The functional of the mechanical interactions power

Consider a motion y of the body #. The history of the motion of the body % to the
instant 7 or briefly the history of motion is the function ¥{*; #x [g, c0) > %, defined
by the formula

/\ X 0) = x(47~0).
(£,0)e@ x[0,0]

The concept of the functional of mechanical interactions power is an original concept
of this paper. In the classical axiomatics of the continuum mechanics the concept of power
is defined in terms of the concepts of the stress and body force; more precisely it is defined
as a certain particular value of a functional defined by the stress and body forces. Evidently,
the concepts of the stress and body force are subject to certain restrictions ensuring the
possibility of definition of the considered functional. The concept of axiomatics of mecha-
nical interactions presented here constitutes an inversion of the above logical chain of
reasoning. As the fundamental concept we have here the functional of mechanical inter-
actions power; in fact we introduce two functionals, namely the functional of mechanical
interaction power of an arbitrary subbody on an arbitrary subbody disjoint from it and
the functional of mechanical interaction power of the neighbourhood of the body on an
arbitrary subbody. The postulates FI and FII constitute a precise formulation of the re-
quirements concerning the functionals.

FI. For every pair of disjoint subbodies 4, B and for every history of motion y°
there exists a continuous linear functional 7 gz yv); C;[x.(B)] = £ called hereafter the
Junctional of mechanical interactions power of subbody A on subbody B at the instant T the
history of motion being x'*), or briefly the functional of mechanical interactions power of
subbody A on subbody B.

FIL For every subbody 4 and for every history of motion x(*) there exists a continuous
linear functional # ,n; C;[x.(4)] » # called hereafter the functional of mechanical
interactions power of the neighbourhood of the body % on the subbody A at the instant ©
the history of motion being %®) (or briefly the functional of mechanical interactions power
of the neighbourhood of the body % on the subbody A.

The introduced concepts of the functionals of mechanical interactions power make
it possible to define such concepts as force, moment, power. The force of interaction of
subbody A on subbody B at the instant t the history of motion being 4, or briefly the force
of interaction of subbody A on subbody B is the vector fj s = satisfying the condition
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/\ @f4,8,40 = 7y p ) (a). The definition of the force fj p v is logical and unique,
acdly

since the constant g is a continuous function and in view of the linearity of the function-
al @}y g ,(n the existence and uniqueness of the vector f4, 5, ,(» is obvious.

On the other hand, the condition defining the force f} p, 40 is satisfied in all existing
theories of mechanical interactions.

The moment with respect to the point 0 € R of the interaction of subbody A on subbo-
dy B at the instant =, the history of motion being ¥} or briefly the moment of interaction
of subbody A on subbody B, is the antisymmetric tensor M s (v) of rank 2 such that for
every antisymmetric tensor S we have tr(SM} p,,(m) = 74, 0 (S). The justification of
this definition of the moment is similar to that of the force fJ s .

The power of interaction of subbody A on subbody B at the instant T, the history of mo-
tion being ¥ or briefly the power of interaction of subbody A on subbody ®, is the number
74,8, 500 (%)

In an analogous manner we can define the force f4 (v, the moment M4 = and the
interaction power of the neighbourhood of the body # on subbody A at the instant t, the
history of motion being y™. Moreover, we can define the concept of the functional 7, ,v)
of the power of resultant mechanical interactions on subbody A at the instant <, the history
of motion being ¥, as the sum of the functionals 7} 4 xx) and 7}{ x»). The concept of
the functional of power of resultant mechanical interactions may be used to define the
resultant force, resultant moment and the power of resultant mechanical interactions.

The power of resultant mechanical interactions is called additive if for every pair A, B
of disjoint subbodies, for every history of motion 4 and for arbitrary function # € C3(d z,),

74,z 0[8] % (A)] + g 20 [B| % (A)] = Faypy=0[F]|x:(4V B)].

In most of the existing theories of mechanical interactions in a continuous medium, the
resultant mechanical interactions are described by means of the stress tensor, the vector
of body forces, tensors of hyperstress and body hyperforces. The additivity of the powers
of these interactions is then obvious. The aim of this paper is an analysis of the implica-
tions of the additivity of the power of the resultant mechanical interactions.

To simplify the notations we change the domain of the functional of power of resultant
mechanical interactions, from the space Cj[x:(4)] to the space C;(4). This change is
formal, in view of the homeomorphism of every subbody with its image. For every sub-
body 4 and every history of motion x* there exists therefore exactly one continuous
linear functional 4, ,(x); C3(4) » & such that for every function ¢ € C;[x,(4)] we have
T g,,00(B) = 7 4 ) (Fox:). The power of resultant mechanical interactions is additive,
if and only if, for every pair 4, B of disjoint subbodies, for every history of motion
and every function & € Cy(%) we have 74, (3| A)+ 7, (B |B) = 7 aypy, (B4 \/ B).
The axioms FI and FII and Theorem 4 imply that for every subbody 4 and every history
of motion y™there exists exactly one vectorial Radon measure a, ,=; B(4) - %5
such that

(@) = [9-day
Lgeio® = [ -t
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and

3
Imesoll ={ Y1 sasopr@r)”.

7. Generalized principle of stress

We say that the generalized principle of stress is satisfied if for every subbody 4 and
every history of motion x( there exist vectorial Radon measures b, x); B(%#) - A5
and 14, ,(v; B(4%) - #; such that:

(i) for every function # € C3(%#) and for every subbody 4

Ta® OA) = [ O-dbyr+ [ 9-dty o,
A0 A0

(il) for every pair of subbodies 4, B,
IA,;(')IB( < A,B> ) = tﬂ'.x('iIB( < A’B > )'

The first condition of the generalized principle of stress means that the body forces
formally separated from the mechanical interactions are characterised by one Radon
measure defined on the Borel subsets of the whole body. If the remaining part of mechanical
interactions is called contact force, then the second condition of the principle of stress
requires that the Radon measures characterizing the contact forces be identical on the
common parts of the boundaries of an arbitrary pair of subbodies.

THEOREM 9. The generalized principle of stress constitutes the necessary condition of
additivity of the power of resultant mechanical interactions.

Proof. Let 4 be an arbitrary subbody. The subbodies A4 and A4® are disjoint. The
additivity of the power of resultant mechanical interactions implies therefore that for
every function & € C;(#) we have

g (P) = 74,0 (| A) + 74,0 (8] 4%).
Making use of the Riesz theorem and assuming that #|4® = 0, we obtain

[0-day o = [9-dago
A0 A0

or, equivalently,
(1.1) [9.dc =0,
A0

where we have introduced the notation ¢ = (ay, () —ag,,(»)|B(4°). The relation (7.1)
is satisfied for every function # € C;( %) such that #|4® = 0. It follows from Theorem 5
that the equation ¢ = 0 is equivalent to Eq. (7.1). Therefore, a,, ,n|B(4°) = aa,
|B(A4%). This completes the proof of the first part of the theorem.

Consider a pair of subbodies 4, B. The subbodies C = 4 /\ B*, D =B /\ A’, E=
= A /\ B (Fig. 3) are disjoint and we have the identities 4 = C+E, B= D+E, C+D =
= (4 /\ B+ 4" /\ B®". Making use of Theorem 7 (i) and the above proved part of
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Theorem 9, the additivity of the power of resultant mechanical interactions for the pairs
of subbodies C, E and D, E, and assuming that #|(4 /\ B+ 4" /\ B®)® = 0, we obtain

fa‘daﬁlx(") = fﬂ-dag,zm = f B -dag ().
<A.B> 4B (AB)
Exactly as in the first part of the theorem we can prove the relation
a4,,0|B({4,B)) = ag|B({4,B)).

The generalized principle of stress is not sufficient for the additivity of the power of
resultant mechanical interactions. For instance the power functional defined as follows:
#()-c for A°3¢,

0 for A°3¢,

where c is a constant vector and & a fixed point of the body, satisfies the generalized prin-
ciple of stress, but is not additive.

Teg (0 (F) = {

THEOREM 10. The functional of power of resultant mechanical interactions is additive,
if and only if, the generalized principle of stress and the following two conditions are satisfied:
@ N,/ AAB = 0= (tay0+18,)|B(I4,B]) = byn|B([4,B]),

Ae¥ Bes

(ii) Q’,B/e} ANB = 0= (t4,0+15,m) [B({4,'B}) = taysx0|B({4,B}).

Proof. To prove the condition (i) it is sufficient to prove the additivity of the func-
tional 7 for continuous functions # such that #|(4+B)® = 0. The condition (ii) can be
proved making use of Theorems 7 and 8. The sufficiency becomes evident in the course
of proving the necessity of the condition (i).

Under the assumption of the absolute continuity of the body forces b with respect
to the volume, the condition (i) takes the form of the principle of reciprocity of the con-
tact interactions. Under the assumption of the absolute continuity of the contact forces ¢
with respect to the area of the boundary surface, the condition (ii) is trivially satisfied.
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