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Analysis of acceleration waves in material with internal 
parameters 

W. KOSINSKI and P. PERZYNA (WARSZAWA) 

AccELERA noN waves in a rheological material in the case of one-dimensional theory are in
vestigated. It is assumed that the internal dissipation of a rheological material can be described 
by n internal scalar parameters. In Sec. 3 the basic theorems for a homothermal acceleration 
wave are proved. In Sec. 4 a particular case of constitutive equations is introduced. The temper
ature gradient influences explicitly only the description of a state. The equation for the intrin
sic velocity of a general acceleration wave is giv~n. The thermal wave and the homothermal 
wave for this case of constitutive equations are investigated. 

Zbadano fale przyspieszenia w materiale reologicznym w przypadku jednowymiarowej teorii. 
Przyj~to, ze dysypacja wewn~trzna materialu reologicznego moze bye opisana przez n skalar
nych parametr6w wewn~trznych. W p. 3 udowodniono podstawowe twierdzenia dla fali homo
termicznej. W p. 4 wprowadzono szczeg6ln~ postac r6wnan konstytutywnych. Gradient tempe
ratury pozostawiono tylko w opisie stanu. Otrzymano r6wnanie na p~kosc og6lnej fali przy
spieszenia. Dla tej postaci r6wnan konstytutywnych zbadano fal~ termiczn~ i homotermicm~. 

llcCJie,D;OB2Hhi BOJIHbi yci<opeHIDI B MaTepHa.ne c peonorw~~ caoitCTBaMH. PaccMoTpeH 
O,!J;HOMepHbiH CJIY1IaH, I<Cr,D;a ,lJ;HCCHIIa.QWI MCIIUiOCTH B peOJIOJ'HlleCI<OM MaTepHaJJC MO>I<eT 
6hiTL OIIHCaHa npH UOMOIIUI n CI<a.rulpHbiX BHyTpeHHHX napaMel'pOB. B n. 3 ,!J;OI<a3aHbl OCHOBHble 
TeopeMbi wm roMorepMHqeci<oii BOJIHbi. B n. 4 npe.z:tno>I<eH qaCTHbm BH,!J; onpe,D;eJUUO~ero 
ypaaHeHHH, B I<OTOpOM rpa;:meHT TeMnepazypbi CO,D;ep>I<HTCH JIHIIJI. B OnHCaHHH COCTOJIHWI. 
BbiBe,D;eHo ypaaHeHHe, OnHCbiBaro~ee ci<opoCTL pacnpoCTpaHeHHH BOJIHbi yCI<opeHHH o6~ero 
BH,D;a . .I(ml npe.z:tnomeHHoro qacnmro BH,D;a onpe,z:{eJJHro~ero ypaaHeHHH HCCJie,z:{oBam.I repMH
qeCI<He H I'OMOTepMJNeci<He BOJIHbl. 

1. Introduction 

THE OBJECT of the present paper is an investigation of acceleration waves in a rheological 
material in the case of one-dimensional theory. It is assumed that the internal dissipation 
of a rheological material can be described by n internal scalar parameters. 

After introducing basic definitions and assumptions, the theorem 3 is proved. This 
theorem states that in homothermal acceleration waves, the time derivative of internal 
parameters has no jump discontinuity. The proof of the inverse theorem is also given. 
Both theorems are of important consequence for subsequent considerations. 

In Sec. 3, a homothermal acceleration wave for the general form of constitutive equa
tions is investigated. 

In Sec. 4, we assume that all response functions do not explicitly depend on the temper
ature gradient while we keep the influence of the temperature gradient on the solution 
of the initial-value problem for the determination of internal parameters. After lineariza
tion of this initial-value problem with respect to the temperature gradient the equation 
for the intrinsic velocity of an accele1ation thermo-mechanical wave is obtained. In Sec. 5, 
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630 W. KOSrNSKI AND P. PERZYNA 

the thermal wave, and in Sec. 6 and Sec. 7, the homothermal and mechanical (isothermal) 
waves are considered. 

The basic object of this investigation is to obtain practical information concerning the 
description of dissipation effects within the framework of internal parameters. 

2. Definitions and assumptions 

We shall identify a body with an open region f!l, which is its image in the fixed reference 
configuration x. A motion of a body is described by a function x: PJ X R-+ R; the value 
x(X, t) determines the location x at timet of the material point X. By R we denote a real 

line. 
Let us assume that the derivations 

F(X, t) = 0~x(X, t), x(X, ~) = :
1
x(X, t), 

•• 02 
x(X, t) = 

012
x(X, t) 

exist. We call them, respectively, the deformation gradient, the velocity and the accelera
tion of a particle X at time t. 

To describe thermal effects in a body we introduce a function () :PJ X R -+ R, the value 
of which O(X, t) is the absolute temperature of a particle X at time t. 

Let us introduce a new function of two variables. 

(2.1) 
g:PJxR-+RXRX ... XR. ---...---3+n times 

We postulate that a thermo-mechanical state of a particle X at time t is described by 
the value of the function 

(2.2) g(X, t) = {F(X, t), O(X, t), oxO(X, t), cx(X, t)} 

and by the initial-value problem for differential equation 

(2.3) a(X, t) = A(g(X, t)), ex (X, t0 ) = cx0 (X). 

In (2.1)-(2.3), cx(X, t) represents n-scalar internal parameters, which are introduced to 
describe the internal dissipation of a rheological material(!); the function A describes the 

evolution of a, and oxO(X, t) = 0~ O(X, t). 

We shall assume that the initial-value problem (2.3) has a unique solution. This implies 
the condition that the function A is the Lipshitz continuous function with respect to a, 
and the continuous function with respect to its first three arguments. 

(1) Cf. [15]. A triple (F, 0, ox 0) describes the actual deformation-temperature configuration of a par
ticle X, while cx(X, t) together with the evolution equation (2.3) and the initial condition, describe the 
method of preparation of this actual configuration. The method of preparation supplies the additional in
formation needed to define uniquely for a rheological material a thermomechanical state of particle X at 
timet. Internal parameters may have different physical interpretation. This depends on the cause ofthe 
internal dissipation in a material. For discussion of this problem see [12-15]. 
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ANALYSIS OF ACCELERATION WAVES IN MATERIAL WITII INTERNAL PARAMETERS 631 

We shall introduce a fundamental concept in thermodynamic theory- i.e., the con
cept of a thermodynamic process. 

DEFINITION 1. A local thermodynamic process at a material point X in the interval 
of time (tp, tk) c R is a family of functions givien for every t e (tp, tk): 

(2.4) f/Jx = {F(X, t), O(X, t), oxO(X, t), n(X, t)}, 

which satisfies the thermodynamic postulate 
. . 1 

(2.5) -ip+TF-'YJO- enq·oxO): o, 

where 

n(X, t) = {VJ(X, t), 'YJ(X, t), T(X, t), q(X, t)} 

represents the specific free energy per unit mass, the specific entropy, the stress and the 
heat flux in a particle X at time t. We denote bye mass density. 

We shall restrict our considerations to homogeneous material. 
It is assumed that the density of body force b(X, t) and the heat supply per unit mass 

and unit time r(X, t) can be uniquely determined by the first Cauchy's law of motion and 
by the energy balance equation: 

(2.6) ex-oxT =eh, e(ip+'YJO+~O)-TF+oxq =er. 

We postulate that the response of a material- i.e., the thermo-mechanical principle 
of determinism for a rheological material - is expressed by the constitutive relation(l): 

(2.7) n(X,t) = al(g(X,t)), 

where 9l = {'¥, N, T, Q} represents, respectively, the response functions of free energy, 
entropy, stress and heat flux. 

We assume that the function 'Y is of C3-class and N, T and Q are of C2-class in their 
domains. 

We shall introduce the following 
DEFINITION 2. A local thermodynamic process described by fiJ x is said to be admissible 

in f!4 if it is compatible with the constitutive assumption (2.7) at each particle X of dl. 
It is easy to provee) 
THEOREM 1. In an admissible local thermodynamic process of a particle X of fJI the follow

ing relations are satisfied at every time t: 

(2.8) oaxo'¥=0, T(X,t)=eop'Y, 'YJ(X,t)= -oo'Y, 

1 
ocz 'Y ·A +eo q · oxO ~ 0. 

Let us introduce the fundamental definitions concerning the wavee). 

(2) In addition to this general constitutive equation, we shall consider simplified equation in which 
instead of the function g(,) will appear g*(,) = {F(,), 0 (,), a.(,)}. 

(l) Cf. CoLE1'4AN and GURTIN [9] and V ALANIS [17). 

(
4

) Cf. COLEMAN, GURTIN and HERRERA [4], COLEMAN and GURTIN (5-7, 10) COLEMAN, GREENBERG 
and GURTIN [8) and TRUESDELL and TOUPIN [16). 
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DEFINITION 3. The material representation of a wave is a smooth one-parameter family 
of points Y, e f.l, t e (tp, tk) such that Y, is a point at which the wave is to be found at 
timet. 

DEFINITION 4. The material trajectory of the wave is the set 

E = {(Y, t); t E (tp, tk)}. 

We denote by U = U(t) the intrinsic velocity of the wave, which is defined as follows 

(2.9) 

Let us recall the fundamental Maxwell's theorem. 
THEOREM 2. If!= f(X, t) is a continuous function of X and t jointly, and has continuous 

partial derivatives everywhere except 1:, where these derivatives can have jump discontinui

ties, then 

(2.10) [}] = - U[oxf]. 

We define the jump in h(X, t) across 1: at t by 

(2
.1l) [h} = lim h(X, t)- lim h(X, t) 

x-Yt" x-Yi 

for a function h: PA x R -+ R. By Y,- , Y,+, we denote respectively the left and right limit. 
Let us consider the motion x(X, t) and time dependent fields(} and ex on fJI x R in an 

admissible thermodynamic process for every particle X in f.l. 
DEFINITION 5. It is said that 1: is an acceleration wave if the fields x(X, t), O(X, t) and 

ex(X, t) have the following properties: 
AI) x, x, F, 0, ex are continuous functions of X and t jointly for all X and t; 
A2) x,F, oxF, 0,,,_, oxO, a, ox ex have jump discontinuities across 1: but are continuous 

in X and t jointly everywhere else; 
A3) the response functions T, N, Q are C2-class and 'I" is C3-class in their domains; 

the function A is C1-class in its domain(5
). 

We introduce the notations 

(2.12) 

respectively, for mechanical and thermal amplitudes of the wave. We shall also assume that 

(2.13) fe] = [b] = [h] = [r] = (;] = 0. 

DEFINITION 6. An acceleration wave in which [0] = 0 is called homothermal. 
The definition of an acceleration wave implies 

(2.14) [VJ] = [T] = [1)} = 0. 

From the definition of an acceleration wave and from the Maxwell's theorem we 
obtain 

(2.15) a = - U[F] = U2[oxF]; {3 = - U[oxO]; 

[IX] = - U[oxex]. 

( 5) This assumption is stronger than that needed for the unique solution of the initial-value problem (2.3). 
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Let f: ~ x R ~ R be a continuous and continuously differentiable function of its varia
bles everywhere except E, where it can have jump discontinuity. Then U1 is a function of 
time t only. Differentiation [f] with respect to time t yields(6) 

(2.16) 
d . 
dt [f] = [f] + U[8xf]. 

THEOREM 3. In a homothermal acceleration wave the time derivative of the internal 
parameter has no jump discontinuity- i.e., 

(2.17) [0] = 0 => [~] = 0. 

Inversely, if a derivative of the function A with respect to the temperature gradient does 
not vanish on the wave, and the time derivative of the internal parameter has no jump discon
tinuity, then the Thomas derivative of the temperature gradient vanishes- i.e., 

(2.18) 

P r o o f. The first part of the theorem is a consequence of the definition of an accele
ration wave (cf. A3). The proof of the second part of the theorem is as follows. If [a] = 0, 
then from (2.1 0): 

(2.19) [Ci] = - U[oxciJ. 

Using the evolution equation (2.3), we obtain 

[a] = 8FA[F] + 86A[6] + 8oxaA[8xO], 

[8xa] = 8pA[8xF]+80A[8x0]+83x~f8iO]. 

Substitution of these results into (2.19) gives 

8oxoA[8xO] = - U8axoAraiO]. 

Because oaxeA #: 0, hence [oj.o] = - U[oj.O] or 

• 2 d 
[ dx 0] + U ( dx 0) = dt ( d X 0] = 0 · 

This completes the proof. 

This theorem is fundamental for a discussion of acceleration waves in a material with 
internal state variables. It endows an acceleration wave with an additional property and 
at the same time solves the question concerning the jump of the time derivatives of the 
internal parameters. 

3. Homothermal acceleration wave 

We offer some remarks prior to the discussion of a homothermal acceleration wave 
in a rheological material. 

(
6

) A derivative :, Cl] defined by (2.16) is called the Thomas derivative. 
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The assumption concerning the differentiability of the free energy function and the 
results of the theorem 1 yields: 

1 . . 
(3.1) ip = -TF-'Y)O+ oaP·a. 

(! 

R e m a r k. In a local thermodynamic process involving an acceleration wave, the laws 
of balance of momentum and energy are equivalent to the assertion that for X =F YrC) 

(3.2) 

(3.3) 

while for X = Yt 

(3.4) 

(3.5) 

(3.6) 

oxT+eb =ex. 

e(ip+~O +'YJO) = TF-oxq+er, 

r a x TJ = e rxJ, 
e[ip]+e'YJ[O]+eO[~]+[oxq} = T[F], 

[q] = 0. 

These latter results together with (3.1) give 

(3.7) 

across .E, and 

(3.8) 

everywhere else. 
Using the definition of an acceleration wave and the smoothness property for the stress 

function T, we can write 

(3.9) 

Since on a homothermal acceleration wave [0] = [oxO] = 0, and by theorem 3 [a] = 
= [oxa] = 0, then instead of (3.9) we have: 

(3.10) [oxTJ = op T[oxFJ· 

Substituting (3.10) into (3.4) and using the Maxwell's theorem, we obtain 

(3.11) (opT- eU2)a = o. 
This equation permits to express 

THEOREM 4. The intrinsic velocity of a homothermal acceleration wave in a material 
with internal parameters satisfies 

(3.12) 

where opT is taken at the point (F(Yt, t), O(Yt, t), a(Yt, t)). 
We shall attempt to find the equation which describes changes of the amplitude a(t) = 

= [x](t). First, we shall show the relation between the amplitudes a(t) and [~·](t). Since 

[0] = 0, then by theorem 2 we have 

(3.13) [0.] = - U[oxO] = U2[ojO]. 

(') CoLEMAN and GURTIN [6J. 
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On a homothermal acceleration wave 1: we have 

(3.14) 

(3.15) 

[oxq] = oFQ[oxF] + oaxoQ[o_iO], 

I~] = OF N{F]. 

635 

Combining the results (3.14) and (3.15) with (2.15) and (3.13) and substituting into the 
equation 

(3.16) 

which describes the energy balance for a homothermal wave, we obtain (8). 

THEOREM 5. In a homothermal acceleration wave with intrinsic velocity U 

(3.17) 

where 

(3.18) 
a 

kr, = - o(oxO) Q(F(Y,, t), O(Y,, t), oxO(Y,, t), (X(Y,, t)), 

is the heat conduction modulus on the wave, and 

(3.19) 
a 

f/Jr, = oF Q(F(Y,, t), O(Y,, t), oxO(Y, t), (X(Yt, t)), 

(3.20) 
a 

Cr, = -e--ap-N(F(Y,,t),O(Y,,t),(X(Yt,t)). 

Equations (2.15) and (2.16) yield: 

(3.21) - d ( a ) .. "] r~ . ] 2 l/ u dt Vu = I X - u ux F . 

Differentation (3.2) with respect to time t gives on the wave 

(3.22) 

The jump of oxT is given by 

(3.23) [oxT1 =oF T[oxFJ +o~T[FoxF]+lr,IoxF] +lrt[F]+ oo T(oxO] +ocz T[oxa], 

where 

(3.24) 
Jy, = (o~~F TD)r, + (o;oaF T. a)r,, 

lr, = (oFoo ToxD)rt + (oczoF T · Ox(X)r,. 

On the wave we have the expression 

(3.25) 

which after using (3.17) yields 

(3.26) [ iJx il] = U 2 
{ iJ,A + !::. ~ (Ue{}iJ F N- eiJ ,Q)} a. 

(
8

) Cf. COLEMAN and GURTIN [6]. 
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Inserting (3.25) into (3.22), substituting the result into (3.21) and after using (3.17) and 
(3.26), we have 

THEOREM 6. The amplitude of a homothermal acceleration wave in a material with internal 
parameters satisfies the equation 

(3.27) 2 ;U ~(_!!_) = ojT {Fo FJ _I_{Ir, -J oa.T·oFA 
Jt dt yU e X + eU u r, + u 

/ Pr, + UOCr, )) 
+ (oa. T · oaxoA- Cr,) \ kr, a, 

where U satisfies Eq. (3.12), kr,, Pr,, Cr, are given by (3.18)-(3.20) and lr, and lr, 

by (3.24). 

4. Equation for the velocity of a wave 

The object of this Section is to find the equation fot the velocity of an acceleration 
wave in a rheological material with internal parameters. 

We shall solve this problem for a particular case of constitutive equations. We assume 
the constitutive equation in the form 

(4.1) n(X, t) = 9t(g*(X, t)), 

where n(X, t) is the same as in Sec. 2, and 

g*(X, t) = IF(X, t), O(X, t)(X(X, t)J. 

Let us assume for the response functions {'I', N, T, Q} the sames moothness properties 
as in Sec. 2. 

We define a local thermodynamic process (tp, tk) c: R as a family of functions given 
for every timet e(tp, tk): 

(4.2) t!lx = {F(X, t), O(X, t), oxO(X, t), n(X, t)}. 

Description of a thermo-mechanical state in a particle X at timet is given by the value 
of the function 

(4.3) g(X, t) = IF(X, t), O(X, t), oxO(X, t), (X(X, t)J, 

and by the initial-value problem for the differential equation 

(4.4) a(X, t) = A((g(X, t)), (X(X, t0 ) = (X0 (X). 

Dependence of the description of a thermo-mechanical state on the temperature gradient 
ox() ensures that the Fourier's law of heat conduction can be obtained as a particular case 
of our constitutive equations. 

The assumptions introduced lead to the following relations on an acceleration wave 

(4.5) 

(4.6) 

(4.7) 

[ox T] =oF T[oxF] +o9 T[oxO] +ocx T ·[Ox(X], 

[oxq] = oFQ[oxF]+o9Q[ox0] +ocxQ ·[Ox(X], 

[i}] = opN[F]+o9 N[O]+ocxN·[oc]. 
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Additionally, we assume the linearized form of the evolution Eq. (4.4) with respect 
to the temperature gradient 

(4.8) li(X, t) = A(F(X, t), O(X, t), rt(X, t))oxO(X, t)+B(F(X, t), O(X, t), rt(X, t)). 

This assumption permits to express the jump of a by the jump of iJ xO: 

(4.9) 

Substitution of (4.5) into (3.4) and making use of the Maxwell's theorem(9
) and (4.9)give 

(4.10) 

In a similar manner, substitution of (4.6) and (4. 7) into (3.7) and making use of the Maxwell's 
theorem and ( 4.9) yield: 

(4.11) (opQ-eUOopN)a-(eUoa'Y·A-eUOoaN·A-oa.Q·A+Uo8Q-eU20o8N)p =·o. 
Equations ( 4.1 0) and ( 4.11) represent a set of two algebraic equations linear with respect 
to amplitudes a and p. This set has nontrivial solutions, if and only if, its determinant 
vanishes (in every particle X = Y1) - i.e., 

(4.12) (opQ -eUOopN) (oaT ·A- Uo8T) 

+(opT -eU2) (eUoa'Y ·A+eVOoaN·A-oaQ·A+Uo8Q-eU20o8N) = o. 

THEOREM 7. The intrinsic velocity U of an acceleration wave obeys (4.12)(1°). 
We shall study this equation for two particular cases. 
Case I. A material does not conduct heat and the free energy does not depend on internal 

parameters-i.e., Q = 0 and oao/ = 0. From (4.12), we have: 

U2 _ opT _ (opo8 '¥)2 

- e oi'Y • 

Case 2. Let o8T = 0 and opQ = 0. From (4.12) we obtain 

U2 - opT 
1,2- -(!-, 

Ui,4eoo~'Y + U3,4(o9Q+e8a 'Y .x -eOoa.o8'Y .A) -oa.Q·A = o. 
In the case 1, the expression for U shows the influence of thermal effects on the intrinsic 

velocity of an acceleration wave in an elastic non-conductor. This is an example of a homo
tropic wave (cf. COLEMAN and GURTIN (6]). 

Of interest is the case 2, which exemplifies the situation in which there is no coupling 
between thermal and mechanical effects and the mechanical and thermal waves propagate 
separately with finite speeds. 

(
9

) Cf. with the Theorem 2. 
(1°) A similar result for materials with memory has been obtained by CHEN and GURTIN [3]; cf. also 

CHEN [1, 2]. 
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5. Thermal wave 

We shall consider an acceleration wave without mechanical effects. To this end, let us 
assume 

(5.1) n(X, t) = 9l(g#(X, t)), 

where 

g*(X, t) = tO(X, t), ex( X, t)}, 

'Jt = (tp, 'YJ, q} and 9l = ('P', N, Q}. 

A thermal state in a particle X at time t is described by the value of the function 

(5.2) g(X, t) = (O(X, t), axO(X, t), cx(X, t)} 

and the following initial-value problem 

(53) 

The thermodynamic postulate now yields: 

(5.4) 'YJ(X, t) = - a6 '¥(0, ex), 

(5.5) 
- - 1 

Bcx 'P' ·(AaxO+B) + eoQ·axO ~ 0. 

For this case, the equation for the intrinsic velocity (2.12) takes the form(1 1): 

THEOREM 8. The intrinsic velocity of a thermal acceleration wave in a material described 
by the assumptions (5.1}-(5.3) satisfies Eq. (5.6). 

We next intend to obtain the differential equation determining the amplitude of a ther
mal acceleration wave. To this end, let us differentiate with respect to time t the energy 
balance equation in the form (3.8). We have 

(5.7) 

Using the constitutive equations, we can prove that the following relations are valid 
in the wave: 

(5.8) [a ex 'P'] = a(Jacx 'P'. [0] +a~ 'P'. [oc]' 

(5.9) [~] = -ai'P'[O]-acxa6 'Y·A·[axO], 

(5.10) [ij] = -a: '¥[(0)2
]- 20cxa; 'P'. (A[OaxO] + .Bten 

- ai'P'[O]- a~a6 'P'. [(li) 2
]- acxa(J 'P'. [ri], 

(
11

) The analysis of the propagation of a thermal wave in a material with memory has been presented 
by GURTIN and PIPKIN [11] and by CHEN [1, 2). 
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(5.11) [Bx41 = oiQ[OoxO]+o"o9Q·[oco,~OJ+o9Q[ox01 

+o9o"Q·[OoxocJ +o~Q ·[cioxocJ +o"Q·£ox~l, 

(5.12) [oc] = AfoxOL 

(5.13) [ri] = o9A[OoxOl +o"A·At<ox0) 2
} +o"X . .BtaxO] 

+ AioxOI +o9.Bto1 +o"B ·AfoxO], 

(5.14) [Bxocl = a9A[(ox0) 2
}-a"x.xu-1[oxOJ2 + .A"foi6J 

+ (oocA·oxoc+ -.A.a".Aaxo+u-1 +o9B-A·o".BU-1J[oxO]. 
where the equality 

(5.15) 

has been used, which is satisfying for two arbitrary functions having jumps across J;. 

Substituting the relations obtained into (5.7), and taking the result on the wave .E, 
we have: 

(5.16) :/fy [(ox0) 2]+.Pr [OoxOJ+.Ar [(0)2}+%r f3+Sr {32 
t t t t t 

~eOoi'Y£01 +(eo" 'Y ·A ~eOoaa(J 'Y ·A +o9Q) [ox01 +oaQ·A[oiOJ = o, 
where the following notations have been used 

(5.17) 

.AI'r, = {(eoa 'Y- e0ocxo9'Y) · (o9B- u-1AoaB) +oaQ · (U-2A· oaB- u-1o9B) 

-2eOoaBi'Y ·B- u-1 ((eo;'Y -eo a; a9 'Y) .f4B+o9o"Q·B 

+ o~Q ·(ox ex+- u-toc+).A +(eo a 'Y- eoa"a9 'Y) ·BocxA)}r,, 

Yr = (oa.o9Q·AU-2 -o;Q·(A) 2U-3 -oaQ·oaAAU-3
J1 • 

t t 

Let us recall the relations 

(5.18) 
d . . .. • 

dt[OJ = [0] + U[oxO], 

From (5.18) we obtain the equation 

(5.19) 
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If we evaluate [axO] from (5.18)1 and [axO] from (5 19) and substitute into (5.16), 
then we have 

'THEOREM 9. The amplitude of a thermal acceleration wave in a material described by 
the assumptions (5.1 )-(5.3) satisfies the differential equation as follows: 

(5.20) "'rr ddf!_+(Jir +U-2fr -U-1!l'r +Sr)P2 
r t t t t t 

+{2o.Ar -2U-1 oxO++-*'"r +.#'r +(oxO+-u-lo+)!l'r + u-3 ddu oa;Q·A}P = o, 
t t t t t 

where f r , !l' r , .#' r , % y , Sr are given by the expressions (5.17) and 
t I t I t 

6. The particular case of a homothermal wave 

We shall study the case of a homothermal acceleration wave for a material described 
by Eqs. ( 4.1 )-( 4.4) with the additional condition 

(6.1) A(F, 0, oxO, a) = A(F, 0, a)oxO+B(F, 0, a). 

The set of Eqs. (4.10)-(4.11) for this particular case yields: 

(6.2) 

(6.3) 

(opT+eU2)a = o, 
(eUOopo, 'Y + opQ)a = o. 

The intrinsic velocity is determined by 

(6.4) 

and the additional equation 

(6.5) 

has to be satisfied. 
The condition (6.5) can be treated as an additional restriction for the partial deriva

tives of the response functions on the wave E. 
To determine the amplitude of a homothermal acceleration wave for the case consid

ered we use the differential Eq. (3.21) together with (3.22). We evaluate: 

(6.6) fox il = op T[oxF] + a;T[FoxFl 

where now 

(6.7) 
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Substituting (6.6) into (3.22) and combining the result with (3.21), we obtain 

(6.8) .. 1- d ( a ) ( 1 ) · 1 2 • 2v U dt yU = eoFT-U2 [ox.FJ+eoFT[FoxFJ 

1 {/y - - } 1 - . 
eU cf -Jy, + u-1(oFB+oFAox0) ·oa.T a+ e(o9 T- u-1A·oa. T) [oxOJ. 

We should now express [oxO] by the amplitude a. We shall find this equation by differ
entiating with respect to time t (3.8) and writing the result on the wave E. This gives: 

(6.9) cu-2!l'lr -u-1!l'2Y )a+oiQ£Fox.FJ-eoa;a9'1'[(fr)21 
t ' • d(a) 

+!l'3r,[oxO] +eOaFa9'1' dt 71 = o. 

Evaluating [oxO] from (6.9) and substituting into (6.8), we finally obtain the differential 
equation for the amplitude of a homothermal acceleration wave in the following form: 

610 () ':l':l\TJ' -1 ro1da a dU1 (}':l':lUJ'-1 -1) ( . ) (2+e uFu9-r U !l'or -z- 3r )-d - -U -d ( +e uFu9 -x U !l'or!l'Jr 
t t t t t t 

- (_!_a;T-oFQ!l'or!l'3i)riaxFJ-eOoio9'1'.!l'or .!l'ii [(F) 2
J e , , , , 

1 J [y - - l 
- eU rcf -Jr, + U(oFB + 81-·AoxO) ·oa. T- e.!l' or,.!l'3l,U-1!l' tr, -!l'2r,) J a= 0. 

In (6.9)and (6.10) we introduced the additional notations 

!£'or = _!_(89 T- oa. T ·AU-1)r , , e , 

!l'a = (oFo9QO+oFoa.Q·ci+oa.Q·(oF.AaxO+oFB)lr, 
t t 

2 • • • 
!£'21 = (eaFaa. 'I' -ci-2eoaFa9 'I'O -eaFa9 'I'0-2eOaFa9aa. 'J! -~ 

t 
(6.11) 

+ oFo9Q oxO + oa.oFQ ·ox~- (e0oa.o9 'I'- eoa. 'I')· (oFAoxO + oFB)}r,, 

!R n = 1o9Q +eo a. 'J! .x -eOaa.a9 'J! . .if +eou a:'J!- oa.Q .xu-1 }y . 
t t 

The results of this section we can gather in the following 
THEOREM 10. A homothermal acceleration wave in a material described by the constitu

tive assumptions (4.1)-(4.4), with the additional condition (6.1), propagates with the intrinsic 
velocity U given by (6.4). On the wave, the additional condition (6.5)for the response functions 

has to be satisfied and the amplitude of the wave obeys the differential equation (6.10). 

7. Isothermal wave 

We assume that the thermodynamic process considered is isothermal-i.e.: 

(7.1) O(X, t) = 00 = const. 

In this case, the function g(X, t) has the form: 

(7.2) g(X, t) = (F(X, t), (X( X, t)). 
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In an isothermal process, a family of functions ~ x is as follows: 

(7.3) ~x = {F(X, t), n(X, t)), 

where 

n(X, t) = (VJ(X,.t), 'YJ(X, t), T(X, t)) 

and the thermodynamic postulate has the simple form 

(7.4) 
. 1 . 

-tp+-TF~O. 
(! 

Equation (2. 7) is the constitutive equation for this material. The thermodynamic 
postulate (7 .4) yields 

(7.5) 

The energy balance equation reduces, in this case, to 

(7.6) oct'I'·<X+00 ~ = 0 

A chain rule for N implies that, for X=/: Yr, we can write 

(7.7) 

By the Theorem 3, [a] = 0 and them (7.7) across 1: has the form 

(7.8) 

Because [FJ do not vanish on an acceleration wave, we have aF N = 0. Hence, on an 
acceleration wave the following relation is true 

(7.9) - Ocx 'I'· ci = 00 ocxN • ci. 

Under the assumption that ci :I= 0 and { ai} are linear independent across 1:, we arrive at: 

(7.10) 'I' (F, ex) = - 00 N(ex) + C(F). 

Because in general 'Y = E-ON, we have for an isothermal acceleration wave the relation 

(7.11) 'I'(F, ex)= E(F)-00 N(ex), 

where the internal energy E is a function of deformation only and the entropy N depends 
on the internal parameters a. 

Using the smoothness property for the stress function T and the equation of motion 
(3.4), we obtain: 

(7.12) (oFT-eU2)a = o. 
Hence 

(7.13) because a=FO. 

To determine the amplitude of an isothermal acceleration wave, we use the differentia) 
equation (3.21) together with (3.22). We evaluate: 

(7.14) {ox j] = oF T[oxFJ + ojT[FoxFJ + ocx T ·[ox<XJ + oFoot T ·(ox ex[ F.!+ ~[oxFJ). 
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Substituting (7.14) into (3.22) and combining the result with (3.21), we obtain 

(7.15) 2 .. ;-U- d ( a. ) 1 ~ 2 T[F. ~ F] 1 (8F8cxT·oc ~ ~ T ~ oFA·ocxT) J' ----= = -uF ux + -- -uFUcx •uxoc+ ---- a. 
dt yu e eu u u 

The principal results of this section we summarize in 
THEOREM 11. On an isothermal acceleration wave the free energy is given by the relation 

(7 .11 ). The intrinsic velocity U of an isothermal wave is determined by (7 .13) and the 
amplitude of the wave obeys the differential Eq. (7.15). 
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