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The axisymmetric Boussinesq problem
in the micropolar theory of elasticity (")

R. S. DHALIWAL (CALGARY)

GENERAL solution to the problem of identation of semi-infinite micropolar elastic medium by an
axisymmetric rigid punch has been obtained. The Hankel transform is used and the problem
is reduced to the solution of the dual integral equations, The discussion of the limit solution
for o < 1 is given,

Uzyskano og6lne rozwigzanie zagadnienia wciskania osiowo-symetrycznego sztywnego narze-
dzia w péinieskoniczony mikropolarny osrodek sprezysty. Zastosowano transformacje Hankela
i sprowadzono problem do rozwigzania dualnych réwnan catkowych. Przedyskutowano szczeg6-
fowo pewien przypadek rozwiazania granicznego dla « < 1.

ITonyueHo obllee pelneHye 3a7a4YH O BAABIHBAHHH OCECHMMETPHYHOrO YHECTKOrO MHCTPYMEHTa
B N0MyGeCKOHEUHYI0 MHKPONCIBIpHYVIO cpefy. ITpu nomomu tpancdopmamuu TaHkens samgaua
CBefleHA K PelleHHI0 CHCTeMBI JBOHCTBEHHBIX MHTErpaibHbIX ypaBHenuil. ITosmpobHo oGcysc-
JleH HEKOTOPBIH YAaCTHBIA CiIydalf mpefessHoro peinenus npu o <€ 1.

1. Introduction

THE ASYMMETRIC theory of elasticity initiated by Voigt [1] in 1887 and further developed
by E. CosserAT and F. COsSERAT [2] in 1909, has for several and diverse reasons aroused
renewed and growing interest during recent years. The basic equations of the linear micro-
polar theory of elasticity have been given by KuvcHinskl and AERrO [3], PALmMoOV [4] and
ERINGEN and SuHuUBI [5].

The axisymmetric Lamb’s problem in a semi-infinite micropolar elastic solid has been
solved recently by Nowacki [6]. Puri [7] and DHALIWAL [8] have obtained solutions re-
spectively for stress concentration and thermoelastic problems for a semi-infinite micro-
polar elastic solid.

In the present paper, a general solution has been obtained to the problem of inden-
tation of a semi-infinite micropolar elastic medium by an axisymmetric rigid punch.

2. The basic equations
For a homogeneous isotropic centrosymmetric linear-elastic body occupying a region ¥,
we have the following basic equations; the equations of motion:
g, +pX; = i;
(2 l) inj TP PU;s .
Kiji,j T E€ijkOik + JY; = Juw;,

(*) Presently visiting the University of Glasgow and The City University London, UK.
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the kinematic relations:
2.2) Biy = wyi, Vi = Ui+ e,

the linear constitutive law:
(2.3) oy = Ayw8i+28y 5+ 207, My = BPudy+ 2Py +26Ppyy
where in these equations, we have used the following notation:

oy stress tensor components,

iy couple-stress tensor components,
u; displacement field components,

w; rotation field components,

X; body force components,

Y; body couple components,

yij Strain tensor components,

Bij curvature twist tensor components,
&k unit antisymmetric tensor,

[1 and () indicate respectively the skew symmetric and symmetric parts of a tensor,
A, u, a, B, v, € are the elastic constants of the micropolar material, g is the density, J is the
rotational inertia, and the dots denote the time derivatives.
Using (2.2) and (2.3) in (2.1) to eliminate oy, u;;, f;; and yp;;, we obtain the system
of six differential equations, which we represent in vector form:
A+2p)VV-u—(u+ )V x V xu+20V x w+oX = g,

24
@2 B+29)VV - W—=(y+e)VxVxw+2aVxu—daw+JY = Jw.

These equations are coupled and it is noticed that they become independent when a = 0.
In this case, Eqgs. (2.4), reduce to the displacement equations of motion of classical elasti-
city, while Eqgs. (2.4), describe a hypothetical elastic body in which only rotations occur.

For & — co we get the couple-stress theory conditions w = %V X u.

Since we are interested in solving a static problem with no body forces, we take X =
=Y =1i=W=0 and introduce the cylindrical polar coordinates (r, ¢, z). Equation
(2.4) now takes the following form:

u, 2 4 de 1 dw,
“‘*“}(vz“'“?“ " a?)*‘““‘“’ﬁ*"’“[?‘aa—%”’
2 Uy 2 Ou, 1 de ( 3
(}l-}-l!)(v Uy — r2 +— = a¢ +("+.|u u)'r_ 3¢ +2a oz or

3 1[ o oo,
(4 +0) V2 + (A + p—a) E;—+2a-;[g?(rw¢)—%] =0,

(2.5)
2 ® 2 dwg o 1 o, au,)
(}’+8)( w,—'—rz — rzﬁ —4aw,+(ﬁ+}’-£) 3 +2a(r __a¢ ‘_az" —‘0!
2 dw, ou,  Ou,
(y+e)(V’w¢ w; +-r7 ;;) —dawg+(B+y—e) - 7y +2a( ;; Br)_0°
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Ox 1 ou
2 = ey il r pas

‘(332 (7 +e)Vw, —daw, + (B +y —¢) Tz +20 I:ar (rug) — 3¢] 0,
where

1 ¢ r 3"* Bu 1 @ 1 6w¢ dw W,

e=__ = —_—— 4+ ___"° —
Fa Tt = Ut
We shall consider a particular case in which the vectors of displacement u and of

rotation w depend only on the coordinates r, z. In this case, the set of Eqgs. (2.5) is decom-
posed into two mutually independent sets of equations:

.. iy 9,00
(;H-u)(v U, rz)+(41+,u a)ar 2u e =0,

@) W+ Vot Gt p—) oo 42012 ) = 0,

ar

(y+e)(v2w.——‘;’:~)— w+20 a“' 3“*)=o,

2, U Bw,_am, _
(,u+u)(Vu¢ r=)+2“(az ar) 0,

, Ox Juy
r*)_“w""(ﬁ"’?_a)W“z“_é? =%

2.7 (y+e) (V’w,—

ax 14
2 — — —_— —_ =
O +e) Vi, — 4w, + (B+y — )7 +2a——-(ruy) = 0
where
_ 134 du, _19 ,_ 0 18 &
=T aMt g K=y FAC R “wtrata

The sets of Egs. (2.6) and (2.7) can be considered separately. Here we shall investi-
gate the set of Eqs. (2.6). To the displacement vector u = (u,, 0, #;) and to the rotation
vector w = (0, wy, 0), is ascribed the following state of force stresses and couple stresses:

Trr 0 Trz 0 P’r‘ 0
23) 0 pe Of n=|ue 0 pl,
o, 0 o, 0 py O

where the particular components of the stress tensors have, according to (2.3), the follow-
ing form:

a r z
O =24 a’:’ T4 = 2;;"7 +Ae, o0.=2u Zu + e,
_[ou, | du, du, du,
"""“(‘é?*_a?)_“(”a? ar )*2“‘“’*'
ou, Ou, du, u,
@9  op=p (Tur + a—"z) +e ("é‘l; o ) — 2y,
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(2.9) Prg =7 —""- - —) (% + —)

[cont.]
oo, () dw,
b=y (__g__é (m_e+_)
= (y— )_aw_“ =@+ )E“ﬁ
Pg: = (Y —¢ 7z * Mg = (YT 3z

3. General solution of Egs. (2.6)

The three mutually independent functions %,, u. and w4 are involved in the system of
Egs. (2.6). Multiplying (2.6) by Jo(& r) and (2.6),,5 by J, (ér), and integrating between
the limits 0 to oo, we find that the system of partial differential equations (2.6) reduces to
the following system of ordinary differential equations:

[(u+a)D* — (A+2u) &)t — (2 + pp— #) éDid; — 20Divg = 0,
G- (A + p— @)&Dit, + [(A+24) D* — ( + @) %) + 2akg = 0,
20Dty + 2z + [(y + €) (D — £) — do] g = 0,

where #,, @4 and %, denote the Hankel transforms of the functions «,, wg and u., respectively,

(,9) = [ @080, EDdr, ity = [u,edo(Er)dr
] 0

and D = d/dz. The expressions for some of the required transformed components of the
stress tensors are obtained as:

0:: = (A+2p) D, + Mu,,
(3.2) 0z = — (p— )&tz + (u+ &) Dii, — 20ddg,

fizg = (v + ) Didg.
The solution of the set of Eqs. (3.1) suitable for the half-space Z > 0 may be written as

ﬁ,(E,Z) = (A; + A;Z)e""’ + A;e'c"
(3.3) u;(£,2) = (By + Byz)e ¥ + Bye %,
Wg(&,2) = (C1+Cy2) e %+ Gy,
where
dap

L+ (y+e)’
and 4;, B;, C; (i = 1, 2, 3) are arbitrary functions of £ although not all of these are inde-
pendent. Substituting for #,, u,, o'y from (3.3) into (3.1);,2, and equating the coefficients
of exp (—&z), zexp(— &z), exp(—(z) separately to zero in each of the equations, we obtain
a system of six algebraic equations in 4;, B;, C; from which we find that:
A+3u B
A+2p &7

G4 C=VE+m?, m’=

Al



THE AXISYMMETRIC BOUSSINESQ PROBLEM IN THE MICROPOLAR THEORY OF ELASTICITY 649

At p

AZ =Bz 2-’;—2‘[5 B C2=0,
A; .83 '}’+£
—_—= = C, C =E
¢ ¢ 2 )

Now the expressions for the transformed displacement and rotation components are
given by:

5 A+3u B A+ et YEE crpte
u,—(A Tiom E + A+2‘“B T Cle

(3.5) E,:(A-s— “"L Bz)e"’

—Iz
3

iy = Be ¥ 4 Ce ™

Substituting from (3.5) into (3.2), we obtain the expressions for the transformed com-
ponents of stress:

G (5,2) = 2;4[(-5,” 7 :2# B- ;:; 35) e 4 ?2"'*" CCEe“‘]

6‘,,(5,5) = 2,“[(— EA+B-—- ;.+2 Btz ) ':’ '}-’;8 sze—k],

fisp(§,2) = — (v + &) [Bée™* + Cle¥].

4. Solution of the Boussinesq problem

We consider a semi-infinite micropolar elastic medium z > 0, indented by an axisym-
metric rigid punch on a circular area r < 1 of its free surface z = 0.
The boundary conditions for the problem may be written as:

(41) Gzr(no) = ﬂza(f,o) = 09 r= 0!
a.:(r,00=0, r>1,
u,(r,0) =6—f(r), r<l.

where f(r) is prescribed by the fact that, referred to the tip as origin, the punch has equation
z = f(r) so that f(0) = 0; & is a parameter (as yet unspecified) whose physical significance
is that it is the depth to which the tip of the punch penetrates the elastic medium.

The boundary conditions (4.1) will be satisfied if we take

by P __°
4.3) ( + or )C, B= g_c.

Now, if we define the new unknown function G(£) by the relation

(4.4) G =[ 2‘:2*‘ ”“ E¢- E)]

(4.2)
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we find that:

@.5) 0x:(r,0) = 2u [ G(&)&To(Er) d,

0
(4.6) u:(r,0) = [ HEGE)Jo(Er)dt,
0
where
20—k L, _ 1 p
4.7 S o e—, = e
e HO =wryme-n * = G-D 7+
and 7 is Poisson’s ratio. We may write H(£) in an alternative form:
k2

(4.8) HE) =h+H (), h= —4(1—"1)W-

From (4.5), (4.6) and (4.8), we find that the boundary conditions (4.2) are satisfied if G(£)
is the solution of the dual integral equations:

[G®ernend =0, r>1,
4.9) 0

o0

[+ H®16 @) Jo@n!= 0—f(), r<1.

Dual integral equations of the above type have been considered by a number of authors
[9, 10]. If we represent G(&) by the relation:

1
(4.10) GEE) = .i_ f w(t)cos(Endr,
0

then (4.9); is identically satisfied, and (4.9), is satisfied if y(t) satisfies the Fredholm inte+
gral equation:

@11 h1p(t)+-—-fK(x,t)1p(x)d’x LJ']/“f(x) xdx], oL,

=)

where
(4.12)| K(x,1) = 2 [ Hy(&)cos (x&)cos (1£)d&.
]

To evaluate K(x, t), we notice that the denominator of H, () has no real zeros and that the
zeros are imaginary and unequal or imaginary and equal or complex and equal and oppo-
site in sign according as k? s 4m?. Now, for the case k* > 4m* we find that H,(£) may be
written as

(4.13) H@¢) =

2(1-mk* | T I, a  E{(E*+m?)'P—§)
m* 12> | £ 4a}  Ptai  di-ad £ +a;

. 8 s{(s=+m*‘-)”‘—e}]

ai-a; £+a; ]
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where

a‘ az _ kz(kz-i-Zm‘) kS(k2_4m2)1;z
b2 T 22k +m?) 223 +m?) ’
24t — (k* + m*)a} + k*m* 2a3—(k’+m’}a;+k’ 2
r'y= z 2 ’ r,= 2 *
a;—az ai—a;
Substituting for H,(¢) from (4.13) into (4.12) and integrating, we find that

— (1 “ﬂ)kz ?!P; —ay(x+1) —ay | x—t | J'I:I'z —az(x+1) —ay | x—t]
(4.14) K(x,t) = W —a—;- (-4 +e '—'? e +e

—-aTE—a-;{I(al,x+t)+1(a,,!x—t|)—I(az,x+r)—I(az, |x—-t[)}],

where

415 [au) = a’! z{|/(zz+m2)—z} cos (zu)dz

22+a2

2)1}2

= —e"“'{a——]/(a ~m?)}—a fz—(i:';—e‘“dz.

The expressions for K(x, t) for k* < 4m* may be obtained in a similar way. Numerical

values of K(x, t) for 0 < (x, 1) < 1 can be obtained, since this involves only the numerical

integration of a finite integral (4.15) and hence the integral equation (4.11) may be solv-

ed numerically, following|the procedure of Fox and Goopwin [11] as applied by DHALI-
WAL [12] earlier in a similar problem.

Substituting for G(£) from (4.10) into (4.5), and interchanging the order of integration,

we obtain:

1
_Ae 1 d [ wp)dt , o<r<l1,
(4.16) 0:(n0) =y @ rdr)y/@i_p)
O,r>1.
The total load P which must be applied to the punch to maintain the prescribed dis-
placement below it is given by:

ty(D)dt
417) P=-2n bf G2 (r,O) rdr = 8 f ard J" ]/('fz( )r=)

__8[ VIO

1
= -8 dt.
o= | #af p(@ar

5. Solution for x < 1

For small values of a, m? will be small and hence, disregarding m* and higher powers
of m, we find that

(5.1) = (+m*)2 =¢ (‘ 27| +0(m),



652 R. S. DHALIWAL

and hence
(5.2) H(E) = h+0(m*).

Now using (5.2) and the representation (4.10), we find that the system of dual integral
Egs. (4.9) reduces to the Abel integral equation

g IOL S
53) ofl/("’“—T") =101 r<1,

for the determination of the function w(t). The solution of this integral equation is known
to be

1 d r rf(r)dr
(5.4) @) = 7[6‘ Eﬁ Wﬁ],

N

which may be written as:

1 SAG)
(5.5) p() = T[é"ffﬁdr].
0

In the case of a punch with a smooth profile, it has been shown by SNEDDON [13] that for
d,:(r, 0) to remain finite as r — 1—, we must have

(5.6) w(l) = 0.
Using (5.6) and (5.5), we obtain the total depth of penetration of the tip of the punch:
1 r
(5.7) 5= f Lok
J V-

which is the same as in the corresponding classical problem [13].
Substituting for () from (5.5) in (4.17) and making use of (5.7) to eliminate 4, we obtain
the formula for the total load:

(5.8)

1
_ =8u  *f'(rdr
T ofl"(l—ﬂ)'

which reduces to the corresponding classical expression [13], since 7 — —2(1—7) as
m— 0 (i.e. a = 0).
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