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The axisymmetric Boussinesq problem 
in the micro polar theory of elasticity ( 1) 

R. S. DHALIWAL (CALGARY) 

GENERAL solution to the problem of identation of semi-infinite micropolar elastic medium by an 
axisymmetric rigid punch has been obtained. The Hankel transform is used and the problem 
is reduced to the solution of the dual integral equations. The discussion of the limit solution 
for ex ~ 1 is given. 

Uzyskano og61ne rozwillzanie zagadnienia wciskania osiowo-symetrycznego sztywnego narz~­
dzia w p61nieskonczony mikropolamy osrodek spr~zysty. Zastosowano transformacj~ Hankela 
i sprowadzono problem do rozwi~nia dualnych r6wnan calkowych. Przedyskutowano szczeg6-
lowo pewien przypadek rozwillzania granicznego dla ex ~ 1. 

IIonyqeHo o6~ee pemeirn;e 3~atrn o B~a.BJIHBaHHH ocecHMMeTpHl~Horo meCTJ<aro HHCTpyMeHTa 
B nony6ecKOHe~IO MHKponrJUipHYJO cpe~y. fipH llOMO~H TpaHC<lJOpMai.UUI ra.m<eJUI 3a~aqa 
CBe~eHa K pemeHHIO CHCTeMbl ~BOHCTBeHHblX HHTerpaJibHblX ypaaHeHHH. llo~pOOHO OOCY»<­
~eH HeKoTopbiH qaCTHbiH cnyqaH: npe~eJlbHoro pemeHH.H npH ex ~ 1. 

1. Introduction 

THE ASYMMETRIC theory of elasticity initiated by VOIGT [1] in 1887 and further developed 
by E. CossERAT and F. CossERAT [2] in 1909, has for several and diverse reasons aroused 
renewed and growing interest during recent. years. The basic equations of the linear micro­
polar theory of elasticity have been given by KuvcHINSKI and AERO [3], PALMOV [4] and 
ERINGEN and SUHUBI [5]. 

The axisymmetric Lamb's problem in a semi-infinite micropolar elastic solid has been 
solved recently by NowACKI [6]. PURl [7] and DHALIWAL [8] have obtained solutions re­
spectively for stress concentration and thermoelastic problems for a semi-infinite micro­
polar elastic solid. 

In the present paper, a general solution has been obtained to the problem of inden­
tation of a semi-infinite micropolar elastic medium by an axisymmetric rigid punch. 

2. The basic equations 

For a homogeneous isotropic centrosymmetric linear-elastic body occupying a region V, 
we have the following basic equations; the equations of motion: 

(2.1) 
aji,j + pXi = pub 

P,ji,j+e;ikaik+lY; = lw;, 

(1) Presently visiting the University of Glasgow and The City University London, U.K. 
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the kinematic relations: 

(2.2) 

the linear constitutive law: 

(2.3) a1i = Ayu<5ti + 2,uy(ii) + 2et)'[iil• ftti = f3f3u~ij + 2yf3(i)) + 2ef3w1, 

where in these equations, we have used the following notation: 

GtJ stress tensor components, 
1'-iJ couple-stress tensor components, 
u, displacement field components, 
w, rotation field components, 
Xt body force components, 
Y, body couple components, 
y;1 strain tensor components, 
Pti curvature twist tensor components, 

Et]t unit antisymmetric tensor, 

[] and () indicate respectively the skew symmetric and symmetric parts of a tensor, 
A, ,u, a, {3, y, e are the elastic constants of the micropolar material, e is the density, J is the 
rotational inertia, and the dots denote the time derivatives. 

Using (2.2) and (2.3) in (2.1) to eliminate a1it llii• {311 and y 11 , we obtain the system 
of six differential equations, which we represent in vector form: 

(A+2p,)VV ·U-{p+cc)V x V x u+2ccV x w+eX = eii, 

({3 +2y)VV ·w-(y+e)V x V x w+2ccV x u-4aw+JY = Jw. 
(2.4) 

These equations are coupled and it is noticed that they become independent when a = 0. 
In this case, Eqs. (2.4)1 reduce to the displacement equations of motion of classical elasti­
city, while Eqs. (2.4h describe a hypothetical elastic body in which only rotations occur. 

For et-+ oo we get the couple-stress theory conditions w = ~ V x u. 

Since we are interested in solving a static problem with no body forces, we take X = 

::a Y = ii = w = 0 and introduce the cylindrical polar coordinates (r, <P, z). Equation 
(2.4) now takes the following form: 

(
V2 u, 2 au•) A ae [ 1 awz aij O 

{p +a) u, - 72 - 7 a(f + ( + ,u- et) ar + 21X r ()<jJ - ai] = ' 

( 
2 u. 2 au, ) l ae ( aw, awz; ) 0 

(,u+a) V u.- 7 + 7 a<jJ +(A+p,-a)r a<jJ +la 7iZ- a, = ' 

(2.5) 

(p, +a) V2u +(.A.+ ,u -a) ~ + 2a _!_ [!__ (reo•) - aw, J = 0, 
% ()z r ar o</J 
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(2.5) 
[cont.] 

2 (fJ ) a~ 1 [ a ) au, J 0 (y+e)V w -4xw + +y-e - +2ex- -(ru• -- = , z z oz r or olf> 
where 

e = 1 a r au. OUz 
rTr (ru,) + T olf> + az I 

We shall consider a particular case in which the vectors of displacement u and of 
rotation w depend only on the coordinates r, z. In this case, the set of Eqs. (2.5) is decom­
posed into two mutually independent sets of equations: 

(
V2 u, ) ). ) oe 2 ow+ O (.u+ex) u, -7 +( +p.-ex Tr- a. az = ' 

.(2.6) 

( V
2 "•) ( ow, owz) 0 (1-'+a.) u·-72 +la. az - Tr = ' 

(2.7) (v l w,) a~ au. (y+e)_ w -- -4xw +(,8+y-e)--2a.- = 0 
r r2 , or az ' 

where 

1 a OUz 
e = --(ru,)+ -, 

r or az 
1 a OWz 

~ = --(rw,)+ -, 
r or az 

2 a 1 a o2 

v =-a2+--a +-a2· r r r z 

The sets of Eqs. (2.6) and (2. 7) can be considered separately. Here we shall investi­
gate the set of Eqs. (2.6). To the displacement vector u = (u, 0, uz) and to the rotation 
vector w = (0, w•, 0), is ascribed the following state of force stresses and couple stresses: 

(2.8) 

where the particular components of the stress tensors have, according to (2.3), the follow­
ing form: 

(2.9) 

.. 

au, ). 
a, = 2p-aT + e, 

( 
auz au, ) ( au, auz ) Grz = f' - +- -ex --- +2a.w+, or az az or 

( 
ouz ou, ) ( ou, ouz ) Gzr = f' - +- +ex ---- -2a.w., 
or az az or 
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(2.9) 
(cont.] 

3. General solution of Eqs. (2.6) 

The three mutually independent functions u,, Uz and Wt; are involved in the system of 
Eqs. (2.6). Multiplying (2.6) by J0 (; r) and (2.6)1 , 3 by J 1 (; r), and integrating between 
the limits 0 to oo, we find that the system of partial differential equations (2.6) reduces to 
the following system of ordinary differential equations: 

(3.1) 

[(lt + cx)D2
- (A+ 2,u)e]u,- (A+ ,u- cx);Duz- 2cxDmt; = 0, 

(A+ ,u- cx);Du, +[(A+ 2,u)D2
- (lt + cx)e]uz + 2cx;wt; = 0, 

2cxDu, + 2cx;uz + f(y +e) (D 2
- e)- 4cx} mt; = 0, 

where u, Wt; and Uz denote the Hankel transforms of the functions u, Wt; and Un respectively, 

00 

(u,wt;) = f (u,wt;);J1 (;r)dr, 
0 

00 

Uz = J Uz;J0 (;r)dr 
0 

and D = djdz. The expressions for some of the required transformed components of the 
stress tensors are obtained as: 

(3.2) 

CJzz = (A+ 2,u)Duz + A;u, 

Uzr = - (,u- cx);uz + (,u +ex) Du-,.- 2cxwt;, 

P,zt; = (y + e)Dii>t;. 

The solution of the set of Eqs. (3.1) suitable for the half-space Z ;;::;:: 0 may be written as 

(3.3) 

where 

(3.4) 

u,(;,z) = (A 1 + A2z)e-~z + A3e-Cz, 

Uz (;~z) = (Bt + B2z)e-~z + B3e-~z, 

Wt;(;,z) = (C1 + C2 z) e-~z + C3e-~z, 

2 4cx,u 
m = , 

(,u+cx)(y+c) 

and A;, B;, C; (i = I, 2, 3) are arbitrary functions of; although not all of these are inde­
pendent. Substituting for u, Uz, ;;)t; from (3.3) into (3.1 )1 , 2 , and equating the coefficients 
of exp (- ;z), zexp(- ;z), exp(- ~z) separately to zero in each of the equations, we obtain 
a system of six algebraic equations in Ail B;, C; from which we find that: 

A - A - A + 3p !!_ 
1 

- A+2,u ; ' 
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Now the expressions for the transformed displacement and rotation components a.re 
given by: 

(3.5) 

w~ = Be-~z + Ce-'z. 

Substituting from (3.5) into (3.2), we obtain the expressions for the transformed com-
ponents of stress: 

G,.($,z) = 2p[( -$A+ 1: 2,. B- :::,. B$z) e-{'+ 'Y2:' CC$e-•']. 

O:,($,z) = 2p [(- ~A+B- ::~ B~z) _-{• + 'Y2:' cee-t<]. 
Jtz~(~,z) = - (y +e) {B~e-~z + CCe-~z]. 

4. Solution of the Boussinesq problem 

We consider a semi-infinite micropolar elastic medium z ;;?; 0, indented by an axisym­
metric rigid punch on a circular area r ~ 1 of its free surface z = 0. 

The boundary conditions for the problem may be written as: 

(4.1) O'zr(r,O) = P.zs(r,O) = 0, r ~ 0, 

O'zz(r,O) = 0, r > 1, 

Uz(r,O) = ll-j(r), r ~ 1. 
(4.2) 

where f(r) is prescribed by the fact that, referred to the tip as origin, the punch has equation 
z = f(r) so thatf(O) = 0; lJ is a parameter (as yet unspecified) whose physical significance 
is that it is the depth to which the tip of the punch penetrates the elastic medium. 

The boundary conditions ( 4.1) will be satisfied if we take 

(4.3) c 
B= -TC. 

Now, if we define the new unknown function G(~) by the relation 

(4.4) G(~) = [ A+p. + _rj-~~(C-~)Jc, 
,t + 2,u 2p. 
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we find that: 
00 

(4.5) CTzz(r,O) = 2p, J G(~)~Jo(~r)~, 
0 

00 

(4.6) Uz(r,O) = J H(~)G(~)J0(~r)d~, 
0 

where 

(4.7) 

and TJ is Poisson's ratio. We may write H(~) in an alternative form: 

k2 
(4.8) H(~) = h+H1(~), h = -4(1-'YJ) 2 2k2 • m+ 

R. s. DHAUWAL 

From (4.5), (4.6) and (4.8), we find that the boundary conditions (4.2) are satisfied if G(~) 
is the solution of the dual integral equations: 

00 

J G(~)~J0 (~r)d~ = 0, r > 1, 
(4.9) 0 

00 

J [h+H1 (~)]G(~)J0(~r)~= lJ-f(r), r:::;; 1. 
0 

Dual integral equations of the above type have been considered by a number of authors 
[9, 10]. If we represent G(~) by the relation: 

l 

(4.10) G(~) = ~ J tp(t)cos(~t)dt, 
0 

then (4.9)1 is identically satisfied, and (4.9h is satisfied if tp(t) satisfies the Fredholm inte-. 
gral equation: 

1 00 L' lJ J (4.11) hVJ(t)+-JK(x,t)tp(x)dx= Jy -f(x) xdx, O<:;;t<:;;l, 
n (t2 -x2) 

0 

where 

(4.12)1 

00 

K(x,t) = 2 J H1(~)cos(x~)cos(tE)d~. 
0 

To evaluate K(x, t), we notice that the denominator of H 1 (~) has no real zeros and that the 
zeros are imaginary and unequal or imaginary and equal or complex and equal and oppo­
site in sign according as k 2 ~4m2• Now, for the case k 2 > 4m2 we find that H 1 (E) may be 
written as 

2(1-'YJ)k
2 [ r1 - r2 - . af ~{(~2 +m2/'2 -~} ( 4.13) H (~) - ----::-----::"='""'=-

1 - m2 + 2k2 ~2 +a~ e +a~ af- a~ e +a~ 

a~ ~{(e+m2)1f2_~}] + . 
a~-a~ e+a~ ~ 
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where 

a~,a~ = 
k2(k2 +2m2) k3(k2- 4m2)lf2 

2(2k2 +m2) ± 2(2k2 +m2) ' 

Substituting for H1 (~) from ( 4.13) into ( 4.12) and integrating, we find that 

(4.14) K(x,t) = (1 -1J) k
2 

[ nF 1 {e-a1(x+t) + e-G1 I x-t 1} _ nF 2 {e-Gl(x+t) + e-Gl I x-t 1} 
m2 +2k2 a1 a2 

- 2 
2 

2 {l(attx+ t) + /(a1 , I x- t !) -J(a2,x+ t) -/(a2, I x- t !)} ], 
a1 -a2 

where 

(4.15) 

m 
na2 Iz(m2-z2)lf2 

= -e-Q"{a-y(a2-m2)}-a2 e-IIZdz. 
2 ~-~ 

0 

The expressions for K(x, t) for k 2 ~ 4m2 may be obtained in a similar way. Numerical 
values of K(x, t) for 0 ~ (x, t) ~ 1 can be obtained, since this involves only the numerical 
integration of a finite integral ( 4.15) and hence the integral equation ( 4.11) may be solv­
ed numerically, following] the procedure of Fox and GOODWIN [11] as applied by DHALI­

WAL [12] earlier in a similar problem. 
Substituting for G(~) from (4.10) into (4.5), and interchanging the order of integration, 

we obtain: 

(4.16) I 4p, 1 d I1 

f1p (t)dt 
au(r,O) = - -;:--;: dr r y(t2-r2)' 

O,r > 1. 

0~ r ~ 1, 

The total load P which must be applied to the punch to maintain the prescribed dis­
placement below it is given by: 

I1 I1 d f1 ttp(t)dt 
(4.17) P = -21& azz(r,O)rdr = 8p, dr dr y(t2-r2) 

0 0 r 

1 1 

[I 
t1p(t)dt r=1 I = sp, v = - sp, tp(t)dt. 
(t2 -r2) =0 

r 0 

5. Solution for a. < 1 

For small values of a., m2 will be small and hence, disregarding m4 and higher powers 
of m, we find that 

(5.1) 
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and hence 

(5.2) 

Now using (5.2) and the representation (4.10), we find that the system of dual integral 
Eqs. ( 4.9) reduces to the A bel integral equation 

(5.3) fr 1jJ(t)dt = -~ [<5-f(r)]' r ~ 1' V (rz _ 1z) 2h 
0 

for the determination of the function tp(t). The solution of this integral equation is known 
to be 

(5.4) 

t 

. 1p(t) =_!_[<5-!!__ r rf(r)dr ], ~~ 1, 
h dt 0 1; (tz _,z) 

which may be written as: 

(5.5) 1 [ 
1 

f'(r) J 1p(t)=- <5-tJ 1 dr. 
h 11 (tz-rz) 

0 

In the case of a punch with a smooth profile, it has been shown by SNEDDON [ 13] that for 
azz(r, 0) to remain finite as r -+ 1-, we must have 

(5.6) tp(1) = 0. 

Using (5.6) and (5.5), we obtain the total depth of penetration of the tip of the punch: 

b = Jt j'(r)dr ' 
V (tz -rz) 

0 

(5.7) 

which is the same as in the corresponding classical problem [13]. 
Substituting for tp(t) from (5.5) in (4.17) and making use of (5.7) to eliminate <5, we obtain 

the formula for the total load: 

(5.8) 

1 
p = - 8p, J r~f'(r)dr , 

h l/ (1-rz) 
0 

which reduces to the corresponding classical expression [13], since h -+ - 2(1- TJ) as 
m -+ 0 (i.e. ex -+ 0). 
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