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1 . Introduction

Shell elements which account for the layer sequence of a laminated structure are able to accurately predict
the deformation behaviour of the reference surface, a sufficiently refined mesh presupposed. This holds also
for the shape of the in–plane stresses, if the shell is not too thick. In contrast to that only averaged transverse
shear strains through the thickness are obtained within the Reissner-Mindlin theory. As a consequence only the
average of the transverse shear stresses is accurate. Neither the shape of the stresses is correct nor the boundary
conditions at the outer surfaces are fulfilled. In a standard version the thickness normal stresses are neglected.

In several papers the equilibrium equations are exploited within a post–processing procedure to obtain the
interlaminar stresses. The essential restriction of the approach is the fact that these stresses are not embedded
in the variational formulation and an extension to geometrical and physical nonlinearity is not possible.

Higher order plate and shell formulations and layerwise approaches represent a wide class of advanced models.
These theories are associated with global layerwise degrees of freedom which makes the general handling
complicated for practical problems, e.g. when structures with intersections occur [1].

The use of brick elements or so-called solid shell elements represents a computationally expensive approach.
For a sufficient accurate evaluation of the interlaminar stresses each layer must be discretized with several
elements (≈ 4− 10) in thickness direction. Especially for nonlinear large scale problems with a multiplicity of
load steps and several iterations in each load step this is not a feasible approach [2].

An alternative to fully 3D computations is a multiscale formulation applying the so-called FE2 approach. At
the integration points of the macro scale representative volume elements (RVEs) are introduced. In case of
thin structures the RVEs usually extend through the total thickness of the shell [3]. In comparison to one-scale
computations using standard shell elements the computing times prove to be very high.

The discussion shows, that there is a need for further research in this range. Based on above arguments we pro-
pose a shell theory and associated finite element formulation which is characterized by the following features.

(i) The underlying nonlinear shell theory is based on Reissner–Mindlin kinematic assumptions. This leads
in a basic version to averaged transverse shear strains and vanishing transverse normal strains when ex-
ploiting the Green–Lagrangian strain tensor. Subsequently the displacement field is enriched by warping
displacements and thickness changes using layerwise interpolation functions. Thereby an interface to
arbitrary three–dimensional material laws with restriction to small strains is created.

(ii) The weak form of the boundary value problem is derived using the equilibrium equations for the stress
resultants and stress couple resultants, the local equilibrium equations in terms of stresses, the geomet-
ric field equations, the constitutive equations and a constraint which enforces the correct shape of the
displacement fluctuations through the thickness.

(iii) Static condensation is applied to eliminate a set of parameters on element level. The resultant quadrilat-
eral shell element possesses the usual 5 or 6 nodal degrees of freedom. This is an essential feature since
standard geometrical boundary conditions can be applied and the element is applicable also to shell inter-
section problems. In comparison to fully 3D computations and to FE2 computations present formulation
needs only a fractional amount of computing time.
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2 . FE formulation for layered shells

Layered shells of thickness h are considered in this contribution. With ξi we denote a convected coordinate
system of the body, where for the thickness coordinate h− ≤ ξ3 ≤ h+ holds. Thus, the reference surface Ω can
arbitrarily be chosen related to the outer surfaces. The coordinate on the boundary Γ = Γu ∪ Γσ is denoted
by s. The shell is loaded statically by surface loads p̄ in Ω and by boundary forces t̄ on Γσ. Inserting the
kinematic assumptions according to Reissner and Mindlin into the Green–Lagrangian strain tensor one obtains
well-known expressions for the shell strains. The membrane strains, curvatures and transverse shear strains are
summarized in the vector εg.

A displacement field ũ is superposed on the displacement shape of the Reissner-Mindlin theory. Its components
ũi refer to a constant element basis system, where ũ1, ũ2 denote out of plane warping displacements and ũ3

thickness changes. The shape of ũ through the thickness is chosen as in [4]

(1) ũ(ξ3) = Φ(ξ3)α .

The vector α is element-wise constant and contains displacements at nodes in thickness direction of the lami-
nate. For N layers this leads to M = 9 ·N + 3 components in α. The interpolation matrix Φ(ξ3) is formulated
with cubic hierarchic functions

(2)
Φ(ξ3) =

[
φ1 13 φ2 13 φ3 13 φ4 13

]
ai

φ1 =
1

2
(1− ζ) φ2 = 1− ζ2 φ3 =

8

3
ζ (1− ζ2) φ4 =

1

2
(1 + ζ) ,

where −1 ≤ ζ ≤ 1 is a normalized thickness coordinate of layer i. Furthermore, ai is an assembly matrix,
which relates the 12 degrees of freedom of layer i to the M components of α.

Using admissible variations for the independent mechanical fields the variational equation as basis for the FE
formulation reads

(3)
∫

Ω

δεTg σ + δσT (εg − ε) + δϑTψ dA−
∫

Ω

δuT p̄ dA−
∫

Γσ

δuT t̄ ds = 0 .

Here, σ denotes the vector of independent stress resultants and ε denote physical shell strains, which enter into
the material law. The vector ψ summarizes the material law, the equilibrium of higher order stress resultants
and a constraint. The work conjugate vector ϑ = [ε,α,λ]T contains besides ε and α the vector of Lagrange
parameters λ. Integration by parts and using standard arguments of variational calculus yields the associated
Euler-Lagrange equations. One obtains the equilibrium of stress resultants, the geometric field equations, the
local equilibrium in terms of stresses, a constraint and the static boundary conditions. The interpolation func-
tions for the independent quantities are specified in detail in Ref. [5]. Several linear and nonlinear test examples
show the effectiveness of the proposed model.
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