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e-mail: Paulina.Swiatkiewicz@p.lodz.pl, Zdzislaw.Wieckowski@p.lodz.pl

1 . Introduction

The equilibrium approach of the finite element method, despite of some difficulties arising in construction of
statically admissible stress field, provides an interesting alternative to the displacement method. This paper
presents the application of the equilibrium finite element method to the static problem of Kirchhoff’s plate
bending. The statically admissible fields of stresses have been constructed with use of the Southwell vector
stress function. The possibility of employing this function for seeking the approximate solution for structural
analysis of plates was indicated by Zienkiewicz and Fraeijs de Veubeke in [3]. The utilization of this function
was proposed by Morley in [4] and Elias in [2].

2 . Formulation of the problem

The flat plate bending problem is governed by three types of equations, which will be presented in this paper
with use of the indi ial notation. Firstly, the differential equilibrium equations

(1) Mαβ,β −Qα = 0, Qα,α + q = 0

where α, β = 1, 2, and Mαβ is the tensor of bending and twisting moments, Qα the vector of transverse forces
and q the transverse distributed load. Next, the geometric relations:

(2) καβ = −w,αβ

where καβ denotes the tensor of curvature and w a function of deflection of plate’s middle surface. Finally, the
constitutive relation which takes form of the generalized Hooke’s law:

(3) καβ = CαβγδMγδ

where Cαβγδ indicates a compliance tensor. Equations (1) – (3) should be supplemented with boundary condi-
tions which may be of kinematic, static or mixed nature. The strong form of the problem presented above may
also be set in the variational form as the complementary work principle which can be obtained by multiplication
of geometric relation by variation of tensor of bending and twisting moments and integration of it over the plate
area. This also corresponds to minimization of the complementary energy functional

(4) Πσ =
1

2

∫

Ω

Mαβ CαβγδMγδ dx−
∫

Γϕ

Mn ϕ̄n ds−
∫

Γw

(Qn +Mns,s ) w̄ ds

on the following set of statically admissible moment fields

Y =
{
Mαβ ∈ L2(Ω) : Mαβ,αβ + q = 0 in Ω, Mn = M0 & Qn +Mns,s = Q0 on Γσ} .

where ϕ̄n and w̄ are the angle and deflection functions given on boundaries Γϕ and Γw, respectively, and symbol
L2 denotes the space of square integrable functions.
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3 . Equilibrium approach

The equilibrium equations are satisfied in internal points of plate’s areaΩ by virtue of Southwell’s vector stress
function [5], with components Uα. The equilibrium equations will be identically met provided that the bending
and twisting moments are determined by Southwell’s function’s components as follows:

(5) Mαβ =
1

2
(εαγεβδUγ,δ + εαγεβδUδ,γ)− δαβP0.

where P0 is the solution of the Poisson equilibrium equation (1)2, which may be either arbitrary presupposed
in an analytic form or found numerically. The Southwell stress functions have been approximated with shape
functions of classC0 by use of triangular elements. The solution is found by minimization of the complementary
energy and the boundary conditions have been satisfied by use of Lagrange’s multiplier method.

4 . Numerical example

A square uniformly loaded plate with the bottom edge free and remaining three edges clamped has been con-
sidered. The results have been compared with the ones received by means of the Hsieh-Clough-Tocher macro-
element, e.g. [1], by the displacement approach. It is shown (see Figure 1) that both methods lead to similar
results, but the fact worth highlighting is that the equilibrium approach allows one to find the upper bound
of the strain energy when only external forces are prescribed, whereas the displacement method leads to the
lower bound. The convergence rate is similar for each of these two elements. With use of both the methods the
relative error of approximate solution has been calculated on basis of Synge’s hypercycle method. It reaches
small values and in the case of the densest mesh barely exceeds 1%.

Figure 1: Statically and kinematically admissible solutions (M22), relative error of solution and strain energy
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