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1. Abstract 
 
The multi-degree-of-freedom (MDOF) and nonlinear stochastic dynamical (NSD) system about the nonlinear 
random vibration of the stretched beam is formulated by finite difference scheme. The effectiveness and 
efficiency of state-space-split (SSS) method [1,2] and exponential-polynomial-closure (EPC) method [3] are 
studied in analyzing the probability density functions of responses of the formulated systems which are 
excited by filtered Gaussian white noises. The Kanai-Tajimi seismic ground acceleration is adopted as the 
filtered Gaussian white noise in numerical analysis. Numerical results are obtained about the probabilistic 
solutions of the beam with pin supports at its two ends and excited by the filtered Gaussian white noise 
which is uniformly distributed over the beam or concentrated in the middle of the beam. The numerical 
analyses show that the SSS-EPC method works well for accurately and efficiently analyzing the probabilistic 
solutions of the stretched Euler-Bernoulli beam excited by distributed filtered Gaussian white noise when the 
MDOF-NSD system is formulated by finite difference scheme.  

 
2. Nonlinear stochastic dynamical system of stretched beam 

Consider the stretched beam and its finite difference discretization shown by Figure 1.  
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Figure 1: The stretched beam discretized by finite difference scheme 
 
 
The equation of motion of the beam is 
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where )(tY is the deflection of beam at time t and at the location with distance x to the left-hand end of the 

beam;   is the mass density of material; c is the damping constant; E is the Young's modulus of beam 

material; I is the moment inertia of cross section of the beam; A is the area of cross section of the beam; L is 
the beam length; )()( tFxq is the distributed loading laterally applied on the beam. By finite difference 

scheme as shown in Figure. 1, Equation (1) can be discretized into the following system. 
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where k=1, 2,…,N; )()(2)( 2
00 tZtZtF    ; )/( 4 hEI ; )24/( 3 LhEA , )1/(  NLh ; N is the 

number of unknowns in finite difference scheme; kY  is the deflection of beam at node k; q  is a constant 

reflecting the distributed load density;  and 0 are the parameters in the filter (3); )(tW  is the Gaussian 

white noise with power spectral density S .  
 
3. Numerical results 
 
Based on Equations (2) and (3), the probability density functions (PDFs) of deflections and velocities at the 
nodes are analyzed. The polynomial degree n equals 4 in EPC solution procedure. The given values of 

system parameters are PaE 11101.2  , mL 7 , 231061.8 mA  , 4-4102.17 mI  , mNs /10c 3 . 
3/850.7 mkg , 3.0 , srad /500  , /smS 20.05  and mkgqk /000,50 . For 11N , Equations 

(2) and (3) formulate a 12-DOF system. In this case, the node 6 is in the middle of the beam. The PDFs and 
logarithm of PDFs of 6Y  obtained by SSS-EPC, Monte Carlo simulation (MCS), and equivalent 

linearization (EQL), respectively, are shown and compared in Figure. 2. The sample size in MCS is 810 .  In 
Figure 2, 

6y is the standard deviation of 6Y obtained by EQL method. It is seen that the results obtained by 

SSS-EPC method are close to MCS while those obtained by EQL deviate a lot from MCS. The behaviors of 
the probabilistic solutions at the other nodes are similar to those at node 6. The computational time needed 
by MCS is about 500 times more than that needed by the SSS-EPC method for this 12-DOF system. The 
value of this ratio can further increase as the number of system degrees of freedom or samples in MCS 
increases. As the system nonlinearity increases, the required sample size and therefore the computational 
effort also increase with MCS. 

 

Figure 2: PDFs and logarithm of PDFs of the deflection in the middle of beam 
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