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SOME ASPECTS OF INVARIANT THEORY IN PLASTICITY

Part II. Constitutive relations for perfectly locking materials. Comments on

perfectly plastic solids

Summary

The aim of this contribution is twefold. Firstly, by using the
representation theory of isotropic tensor functions, general form of the
constitutive relationship for perfectly locking materials is derived. The
homogeneity condition of degree =zero imposed on the locking behaviour
permits to obtain the general form of the locking locus. Some particular
cases are also studied.

Secondly, to account for the dissipation density dependent on hydrostatic
pressure, the theory proposed by Sawczuk and Stutz [1] is generalized.
Consequently, incompressible behaviour of Iisotropic perfectly plastic

materials obeying pressure sensitive yield condition is described.
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1. Introduction

The constitutive relations for perfectly locking materials seem to have
been first proposed by Prager [2]. Counterparts of the 1limit analysis
theorems were formulated by Cyras [3]). Next, more rigorous mathematical study
of not necessarily perfectly locking solids have been undertaken in Refs
[4-7].

Our aim here is to derive the general form of the constitutive equation
(2.1) provided that (2.2) is satisfied. The condition (2.2) expresses the
fact that Eq. (2.1) should not depend upon the time scale. Locking behaviour
can strongly depend upon the density p of the material, c.f. Refs [8-10]

Therefore, we assume that the tensor function E depends not only on T, but
also on p.

The representation theory of tensor functions 1s a convenient tool [or
the study of Eq. (2.1) satisfying the condition (2.2). Having derived the
general form of the tensorially nonlinear constitutive relationship
describing perfectly locking behaviocur, two-dimensional cases are discussed.
Several particular locking loci are proposed.

The locking law derived 1is, in general, not associated with the
corresponding locking condition. The associated locking law is obtained
under an additional condition.

The second problem discussed in the paper concerns a generalization of
the model of isotropic perfectly plastic solids, proposed by Sawczuk and
Stutz [1]. That model yields the dissipation density d as a function of the
rate of deformation tensor D only. Thus incompressible materials obeying
pressure dependent yield conditions are precluded by the model presented in
[1]. For the model proposed in Section 10, d depends not only on D but also
on a scalar parameter €. Particularly one may take € = trT = T“, where T is
the stress tensor

The comprehensive paper by Spencer [11], the book [12] and review paper
[13] provide an exhaustive source of informations related to both the theory
of scalar invariants and tensor functions as well as to their applications to
the formulation of various constitutive relationships, c.f. also Refs
[14-24].

An influence of a fabric tensor on perfectly locking and perfectly
plastic behaviour will be studied in a separate paper; for earlier results

the reader should refer to Refs [25-29].
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2. General form of isotropic constitutive relationship for perfectly locking

materials

The general constitutive relationship for isotropic, density dependent

locking materials has the following form

E=E (p, T) (2.1)
subject to
5 8E .
L r=0 for —T =0 ir 9. %0, (2.2)
ar aT aT
13}

Here E = (ELJ) € E: is the strain tensor, i = (TIJ) denotes the stress rate
tensor, Ez is the space of symmetric 3x3 metrices and 0 (0) is the zero
tensor of the fourth (second) order. The homogeneity condition (2.2)
expresses time-scale independence of strains.

One-dimensional case is lllustrated below, see Fig.1 and Fig.2, c.f. (7].
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To study the tensorially nonlinear constitutive equation (2.1) under'the
condition (2.2) a procedure similar to that used by Sawczuk and Stutz [1] for
isotropic perfectly plastic materials will consequently be used, c¢.f. also
[15-19]. According to the theory ‘bf representation of isotropic tensor

functions the relation (2.1) is expressed in the following way

E=oal+aT+aT i (2.3)
[¢] 1 2
where
. o g
« = fh(p, tcT; T, tel) (2.4)
and trT =T , trT° =T T , trT°= T T T . The summation convention is
i 5 IR % § 1) jk ki

used throughout the paper. Moreover fh are arbitrary functions of the basic

invariants trT, trT°, trT° and the density p, c.f. the formula (A.8) given
in Appendix.
On account of the homogeneity condition (2.2), the relation (2.3) cannot

be uniquely inverted. We recall that (2.2) implies det(ai/a%) = 0. Moreover,
as will be demonstrated in the sequel, (2.2) implies the existence of a
scalar relation, called locking locus, between p, trE, trEz, trEs. The
locking locus is a counterpart of the yield locus, well known in the theory
of plasticity.

Let us investigate the consequences of the homogeneity condition (2.2).
When applied to Eq. (2.3) it yields

Bao e 6a1 . & aa2 . 5o
[ T ]I + [ &F * al]T + [ T + Zaz]T =0, (2.8)
aT aT aT
where a.b = a b The last relation is satisfied for an arbitrary T

vyogi
provided that

da.
k

LT + kak= 0 ; k=0,1,2. (2.6)
aT
Egs (2.6) imply that the functions « are homogeneous with respect to the

stress rate tensor and of the degree zero, (-1) and (-2), respectively; c.f.

(A.7). As we already know, the functions o depend on basic invariants of T,

hence Eqs (2.6) reduce to



aak i Buk Sy 8o %o
- — trT + 2 trT” + 3 trT” + ke =0, k0.1,2. (2.7)
atrT atrT® atrTe
By introducing new variables
t, =T, b, =Py = e, (2.8)

the system of equations (2.7) is transformed to

aak
—_— tl + kak = 0 ; k=0,1,2. (2.9)
th

Now the functions o depend on tl, t and ts' yet the same notation is

2
preserved. To solve the system (2.9) new variables are introduced, c.f.

[30,31]

x=Int, p=t /t, q=t/t, t >0 . (2.10)
We set .
uk[x,p,q) = ak[tg(x,p), Lz(x), ts(x,q)] ; (a.}li
where
= _ X o X - K s
t‘(x,p) =tp=¢ep, t=e", ta(x,q) tag=ewq. (2.12)
Hence ’
a&k o at do . Ga . O B
= — — = ——e'p+ e + L e (2.13)
ax at ax at at at at
i 1 2 3 i

Thus the system (2.8) transforms to

Jda
Kk

+ ka =0, k=0,1,2, (2.14)
k
ax

and vice versa, obviously.

The solution of (2.14) is given by

i

- . 1
a = Alp,pal, « = —t—z B(p,p.q) , o,

= > Clp.p.q) , (2.15)

2

t

2
where A, B and C are arbitrary functions of their arguments and the tilda
has been dropped.

Substituting (2.15) into (2.3) we obtain

E = AL + - BT + LZ o ol (2.16)

2 t
2
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Taking account of (2.16), (A.9) and (A.11)sfA.13) we calculate

EE=ar+ P14 T 17 (2.17)
t 2
2 t
2
where
_ 2 l_ 3_1_ l 3 2]_ ﬂ_l 2 .1- 3
« = A"+ ZBC(8 p s P*zq ) +C (6 P-zP *3Pq ).
B = 2AB + BC(1 - p%) + ’gcz(q:'- p*), (2.18)

2AC + B® + 2BCp + %Cz(p2+ 1).

-
[}

By using (2.16)-(2.18) we find

2 .2
7_‘ = A (BUI + B‘E + ,’32[-_ Yo (2.19)
where
= (B« B2 it e - ..
A= (B = Iy Bo ¥ N B1 1. 32 3 (2.20)

_ The constitutive relation (2.19) is an inverse one with respect to Eq.
“(z.18).
We now pass to the derivation of the general form of the locking locus.
By using the relations (2.18), (2.17) and the identities (A.10)-(A.13) we
have

trE = 3A + Bp + C ,

trE” = 3 + Bp + 7 , {2:21)

trE° = 3Ax + (aB + BA)p + (aC + BB + 7A) + (BC + 78)q° +
0%(;}4*-8})(:[3—5])2‘*3)

Eliminating the parameters p and q in (2.21), provided that such an
elimination can be performed, the general form of the locking condition is
obtained:

P172g2 4 1733

f(p, trE, t E ¢t E') =0. (2.22)

In general, the locking law (2.19) is not assoclated with the locking

locus (2.22%% Thus without additional assumptions one has, in general,

4 af -
T=A—a—E—. Az=0 . (2.23)

The associated locking law is obtained provided that, c.f. Section 3
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JE aE
= I, . S (2.24)
aT aT
Kkl 1)
It should alsc be noted that the set
K(p) = {(E ¢ E_ | flp, trE, tr'’% r'7E") s 0} , (2.25)

is not necessarily convex. Obviously, convexity of the set K(p) imposes
a restriction on the function f, and consequently on A,B and C, c.f. [32].
If the set K(p) is convex and closed, then the general subdifferential

form of the assoclated locking law is glven by

Teal (B), (2.26)
Kip)
where

0, if E € K(p) ,
I (E) = (2.27)
K(p) + w, otherwise

Denoting by E1 (1=1,2,3) the principal strains, the locking locus may
equivalently be written in the following way, c.f. Appendix

glp.E, E, E) =0 . (2.28)

For C = 0 we obtain the so called tensorially linear relation and (2.19)

simplifies to

=5 U-AL+E), (2.29)
a

o -

The parametric form of the yield locus (for C = 0) is then given by
trE = 3A + Bp

trE® = 38° + B® + 2aBp (2.30)

~

al

m
|

= 3(A% + A%Bp + AB®) + B
In the sequel, the above relations will be used for a specification of
particular locking locl and locking laws, c.f. Sections 6, 7 and 8

3. The associated locking law

The associated locking law is obviously a particular case of the general

nonassociated law given by (2.19). Firstly, however, the direct law is
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investigated. Eq. (2.24) implies

af-:” s o,
T ™= Ty - (3.1
GTH ETU
We set
E’EU BE“
8 = W s
£ ; 'l'l‘{l : P ; T“ 5 (3.2)
aT aT
Kl 1)
. ‘s ‘o
K. = trT, K. = trT, K = trT . (3.3)
1 2 3

By using (2.3) and (3.2) we readily obtain

aao 60:0 8a°
= 2
Bl K *25p K4 Sy KJT 4
1 2 3
aal E)a:i Bal N
b
+ ( 3K l(1 4 2 3K K2 + 3K K3 + al)T + (3.4)
1 2 3
6a2 60:2 aaz -
1.
B h bRl el i e Talou "L
1 2 3
aao aal Bua
Pl gy 8 tgp— %t K #
1 1 1
3410 Ba] 6112 %
+ (2 3K K1 * 2 K Kz ¥ .2 3K KS + al)'l' + (3.5)
2 2 2
aao c’h.vr.1 60:2 i
L | 3 3
+(“8K K1""‘6K Kz*"c'ﬂ( K3+2u2”'
3 3 3
Because £ = P, hence (3.4) and (3.5) imply
60:0 aa1 aao aaz am.l aaz
. [~ 3 = 1 =
e 3K aK : 3K 8K ' VK 2 8K (3.8)
2 3 3 1 3 2

If (3.6) is satisfied then a potential G(p, T ) = Gxtp'Kl'Ka’Ka) exists such
that

E = BG/a'.I' h (3.7)

The potential G may then be identified with the locking work rate, see
Section S.

By noting that the functions « ,a. and a, are given by (2.15), the

0’1
condition (3.6) assumes the following form
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Ak 8K o OB
ap  Yaq ap '

8A _ 248 C

. 3k q ¥ (3.8)
2 ac ac , _ _ 3B

q (2C + p—gs— + q—ga— ) = 3q

Let us now investigate the inverse locking law (2.19), which is written

as follows

T = Alygl + 7,E + XD 5 (3.9)

uhe;e 7. = grh(p. L:‘ Lz. Ls)' (h=0,1,2), and L1 = trE, L_ = trE", L_ =

trE™,
[f the symmetry condition

= — . (3.10)

is satisfied then a potential F(p,E) exists such

T = AJF/8E . (3.11)
The condition (3.10) is fulifilled provided that, c.f. (3.6)

a3 a a3 a a a4
2 %o _ "y - %o _ %2 o =2 i (3.12)
© AL, aL_ "’ 8L eL ' “aL aL_ -

2 1 3 1 3 2

Under the conditions specified by (3.12), the potential F may be identified
with the locking locus.

4. Spherical and deviatoric parts of the locking law

Let E* and S denote the deviatoric parts of the strain tensor E and the
stress rate tensor T, respectively, c.f. (A.14). For physical reasons, it is
convenient to split up Eq. (2.3) into the spherical

trE = 3¢u, (4.1)
and deviatoric

E' =95+ ¢(s® -1 sy (a.2)
1 2 @
parts, respectively, where
B 1 . 1 g2 4 1 2.2
¢0 =, + = altrT + 3 aztrS + 3 aztr T (4.3)
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¢ =a + aztrT . ¢ = a

1 1

wiNn

Taking account of the identities
= 5% 2 (ums + L (r’nr
T= 5% (rms? + L erPms + Loenr
S

et = trs” v trTers® v Loer'T

(4.4)

(4.5)

and applying the humogenelfy condition (2.2) to (4.1) and (4.2) we obtain

a¢k
s + k¢ = 0; k=0,1,2
1 k
ds
i
where
8= t =1trT, s_= gri e 2, 8, = trl/3g3
Functions
= = L R
¢o alp,r,s), ¢l s, b(p,r,s) , "z =z clp,r,s)
2

solve the system (4.6), where

r=s/s_, s =5 /s
1 32

2

(4.6)

(4.7)

(4.8)

(4.9)

Obviocusly, the functions ¢k. (k=0,1,2), are homogeneous functions of the

degree zero, minus 1 and minus 2, respectively.

By using (4.2) and the identities (A.15)-(A.17) we find

. d 6c d,2 1 d,2
S = ME™ - - 2--2-1(1':) —a(tr(E))II) V
2 Bb " -c

where

2c2 3y 4-1
A=[b- —= (b + cs™)]

6b°-c

. 10)

(4.11)

Now, similarly as in the previous section we derive the locking locus in

the parametric form

http://rcin.org.pl
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6

tr(E)? = b2 + 2bes® + L c? = (b + cs™)? + c:at}3 ~ 150 (4.12)

1
B

el 4 .3 i B8 0 3.3 _
tr(E")" = 3 bc(b + ¢s™) + 3¢ (s 15 ) + b’s

= s%(b + csM)? + 21 - 88" [b(b + cs”) - - c*(1 - Bs°))
Eliminating the parameters r and s from (4.12) we obtain the general form of
the locking condition

1/2,.d,2 113
B

flp, trE; #r""(E’)

(E))—O. (4.13)
For c¢=0, the relation (4.10) takes a simple form

S

_1
= =B (4.14)
2
Hence
1/3.3 1/3,..d,3
o= tr 8 = tr ""(E’) ) (4.15)
trl/ESZ tl‘llz(Ed)z

Thus the parametric form of the locking condition is given by

l/J

(B
trE = alp, ———
“2(5)
(4.18)
L
R (E)
(%)%= blp, —————=)
”2(E)

By an elimination of the parameter r we obtain the general form of the

locking condition in the tensorially linear case:

d4)2 tr'3(eh?
7R E®

172

f(p, trE, tr (E =0 . (4.17)

The invariants of the deformation tensor E occuring in the last formula

have a simple geometric interpretation. Let the strain state be described by

the principal strains Ek (x=1,2,3) and characterized by the vector OP, where

P(E,), 0(0,0,0). We set OP = ON +# NP, c.f. Fig.3.

http://rcin.org.pl
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E.

Fig.3

The straight line determined by e makes equal angels with the axes. On the
other hand, the vector NP belongs to the plane orthogonal to this line. This
plane is called the deviatoric plane and is denoted by Tl. Its equations is

E1 + E2 * E3 = 0.The length of the vector ON is

[ON| = & = trE/V3 , (4.18)
whereas |N§] characterizes the deviatoric part of E

[RE] = R = e 2E"? . (4.19)

The angle © (Fig.4) between NP and 1 is

7303
@ = arc coslvB( ——="_)°1/3 . (4.20)
172, d.2
tr""(E")
&
p
G
! =1 (2, -1, -11
Ve
N B
Ez E3

Fig.4
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5. Locking work rate

In our case the density W of the locking work rate is given by

Wp,T) = T E o, (p,p.q)trT + al(p.p,q)tr’ra + ccz(p,p,q)tr‘l'a =

1)

AP, )t + B(p,p,@)t, + Clp,piq)a’t, =

(5.1)
=S E + L trTtrE
1) 1) 3

¢D(p.F.S)trT + ¢‘(p.r,s)tr52 + ¢2(p,r,s)trs3 =

a(p.r.s)sl ¥ b(p.r,s)s2 + c(p.r.s)sasg,

where the functions a,,A,B,C.¢h,a.b and ¢ are defined by (2.15) and (4.8),
N
respectively. The density p may be assumed to be a function of the strain

e.g.:, c.f. [8]

p = plE) . (5.2)
Then one has

W(E,T) := W(p(E),T) . (5.3)

Particularly, p = p(trE) and then we have

8 (trE,T) = W(p(trE),T) . (5.4)

In the constitutive relation (2.3) and (2.4) p may be treated as a
scalar parameter. Above, we have interpreted it as a density. A dependence

of p on strains (ElJ) implies that the density of the locking work rate

depends not only on stress rate (%lj) but also, explicitly, on E. Such a
dependence significantly enlarges the class of non-assclated 1isotropic
locking laws.

If (3.6) is satisfied then we may set G = W because

. dE 5
E=2 (T E )=FE4% ' 1 =f = 9W _ 9C . (5.8)
0 5 T 1)

38T aT aT aT

provided that (2.2) and (3.1) are satisfied.
6. Plane stress state

The present Section is concerned with practically important case when the

stress tensor has the following form

http://rcin.org.pl
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g Tl] Tl?
T e 0 y = ; (6.1)
0 0 T.. T
12

In this particular case the constitutive relation (2.16) and the identities
(A.19), (A.20) yield

O Ix

0
E=| - 0 , E=18_.1; a,p = 1.2. 6.2
[ e ] € =1 aB] o, B 2 (8.2)
"33
-where
€ = 5(p,p)3 + _EL%LEl_ é )
2
(6.3)
E33 = U(p,p)
and
Cc 2
U=A, $=4A+z {1 ~-p"), €=8B+Cp: (6.4)
1/2.2 1/2.2

Here t2= tr"°2%, p=tri/tr’'"Y" and 3 = laaﬂl' Obviously E13w Eaaz 0.
The material functions U, % and € depend on p and p solely because, c.f

(A.20)

trr’ try®
g% = — = —
tr3/2 TE tr3/2 :!2

(3p - p) . (6:5)

1
2
The relation inverse to (8.3)1 takes the form
s+le (6.6)
- G‘_'

whereas the parametric locking condition is expressed by

trE = trg + E33 =1 + 28 + Cp
(6.7)
2

trE® = trg” + Eiu = u? + 28% + 286p + €°.

As previously, eliminating the parameter p from the system (6.7) we obtain
the general form of locking condition for the plane stress state:

flp, trE, tr'’%e%) =0 , (6.8)

or equivalently

2 172
)

2
flp, tr€ + E ., (tr€” + E__

1=0. (6.9)

We note that the results given above can also be obtained in a somewhat

diffrent manner. The second approach consists in substitution of (6.1),

http://rcin.org.pl



-17-

(A.18) and (A.20) into (2.3); next the homogeneity condition (2.2) is
exploited.

The locking locus and the locking law for the plane stress state are
derived similarly as in Section 4. There is an analogy with Telega's [19]
study of the plane flow for perfectly plastic materials.

The deviatoric part of the stress rate tensor takes the form

¢ 2 g
=1-}umy,

(6.10)
s, =-ltrz1, s_=s_=0,
a3 3= 13 23
where € = (eaﬁ) (a,8 = 1,2); we recall that trI = trT.
Taking account of (A.18) and (A.20) we have
trs® = tre® + L T,
(6.11)

trs® = L trrirs® - é triT .

The relation (6.11) imply that now the functions a, b and ¢ occurring in
(4.8) depend on p and r only, because

1733
r

f S

(6.12)
1/2.2
r

t S

By applying (6.12) and the Cayley-Hamilton theorem in the two-dimensional

case (c.f. (A.18)) we calculate
tr®T - tre®)3 . (6.13)

Substituting (6.10) and (6.12) into (4.2) we obtain

§ = €-3(rE)3 = blp,r)3 + clp,r)ess,,
(6.14)

a d _ .d _

Eaa = alp,r), E13 = Eza =0,
where

e Yl @ e o = Al SRR = L1

alp,r) = = (3 cr br -c) , blp,r) 5 c(2 5 ) . clp,1r) b + ;Cer.
and

http://rcin.org.pl



-18-

d 3 4
EY = g Od (8. 15)
0 0 E
33
The equation "inverse" te Eq. (6.14)1 has the following form
&
= A [§-63], (6.16)
2
where -
A=c¢ =3/(3b + cr) . (6.17)

Taking account of (4.12)1 4 and (6.14) one obtains a parametric form of
the locking condition
trE = 3a ,

tr(E")® = trg® + (B2 )% = L [0%(8 + r®) + (6.18)

1
33 9

rZ 4 LY 4 8bor - § crlbr + c?)]

2,1 1
+ 8= + =
PR 36

Eliminating the parameter r from (6.18), a general form of the locking
condition is derived:
fp, trE, tr'’%(EH%) =0, (6.19)

Here E and E° are given by (6.2) and (B.15) respectively.
For the plane stress state the density of the locking work rate is given
by

- - - - 2 =
W = Iaﬁﬁuﬁ = B(p,p)t‘ + (!.'(p,p)t2 = [A + C(1 P )/2]t1 + (B + Cp)t2

= 1 " = 52 =
= Gaﬁﬁaﬁ gk trTtrE a(p,r]sl + clp,r)tré /s2 (6.20)

= la-r°(b+ cr/3)/932]]sl + (b + cr/3]tr§2/52‘

where the functions 8, € and ¢ are defined by (6.4) and (6.14), respectively.
7. Plane deformation
By definition, the deformation tensor has now the following form

|

Taking account of (7.1) and (A.18) in (2.16) leads to

0
o| . e=re ) ap=1.2 (7.1)
0 OJ s

o i@

€=d3+d2¥ , (7.2)
< o= 1=
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0% &+ —i= BT % —= €, (7.3)
£ 33 2 33
2 £
2
where
_ i T 2 _ 502
do = A+ C(tr! tr Z_[')/th, ci1 (E/tz) + Ctl’Z/t2 5 (7.4)
and
N
T = i (7.5)
0 o T
33

Now the basic invariants of the stress rate tensor are given by
trT =tri + 1 5
= 33
tr1? = 2% v 17, (7.6)
= 33

R - BN - N R N JET
trT = trl ¢ T = CtrItrl - ZtrX ¢ T
Taking account of (2.21)1 . and (7.2) we find a parametric form of the
locking condition

trE = tr€ = 2A + —2Bir® + = ctr1® ,

- t - 2 -

2 tz
(7.7)

trE® = tr6® = 2d° + 2d d_trz + a°tr3° .

= [+] 01 - 1 =

By virtue of (A.20) we write

tre® = 2 treere® - 2 tr's (7.8)

Hence the locking condition (c.f. (2.20)) depends on p, tr€¢ and trgz only.
Thus we may write

1s/2
r

£(p, trg, ¢ €°) =0 . (7.9)

The constitutive relation (2.19) reduces to

2

= x Al +H2(t62—tzﬁ)]3+(ﬁ + B_tre)e}
1/2.2 ) LA e e X g R 2
tr-""°T
(7.10)
T33
1/2.2 -t ﬁo '
tr T

where A and Bh (h=0,1,2) are given by (2.18). Now the material functions A
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and Bn depend on p and p solely, c.f. (7.8).
For the plane deformation the density of the locking work rate is given
by
o N x e .
W= laﬂﬁaﬁ dotrz + dltrg . (7.11)

8. Particular locking laws and locking conditions

In this Section we shall consider simple locking laws and locking
conditions resulting from (4.14) and (4.18), respectively.
Example 8.1.

Assume that 3a = au(p). b = 0. The locking condition has the following
form

trE = aO(p) , (8.1)

and tr(Ed)2= 0. Thus the locking behaviour influences the spherical part
only.
Example 8.2.

Let a =0 and b = bo(p). Then (4.16) reduces to

1/2
r

tri/?(g%)%= b, () (8.2)

while the locking law is given by

§ = 1 g2, (8.3)

YR bu(p)

t S

The condition (8.2) is a counterpart of the Huber-Mises yield condition
Example 8.3.
Let us assume that 3a = al(er and b = bu(p) + bl(er. The locking

condition takes the form

a tr'’* (e - b trE-ba =0, (8.4)
1 1 01
Now the locking law is
S é B (8.5)
tr!/2? b+ L trE
0 a

1
The locking condition (8.4) is a counterpart of the Drucker-Prager yield
condition. We recall that the last is given by
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c trT + A qptBein e (8.6)

vz
where c, is a material constant and k the shear yield limit.
Example 8.4.
Let 3a = a, + ar, b = b0 + blr; ag. a, b0 and bl may depend on p. An
easy calculation yields the locking condition

b (trE - a ) - tr'’?(E)%= b _, (8.7)
2 o 0
and the locking law
S - (b (trE-a) +b 1 'E (8.8)
i JBTE 2 0 o ’ '
tr'°s
where Ez = bl/a1' Thus only three material constants (or functions) are

needed: a , b and b
0 0 2
Example 8.5.
We take 3a =a_ + ar, b=>b + b re; as previeusly a , a, b_and b,
[} 1 0 2 0 | [¢] 2

may depend on p. Now the locking condition has the following form

2 2
a
2 1 1/2,.d.2 01 _
(trE - aO) - g tr (E")° + =gt = O, (8.9)
2 2
The locking law is
a b,
S _ 2 2,-1.d
- = [bo + = (trE - aol 1 E" . (8.10)
1/2.2 a
s 1

Similarly as in the previous example only three material functions
intervene: a b0 and bzfaf. The locking condition (8.9) is a counterpart
of Mroéz-Buyukozturk yield condition [33].

Taking more general form of ho:

1/3,.d4.3
b :B(p.”T(Ed)z), (8.11)
tr " “(E")

we obtain a counterpart of Nilsson-Glemberg criterion [33].
9. Decomposition of the tensor function (2.3) in orthogonal bases

Blinowski investigated the decomposition of the isotropic tensor function
in orthogonal bases [34]. His approach is now adopted to the tensor function
(2:3).
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We will now show, after the paper [34], that (2.3) can be transformed
into a form which makes it possible to determine all scalar functlions ¢h
(h=0,1,2) or a; b and ¢ in a simple way.

We can rewrite (2.3) or (4.1) and (4.2) as follows

§ =
E=pl-+ u‘S + pzs i (9.1)
where
. «2,d 2o 2.d _ o2 1 2
S (87)" - 8 sJS 3 (s™) S 3 SZI 3 (8:2)
and
= - I |
Mo ¢o 3 ¢252 = ke
. =¢ + ¢ s?s = (b + cs’)/s_ (9.3)
1 4 2 3 2

_ _ 2
M =¢_ = c/s2
Obviously, the functions Ko (x=1,2), are homogeneous functions of the degree
(-1) and (-2), respectively. Performing the contraction of (9.1) with S and

S., respectively, we obtain

= E.5/8° = £.5 /trs"? (9.4)
M = RS s By, =& g )

Making use of the Cayley-Hamilton theorem (see Appendix) and (4.8) we find

b= [E.Ss: - E.(Sz)dssillm

(8.8)
¢ = B(E.(s")" - 6E.5s"s_I/m
provided that S = 0; here
m=s> - 9s° . (9.8)
2 3

The diagonal representation of (9.1) takes the form (see [34])
diag (Et'Ez'En) = uol + xldiag (S‘,Sz,sa) * xzdiag (5552.5753,5551). (9.7)

where
2 ' 2,172

By S8y T BB 8y Ko = pzlm/SSz)

(9.8)

Here S|' (1=1,2,3), are eigenvalues of S (note that for equal eigenvalues K,
= 0). We observe that now Ko («=1,2) are not homogeneous functions.
Among other possible orthogonal representations (in the sense of scalar

product) of the tensor function (9.1) of interest is the following one
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= .9
E nOI + 'rpll(1 + n2K2 " (9.9)
where
2 [¢] o] 0
1 1
Kl = — c =1 5 Kz = —_— 1 0 5 (9:10)
Ve ¢] o -1 v2 0 -
where
= = ¢ siny -  §° 2 = ¢ cosy - —— s°¢_sin2y, (9.11)
L N i 2$,00527, M, 19957 e 22 ¥ '
6 5
and
y = arcsin (-VBs )/3 . (9.12)

We recall that the parameter s, (1=1,2,3) and s are defined by (4.7) and
(4.9).

10. Comments on plastic dissipation density and yield conditien for isotropic
perfectly plastic solids

The constitutive relatlion proposed by Sawczuk and Stutz [1] precludes a
dependence of the dissipation density on hydrostatic pressure. Particularly,
in the case of a plane flow the flow rule reduces to the classical von Mises
theory [35] and a pressure dependent yield criterlon is ruled out.

A simple generalization of the model developed in [1] allows to remove
the drawbacks menticned above.

Let D = (DEJJ be the rate of deformation tensor and £ a scalar parameter
(or a set of scalar parameters). The tensorially non-linear constitutive
relations for perfectly plastic isotropic materials is assumed in the
following form
aT aT

2n B0 and oy

T = T(E,D) subject to 0. (10.1)

If the tensor function % is independent of £ then the model of Sawczuk and
Stutz [1] is recovered. In the sequel the parameter § will mainly denote the
hydrostatic pressure, though such an interpretation is not the only possible.
As previously, it may stand for the density of a material

The representation of the isotropic tensor function T has the form
T=al+aD+ab . (10.2)
o 1 2

Here o (h=0,1,2) are isotropic functions of the basic invariants of D nad
'

£; moreover they are of degree 0, -1, -2 in the rates of deformation,
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respectively, c¢.f.[1]. The third term on the r.h.s. of (10.2) is responsible
for second order effects.
We set

pd=p- % (trd)I , S=T- % (trT)I . (10.3)

and choose the following set of basic invariants

trd ,  tr(dH?® ., tr(dH?®

(10.4)
trT, trs® , trs°.

The relation (10.2) is decomposed into the spherical and deviatoric parts
T =38, s=90"+0 (0% 1 (tr0H)1), (10.5)

where ¢0. ¢1 and @2 are functions of € and the kinematical invariants
(10.4)lA The state of plastic motion is conveniently described in terms of

the dimensionless parameters

1/3

¢ = ___;Zélll_ e ~*—1§§9*;—5 , where tr*%(ph?% > 0. (10.8)
(0% tr""(D")
The condition of homogeneity yields
o = AE.t,w) , O = -95%7273147 g, v s (10.7)
(o) tr(D)

Obviously, the functions A, B and C are not to be confused with the
functions entering into the formula (2.185).
The law of plastic distorsion takes eventually the form, c.f. [1] or

Section 4 in this paper,

o= 5 45 - —22___ (s® - Lestiiny (10.8)
6B~ C
Y22, A2 262 3y 3-1
A= (tr (D))[B - = (B + Ct”)] : (10.9)
6B°- C

We note that the parameter &, for instance ‘the hydrostatic pressure,
influences also the plastic multiplier A.
The flow law (10.8), if substituted into (10.5), results in the

following expression for the stress invariants
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trT = 34 ,
trs® = (B + ct®)® + c®(1 - 8t%)s8, (10.10)
trs® = (8 + ¢t®)® + (1 - et®)(B(B + ct®) - 21 - 6t%)/18) /2.

A yield locus is obtained when t and w are eliminated from (10.10)

£(€, trT, trs®, trs®) =0 . (10.11)

Assuming that (10’10)1 can be resolved in £ one obtains
g = y(trT, t, w) . (10.12)

If Y does not dependent on t and w then § = wl(trT); particularly € = trT.
In general, the flow law (10.8) is not associated with the yield
condition (10.11). Under an additional condition
aT aT
1) Kkl

3D = ED) ) (10.13)
Kkl 1

the associated flow rule follows, c.f. Section 3 of the present paper and
[18].
By using (10.5) the general form of the dissipation density d is readily

calculated
5 _ d,2 diva
d = d(g€,D) = l‘uDlJ wotrD + eltr(D )T = tar(D = (10.14)
Incompressible flow. Now we have (rD = 0 and consequently w = 0. The

governing equations take the form
6C
1

6B°- C°
1 x

where Bl = B(g,t,0), C1 = C(&,1t,0), whereas

D=a{s- 5% = ;—(trSZ)I]} ] (10.18)

1/2.2 ZC? 3. -1
LB, = ——a——— (B %€ 2] "y (10.16)

A= (tr =
BB -
1

Eliminating the parameter t from the relations (10.10)2 and (10.10)3. the
yield locus is obtained in the form
(g, trs®, trs®) =0 . (10.17)

Hence we conclude that for € = trT the yleld condition can still depend on
the hydrostatic pressure, though the constitutive relation describes the

initial, incompressible flow. Moreover, the dissipation density is given by
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d=d(gD) =& tr(0)? + §,er(0")? (10.18)
where
BI(E,t) A Cl(E.t)
WA % T e (25, )
tr " (D) tr(D)
Plane in‘ 'mpressible flow. In this case D =D =D = 0 and trD = O,
13 23 33

tr(Dd)g 0; hence t = w = 0. Consequently the material functions B1 and Cl

depend or Z solely. We put

]
D 2 o, b.&)=8(80), c (&) =c(£0). (10.20)
0 o 1 1 1 8

The strec  tensor T has the form

¥ 0
T = = 0 ¥ (10.21)
0 0T
33

while the constitutive relationship is gliven by

D =alz- (D3, T =

1
- (trx c‘) ’ (10.22)

where A =t
Consider now the dissipatlion density and the yleld condition. If & =
tri, then b = bl(trg) and ¢ = cl(trg), For &£ = trT = trl + T33 we have

T =

1
o [trx - cl(trz + Taa]] ’ (10.23)

Assuming that Eq. (10.23) can be resolved for T33 we may write T33 =

Taa(ter, Thus in both cases the functions b1 and ¢, may be assumed to depend

1
on tr¥. Therefore the dissipation density becomes

1/72.2

D = D(try,9) = tr(sp")-= tr'"?p% (ery) . (10.24)
On the other hand

D= troy = (trz® - 1Py . (10.25)
Her by using (10.24) we finally obtain the yield condition in the

t:lowing form

2try® - tr'y = 2b° . (10.26)
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In the case of plane incompressible flow when bl and <, do not depend on

£ we have b1: bo and ¢, = Cye where bO and c¢_ are material constants. The

1 0
flow rule reduces then to the classical von Mises theory and a pressure

dependent yield criterion is precluded [35].
Appendix

For second order Cartesian tensors A = (Alj), B = (ka)' (1,3,x,1=1,2,3)

the following notation is used

= = Pa m P
trA = All All + Azz + A33 w EEER (trA)”™ (A.1)
A.B = tr(AB) = trAB = A”BlJ - (A.2)
(AB)lk = A”BJk i (A.3)
(MB)”“ = A”B“ . (A.4)
n _ n~-1 -
(A J‘k = (A A)lk A|JAJ- ,..Apk . (A.5)
| (S B |
n times

A" denotes the transpose of A.
The notion of a homogeneous functions of degree m is essential for our
considerations.
Definition A.1. [30-32]. A function f = F(A) 1s called homogeneous of degree
m if

F(tA) = t"F(A) (A.8)
for each t > 0.
We note that F is not necessarily a scalar function.

Euler’'s theorem for homogeneous functions yields

8F . aF = ’
T A = oF or 6A|j A‘J mF . (A.7)

As basic scalar invariants of A one may assume
tra , trA® |, trA’ . (A.8)

Cayley-Hamilton’s theorem ylelds

3

AT A sIA-TI1=0, (A.9)
1 2 3

where I denotes the unit tensor; I‘(A] (1=1,2,3) are scalar Invariants, be:ng

the coefficients of the following polynomial in A:
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det(A+AL) =A% + I A% + 1A+ 1
1 2 3

The invariants (A.8) and I‘ are interrelated by

I trA, 1 =1 (tr®A - tra®)

1 2

0

3 3

I = detA = tr A -

L tratra® + L otra
3 8 3

¥
2
By using the Cayley-Hamilton's theorem we readily calculate

4 1

At =l (tr®A + tra®)a? + ’5 (trA® - trla)A +

+ (% tria - ‘5 triatra® + :‘; trAtrAd)I

and

trat

é (tr*A + 8trAtrA® + 3tr°A% - 6tra®trea) .

Let us recall that if A = (A ) is a tensor, then its

1)
defined by

A = A- > (trA)I
d < ]

The following relations hold true
A’ = Lera®)a + Loeradia
d 2 d d 3 d
1

_1 o B i 3
A = 5 (trAd)Ad * = (trﬁd)Ad.

tra® = 1 tr%A% .
d 2 d

(A.10)

(A.11)

(A.12)

(A.13)

deviator is

(A.14)

(A.15)

(A.18)

(A.17)

For a two-dimensional tensor U = (uaB) (e, = 1,2) the Cayley-Hamilton's

theorem has the form

v - (rny v 2 (e - )3 = 9
Hence
ga = % (Irll2 + trzy)y + %(trytryz - trag)g :
tre® = 2 trueen® - ey
1 5 pelirll P z
For a matrix A = (A;,) its principal values A‘

calculated by using the following formula

1 2 2 .
K= = Il ol = Aucos [5 n(i-1) - ¢l ,
where

(1=1,2,3)

(A.18)

(A.19)

(A.20)

can be

(A.21)
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= (12 172
A= (I1 312) v (A.22)

= 3 _ 2
cos3y = (2[l 91112 + 2713)/2A“ . (A.23)
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