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In the introductory part of these notes a short overview of the circulatory system
with respect to blood flow and pressure will be given. In section 1 a simple model
of the vascular system will be presented despite the fact that the Huid mechanics of
the cardiovascular system is complex due to the non-linear and non-homogeneous
rheological properties of blood and arterial wall, the complex geometry and the
pulsatile low properties.

An important part, section 2, is dedicated to the description of Newtonian flow
in straight, curved and bifurcating, rigid tubes. With the aid of characteristic
dimensionless parameters the flow phenomena will be classified and related to
specific physiological phenomena in the cardiovascular system. In this way differ-
ence between flow in the large arteries and flow in the micro-circulation and veins
and the difference between flow in straight and curved arteries will be elucidated.
It will be shown that the flow in branched tubes shows a strong resemblance to
the flow in curved tubes.

Although flow patterns as derived from rigid tube models do give a good approx-
imation of those that can be found in the vascular system, they will not provide
information on pressure pulses and wall motion. In order to obtain this informa-
tion a short introduction to vessel wall mechanics will be given and models for
wall motion of distensible tubes as a function of a time dependent pressure load
will be derived. The flow in distensible tubes is determined by wave propagation
of the pressure pulse. The main characteristics of the wave propagation includ-
ing attenuation and reflection of waves at geometrical transitions are treated in
section 3, using a one-dimensional wave propagation model.

Key words: hemodynamaics, curved tube flow, vascular biomechanics, wave propa-
gation, wave reflection
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1. The Cardiovascular System

1.1. Introduction

The study of cardiovascular fluid mechanics is only possible with some
knowledge of cardiovascular physiology. In this section a brief introduction
to cardiovascular physiology will be given. Some general aspects of the fluid
mechanics of the heart, the arterial system. the micro-circulation and the
venous system as well as the most important properties of the vascular tree
that determine the pressure and flow characteristics in the cardiovascular
system will be dealt with. Although the fluid mechanics of the vascular system
is complex due to complexity of geometry and pulsatility of the flow, a simple

linear model of this system will be derived.

1.2. Short Overview of the Cardiovascular System

The cardiovascular system takes care of convective transport of blood be-
tween the organs of the mammalian body in order to enable diffusive trans-
port of oxygen. carbon oxide, nutrients and other solutes at cellular level
in the tissues. Without this convective transport an appropriate exchange
of these solutes would be impossible because of a too large diffusional resis-
tance. An extended overview of physiological processes that are enabled by
virtue of the cardiovascular system can be found in standard text books on
physiology like [3].

The circulatory system can be divided into two parts in series, the pul-
monary circulation and the systemic circulation (see Fig. 1). Blood received
by the right atrium (RA) from the venae cavae is pumped from the right
ventricle (RV) of the heart into the pulmonary artery which strongly bifur-
cates in pulmonary arterioles transporting the blood to the lungs. The left
atrinm (LA) receives the oxygenated blood back from the pulmonary veins.
Then the blood is pumped via the left ventricle (LV) into the systemic circu-
lation. As from fluid mechanical point of view the main flow phenomena in
the pulmonary circulation match the phenomena in the systemic circulation,
in the sequel of this course only the systemic circulation will be considered.

1.2.1. The heart. The forces needed for the motion of the blood are pro-
vided by the heart, which serves as a four-chambered pump that propels

blood around the circulatory system (see Fig. 1). Since the mean pressure in
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Ficure 1. Schematic representation of the heart and the circulatory system.
RA — right atrium, LA — left atrium, RV = right ventricle, LV = left ventricle.

the systemic circulation is approximately 13 kPa, which is more than three
times the pressure in the pulmonary system (= 4kPa), the thickness of the
left ventricular muscle is much larger then that of the right ventricle.

The ventricular and aortic pressure and aortic flow during the cardiac
cycle are given in Fig. 2. Atrial contraction, induced by a stimulus for mus-
cle contraction of the sinoatrial node, causes a filling of the ventricles with
hardly any increase of the ventricular pressure. In the left heart the mitral
valve is opened and offers very low resistance. The aortic valve is closed.
Shortly after this, at the onset of systole the two ventricles contract simulta-
neously controlled by a stimulus generated by the atrioventricular node. At
the same time the mitral valve closes (mc) and a sharp pressure rise in the
left ventricle occurs. At the moment that this ventricular pressure exceeds
the pressure in the aorta, the aortic valve opens (ao) and blood is ejected
into the aorta. The ventricular and aortic pressure first rise and then fall as
a result of a combined action of ventricular contraction forces and the resis-
tance and compliance of the systemic circulation. Due to this pressure fall
(or actually the corresponding flow deceleration) the aortic valve closes (ac)
and the pressure in the ventricle drops rapidly, the mitral valve opens (mo),

while the heart muscle relaxes (diastole).



34 I'. VAN DE VOSSE

pressure [kPa) flow [ml/s]
e a0 ac mo e a0 ac 1o
20 T GO0 .
18 H T 500 Y aortic flow N
4 ,‘m':lrul flow
A~ 400 H sz} o
\
) ! [}
aortic pressure ! v
300 H ! 3 4
y '
l' v
'
4 200 H ! 3 i
| —-ventric ular pressure |, ) A
' A} " |
i \
/
100 : A ..
| ) l‘ 1 \\ II
1 . -
(LS [ — N e S Sl
| V7
7 ]
'
{ . 5 V1
2 L | atdial pressire 4 -we Y i
1 IR
0 — 200 L
0 0.5 1 0 05 1
time [s] time [+)

FIGURE 2. Pressure in the left atrium, left ventricle and the aorta (left) and flow
through the mitral valve and the aorta (right) as a function of time during one
cardiac cycle, after [4]. With times: mc = mitral valve closes, ao — aortic valve
opens, ac — aortic valve closes and mo — mitral valve opens.

Since, in the heart, both the blood flow velocities as well as the geomet-
rical length scales are relatively large, the fluid mechanics of the heart is
strongly determined by inertial forces which are in equilibrium with pressure

forces.

1.2.2. The systemic circulation. The systemic circulation can be divided
into three parts: the arterial system, the capillary system and the venous
system. The main characteristics of the systemic circulation are depicted
schematically in Fig. 3.

From Fig. 3 it can be seen that the diameter of the blood vessels strongly
decrease from the order of 0.5-20mm in the arterial system to 5 500 pum
in the capillary system. The diameters of the vessels in the venous system
in general are slightly larger then those in the arterial system. The length
of the vessels also strongly decreases and increases going from the arterial
system to the venous system but only changes in two decades. Most dramatic
changes can be found in the number of vessels that belong to the different
compartments of the vascular system. The number of vessels in the capillary
system is of order O(10%) larger then in the arterial and venous system.
As a consequence, the total cross section in the capillary system is about
1000 times larger then in the arterial and the venous system, enabling an
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FiGUure 3. Rough estimates of the diameter, length and number of vessels, their
total cross-section and volume and the pressure in the vascular system.

efficient exchange of solutes in the tissues by diffusion. Combination of the
different dimensions mentioned above shows that the total volume of the
venous system is about 2 times larger then the volume of the arterial system
and much larger then the total volume of the capillary system. As can be
seen from the last figure, the mean pressure falls gradually as blood flows into
the systemic circulation. The pressure amplitude, however, shows a slight
increase in the proximal part of the arterial system.

The arterial system is responsible for the transport of blood to the tis-
sues. Besides the transport function of the arterial system the pulsating flow
produced by the heart is also transformed to a more-or-less steady flow in
the smaller arteries. Another important function of the arterial system is
to maintain a relatively high arterial pressure. This is of importance for
a proper functioning of the brain and kidneys. This pressure can be kept
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at this relatively high value because the distal end of the arterial system
strongly bifurcates into vessels with small diameters (arterioles) and hereby
forms a large peripheral resistance. The smooth muscle cells in the walls are
able to change the diameter and hereby the resistance of the arterioles. In
this way the circulatory system can adopt the blood flow to specific parts in
accordance to momentary needs (vasoconstriction and vasodilatation). Nor-
mally the heart pumps about 5 liters of blood per minute but during exercise
the heart minute volume can increase to 25 liters. This is partly achieved
by an increase of the heart frequency but is mainly made possible by local
regulation of blood flow by vasoconstriction and vasodilatation of the distal
arteries (arterioles). Unlike the situation in the heart, in the arterial sys-
tem, also viscous forces may become of significant importance as a result
of a decrease in characteristic velocity and length scales (diameters of the
arteries).

Leaving the arterioles the blood flows into the capillary system, a network
of small vessels. The walls consist of a single layer of endothelial cells lying
on a basement membrane. Here an exchange of nutrients with the interstitial
liquid in the tissues takes place. In physiology, capillary blood flow is mostly
referred to as micro circulation. The diameter of the capillaries is so small that
the whole blood may not be considered as a homogeneous fluid anymore. The
blood cells are moving in a single file (train) and strongly deform. The plasma
acts as a lubrication layer. The fluid mechanics of the capillary system hereby
strongly differs from that of the arterial system and viscous forces dominate
over inertia forces in their equilibrium with the driving pressure forces.

Finally the blood is collected in the venous system (venules and veins)
in which the vessels rapidly merge into larger vessels transporting the blood
back to the heart. The total volume of the venous system is much larger then
the volume of the arterial system. The venous system provides a storage func-
tion which can be controlled by constriction of the veins (venoconstriction)
that enables the heart to increase the arterial blood volume. As the diam-
eters in the venous system are of the same order of magnitude as in the
arterial system, inertia forces may become influential again. Both charac-
teristic velocities and pressure amplitudes, however, are lower than in the
arterial system. As a consequence, in the venous system, instationary inertia
forces will be of less importance then in the arterial system. Moreover, the
pressure in the venous system is that low that gravitational forces become of
importance.
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The geometrical dimensions referred to above and summarized in Fig. 3
show that the vascular tree is highly bifurcating and will be geometrically
complex. Flow phenomena related with curvature and bifurcation of the ves-
sels (see Sec.2) can not be neglected. As in many cases the length of the
vessels is small compared to the length needed for fully developed flow, also
entrance flow must be included in studies of cardiovascular fluid mechanics.

1.3. Pressure and Flow in the Cardiovascular System

1.3.1. Pressure and flow waves in arteries. The pressure in the aorta
significantly changes with increasing distance from the heart. The peak of
the pressure pulse delays downstream indicating wave propagation along the
aorta with a certain wave speed. Moreover, the shape of the pressure pulse
changes and shows an increase in amplitude, a steepening of the front and
only a moderate fall of the mean pressure (see Fig.4).

This wave phenomenon is a direct consequence of the distensibility of the
arterial wall, allowing a partial storage of the blood injected from the heart
due to an increase of the pressure and the elastic response of the vessel walls.

The cross-sectional area of the vessels depends on the pressure difference

pressure [kPa]

8 r
17 | 2
us)cg:ndilf/\

16 |- - H
15 =
14 :

abdomina

g2
13

0 0.5 1
time [s]

FiGure 4. Typical pressure waves at two different sites in the aorta
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over the wall. This pressure difference is called the transmural pressure and
is denoted by pyr. This transmural pressure consists of several parts. First,
there exists a hydrostatic part proportional to the density of the blood inside
p, the gravity force g and the height h. This hydrostatic part is a result of
the fact that the pressure outside the vessels is closely to atmospheric. Next,
the pressure is composed of a time independent part pg and a periodie, time
dependent part p. So the transmural pressure can be written as:

Pir = pqh + po + p. (1.1)

Due to the complex nonlinear anisotropic and viscoelastic properties of the
arterial wall, the relation between the transmural pressure and the cross sec-
tional area A of the vessel is mostly nonlinear and can be rather complicated.
Moreover it varies from one vessel to the other. Important quantities with re-
spect to this relation, used in physiology, are the compliance or alternatively
the distensibility of the vessel. The compliance (' is defined as:

0A
C=—. 1.2
dp (1.2)
For thin wall tubes the following relation can be derived:
0A  2mal (1 — p?
gt Enloy) (1.3)

T op h E
The distensibility D is defined by the ratio of the compliance and the

cross sectional area and hereby is given by:

10A C
o S (1.4)

Aop A

In the sequel of this course these quantities will be related to the material
properties of the arterial wall. For thin walled tubes, with radius a and wall
thickness h, without longitudinal strain, e.g., it can be derived that:

- 2al =
~ h E

(1.5)

Here p denotes Poisson 's ratio and E Young's modulus. From this we can see
that besides the properties of the material of the vessel (F, pt) also geometrical
properties (a.h) play an important role.

The value of the ratio a/h varies strongly along the arterial tree. The veins
are more distensible than the arteries. Mostly, in some way, the pressure-arca
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relationship, i.e. the compliance or distensibility, of the arteries or veins that
are considered, have to be determined from experimental data. A typical
example of such data is given in Fig.5 where the relative transmural pres-
sure p/pp is given as a function of the relative cross-sectional area A/Aj.
As depicted in this figure, the compliance changes with the pressure load
since at relatively high transmural pressure, the collagen fibres in the vessel
wall become streched and prevent the artery from further increase of the

circumferential strain.

Ay |1

elastin determined
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Ficure 5. Typical relation between the relative transmural pressure p/po and
the relative cross-sectional area A/Ag of an artery.

The flow is driven by the gradient of the pressure and hereby determined
by the propagation of the pressure wave. Normally the pressure wave will
have a pulsating periodic character. In order to describe the flow phenomena
we distinguish between steady and unsteady part of this pulse. Often it is
assumed that the unsteady part can be described by means of a linear theory,
so that we can introduce the concept of pressure and flow waves which be
superpositions of several harmonics:

N

N
p= Z p”(,rli.ut q= Z qnemut (16)

n=1 n=1
Here p,, and ¢, are the complex Fourier coefficients and hereby p and ¢ are
the complex pressure and the complex flow, w denotes the angular frequency
of the basic harmonic. Actual pressure and flow can be obtained by taking
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the real part of these complex functions. Normally spoken 6 to 10 harmonics
are sufficient to describe the most important features of the pressure wave.
Table 1 is adopted from [4] and represents the modulus and phase of the
first 10 harmonics of the pressure and flow in the aorta. The corresponding

pressure and flow are given in Fig. 6.

TasLe 1. First 10 harmonics of the pressure and flow in the aorta, from [4].

g in ml/s p in mm Hg

harmonic | modulus | phase modulus | phase
0 110 0 85 0
1 202 | -0.78 18.6 | -1.67
2 157 | -1.50 8.6 | -2.25
3 103 | -2.11 5.1 -2.61
4 62 | -2.46 29 | -3.12
5 47 | -2.59 1.3 | -2.91
G 42 -2.91 1.4 -2.81
7 31 | +2.92 1.2 | +2.93
8 19 +2.66 0.4 -2.54
9 15 | +2.73 0.6 | -2.87
10 15 | +2.42 0.6 | +2.87

1.3.2. Pressure and flow in the micro-circulation. The micro-circu-
lation is a strongly bifurcating network of small vessels and is responsible
for the exchange of nutrients and gases between the blood and the tissues.
Mostly blood can leave the arterioles in two ways. The first way is to follow
a metarteriole towards a specific part of the tissue and enter the capillary
system. This second way is to bypass the tissue by entering an arterio venous
anastomosis that shortcuts the arterioles and the venules. Smooth muscle
cells in the walls of the metarterioles, precapillary sphincters at the entrance
of the capillaries and glomus bodies in the anastomoses regulate the local
distribution of the flow. In contrast with the arteries the pressure in the
micro-vessels is more or less constant in time yielding an almost steady flow.
This steadiness, however, is strongly disturbed by the ‘control actions’ of the
regulatory system of the micro-circulation. As the dimensions of the blood
cells are of the same order as the diameter of the micro-vessels the flow and
deformation properties of the red cells must be taken into account in the
modeling of the flow in the micro-circulation (see Sec. 2).
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42 F. VAN DE VOSSE

1.3.3. Pressure and flow in the venous system. The morphology of
the systemic veins resemble arteries. The wall however is not as thick as
in the arteries of the same diameter. Also the pressure in a vein is much
lower than the pressure in an artery of the same size. In certain situations
the pressure can be so low that in normal functioning the vein will have an
elliptic cross-sectional area or even will be collapsed for some time. Apart
from its different wall thickness and the relatively low pressures, the veins
distinguish from arteries by the presence of valves to prevent back flow.

1.4. Simple Model of the Vascular System

1.4.1. Periodic deformation and flow. In cardiovascular fluid dynamics
the flow often may be considered as periodic if we assume a constant duration
of each cardiac cycle. In many cases, i.e. if the deformation and the flow
can be described by a linear theory, the displacements and velocity can be

decomposed in a number of harmonics using a Fourier transform:

N
V= Z g, ot (1.7)

n=0

Here v, are the complex Fourier coefficients, w denotes the angular frequency
of the basic harmonic. Note that a complex notation of the velocity is used
exploiting the relation:

(-'i""'{ = (‘()S(w") = IHl]](\.U") (]5)

with ¢ = y/—1. The actual velocity can be obtained by taking the real part
of the complex velocity. By substitution of relation (1.7) in the governing
equations that describe the flow, often an analytical solution can be derived
for each harmonic. Superposition of these solution then will give a solution

for any periodic flow as long as the equations are linear in the solution v.

1.4.2. The windkessel model. Incorporating some of the physiological
properties described above several models for the cardiovascular system has
been derived in the past. The most simple model is the one that is known
as the windkessel model. In this model the aorta is represented by a simple
compliance C' (elastic chamber) and the peripheral blood vessels are assumed
to behave as a rigid tube with a constant resistance (R,) (see top of Fig. 7).
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Ficure 7. Windkessel model of the cardiovascular system (top). Aortic flow
and pressure, data from [4] as function of time with pressure obtained from the
windkessel model indicated with the dotted line (bottom).

The pressure p, in the aorta as a function of the left ventricular flow ¢, then
is given by:

Ipa Pa
) ot R, (19)
or after Fourier transformation:
) . 1.
qa = (“-JC' = R_)p(z- (110)

P

In the bottom two charts of Fig.7 experimental data [4] of the flow in
the aorta (upper chart) is plotted as a function of time. This flow is used
as input for the computation of the pressure from Eq.(1.9) and compared
with experimental data (dotted resp. solid line in Fig. 7). The resistance R,
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and compliance C' were obtained from a least square fit and turned out to
be R, = 0.18 kPa-s/ml and C' = 11.5ml/kPa.
During the diastolic phase of the cardiac cycle the aortic flow is relatively
low and Eq. (1.9) can be approximated by:
Opa 1
ot  R,C

D during diastole (1.11)

—t/1C with pyy peak systolic pressure. This approx-

with solution p, ~ pse
imate solution resonably corresponds with experimental data.
During the systolic phase of the flow the aortic flow is much larger then

the peripheral flow (¢, > pa/R,) yielding:

0 1
% R ;o during systole (1.12)

with solution p, & peq + (1/C) [ gadt with paq the diastolic pressure. Con-
sequently a phase difference between pressure and flow is expected. Exper-
imental data, however, show p, & peg + kqa, so pressure and flow are more
or less in-phase (see Fig. 7). Notwithstanding the significant phase error in
the systolic phase, this simple windkessel model is often used to derive the
cardiac work at given flow. Note that for linear time-periodic systems, bet-
ter fits can be obtained using the complex notation (1.10) with frequency
dependent resistance (I2,(w)) and compliance C'(w)).

In Sec. 3 of this course we will show that this model has strong limitations

and is in contradiction with important features of the vascular system.

1.4.3. Vascular impedance. As mentioned before the flow of blood is
driven by the force acting on the blood induced by the gradient of the pres-
sure. The relation of these forces to the resulting motion of blood is expressed
in the longitudinal impedance:

o,
e q.

The longitudinal impedance is a complex number defined by complex pres-

2 (1.13)

sures and complex flows. It can be calculated by frequency analysis of the
pressure gradient and the flow that have been recorded simultancously. As
it expresses the flow induced by a local pressure gradient, it is a property
of a small (infinitesimal) segment of the vascular system and depends on
local properties of the vessel. The longitudinal impedance plays an impor-
tant role in the characterization of vascular segments. It can be measured
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by a simultaneous determination of the pulsatile pressure at two points in
the vessel with a known small longitudinal distance apart from each other
together with the pulsatile flow. In Sec.3 the longitudinal impedance will
be derived mathematically using a linear theory for pulsatile flow in rigid
and distensible tubes. A second important quantity is the input impedance
defined as the ratio of the pressure and the flow at a specific cross-section of
the vessel:

Z; =p/q. (1.14)

The input impedance is not a local property of the vessel but a property of
a specific site in the vascular system. If some input condition is imposed on
a certain site in the system, than the input impedance only depends on the
properties of the entire vascular tree distal to the cross-section where it is
measured. In general the input impedance at a certain site depends on both
the proximal and distal vascular tree. The compliance of an arterial segment
is characterized by the transverse impedance defined by:

dq
9=

This relation expresses the flow drop due to the storage of the vessel caused

Zyp =P — ~ —p/iwA. (1.15)

by the radial motion of its wall (A being the cross-sectional area) at a given
pressure (note that iwA represents the partial time derivative 94/0t). In
Sec. 3 it will be shown that the impedance-functions as defined here can be
very useful in the analysis of wave propagation and reflection of pressure and
flow pulses traveling through the arterial system.

2. Newtonian Flow in Blood Vessels

2.1. Steady and Pulsatile Newtonian Flow in Straight Tubes

In this section the flow patterns in rigid straight, curved and branching
tubes will be considered. First, fully developed flow in straight tubes will be
dealt with and it will be shown that this uni-axial flow is characterized by
two dimensionless parameters, the Reynolds number Re and the Womersley
number «a, that distinguish between flow in large and small vessels. Also
derived quantities, like wall shear stress and vascular impedance, can be
expressed as a function of these parameters.

For smaller tube diameters (micro-circulation), however, the fluid can not
be taken to be homogeneous anymore and the dimensions of the red blood
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cells must be taken into account. In the entrance regions of straight tubes,
the flow is more complicated. Estimates of the length of these regions will be
derived for steady and pulsatile flow.

The flow in curved tubes is not uni-axial but exhibits secondary flow
patterns perpendicular to the axis of the tube. The strength of this secondary
flow field depends on the curvature of the tube which is expressed in another
dimensionless parameter: the Dean number. Finally it will be shown that
the flow in branched tubes shows a strong resemblance to the flow in curved
tubes.

2.1.1. Fully Developed Flow

Governing equations

To analyze fully developed Newtonian flow in rigid tubes consider the
Navier-Stokes equations in a cylindrical coordinate system:

( Ou, . dv, (’)v - l@ iz i 10 B s dzu
ot T or 9z~ por Br \rore r ) T EE
v, dv., dv 1 0p 10 J 9“v, v
' il adic I T - (2.1)
ot U ar s+ "oz p()~+y(7()r (rar(l“))_i_ 0:2)'
10 du.,
L ;5(?1’ )+ P = [

Since the velocity in circumferential direction equals zero (v, = 0), the mo-
mentum equation and all derivatives in ¢-direction are omitted. For fully
developed flow the derivatives of the velocity in axial direction ;% and the
velocity component in radial direction v, are zero and Eqgs. (2.1) simplify to:
Ov, 1op v o [ Ov, 5.9
W—“m*m(m) (22)
Now a dimensionless velocity can be defined as v} = v./V, the coordinates
can be made dimensionless using the radius of the tube, i.e. r* = r/a and
z* = z/a, the pressure can be scaled as p* = p/pV? and the time can be
scaled using t* = wt. Dropping the asterisk, the equation of motion reads:

Jv, ()p 1 7] v,
27°% — _ Re il iV 9
o > ()z ror (r ar ) W8l
with Re the Reynolds number given by
B2 (2.4)
v
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and a the Womersley number defined as:

a=a - . (2.5)
\V v

So two dimensionless parameters are involved: the Womersley number o defin-
ing the ratio of the non-stationary inertia forces and the viscous forces and
the Reynolds number Re that is in this case nothing more then a scaling
factor for the pressure gradient. The pressure could also be scaled according
to p* = p/(a?/'r]V) yielding one single parameter «.

In Table 2 the Womersley numbers for several sites in the arterial system
are given. These values show that in the aorta and in the largest arteries
inertia dominated flow and in arterioles and capillaries friction dominated
How may be expected. In most part of the arteries an intermediate value of
« is found and both inertia and viscous friction are important.

TaBLe 2. Estimated Womersley number at several sites of the arterial system
based on the first harmonic of the flow. A kinematic viscosity of 5 x 107% Pa-s,
a density of 10 kg:m™* and a frequency of 1 Hz are assumed.

a[mm| | a[]
aorta 10 10
large arteries | 4 4
small arteries | 1 i
arterioles 0.1 0.1
capillaries 0.01 0.01

For the venous system a similar dependence of the Womersley number
is found but it must be noted that inertia is less important due to the low
amplitude of the first and higher harmonics with respect to the mean flow.

Velocity profiles

For flow in a rigid tube (see Fig. 8) with radius a the boundary condition
v(a,t) = 0 is used to impose a no slip condition.
We will assume a harmonic pressure gradient and will search for harmonic

solutions:
dp op ; t
— = —e" 2.
0z B:P (2:6)
and
vy = D, (r)e™?. (2.7)
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Ficure 8. Rigid tube with radius a

The solution of an arbitrary periodic function then can be constructed by
superposition of its harmonics. This is allowed because the equation to solve
(2.3) is linear in v,.

Now two asymptotic cases can be defined. For small Womersley numbers
there is an equilibrium of viscous forces and the driving pressure gradient. For
large Womersley numbers, however, the viscous forces are small compared to
the instationary inertia forces and there will be an equilibrium between the
inertia forces and the driving pressure gradient. Both cases will be considered
in more detail.

Small Womersley number flow. If o < 1 Eq.(2.3) (again in dimension-

o=_10% vO ( d”z) . (2.8)

full form) yields:

p Oz ror \ or
Substitution of Eq. (2.6) and (2.7) yields:
0. (r) % vov.(r) 1 dp

- = —— 2.9
Yo roor p Oz (2:9)
with solution: # i

va(r,t) = —IUO_Z((LQ — r2)eit, (2.10)

So, for low values of the Womersley number a quasi-static Poiseuille profile is
found. It oscillates 180° out of phase with the pressure gradient. The shape
of the velocity profiles is depicted in the left graph of Fig. 9.

Large Womersley number flow. If the o > 1 Eq.(2.3) yields:

v, 1 dp
—_— = ———. 241
ot p oz ( )
Substitution of Eq. (2.6) and (2.7) yields:
1 9%
iwdy(r) = —;%S (2.12)
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Ficure 9. Pressure gradient (top) and corresponding velocity profiles (bottom)
as a function of time for small (left) and large (right) Womersley numbers.
with solution: 95
l P
vo(r, t) = — —e™t, (2.13)
pw 0z

Now, for high values of the Womersley number, an oscillating plug flow is
found which is 90° out of phase with the pressure gradient (right graph of
Fig.9). The flow is dominated by inertia.

Arbitrary Womersley number flow. Substitution of Eq. (2.6) and (2.7) in
Eq. (2.2) yields:

0%v.(r) v Ob.(r) ()p
— — iw, . 2.14
Yo - or ws(r) = p 0z (2.14)
Substitution of
s =i"%ar/a (2.15)
in the homogeneous part of this equation yields the equation of Bessel for
n = 0: " = 3
J7v, 100, n
z 1 1= ). = 2.16
852 '3 0s ( sz) v (16
with solution given by the Bessel functions of the first kind:
) 1)“ 2k+n
2:17
Z kl(n+ k)! ( ) ( )
S0:
o % S :
(—1)% /sy2k s\2 1 /z\4 1 /2\6
= S (G 1 () ) - b )
o(s) AX—:[) Kkl \2 2) T \s) Tex\a) t
(2.18)
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see also [1]. Together with the particular solution:

o = 4o (2.19)
2 pw 0z
we have:
02(8) = KJo(s) + 9P. (2.20)
Using the boundary condition ©,(a) = 0 then yields:
0,4
I = —_—.]0(0423/2) (2.21)
and finally:
g5 3/2
wo- 2[4 e

These are the well known Womersley profiles, [8] displayed in Fig. 10,
As can be seen from this figure, the Womersley profiles for intermediate

=2 =8 o=16
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-l

il
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T

e
|
et

0 0 0 0
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|
-
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Ficure 10. Womersley profiles for different Womersley numbers (a = 2,4, 8, 16)
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Womersley numbers are characterized by a phase-shift between the flow in
the boundary layer and the flow in the central core of the tube. Actually,
in the boundary layer viscous forces dominate the inertia forces and the
flow behaves like the flow for small Womersley numbers. For high enough
Womersley numbers, in the central core, inertia forces are dominant and
flattened profiles that are shifted in phase are found. The thickness of the
non-stationary boundary layer is determined by the Womersley number. This
will be discussed in more detail in Sec. 2.1.2.

Wall shear stress
Using the property of Bessel functions, see [1]

dJo(s)
Js

= —Ji(s) (2.23)

and the definition of the Womersley function

2.]1( i3/20)
= 2.24
the wall shear stress defined as:
dv.
w— = = 22:’
T "5, L (2.25)
can be derived as:
dp
Tis = ——Fm(ﬂ) Fohe = Fio(a)r} (2.26)

with 71 the wall shear stress for Poiseuille flow. In Fig. 11 the function Fip(«)
and thus a dimensionless wall shear stress 7,,/7h is given as a function of «.

Remark 1.

[

B r-ij®  pandk : g 2\ 5
0= 5 iy G- (G) - B ) b (-
(2.27)

In many cases, for instance to investigate limiting values for small and

large values of a, it is convenient to approximate the Womersley function

with: —_ -
1 +5) with  f= . (2.28)

F AT TR
to(a) (1+B)172 +23 16
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1 0
K —'exact’ i —'exact’
=3 O approximation =) O approximation
B -
ks o
3 0.5 .g /2
3 A\ &
o 3 &
€ % 5
§ .
0 8 16 24 32 0 8 16 24 32
o -] o]

FiGure 11. Modulus (left) and argument (right) of the function Fio(a) or 7. /7
as a function of a. The approximations are indicated with dotted and dashed
lines.

This approximation is plotted with dotted lines in Fig. 11. For small values
of the Womersley number (a < 3) the following approximation derived from
Eq. (2.28) can be used:

1 1
F =~ = 2.29
wle) ~ 1255 = T 7a7/8 (2.29)
whereas for large values (o > 15) one may use:
| 1—1)v2
Fiola) = 5,-1-'/2 - ﬂ_. (2.30)
(03

These two approximations are plotted with dashed lines in Fig. 11. Note that
the dimensionless wall shear stress for large values of o approximates zero
and not oo that one could conclude from the steep gradients in the velocity
profiles in Fig. 10.

The mean flow ¢ can be derived using the property, see [1]:

0J,(s N
8-5 ) = —a(s) + s a(5). (2.31)

For n = 1 it follows that:
SJ()(S)(ZS — d(-@.}](S)) (232)
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and together with J;(0) = 0 the flow becomes:

«a

2 B0y
q= / b:2mrdr = i*— [1 = Fio(a)] 5~ = [1 = Fio(e)] 4o

« pw z
0
8i . s i
= 3 [1 = Fiola)]gy (2:33)
with o B .
X ira® Op . Ta dp
Goi = o 32 and Gp = g()ﬁz (2.34)

Combining Eq. (2.26) with Eq. (2.33) by elimination of dp/dz finally vields:

_a . Fyla) .
- 2A prl . Fl()(a) 4

Tw

yeo 9 - » 4
With A = wa* the cross-sectional area of the tube. In the next section this
expression for the wall shear stress will be used to approximate the shear
forces that the fluid exerts on the wall of the vessel.

Vascular impedance
The longitudinal impedance defined as:

By = =Bl (2.36)
Dz q

can be derived directly from Eq. (2.33) and reads:

. P 1 y
Zp = iw—s———. 2.37
. ma?l — Fu)((lr) ( )
For a Poiscuille profile the longitudinal impedance is defined by integration
of Eq. (2.10) and is given by:
8.
By ==L, (2.38)

wal

From this it can be derived that the impedance of a rigid tube for oscillating
flow related to the impedance for steady flow (Poiseuille resistance) is given
by the following equation:

e _da Sl (2.39)
Zp N 81— Fl()(a) ) )
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In Fig. 12 the relative impedance is plotted as a function of the Womersley

number av. The relative longitudinal impedance is real for o« < 1 and becomes

imaginary for a — oc. This expresses the fact that for low frequencies (or

small diameters) the viscous forces are dominant, whereas for high frequencies

(or large diameters) inertia is dominant and the flow behaves as an inviscid

flow.
100 /2
& —modulus -
2 80[_ real 2
= i 2
8, 60 imag 8.
E Emnd
¥ = 2
= ©
e 20 [
Qrm==mm s 0
0 8 16 24 32 0
o
1000 /2
—modulus
8 B 3
Z 100 real =
3 -imag - R
o .1 a
E 10 i £
o - o
2 Z 8
© 1 o
o 7 [
0.1 16
1 10 100 |
o

—argument

10 100
o

FIGURE 12. The relative impedance for oscillating flow in a tube (linear scale at

the top and logarithmic scale at the bottom) as a function of a.

For small values of o the relative impedance results in (see 2.29):

Zp(a < 3) i
—_— =14+ —.
i 8

Zy

(2.40)

Viscous forces then dominate and the pressure gradient is in phase with the

flow and does not (strongly) depend on alpha. For large values of a Eq. (2.30)

gives:

Zr(a>15) ia?®

Z 3
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Hho

indicating that the pressure gradient is out of phase with the flow and in-
creases quadratically with a.

2.1.2. Entrance flow. In general the flow in blood vessels is not fully devel-
oped. Due to transitions and bifurcations the velocity profile has to develop
from a certain profile at the entrance of the tube (see Fig. 13).

estimated:
( n Ov2 -0
8.171 (')llf-z T
vV v
O(Z) 0(5)
4
. P .. S )
Par T PGg, TP, T Er
V2 V2 1 0p
OWwV) O — )| — ——
Lown o) o(F) o(a) of

)

f e

A

Ficure 13. Development of a boundary layer

\

I

In order to obtain an idea of the length needed for the flow to develop,
the flow with a characteristic velocity V' along a smooth boundary with
characteristic length L is considered. Viscous forces only play an important
role in the small boundary layer with thickness 4. Outside the boundary layer
the flow is assumed to be inviscid so that Bernoulli’s law can be applied.
From this configuration simplified Navier-Stokes equations can be derived
by assuming that 6 < L and the order of magnitude of its terms can be

http://rcin.org.pl
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This shows clearly that the diffusive forces are determined by second order
derivatives of the velocity normal to the boundary. Moreover it can be seen
that the stationary inertia forces are of the same order of magnitude as the
viscous forces (which is the case at the boundary layer xo = §) as long as:

0(2)=0(%). st

If the entrance length of the flow in a tube is defined as the length needed

Steady flow

for the boundary layer to contain the complete cross section, i.e. d = a, then
the ratio of the entrance length and the radius of the tube follows from the

Le =0(ﬂ)' (2.44)

equation above as:

a v
or with the definition of the Reynolds number Re = 2aV/v the dimensionless

entrance length L./2a is found to be proportional to the Reynolds number:

L

=< = O(Re). (2.45)
2a

In [6] one can find that for laminar flow, for L, : v(L.,0) = 0.99 - 2V
Le
— = 0.056Re. (2.46)
2a

For steady flow in the carotid artery, for instance, Re = 300, and thus L, =~
40a. This means that the flow will never become fully developed since the
length of the carotid artery is much less than 40 times its radius. In arterioles
and smaller vessels, however, Re < 10 and hereby L, < a, so fully developed
flow will be found in many cases.

Oscillating flow

For oscillating flow the inlet length is smaller as compared to the inlet
length for steady flow. This can be seen from the following. The unsteady
inertia forces are of the same magnitude as the viscous forces when:

p Vv =
O(Vw)=0 (’;—2) (2.47)
and thus:
5:0( 5). (2.48)
w
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This means that for fully developed oscillating flow a boundary layer exists
with a relative thickness of:

—-=0 ((1_1) ; (2.49)

If, for oscillating flow, the inlet length is defined as the length for which the
viscous forces still are of the same magnitude as the stationary inertia forces,

Vv 2
19 (’;—2) =0 (‘; ) (2.50)

then together with Eq.(2.49) the inlet length is of the order

V62 a
L,,:()( ):()(w—zne). (2.51)

124

l.e.:

Note that this holds only for &« > 1. For o < 1 the boundary layer thickness
is restricted to the radius of the tube and we obtain an inlet length of the
same magnitude as for steady flow.

2.2. Steady and Pulsating Flow in Curved and Branched Tubes

2.2.1. Steady flow in a curved tube

Steady entrance flow in a curved tube

The flow in a curved tube is determined by an equilibrinm of convec-
tive forces, pressure forces and viscous forces. Consider, the entrance flow in
a curved tube with radius a and a radius of curvature Ry. With respect to
the origin O we can define a cylindrical coordinate system (R, z, ¢). At the
entrance (A: Ry —a < R < Ry +a, —a < z < a, ¢ = 0) a uniformly dis-
tributed irotational (plug) flow v, = V (see Fig. 14) is assumed. As long as
the boundary layer has not yet developed (Ry¢ < 0.1a Re) the viscous forces
are restricted to a very thin boundary layer and the velocity is restricted to
one component, vy. The other components (vp and v.) are small compared
to vy. In the core the flow is inviscid so Bernoulli’s law can be applied:

2
p+ % puy = constant. (2.52)
With p the pressure, and p the density of the fluid. The momentum equation
in R-direction shows an equilibrium of pressure forces and centrifugal forces:
. 2
dp B PUg,

55 = T (2.53)
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Ficure 14. Axial velocity profiles, secondary velocity streamlines and helical
motion of particles for entrance How in a curved tube.

As a consequence, the pressure is largest at the outer wall and smallest
at the inner wall. Together with Bernoulli’s law it follows that the velocity
will become largest at the inner wall and lowest at the outer wall of the tube
(see Fig. 14 location (B)). Indeed, elimination of the pressure from Eq. (2.52)
and Eq. (2.53) vields:

dvg Vg

OR = R (2.54)

and thus:

kl
Vp = —.
TR

The constant k; can be determined from the conservation of mass in the

(2.55)

plane of symmetry (z = 0):

Ro+a R

2aV = / ve(R)dR = kyIn iyt (2.56)
. Ry —a
[{u—ﬂ
and thus: -
a

k= 257
. In % ( )
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with & = a/Rp. So in the entrance region (¢ < 0.16 Re) initially the following
velocity profile will develop:

2aV
= 2.58)
Y, (
Rlﬂ %

vg(R)

It is easy to derive that for small values of § this reduces to vy (R) = (Ro/R)V .

Note that the velocity profile does only depend on R and does not depend
on the azimuthal position # in the tube. In terms of the toroidal coordinate
system (r, 0, ¢) we have:

R(r,0) = Ry — rcosf (2.59)

and the velocity profile given in Eq. (2.58) is:

2aV 20V
vg(r,0) = 5= . (2.60)

(Rg —rcosf)In % (1 —=46(r/a)cosf)In %—‘f‘—;

Again for small values of § this reduces to

Vv
1 —d(r/a)cosf

vg(r, 8) =

Going more downstream, due to viscous forces a boundary layer will de-
velop along the walls of the tube and will influence the complete velocity dis-
tribution. Finally the velocity profile will look like the one that is sketched
at position C. This profile does depend on the azimuthal position. In the
plane of symmetry it will have a maximum that is shifted to the outer wall.
In the direction perpendicular to the plane of symmetry an M-shaped profile
will be found (see Fig. 14). This velocity distribution can only be explained if
we also consider the secondary flow field, i.e. the velocity components in the
plane of a cross-section (¢ = const.) of the tube perpendicular to the axis.

Viscous forces will diminish the axial velocity in the boundary layer along
the wall of the curved tube. As a result, the equilibrium between the pres-
sure gradient in R-direction and the centrifugal forces will be disturbed. In
the boundary layers we will have pV?/R < dp/JR and in the central core
pV2/R > Op/OR. Consequently the fluid particles in the central core will
accelerate towards the outer wall, whereas fluid particles in the boundary
layer will accelerate in opposite direction. In this way a secondary vortex
will develop as indicated in Fig. 14. This motion of fluid particles from the
inner wall towards the outer wall in the core and along the upper and lower
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walls back to the inner wall will have consequences for the axial velocity
distribution. Particles with a relatively large axial velocity will move to the
outer wall and due to convective forces, the maximum of the axial velocity
will shift in the same direction. On the other hand. particles in the bound-
ary layer at the upper and lower walls will be transported towards the inner
wall and will convect a relatively low axial velocity. In this way in the plane
of symmetry an axial velocity profile will develop with a maximun at the
outer wall, and a minimum at the inner wall. For large curvatures or large
Reynolds numbers even negative axial velocity at the inner wall can occur
due to boundary layer separation.

Once the maximum of the axial velocity is located near the outer wall, the
secondary flow will transport particles with a relatively large axial velocity
along the upper and lower walls and a C-shaped axial velocity contour will
develop. This can clearly be seen in Fig. 15 where for different curvatures of
the tube contour plots of the axial velocity and streamlines of the secondary
velocity are given. Note that the combination of the axial and secondary flow
results in a helical movement of the fluid particles (see Fig. 14). While moving
in downstream direction the particles move from the inner wall towards the

outer wall and back to the inner wall along the upper (or lower) wall.

Dn = 600 axial secondary Dn = 600

Dn = 2000 Dn = 2000

Ficure 15. Contour plots of axial (left) and streamline plots of secondary (right)
fully developed steady flow in a curved tube for Dean numbers of 600 (top), 2000
(middle) and 5000 (bottom) as computed by Collins and Dennis in |2].
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Steady fully developed flow in a curved tube

[n order to obtain a more quantitative description of the flow phenomena
it is convenient to use the toroidal coordinate system (7,6, ¢) as is depicted
in Fig. 14. The corresponding velocity components are v,, vg and v,. The

Navier-Stokes equations in toroidal coordinates read |7]:
e in r-direction:

a . P ;
—(drvgv,) — Biij — 01 cos 9173,)

2t i[a(ys B BB
do

ot = rB | or Ao
B (')p - 1 L Jd B(h, N i E(’)v,. N (_7 &01),-
~or ' Re or or do \ r ov do\ B 0o

1 vy dsinfvg 62 cosb duy
- ), it — .
( 50 + 7 )+ T + FE vgsinf — v, cos — 2—— 9%
(2.61)

e in f-direction:

v 1 [0 ) 9 -
(;;] ’B [6 (T'BU lg)‘|" (B 5)4‘(7)—(5(67-17“51:9) + Buvyvg + drsin Bvé}

~dp 1 1 [o dvg Jd [ Bouvy d (5% Oy
_—07)+§{ [01(3_)+c)9(r00)+%(Fa—@)}

L (. v, dsinfv,  6%sinf : B ~0vg
+ ) (2()—9 - w)) 5 P vgsin@ — v, cos — 2% 5
(2.62)

e in ¢-direction:

Ouy 1
ot rB

d 8. 3. .
l:r) (rBugvy) + %(B"c‘ﬂﬁ)"'—d—'@({)”a)

. o O
+ drvg (v, cos @ — vg sin 9)j| =-3 d—f
P

+L L 3 ]_Bf)z',p +£ EE)PO +i a2 ()tm
Re | rB |0Or ar a0 \ r o6 oo\ B ()g)

282 [ Ov, dug " () .
B (%(‘.059— C)d) 9—?)}- (2.63)

http://rcin.org.pl



62 F. VAN DE VOSSE

continuity:

d & s
—(rBuvy) + %(ng) + %(Oru@) = [ (2.64)

with
(1
6= — and B =1+ drcosf.
Ry

For fully developed flow all derivatives in ¢ direction are zero (9/0¢ = 0).
This of course does not hold for the driving force dp/0d¢. If we scale according
to:

* * * P * Ur * * Vo -
Faosy e W’ il = V’, V=1 Y= (2.65)

the continuity equation and the momentum equation in r-direction read,

Up

after dropping the asterisk:

dv,. vy |1+ 2d0rcosf 1 Jug dvgsinf
& i e e o ] 2.66
Jar N r [1+5rcosﬁ}+7‘89 1+ drcosd 2H30)
and
vy vy Ovy ‘Ug ) qub cos b

e 58
or i r Of r 14 drcost

~Op i} 10 O sinf 10v, Jdug vy .
- Or +§ [(r@@ a 1+5rc089) (;7)? ar )] + R8T

The two important dimensionless parameters that appear are the curva-
ture ratio & and the Reynolds number Re defined as:
a 2aV

— R_O and Re :

) (2.68)
with a the radius and Ry the curvature of the tube. If we restrict ourselves
to the plane of symmetry (6 = 0,7, cosf) = +1 and vy = 0) we have for the
momentum equation:

v, ivil ap 1 10 10v, vy
PO N T BN T [ Tt LR | 2,69
% ‘1xor o He [(r(%’) (r 96 or )} 22)

If we consider small curvatures ( < 1) only, knowing that v, = O(1) and
r is already scaled and in the interval [0, 1], the momentum equation yields
v

E = O(0v3) = O(9)

Up
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and thus O(v,) = 6'/2. From the continuity equation Eq.(2.66) it can be
seen that v, and vy scale in the same way, i.e. O(v,) = O(wg), and thus also
O(vg) = 62 If instead of using Eq. (2.65) we would use:

T P . _ U v . _ Vo

o P Ty T apy T sRy TV

the continuity equation and momentum equation in r-direction for § < 1

(2.70)

would be (again after dropping the asterisk):

v, vr 10wy

o 7 Tros " @
and

dv, wvg v, U3
] L _ 8 _y2cosh

Tor T r 00 r ¢

_ Op 1 10 (10v, Ovg 1y
= "o T iRe [a—a (FW . —)] YRR

From this we can see that for small curvature another dimensionless param-

(é

eter, the Dean number, can be defined as:
Dn = 6'/2Re. (2.73)

The secondary flow depends on two important parameters, the Reynolds
number Re and the curvature § or the Dean number Dn and the curvature
d. The last combination is often used because for small curvature only the
Dean number is of importance.

For large Dean numbers the viscous term in Eq. (2.72) can be neglected
in the core of the secondary flow field and one can talk about a boundary
layer of the secondary flow. The thickness d, of this boundary layer can be
derived from the momentum equation in #-direction:

[ I il .
Oug  wvgOvg wwg . Ugsind

or r 00 r 1+ drcosf

1dp 1 d dcosf dvg wvg 109v,
= ———— e R e — - TP A 2 /
rao 61/2Re [(i)r Y + (51‘(:059) ( ar Tr ror )] (2:74)

If we assume that at » = a — d5 the viscous and inertia forces are of the

Vr

same order of magnitude we have:
O i
- = O(Dn~1?). (2.75)

a

In Fig. 15 the boundary layer of the secondary flow is indicated with a dashed

line and indeed decreases with increasing Dean numbers.
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2.2.2. Unsteady fully developed flow in a curved tube. In unsteady
flow in a curved tube the secondary flow will have the same orientation as
in stationary flow. The reason for this is that the centrifugal forces are not
sensitive for the direction of the axial velocity (f. x vf)). For high frequencies,
or better large Womersley numbers, like in the case for straight tubes an
nonstationary boundary layer will develop such that in the central core the
flow will behave more or less inviscid whereas at the boundary viscous forces
are dominant. For oscillatory flow this may lead to a secondary flow field as
is depicted in Fig. 16. In the core the secondary vortex will have an opposite
direction as in the boundary layer where the direction corresponds with the
one in steady flow. In contradiction to the flow in a straight tube, however,
for flow in a curved tube the superposition of several harmonics is not allowed

because the governing equations are strongly non-linear.

steady oscillatory

inner wall outer wall  inner wall outer wall

F1GURE 16. Streamline patterns of fully developed secondary flow in steady (left)
and oscillatory (right) flow in a curved tube.

In pulsating flow this second vortex will not be that pronounced as in
oscillating flow but some influence can be depicted. This is shown in the
Fig. 17 where the results of a finite element computation of pulsating flow in
a curved tube are given together with experimental (laser Doppler) data.

2.2.3. Flow in branched tubes. The flow in branched tubes (bifurca-
tions) shows the same phenomena as in curved tubes. Actually the bifurca-
tion can be considered as a two joined curved tubes. Of course there are also
differences with curved tube flow due to the bifurcation point (apex) which
will induce an extra asymmetry (see Fig. 18).

Detailed knowledge about the flow phenomena in curved and branched
tubes is of great physiological and clinical importance. The prediction of
areas of high and low shear rates and wall shear stress, the prediction of
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Ficure 17. Computational (FEM) and experimental (LDA) results of pulsatile

flow in a curved tube: end diastolic (top), peak systolic (bottom).
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000: experimental —: numerical

Ficure 17. Continuation: Computational (FEM) and experimental (LDA) re-
sults of pulsatile flow in a curved tube: end systolic.

»
> %

Ficure 18. Axial velocity and streamline patterns of flow in a bifurcation.
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flow instabilities related to high shear rates as occur at the interface between
the areas with high and low axial velocity can help to interpret clinical data
from ultra-sound Doppler measurements and MRI images and can help to
get insight in the development of atherosclerosis. In many case advanced
methods in computational fluid dynamics (CFD) are needed to obtain more
then the qualitative information as is given in this section. An example of
this is given in Fig. 19 where the results of computations of the flow in the
internal carotid artery is given together with experimental results obtained
with laser Doppler anemometry.
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Ficure 19. Computational (FEM) and experimental (LDA) velocity distribu-
tions of a steady flow in a model of the carotid artery bifurcation.

3. Wave Phenomena in Blood Vessels

3.1. Introduction

In this section we will show that traveling pressure and flow waves are the
result of the distensibility (or compliance) of the arteries and the pulsatile
character of the pressure. A typical relation between the pressure and cross-
sectional area of an artery is given in Fig. 5 and shows that the compliance
normally does not have a constant value but strongly depends on the pres-
sure. In this section, however, only small area variations will be considered
and a linear relation between the pressure amplitude and the vessel diameter
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will be assumed. Apart from wave propagation and the importance of viscous
forces expressed in the value of the Womersley number a, also wave reflection
from arterial bifurcations or transitions in mechanical or geometrical prop-
erties will be dealt with. Moreover, attenuation of waves as a result of fluid
viscosity and wall visco-elasticity will be discussed.

3.2. Pressure and Flow

In the physiological introduction of this course (Sec.2) it is mentioned
that the heart is a four-chambered pump that generates a pulsating pressure
and flow (see Fig.2). The frequency contents of the pressure and flow in the
aorta is given in Table 1 and shows that the pulsatile character of the pressure
and flow can be described very well with the first & to 10 harmonies (see also
Fig.6). Moreover, in Sec.2 a simple (windkessel) model was introduced to
describe the pressure/flow relation or impedance of the arterial system using
the compliance C, = dV/dp of the elastic arteries and the resistance R, of
the periferal arteries (see also equation 1.9):

{)ptz Pa 5
o = Ce— + — 3.1
4 ot - R, g

iwt.

and with p, = pae™’, ga = Gae

;P _ Ry(1 — “’RPG‘). (3.2)

In Fig. 20 the absolute value and argument of the impedance given by Eq. (3.2)
is shown as a function of the harmonics. Experimental data (indicated with
lines [4]) show that the windkessel model does not predict accurate results
especially for the phase of the higher harmonics. Moreover, as illustrated in
Fig.4, the pressure and flow waves change their shape with increasing dis-
tance from the heart. This is a result of traveling waves and never can be
described by the windkessel model.

In order to describe the pressure and flow in terms of traveling waves (i.e.
p=p(zt) and g = q(z.t)) the following complex notation will be used:

p(z,t) = pet@t=k2) and q(z,t) = ge'wt=+2) (3.3)

where w is the angular frequency, k = k, + ik; is the complex wave number
and j = |p|e’® denotes the complex amplitude. The actual pressure (c.q. flow)
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Ficure 20. Absolute value and argument of the arterial impedance as computed

with a windkessel model (0) and from experimental data (-).

is defined as the real part of Eq. (3.3):

Re [p(z,t)] = |ple"* cos(wt — kyz + ¢)

(3.4)

It will be clear that (—k;) is a measure for the attenuation of the wave and
that k., = 27 /A with )\ the wavelength.

3.3. Fluid Flow

To analyze fully developed Newtonian flow in distensible tubes we con-

sider the Navier-Stokes equations in a cylindrical coordinate system:

)

([ Ov, - v, " Ov,. 10p
Vp— + v, = ———
ot " or © 0z por
) Jv. " Ju., 2 v 1 op 5 10
Vprg o T lpg—e = e | —
ot or 0z p oz ror
10 ov.
—— \TUy — = O
\ 7 'dr(” )+ 0z
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Since the velocity in circumferential direction equals zero (v, = 0). the
momentum equation and all derivatives in ¢-direction are omitted. Due to
the distensibility of the tube, pressure and flow waves will propagate with
a finite wave speed ¢ = w/k, and a typical wavelength A = 27 /k,. First
a properly scaled dimensionless form of the Navier-Stokes equations will be
derived. To this end the radial coordinates are made dimensionless using
the mean radius of the tube, i.e. ¥’ = r/ay. The axial coordinates, however,
must be scaled with the real part of the wave number k,: 2/ = zk,. (see
Eq.(3.3)). The axial velocity is made dimensionless with its characteristic
value over a cross-section: v, = v,/V. From the continuity equation it can
be derived that the radial velocity then must be made dimensionless as: v, =
(vr/V)(1/kra). The characteristic time ¢’ = wt can be written as t' = (k.¢)t
with ¢ the wave speed. Together with a dimensionless pressure p’ = p/(pVe)
the dimensionless Navier-Stokes equations read:

| 25 + v (v’ il + v (‘)Uﬁ)
' e XTH T EHY
_ﬁg—g + (%2 (2% (%(9(:" (r'vl. )) +ankz(';2,:).
o (o)
= ~3—]:: + ﬂlz (%% (r'%(z{.)) +af,k,"23{;) .

Besides the Womersley parameter o = agy/w/v the dimensionless parame-
ters that play a role in this equation are the speed ratio S = V/¢ and the
circumference-to-wavelength ratio G = apk, = 2mag/A. Under the assump-
tions that the wave velocity ¢ is much larger then the fluid velocity V. the
wavelength A is much larger then the tube radius ag, i.e.:

V v2 2 27r(lU L
S=—<1, G=(ka)= (") <L (3.7)
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It can readily be shown that the equations of motion reduce to:

( Jp
5. =0,
dv,  1dp 10 ( dv,
W‘;aﬁ”?@(’ a) (3:8)
10 v,

| papv i gy =0

If we search for harmonic solutions with angular frequency w and wave
number k:
p = pell@i—k2) (3.9)
and
v, = 0, (r)elwt=k2) (3.10)
substitution in Eq. (3.8) yields exactly the same differential equation for v,
as in the case of a rigid tube given in Eq.(2.22). If we further assume that
the wall motion is axially restrained, which is thought to be relevant in vivo
[5], also the boundary condition for o, is not different from the one in rigid
tubes but now must be applied in a linearized way at r = ag. It will be clear
that in that case we obtain exactly the same Womersley solution given by
Eq. (2.22). Substitution of:
ap
k 1} B -]0(’133/2!17"/(10)] .
o) | ”

In [8] a relation similar to Eq.(3.12) is derived, however without the as-
sumption of axial constraint. In that case the second term in the brackets is

= —ikp @.1L)
yields:

0.(r) =

pw

(3.12)

multiplied by an extra parameter that only slightly differs from unity. The
wall shear stress is equal to the wall shear stress for rigid tubes and is defined
by Eq. (2.35). The wave number £ still has to be determined and depends on
the properties of the arterial wall. In the next section the wall motion will
be analyzed, again assuming axial restraint.

3.4. Wave Propagation

3.4.1. Derivation of a quasi one-dimensional model. In order to ob-
tain an expression for the wave number introduced in the previous section,
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a quasi one-dimensional wave propagation model for pressure and flow waves
will be derived. To this end the Leibnitz formulae (or Reynolds transport
theorem) will be used to integrate the equations of motion given in Eq. (3.8).
A suitable form for the application in this section is (see also Fig. 21):

a(z) a(z)
ds(r, z da
diz / s(r, z)dr = . ng )(i'r + s(a, z) a—z - (3.13)
0 0
I'(t)

Ficure 21. Flow g(z,t) in a distensible tube with moving wall ['(t) and cross-
sectional area A(z,t).

Application to the second term of the continuity equation in Eq. (3.8)
integrated over the radius:

a(z) a(z)
10 Jv,
2 / ——(rv;)rdr + / (‘;l “rdr| =0 (3.14)
ror ] z
0 0
vields:
u(z)a 5 a(z) 5
o | L% 4 on 2 / vrdr — 2mv,r —| =0 (3.15)
dr 0z z|,
0
or:
o 13}
2 1o, + 0—? — 21v,(a, t)a d—'j = 0 (3.16)
and thus:
15 %)
2wa (v,.(a,t) —vz(a,t) i ) + _q =0 (3.17)
0z|, dz
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with ¢ = q(z,t) the flow through the cross-section. Rewriting the first term
in terms of the cross-sectional area A(z,t) = ma?(z,t), finally the integrated
continuity equation reads:
oA dq
ot 0z
This equation is formally derived but will be clear immediately from Fig. 21
if we write [A(z,t +dt) — A(z,t)]dz + [g(z + dz,t) — g(z,t)]dt = 0.
In a similar way the momentum equation in axial direction can be inte-

0. (3.18)

grated:
a(z,t) a(z.t) 5 a(z.t)
v 1o J du.,
27 / 5: rdr = —2 / ;a—jrdr + 27w / 5 (r dl;‘) dr.  (3.19)
0 0 0

Application of the Leibnitz formulae to the first term yields:

a(z,t)
() i A (') 0 @
25 / il — By = ‘;a‘f +2mer 5 o (3.20)
0

The second term in the left hand side of this equation vanishes if a longitu-
dinal restraint of the wall motion (v.(a) = 0) is assumed. The second term
in the right hand side can be written in terms of the wall shear stress defined
in Eq. (2.25). The integrated momentum equation then reads:

el dp 2AT
s IO

p ot 0z a )

Together with the expression for the wall shear stress given in Eq. (2.35) and
linearisation of the Agfz—’ term we finally obtain:
dq Jdp
— 4+ Ag— = — foq 3.22
p5 T 40y, foq (3.22)
with fy a friction function defined as:

Fio(w)

1= Fuo@)’ (3.23)

fo(w) = iwp

The linearized one-dimensional equations that describe the pressure and
flow in distensible tubes under the assumption that V/e < 1, (2ma/A)? < 1
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and under the assumption that the wall motion is longitudinally constrained
thus are given by:

('3]) dq
C =0,
o T 5e
(3.24)
dq dp .
St g Aot = fan
P T A0, Joq
with Cj the linearized compliance given by:
dA
Cp = (0_) (3.25)
p P=Po

Alternatively using the mean velocity © instead of the flow ¢ = Awv:

Bp dv
D — =0,
Yot Bz
(3.26)
dv 0
(‘3_: + _p = — fo¥,
with Dy a linearized distensibility given by:
1 [0A
Dy =— (—) (3.27)
AD B‘U P=pPo

In the next section we will derive the wave number k& for inviscid, viscosity
dominated and general flow (i.e. large, small and intermediate values of the
Womersley parameter a).

3.4.2. Wave speed and attenuation constant. The linearized one-di-
mensional mass and momentum equations for unsteady viscous flow through
a distensible tube has been derived by integrating the continuity and mo-
mentum equations over a cross-section of the tube assuming the wave-length
to be large compared to the diameter of the tube and the phase velocity
of the wave to be large compared to the mean fluid velocity. Moreover it is
assumed that the motion of the tube wall is restrained longitudinally. Due
to the linearity assumed, the resulting Eqs. (3.18) and (3.22) can be solved
in the frequency domain by substituting harmonic solutions

p(w, z,t) = p(w, 0)e!@t=h2), (3.28)
q(w, 2,t) = §(w, 0)e'“=*2), (3.29)
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Aw, z,t) = A(w, 0)et@t—*2) (3.30)

where p(w.0), G(w,0) and A(w,0) are the complex amplitudes representing
both the amplitude and the phase of the waves measured at location z = 0,
w is the angular frequency and k(w) is the wave number ; a complex number
defined by:

(3.31)

Here ¢ denotes the phase velocity of the waves and the wave length is given
by A = 27mc¢/w. The exponential decrease of the amplitude of the waves is
described by the attenuation constant y(w) = —27k;/k;.

Viscoelastic wall behavior is described by an experimentally determined
constitutive relationship between the cross-sectional area A and the complex
amplitude p:

A=Cw)p (3.32)

where C'(w) is the dynamic compliance. For thin walled visco-elastic tubes
this relationship can also be derived from Eqs. (1.3) using a complex Young’s
modulus F = FE,. +iF;.

Large Womersley number flow

For large Womersley parameters the flow will be inviscid and the friction
function fp can be neglected. Substitution of Eqs. (3.28 3.30) in Eq. (3.24)
vields:

iwC(w)p — ik(w)g = 0,

(3.33)
—ik(w)Agp + iwpg = 0,
with solution:
2 ) )
ol = g JE ) o (3.34)
Ap ¢y

where the positive (negative) sign holds for waves traveling in the positive
(negative) z-direction and ¢y denotes the Moens-Korteweg wave speed given

by:
colw) = \/pC(w) N \/ng(w) i icheln)

Note that the subscript ¢ is used in ky and ¢y in order to obey conventions

in literature despite the fact that k. and ¢, would be more meaningful

http://rcin.org.pl



76 F. VAN DE VOSSE

since o — o0. For thin walled tubes the Moens-Korteweg wave speed can be
derived from (1.3) and reads:

1 hE

p2ag(1 — p?) e

cy) =

Note that the wave number ky = w/¢g is a real number expressing that
the phase velocity ¢ equals the Moens-Korteweg wave speed and that the
attenuation constant v equals zero:

@ — 00 : c(w) = ¢y, v(w) = 0. (3.37)

As there is no friction and the compliance is assumed to be real (no
visco-elasticity), no attenuation (y(w) = 0) of the wave will occur. The cor-
responding wave equation can be derived from Eq.(3.24): after elimination
of the flow and keeping in mind that the friction function is neglected we
obtain the differential equation:

9*p 1 d&*p
o2 pDg0z?

(3.38)

This is a wave equation with wave speed ¢y = m . So for large v and real
values for the distensibility Dy the pressure wave travels without damping in
z-direction.

Equation (3.33) can also be solved with respect to the ratio §/p between
the flow and the pressure:
q w Ao

= Clw)—o— =+ 2. (3.39)

Y, =
i k(w) PCo

This ratio is referred to as the admittance Yy and is equal to the reciprocal

value of the impedance:

(3.40)

As k(w) represents two waves (one wave traveling in positive z-direction
(k > 0) and one wave traveling in negative z-direction (k < 0)) there are two
flow and pressure waves: forward traveling waves gy = +Yp; and backward
traveling waves g, = —Y'py. The total pressure and flow is the sum of these
waves p(z,t) = py(z,t) + pu(z,t) resp. q(z,t) = gp(z,t) + @(2, ).
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Small Womersley number flow

For small Womersley parameters the flow will be dominated by viscous
forces and the friction function fy can be approximated by its Poiseuille value
fo=28n/ u% whereas the instationary inertia forces in the momentum equation
can be neglected. Substitution of Eqgs. (3.28-3.30) in Eq. (3.24) yields:

iwC(w)p — ik(w)g =0,

(3.41)
) . 8.
—ik(w)Aop + 14 = 0,
(10
and has a non-trivial solution if:
(3.42)

where the positive (negative) sign now holds for waves traveling in the posi-
tive (negative) z-direction and ¢y denotes the Moens-Korteweg wave speed.

Now the wave number is a complex number and the phase velocity ¢ and
attenuation constant v are given by:

a—0: c(w) = %{I{,‘U, Y(w) = 27. (3.43)

As the real and imaginary part of the wave number are equal, the wave is
damped critically. This can also be seen from Eq. (3.24): after elimination
of the flow and keeping in mind that the instationary inertia forces can be

neglected we obtain the differential equation:

dp Apad *p B at 9?p
ot 8nCy 022 8Dy 022"

(3.44)

This is a diffusion equation with diffusion coefficient D = a2/87Dy. So for
small a the wave equation reduces to a diffusion equation showing critical
damping of the pressure in z-direction. This phenomena is responsible for the
large pressure drop that is found in the micro-circulation where the Womer-
sley parameter is low as a result of the small diameters of the vessels.
The admittance Y now is a complex number given by:
Api+1 i+1

¥i=z = Yo. 3.45
PCo 4 . 4 S ( )
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Arbitrary Womersley number flow

Substitution of Egs. (3.28-3.30), (3.32) and (3.23) in Egs. (3.18) and (3.22)
yields:
iwC(w)p — ik(w)g = 0,
(3.46)
—ik(w)Aop + (iwp + fo)g = 0.
After putting the determinant of the resulting set to zero the following
expression for the wave number £ is found:

w | 1 / 1 o 4

Note that the wave number is again complex due to the friction function
fo as defined in Eq. (3.23) or due to the visco-elasticity of the tube expressed
in a complex value for the compliance C'(w). The phase velocity ¢ = w/k, and
attenuation constant v = —2wk;/k, = —Ak; can be derived from Eq. (3.47)
and are given in Fig. 22.

It has been mentioned that viscoelastic tubes will yield a complex com-
pliance. From experiments it is shown that the viscous part of the modulus

1 — —_——

_—

wavespeed c/c0
o
w
wavespeed c/c0
o
w

0.5 \

attenuation gamma/2pi
o
o
attenuation gamma/2pi
-

0 10 20 30 40 1072 10" 10°
alpha alpha

Fiaure 22. Phase velocity ¢/¢g and attenuation constant /27 as a function of o
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is about 0.1 to 0.2 times the elastic part so E = E.(1+if,) with the fraction
fu =~ 0.15. For large alpha the visco-elasticity then will give a imaginary part
in the wave number according to:

w 1
k= ————— =~ ko(1 - 1if,). 3.48
PV T 55

This line is indicated in Fig. 22 and shows that for larger « (high frequencies
and large arteries) the visco-elastic properties of the wall are the main cause
for the attenuation of the pressure waves.

Finally the admittance can be derived as:

ko
Y=—Y% (3.49)
k
and is given in Fig. 23.
1 1
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FiGure 23. Absolute value and argument of Y/Yj as a function of a.

Propagation of a pressure pulse in homogeneous tubes

As an example in Fig. 24 the propagation of pressure waves in an elastic
(left) and a visco-elastic (right) tube are computed. For this computation the
following characteristic data for the carotid artery are used:
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7 3.5-107° | Pas viscosity
ao | 3-1073 m radius
h ap/10 m wall thickness
P 10° kgm ™ | density of fluid
E | 45-10° N-m ? | Young's modulus
po| 0.5 - Poisson’s ratio
Pressure wave, elastic tube Pressure wave, visco-elastic tube
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FIGURE 24. Propagation of pressure waves in an elastic tube (left) and a visco-
elastic (F = E(1 +i%0.2)) tube (right).

For the viscoelastic tube, the Young’s modulus was taken to be F(1+0.21).
Using Eq. (1.4) the distensibility and thus the compliance is determined. The
wave number then was computed using Eqs. (3.47) and (3.35). The incident

pressure pulse is given as:

¢ =0.25%* .
p(0,t) =exp | — (T_)) ; (3.50)

Clearly the damping of the wave due to viscous forces (i.e. wall shear
stress) and viscoelastic properties of the wall can be distinguished.
3.5. Wave Reflection

3.5.1. Wave reflection at discrete transitions. We will refer to tran-
sitions which are highly compact as discrete transitions. In these cases the
length of the transition is so small compared to the wave length of the waves
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so that there is no difference in pressure or rate of flow between both ends
of the transition, and the reflection phenomena can be described based on
the equations of continuity of pressure and rate of flow across the transition.
Figure 25 shows a discrete transition as might be formed by an increase or
decrease in wall thickness at 2z = L. If the incident pressure and flow wave
are represented by p; and g; respectively, the reflected waves by p, and ¢,
and the transmitted waves by p; and ¢, continuity of pressure and rate of
flow at a transition at location z = L can be expressed as:

pi(w, L, t) + pr(w, L, t) = pt(w, L, 1), (3.51)

qi(w, L, t) + ¢ (w, L, t) = q:(w, L, ). (3.52)

The ratio between a single traveling pressure wave and its corresponding flow
waves is dependent on the impedance Z or admittance Y of the tube. An
expression for the impedance or admittance can be obtained by substituting
Eqs. (3.28 3.30) and (3.32) in Eq. (3.18):

b G(w, 2) : wC(w)
Z(w) plw,z) ke(w)

(3.53)

Note that normally the admittance is defined for waves traveling in positive
z-direction i.e. k > 0. In that case the flow amplitude is given by § = +Yp.
For k < 0 the wave is traveling in negative z-direction and for an admittance

defined for positive k& we have a flow amplitude ¢ = =Y.
h{z>0.5) = hz<0.5)2 hz>0.447) = hz2<0.447)2
1 2‘ B g 12 r' — 1
elastic tube /\ /_,\‘ ‘TOS clastic tube
’k A B0
Al 5
- £01
Py g
- o
f £ Ge=————a 5
[ (1] 20 40 60 ~ ?
? # 8 anguiar trequency [1/s] 8
L T )
I |
H
25| "
g -
E |
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Ficure 25. Wave reflection and propagation at discrete transitions formed by
a sudden increase (left) and decrease (right) of the wall thickness.
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Substitution of Eq. (3.53) in Eqgs. (3.51) and (3.52) results in expressions
for the reflection coefficient I'y and the transmission coefficient Tgy:
_bprlw, L) Yy(w) — Yi(w)

Fo(w) = pi(w, L)  Yo(w)+Yi(w)’

0 (w, L 2Yo(w
Ton(w) = P D) _ ow) (3.55)
pilw,L) Yo(w) + Y1 (w) '
where Y| is the admittance of the tube proximal to the transition, and Y

the admittance of the tube distal to the transition. The propagation of an

incident wave p; = p;(w,0) exp(i(wt — koz)) in a tube with a discrete transi-

tion at z = L can be expressed as:

p(wvz'f) :pi(wtz:t)+pr(“‘)!zst)

:ﬁi(u}‘o)e—iku(u})z [1 + F()(W)C—Qiku(w)(f,—z) et
’ (3.56)

plw,z 1) =pi(w,z,1)

= Py (w, O)E—ikn(d)LTol (w)(%_ik' (w_)(:—:—L)eiu.)t.

As an example we consider the wave reflection of a transition formed by
a sudden increase and a sudden decrease of the wall thickness (h(z < L) =
a/10 while h(z > L) = a/5 and h(z > L) = a/20 respectively. The resulting
wave propagation for L = (0.5 is given in Fig. 25.

From these figures it can be seen that a sudden decrease in wall thickness
and thus a sudden increase of the distensibility or stiffness (£h) of the wall
leads to a negative reflection of the incident wave and a transmitted wave with
a decreased pressure amplitude and a decreased wave speed. For a sudden
decrease of the stiffness the opposite phenomena occur.

In a similar way as in equation (3.56) expressions can be obtained for
the reflection and transmission coefficient of a bifurcation of uniform tubes
(see Fig. 26) at 2 = L, here referred to as a discrete bifurcation. In that case
continuity of pressure and flow yields:

pi(w, L,t) + pr(w, L, t) = pi, (w, L, t) = pry(w, L, 1), (3.57)

qi(‘-“'« L, t) s qT‘(w? L, t) = qt, (“* L, {) + qts (u.«', L, t)! (3-58)
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resulting in:

pr(w. L) _ Yo(w) - (Ni(w) + Ya(w))
pi(lw, L)  Yo(w)+ (Y1 (w) + Ya(w))

) 2y (w)
Tnlw) = ZeD) ~ Yolw) + () + @) (3.60)
To2(w) = %((:j—[]f)l =Tn (w). (3.61)

Here p;, and py, are the waves transmitted into the daughter tubes, and
Y] and Y5 are the impedances of these daughter tubes. Expressions for the
pressure waves are similar to the ones given for the discrete transition in
Eqgs. (3.56).

In Fig.26 the wave reflection caused by a bifurcation of a tube with
radius ag into two tubes with respectively radius a; and as is given for
ap :ay :azg =1:1:1 (left) and ag : a1 : a2 = 3 : 2.1 : 1.8 (right).
One can observe a negative and a positive reflection of the incident wave due
to the fact that a3 < a? + a3 and af > a? + a3 respectively and a wave speed
which is slightly higher in the branch with the smallest radius.

a0:atl:a2=1:1:1 a0:al:a2=3:2.1:1.8

discrete bifurcation
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F1GUure 26. Wave reflection and propagation at a discrete bifurcation.
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Note that the transmission and reflection coeflicients given in Egs. (3.54
3.55) and (3.59-3.61) are special cases of a general N-way junction with

pi(w, L, t) + pr(w, L, t) = py;(w, L, 1),

j=1,...,N, (3.62)
Gi(w, L, t) + gr(w, L, t) = Zq, L L.t), (3.63)
resulting in:
Yolw) = 32 ()
N olw) — ) J w
Polew) = ?f’_'(“"L) - = (3.64)
pi(w, L) g
Yo(w) + 21’5(“’)
=
Toj(w) = p;f((:)f)) = QY”(;’) ., j=1,....N.  (3.65)
PR o) + X ¥j(w)
=

3.5.2. Multiple wave reflection: effective admittance. Consider two
N-way junctions at a distance L,,, apart from each other as given in Fig, 27

Nn

m

Ficure 27

. Multiple junctions.

At junction n we have:

mn Z n _)

2},1!”1
Iy = —N, Tnj=——x.—— (3.66)
mn Z Ymn + Z }/,i/
J=1 J=
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where Y, is the effective admittance of section nj at location n. If there are

no reflected waves in section nj then Y“(J = Yn;.
At junction m we have:
N
}/‘”l - Zl Yr;m 2V
n— m 3
rm = . ) Tonn = 3 (367)
"\YH ‘Nf’l
YT” + Z }'r;'m )/m. Tt Z YrJ;z n
n=1 j=1
with:
Yye — f}(u), Ll) — Y exp(iklanmn) - I‘n @Xp(-ikmn Lmn) (3 68)
mn — - — 4mn -7, o A . .
p(‘-’-f'r Ly) exp(”‘-anmn) + Ty C}\p(—“(‘umLmn)

In this way it is possible to compute the pressure and flow in a complete
transmission line network, starting from a distal impedance going back to the
aorta. An example of such a computation is given in Fig. 28 where the input
impedance at the aorta is given as a function of the frequency. A minimum of
|Z| is found corresponding with a phase angle of zero. In [4] this is attributed

to a reflection from the aorta bifurcation.

Modulus

Impedance

+1.0pb

Phase (rad)
0
|
l
|
|

FiGure 28. Input impedance at the aorta as a function of the frequency, after [4].
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The reflection mentioned above can be explained from the expression we
obtain after substitution of Eq. (3.66) in Eq. (3.68) yields:

<

i¥n

g/

Yn] e [YHIH tdn(kanmn)
Y2 = Ynie . (3.69)

mn N,

‘mn + 1 Z }’”7 tan(Kmn Lmn)

For kynLmn = 0,£7, £27,... we find Y5 = Z\’" Y]:J and the section
mn has no influence. These phenomena are illustrated in Fig. 29 showing the
impedance Z5,, /Zy in a tube with characteristic impedance Zy = Z,,, as
a function of the frequency and distance from a termination with impedance

T = 4Zy. Also the effect of attenuation is shown.

A
44
9.
0 : e o ‘ *
5 10 ; 150 100 50
f (Hz) | Distance from terminus
NAWAWAW

RVAVAVAVAN

Ficure 29. Effective impedance as a function of the frequency (left) and distance
from termination (right) with (...) and without () attenuation, [4].

From expression (3.68) (or 3.69) we can see that for k., Ly, < 1 we
simply have exp(+ikL) = 1 and after substitution of Eq. (3.66):

Nn

Ye = ;,,,, Lo _ Z}”, if kmnLmn < 1 (3.70)
j=1

as if the section mn did not exist. If, however, k., L., is small but still
large enough that first order terms can not be neglected (i.c A,“,”,L,'m, 1)
we have:

1 =} ik‘annm o Fn(l - jkanmn)
1+ ’jkanmn + rn(l o jkanmn)

e r
Ynm = Ymn

(3.71)
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and after substitution of Eq. (3.66):

Nn
'Lkmn LTHTLYNI-N + Z )/pil
J=1

Ynem = Ymn N, if kﬁngnn < L (372)

}/—TUTI. + ikrrm.Lmn z },r;:j}

L=
If we neglect terms of O(k*L?) we obtain:
Nn £
N, j; Yoi
Y.,fm e Z Ynj + tbmnLmnYmn |1 = % 5 (3.73)
mmn

=1

From this we can see that for intermediate long transitions only the phase
of the admittance and not its absolute value is changed, [5].

So far, no attention was paid to reflections originating from peripheral
vascular beds. However, these reflection phenomena might play an important
role and can easily be taken into account. In the presence of reflected waves
in the distal parts of a discrete transition, the reflection and transmission
coefficient at an N-way junction read:

N j_rd
B~ XL yema i

-1 j
Io(w) = !

TR (3.74)

7/ I V4
()Jrj; 1+r31YJ

2Y(
To;(w) = 0

=y j=1,...,N. (3.75)

et 4, 7
Yo+ Z:l 1+F¢].‘YJ

This result can directly be derived from the results for distal sections without
reflection by replacing the admittance by its effective admittance using the
reflection coefficients I“jf of the distal sections at the junction (see 3.70). So
the reflection from the distal vascular system is represented by the reflection
coefficients Ff These have to be determined from experimental data or can
be estimated by modeling the distal part as a transition to an appropriate
output impedance.
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3.5.3. Vascular impedance and cardiac work. The importance of wave
phenomena in the vascular system and the corresponding vascular impedance
is clearly illustrated if we want to investigate the mechanical work done by
the left ventricle. For each cardiac cycle this work is the integral over time
of the pressure x flow product:

to+T'

W = / pqdt. (3.76)

"IJ
This integral consists of two parts. The first part is the steady flow power W
which is determined by the resistance Ry of the vascular system (mainly the
peripheral resistance) defined as the ratio between the mean pressure and
the mean flow Ry = po/qo. The second part is the oscillatory flow power W
following from Eq.(3.76) and the vascular impedance for each harmonic n

(Zn = |Zy| exp(i0y,)). So:

N
W =1%"q2|Zy| cos 0, + g3 Ro. (3.77)

n=1
In [4] the following values can be found:

ko | Y,

left ventricle 1400 | 200

-

right ventricle | 155 73

For the systemic circulation the contribution of the higher harmonics to
the total work is relatively low. This is due to the fact that cosf,, < 1. As
the value of 7, directly influences the work that has to be done by the heart.
knowledge of the influence of age, medicine and other factors on the value of
Z, is of great clinical importance.

4. Summary

In this lecture a short introduction to cardiovascular fluid mechanics is
given. A simple (windkessel) model has been derived based on the knowledge
that the cardiovascular systems is characterized by an elastic part (large
arteries) and a flow resitance (micro circulation) In this model it is ignored
that the fluid mechanics of the cardiovascular system is characterized by
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complex geometries and complex constitutive behavior of the blood and the
vessel wall. The vascular system, however, is strongly bifurcating and time
dependent (pulsating) three-dimensional entrance low will occur. In the large
arteries the flow will be determined by both viscous and inertia forces and
movement of the nonlinear viscoelastic anisotropic wall may be of significant
importance. In the smaller arteries viscous forces will dominate and non-
Newtonian viscoelastic properties of the blood may become essential in the
description of the flow field.

Flow patterns in rigid straight, curved and branched tubes have been
treated. The velocity profiles of fully developed Newtonian flow in a straight
circular tube can easily be derived by integration of the Navier-Stokes equa-
tions in cylindrical coordinates using superposition of harmonics of the pres-
sure pulse. Apart from a scale factor for the pressure, only one single pa-
rameter, the Womersley number o = a\/w/r, determines the character of
the flow. For large values of this parameter the flow is dominated by iner-
tia and flat velocity profiles are found oscillating 90° out of phase with the
pressure gradient. For low values of a the flow is dominated by viscous forces
and a quasi static Poiseuille low is found that is 180° out of phase with the
pressure gradient. For arbitrary values of a the velocity profiles are solutions
of Bessel's function and can be interpreted as a composition of a viscosity
dominated flow in the boundary layer and an inertia dominated flow in the
core. The thickness of the boundary layer appears to depend on « according
to d/a = O(a™1).

The flow in curved tubes with curvature ratio 6 differs from that in
straight tubes because also centrifugal forces are of importance. Due to these
centrifugal forces, the pressure gradients in the bulk flow are not in equilib-
rinm with the flow in the viscous boundary layers and a secondary flow is
induced, resulting in a strongly disturbed axial flow. A new dimensionless
parameter, the Dean number, defined as Dn = (a/Rg)'/?Re, determines the
importance of this secondary flow. The main features of the flow in branched
tubes strongly resemble those of the flow in curved tubes.

Finally, linearized wave equations that govern the pressure and flow tra-
veling through the arterial system are derived. For large values of the Wom-
erslev parameter these equations yield the Moens-Korteweg wave speed. For
small values of the Womersley parameter a diffusion equation can be de-
rived expressing perfusion flow in small arteries. For intermediate (arbitrary)

values of the Womersley parameter wave speed and admittance can be ex-
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pressed in terms of those derived for the Moens-Korteweg waves. Reflection
of waves at discrete transitions are derived from continuity of pressure and
rate of flow and allow determination of multiple wave reflection and the defi-
nition of effective admittance in order to determine vascular impedance and
cardiac work.
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