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The rudiments of the numerical simulations of flows in domains relevant to haemo-
dynamic applications are provided. In the first part of these notes, the problem
of adequate modeling of the boundary conditions is addressed. In is argued that
“classical” repertoire of such conditions is not sufficient and more general ap-
proach of the “deficient” formulations of the inlet/outlet conditions should be
resorted. In the second part of the notes, a detailed description of the spectral
clement implementation of the Navier-Stokes solver using the formulation with
“deficient” inlet /outlet conditions is given. Results of the computations presented
in the notes include some test cases as well as the pulsatile flows in the model
of the Blalock-Taussig shunt. The latter case is also considered in the third part
of the notes, where the results of the numerical simulations obtained with the
commercial package FFluent 6.2 are presented.
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Introduction

These notes have been written on the basis of the authors’ lecture during
BEF2005 meeting and they consist of three parts. In the first part, we summa-
rize the basic governing equations and discuss the problem of the boundary
conditions, which can be consistently set for a flow problem, when differ-
ent forms of the weak velocity /pressure formulation are used. The problem
of adequate modeling of the inlet and outlet conditions is discussed in this
framework. We provide arguments that standard repertoire of the boundary
conditions is not sufficient to perform realistic simulations of pulsatile flows
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in cardiovascular systems. Next, an alternative approach to inlet ‘outlet con-
ditions. introduced by Heywood et al. [12] and improved by Formaggia et al.
[24], is explained in some details. The advantages of this new method in the
contexts of haemodynamic simulations are shortly discussed.

The second part of the lecture is devoted to a detailed presentation of
the numerical method design and implemented by the authors. The solution
method is based on the weak formulation of the initial-boundary problem for
the governing equation, where new generalized approach to inlet /outlet con-
ditions is incorporated. The problem of discretization in time and space (us-
ing spectral elements) is discussed in some details. Some particular efficiency-
improving algorithms are described. Finally, the results of numerical tests are
presented and encountered difficulties are demonstrated.

In the third part, we present results of numerical simulations of the
Blalock-Taussig shunt obtained by Jeremi Mizerski in his doctoral thesis with
the commercial CFD package Fluent 6.2, [25]. It has been found rather diffi-
cult to find program and parameter setting, which ensure efficient and accu-
rate results. We show Fluent sereenshots demonstrating the applied settings,
which resulted in successful calculations. The quasi-compressibility effect of
the used solver is demonstrated by evaluation of the balance of volumetric
flow rates at all inlets and outlets to the computational domain. Neverthe-
less, it is argued that obtained results, especially flow patterns, are medically

relevant and useful.

1. General Mathematical Issues

1.1. Mathematical Model of a Viscous Incompressible Flow

The governing equations for an incompressible fluid flow stem from two
basic principles of classical mechanics of continuum: the mass conservation
and the second Newton’s law. They are formulated for a fluid region, i.e. for
the moving fluid portion consisting of the fixed set of fluid elements (or parti-
cles). Originally, the governing equations have the form of integral balances.
For sufficiently regular fields we can apply the Reynolds transport theorem
and obtain the flow description in terms of partial differential equations. This
standard procedure can be found in any handbook on the fluid mechanics.
In particular, we recommend excellent handbooks [1,2]. also the report [21].
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Ficure 1. The volume of fluid and notation used in text

e Mass conservation = the continuity equation:
1
%/pdx:(] = Op+V:-(pu)=0 = V.-u=0  (1.1)
at
2

e 2 Newton's law = the momentum equation (the equation of motion):

d 5
5 pudx = / pgdx + f Tnds
dt
Q4 Qy o
4
plou+ (u-V)u] =DivT + pg. (1.2)

Here u is the velocity field, p is the static pressure field and p denotes the

(fixed) fluid density. The symbol T denotes the stress tensor, while g is the

external field of the body force. If the g field is potential (like a gravitational

field, for instance) then the body force term can be included into the pressure

term.

An equivalent form of the momentum equation for an incompressible fluid

can be written as

pdru+ Div(pu®@u—T) = pg. (1.3)

The component wise form of the momentum equation in the Cartesian coor-

dinate system is

3 3
pOsu; + pz Up Oy, uj — Z(’)_,;k]};\. = pgj. (1.4)
k=1 k=l
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[n order to obtain a mathematically complete description of the fluid motion.
a constitutive relation has to be defined. This is a relation between stresses
and kinematics. In is generally accepted that cardiovascular lows in large and
medium-sized arteries can be adequately simulated using basic Newtonian or
generalized Newtonian models of fluid rheology. The basic ingredient in these

models is the deformation rate tensor

j|
E(VquVu ) DJA.—E((),AEIJ+(),’EIA) (1.5)
The stress tensor is now defined as follows
T = —pl +2uD, Tjp = —pbji + (O, uj + O, up) (1.6)

where p [kg/(ms)| is the dynamic viscosity of the fluid. In the basic Newto-
nian model, the viscosity is assumed constant, meaning it does not depend
on the flow kinematics. In such case, the momentum equation can be written

in several equivalent forms, namely
plou+ (u-V)u] =—-Vp+2uV-D + pg,

ploju+ (u-V)u] = =Vp+ pAu + pg, (1.7)
ploma+ (u-V)u] = —Vp—uV x (V x u) + pg.

Assuming a fixed viscosity of blood is not feasible if excessive areas of very
law shear rate appear persistently within the low domain. In such case, one
can switch to one of the generalized Newtonian models, which accounts for
a shear-thinning property of blood. In more complicated situations, the ap-
plication of even more sophisticated viscoelastic models may occur necessary.
Detailed exposition of these topics can be found in the lecture notes [20] (the
lectures by Adelia Sequeira and Robert Owens) and references cited therein.

The generalized Newtonian models are based on the relation (1.6) between
stress and deformation, but the viscosity in now considered to be shear-

dependent. Thus. the constitutive relation can be expressed in the form of
T=—pl+2u(¥)D (1.8)

where the strain rate 4 is the frame-invariant quantity defined as follows

=V2|ID|  (19)
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Fiaure 2. Carreau-Yasuda model as used by A. Sequeira and S. Deparis, |20]

In the above, the symbol ||D|| ;. denotes the Frobenius norm of the deforma-
tion rate tensor.
As an example consider the Carreau-Yasuda model of a shear-thinning

fluid. The formula for the viscosity is given as
1 (%) = poo + (0 — ttoo) (1 + A7%)° (1.10)

where g and 1o denote the values of the dynamic viscosity in the limit

of vanishing and infinite shear rate, respectively. In Fig.2, the variation

of the viscosity for the parameter values (g = 0.056kgm ™ 's™!), p =
0.00345kgm 's ', a = —0.3216, A = 3.313s) chosen by Sequeira and De-

paris [20] is shown.

1.2. Boundary Conditions for Incompressible Viscous Fluid Flows

In this paragraph we will discuss the problem of the boundary condition,
which can be consistently enforced in the incompressible flow of a viscous
fluid. Our exposition closely follows the problem description provided by
Max Gunzburger in his excellent book [5] on finite element methods. The
general idea is to consider various possible forms of the weak (variational)
formulations of the governing equations and see what sort of the boundary
information can be a priori assumed.

Consider an abstract computational domain €. Let the boundary 0€2 be

divided into parts as shown in the Fig. 3.
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Figure 3. The boundary of computational domain—general settings

The following (essential) boundary conditions are postulated:

[ o -mi= &(8),
u-n=§&(s) (1.11)
Crzuxn=nls)

In other words, the normal component of the velocity field has a prescribed
distribution at the part of the boundary I',, while the tangent component
(being actually equal to n x n(s)) is given at I'-. In general, there exists
a nonempty product I',, N I';, where full velocity vector is defined.

Since we are going to work with primitive variables (i.e. velocity and
pressure), the following functional spaces are introduced:

e the velocity space
ueV= {v € [H'(SZ)T1 cvxn=0aTI,;, wv-n=0 at F,,}.

where H'! denotes the first Sobolev space of functions which are square-
integrable in € together with their partial derivatives of the first order

e the pressure space p € Q = L2(Q) or p € Q = L?(£2). Here, L*() is
the space of square-integrable functions in Q, while L3(Q) is a linear
subspace of L?(2) containing functions which integral over the whole
domain amounts to zero. Such normalization is necessary to avoid am-
biguity of the pressure, which occurs if the boundary conditions are
expressed in terms of purely kinematical quantities (velocity or vortic-
ity).

The general variational form of the governing equation can be written as

(u,v) + a(u,v) + b(v, p) + c(u,u,v) = (f,v) + d(v),

(1.12)
bu,q) =0, veV, geq@.
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In the above, the following notation has been used:

blv,p) = — /'pv - wdx —pressure term, (1.13)
Q
c(u,u,v) = /’U - Vu - udx —convective term (nonlinear), (1.14)
Q
(£, 1) = /f - vdx —volume force term. (1.15)
Q

The viscous term a(u,v) and the boundary term d(v) depend on the
form of the Navier-Stokes equation. Each of these forms generates a different
form of the variational formulation and corresponding (natural) boundary
conditions.

Consider first the “standard” form, where the viscous term in Navier-
Stokes equation is expressed using the Laplacian of the velocity field

p(Ou+Vu-u)=-Vp+pAu+pf, V-u=0. (1.16)

We will refer to this form as the Form A. There is an instructive exercise

to show that the viscous and boundary terms can be expressed as

a(u,v) = p / Vu : Vudx, (1.17)
Q

d(v) = /[—p +p(n-Vu-n)| (v -n)ds+ /,u (Vu-n) xnl- (v xn)ds.
HONT,, HONT,
(1.18)

In order to obtain a solvable problem we have to prescribe the integrands
in square brackets in the formula (1.18). In other words, we have to impose
natural boundary conditions, namely
—p+pu(n-Vu-n)=E(ts) at 9N\ Ty,
(1.19)
p[(Va-n) xn] =n(t,s) at 92\ T.

Note that the quantities we define of the indicated portions of the boundary

do not have any particular physical interpretation. One can think that for
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that reason such approach is useless. However, we will show later that it is
not a case. On the contrary-—this formulation is a basis for some very useful
generalization to be described later.

Final variational form of the Navier-Stokes equations can now be writ-

ten as

/:/ (u+ Vu-u) - vdx +,u/Vu : Vudx — /,_)v cwdx = p / f - vdx

Q o) 9) 9

+ / E(v-n)ds + / n-(vxn)ds (1.20)
'\ \I's

For sufficiently regular solutions, this formulation implies that the boundary
conditions (1.19) will be satisfied.

Consider now the form (to be referred to as the Form B) where the defor-
mation rate tensor D appears directly in the viscous term of the momentum
equation. This form of the governing equations, which is valid also for gen-

eralized Newtonian fluid. can be written as follows:

plOu+Vu-u)=-Vp+2V. (uDy)+pf, V-u=0 (1.21)
where D, = % (Vu + VTu) is the deformation rate tensor. Again, it left

to the Reader as an exercise to show that the corresponding viscous and

boundary terms are

a(u,v) =2 / pDy : Didx (1.22)

Q

d(v) = /.[—p +2u(n-Dy-n)](v-n)ds 4-/‘2,(1 [(Dy - n) xn]- (v xn)ds.

JONT, HO\T,
(1.23)
Consequently, the natural boundary conditions to be imposed are
o= —p+2u(n-Dy -n)=E(t,s) at 92\ T,
(1.24)

o =2p[(Dy - n) x n] =n(t,s) at 02\ I';.

In contrast to the Form A (Eq. (1.16)), the above conditions have a straight-
forward interpretation: they simply define the boundary distributions of the
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normal and/or the tangent component of the surface stress. They are often
called the traction conditions.

The final variational form of the Navier-Stokes equation for this case reads

p/(U,quVu-u)-vd,x—}—‘Z/,uDu : Dydx — /I)V'vdx:p/f-v(fx
4 QO Q Q
- /{;‘(U-n)ds-ﬁ— /7)~(v xn)ds (1.25)
HONT,, DN,
Let us finally consider the third option—the Form C. This time the viscous

term in the momentum equation is written using the curl operator and the

vorticity field. We have
p(u+Vu-u)=-Vp—uVxw+pf, V.-u=0 (1.26)

where the vorticity field w = V x u is used. The viscous and boundary terms

for this case are expressed by the following formulae

a(w,v) =p [ w- (V xv)dx, (1.27)
/

d(v) = —/p(v ‘n)ds — //1 [n x (wxn)]- (v xn)ds (1.28)
IO, AT,
and thus the corresponding natural boundary conditions are

p=E&(t,s) at 9N\ Iy,
n x (

(1.29)
wxn)=mn(ts)at 02\ T;.

The physical interpretation is again direct: we need to define the boundary
distribution of the static pressure and/or the tangent component of the vor-
ticity field at the indicated parts of the boundary. Final variational form of
the Navier-Stokes equation for this case is

p/ (t),u+Vu-u)-vdx+,u./(Vxu)-(va)dx—/pV-vdx
O ) O

:p/f-vdx+[{(U-n)ds—k/;m-(vX n)ds (1.30)

Q AO\T,, AT,
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1.3. Modeling Inlet/Outlet Condition in Cardiovascular Simula-
tion

In this part of the notes we will briefly discus the problem of adequate
selection of the inlet and outlet conditions in the cardiovascular simulations.
We will assume that the flow domain has been “extracted” from the larger
vessel system and therefore its boundary consists of the material part (walls
of the vessels) and the inlet /outlet part. The latter is merely the effect of the
“extraction” process—in principle, ideal inlet /outlet conditions should not
impose any additional restrictions of the How field.

Consider the repertoire of the boundary conditions described in the pre-
vious section from such point of view. Ideally, we would like to have full
information about all components of the velocity vector at all inlets and
outlets. If such information were available, all boundary conditions would
be of the essential kind. Such situation, very desirable from the CFD view-
point, is not realistic since detailed inlet /outlet velocity profiles (and their
history in time!) cannot be measured at reasonable costs. Thus, we have to
work with much less information about the flow field at inlet/outlet sections.
Mathematically speaking: we have to resort some of the natural boundary
conditions.

Some possible choices are:

e Setting one essential condition (typically, setting the tangent velocity to
zero) and one natural condition, e.g. the static pressure or the normal
stress. If 1/O sections are sufficiently far away from bifurcations in the
vessel system, the static pressure can be assumed uniform within each
section and the section-averaged value obtained from simplified models
(1D or lumped-parameter) can be used in full 3D simulations. Also,
the normal stress is nearly uniform and does not differ much from the
static pressure, because the viscosity-driven term is usually very small.
Moreover—for flat I/O sections the surface-integral average of this term
1S ZeTo.

e Setting two natural conditions. The advantage of such choice is that
explicit setting of the tangent velocity (to zero) is avoided. Assumption
of vanishing tangent velocity can be criticized for being not quite phys-
ical. Indeed, if a vortex structures appears in the flow domain, it will be
convected towards some outlet section and it will inevitably generate
nonzero tangent velocity while leaving the computational region. For
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further purpose we will refer to this issue as a vortex-passage problem.
We can also try to set both components of the surface stress, however,
it is difficult to predict a reasonable distribution of the tangent stress.
In particular, the tangent stress cannot be assumed to be zero since
such choice is incompatible even with unidirectional flow fields of the
Hagen-Poiseuille or Womersley flows.

The final conclusion is that none of the combinations of the boundary
conditions are really satisfactory. The inlet /outlet conditions offered ahove
are either too demanding (i.e. they require to excessive knowledge about
the flow field) or too restrictive (i.e. the kinematical constrains implied by
the conditions are likely to eliminate important physical effects from the
simulation).

1.4. Deficient Boundary Conditions

In this section we discuss new approach to inlet /outlet conditions, which
removes (at least partly) limitations of the classical repertoire of the bound-
ary conditions described above, [12,22, 24].

S

FiGUure 4. A system of branched vessels —geometry and notation

Consider again the computational domain modeling a selected part of the
vessel system (see Fig. 4),

Fwall:rn:rr- Fi():USk’
k

0 = Iyan U Fi )

and the Form A (Eq.(1.16)) of the governing equations. We have already
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shown that the corresponding boundary term is given as
d(v) = Z / [-p+p(n-Vu-n)| (v-n)ds
k5
S,

+Z‘/.,u [(Vu-n) x n|- (v xn)ds.

LN
Assume at the inlet /outlet sections Sy the following conditions:

p—p(n-Vua-n)=II;(t),

(1.31)
(Vu-n) xn =10,
where £ = 1,2..... M. Then, the boundary term reduces to the simple form
d(v) =Y () Px(v), (1.32)
A.
where the functionals of the volumetric flow rate ®p(v) = IHA v -nds are

introduced. The final variational form of the Navier-Stokes equations is

M
plOv+Vv v,v)+ pu(Vv.Vou) — (p,V-v)=pf,v) - Z I (1) Py (v)

k=1
(1.33)

A natural question arises about the physical interpretation of the functions
I, (t). We will show that, under certain geometric conditions, the functions
L, (t) describe the temporal variations of the section-averaged static pressure.

Indeed, let us integrate the formula (1.31a) over the inlet ‘outlet section Sy
/ [p—p(n-Vua- n)|ds=T(t)|Sk .
‘;'!»'

Assume next that Sy is a flat surface, i.e. the normal vector n is the same at

all points of Sj.. Then the following equality holds

/(n-Vu-n)dn—U. (1.34)
By
Proof:
n=[1,0,0], ¢=1[0.(2.¢3] — normal vector at the flat contour S,
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/ n-Vu-n= / O urdradey = — / (Opyug + Opyuz) drades

S5 S S

= = f (’11.2(:2 + ’U.;;C;;) (1'.1?2(,]J‘;; =0
85,

Thus. we conclude

() = ﬁ / pds

8

is a section-averaged pressure at Sy.

What is the meaning of the second boundary condition (1.31b)? Choosing
the same geometric setting as in the aforementioned proof, it is immediate
to show that this condition is equivalent to

Oy g = Oy iz = O (1.35)

Thus, the second condition is equivalent to the homogeneous Neumann con-
dition formulated for the tangent velocity components. This condition seems
to be better suited for the inlet /outlet modeling since no explicit restriction
on the velocity itself is imposed. However, to the authors’ best knowledge,
the impact of this condition on the vortex-passage phenomenon has not yet
been systematically studied.

The advantages of using deficient boundary conditions for inlets and out-

lets can be summarized as follows:

e Iulet outlet section-average pressure is prescribed, but no particular
surface distribution of the pressure field is explicitly assumed;

e There are no explicit restriction imposed on the normal or tangent
velocity distributions:

e Additional kinematic constrains can be incorporated in the formulation
of the flow problem. For instance, we can specify the time variation of
the volumetric flow rate through a given inlet /outlet. In such case,
the section-averaged pressure 11;(t) corresponding to this inlet /outlet
works as the Lagrange multiplier, which is a priori unknown and has
to be determined in the solution process.
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2. Numerical Simulation of Nonstationary Laminar Flows in
a Pipe System Using Spectral Elements

In this part of the lecture we present a particular simulation method based
on the usage of deficient boundary conditions, spectral element approxima-
tions in space and the OIFS! time integration scheme. We describe main
ingredients of the method as well as selected algorithms. which are essential
for numerical efficiency. More detailed exposition can be found in the paper
[17].

2.1. Introduction

The objectives are to develop a complete computational method and its
efficient implementation to perform computer simulations of nonstationary
flows in complex vessel systems. The test example for the solver is the sim-
plified model of the modified Blalock-Taussig shunt, which will be described
in more details in the Part 3 of these notes.

The numerical method described in this chapter can be considered the
first stage of development of the future numerical package for cardiovascular
simulations. Therefore, the following assumption have been made

e Time-independent geometry of the computational domain;

e Newtonian liquid model of blood rheology:

e [nlet /outlet conditions should be formulated in terms of “easily” mea-
surable or estimable (integral) quantities: section-averaged static pres-
sure or volumetric flow rates. Various combinations of such conditions
should be possible.

e Application of the high-order spatial approximation with hexahedral
spectral elements;

e Application of higher-order time-integration schemes.

2.2. Formulation of the Flow Problem

The computational domain and be presented schematically as in Fig. 5
I' — solid boundary of the low domain €2,

S inlet /outlet sections (k=1....N).

DOIFS - Operator-Integration-Factor Splittin
I g I g
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w
N
n

Figure 5. Computational domain

Governing equations are

p (B + Vv -v) = —Vp+ uV2v,
V-v=0

and the boundary conditions are defined as follows:

e Material boundary:
It wlp =10,

e [nlet /outlet conditions:
— VF-type

o,(v) = fv -nds = Fy(t), i=1

S;
— AP-type
: j)d' B (1)
— pas = F;(1),
!S.’V\'F-Hl ) !

ONyp+i

The variational formulation is stated as follows:

http://rcin.org.pl

.....

.....

(2.1)



376

J. SzuMBARSKI and J. K. MIZERSKI

Find:

veV={ve[H (Q): v|. =0},
p€ Q= L*N),
Ailt)e R, i=1,..., Nyr (Lagrange multipliers),

such that

Nyp Nap
POV + TV v, 0) 4 (Vv VO)+ 3 \0i(v)+ Y Pi(t) Oy poii(v)
=] =1

— (p.V-v) =0,

(¢.V-v)=0 YveV, VqgeQ.

and

®;i(v) = Fi(t), i=1,..., Nyp.

v|,:,_“ = vy - initial condition

It follows from the Sec. 1.4 that the classical boundary conditions corre-

sponding to the above formulation are

p—j(n-Vu-n)=F at S, =101 Nap.
p—p(n-Vua-n) =\, at Sy, k=Naip+1,...,Nap+ Nvp, (2.5)
(Vu-n) x n =0 at S, =0 Nap + Nyp.

[t has been also shown already that the physical interpretation of P (t) (given

functions) and Ag(t) (to be evaluated) is the section-averaged static pressure.

2.3.

Time Integration Schemes

In order to develop accurate yet computationally efficient numerical me-

thod one has to care about the choice of appropriate time integration scheme.

Here we discuss shortly some possibilities. To make our discussion simpler,

we will consider a model initial-value problem

’ . :
w(t)=  Lu + Nuwu + I,
linear term o nlinear term  forcing term (2())

w(0) = ug.
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[ the context of the incompressible How simulation, the reasonable choice is
to apply the stiff-stable backward-differentiation formulae (BDF'). In general,
the K-order BDF method can be written in the form of

n+l Z j‘ u (n+l-k) _ Af LU,(’H” +N(u(n+l))_u(n+l) +f(nJrl)]
k=1
(2.7)
The coefficients of the BDF methods of different order have been summarized
in the Table 1

TaBLE 1.
K Bo 31 32 33 34
1 1 il
2 | 3/2 | 2| -1/2
3 11/6 3| -3/2|1/3
4 [25/12 4| =3 [4/3] -1/4

The BDF methods are implicit and thus unconditionally stable. On the
other hand, the nonlinear boundary-value problem has to be solved at each
time step, which is computationally very demanding, especially in the context
of the CFD. It is desirable to avoid solving a huge nonlinear problem at each
time step. even though the unconditional stability will be lost. A number of
different approaches can be proposed. like:

(A) Extrapolation of the nonlinear term (of the same order as BDF), see
[7,13,19]. The nonlinear term in extrapolated from its values at previ-
ous time steps as follows

K
j\‘r(n+]) £y Z H+1* :)
o= (2.8)
J\r(n—f—l_k) - AT(“‘(JH—lVL'))u(n—f—lfi;). E=0.1.... . K.
TaBLE 2.

K| a | ax | ag | aq

1 1

2 2 —1

3 3 -3 1

4 1 —6 | 4 -1
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Table 2 contains the coefficients of the extrapolation methods of differ-
ent order. In the CFD application, the Stokes problem has to be solved
at each time step of the flow simulation.

Linearization of the nonlinear term based on the velocity extrapola-
tion [7,23].

More sophisticated approach consists of extrapolating the velocity that
appears in the algebraic way, while these parts of the nonlinear term

where the velocity id differentiated remain in the original implicit form.

K

Nyt o N u™), g, = ngn("“‘k). (2.9)
k=1

This way we obtain linear approximation of the nonlinear term, which

in the CFD applications leads to the Oseen problem to be solved at

each time step. The latter problem is more difficult to solve that the

Stokes problem, but the method will posses better stability properties.

Operator-Integration-Factor-Splitting Methods |7, 10, 14, 17, 19].

This method is based on the idea of the operator splitting. At each

time step the following linear problem has to be solved

K
Bou™D — 3" gl = AtLu™ D, (2.10)
k=1
’&.Lm+l) = l},k(ﬂ,,+1).

where @y are defined as the solutions to the following initial value prob-

lems
d . i A
— iy = N (g )i,
dt (2.11)
. nt+l—k
gkl = A=,
tus thy At o
| e t
u1
| ﬁz 7
— o~ —
u3

Ficure 6. The OIFS method—more details in text
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The initial-value problems are solved numerically with any higher order
explicit method, which behaves well for purely convective problems (4-
order Runge-Kutta, Taylor-Galerkin methods). The integration step is
chosen as Atgrgyq = At/M, where typically M < 5. The overall order
of accuracy is equal to the minimum of the number K and the order
of the method used for the systems (2.11).

2.4. Finite Dimensional Approximation

Whichever time discretization method is used, a boundary value problem
for partial differential equations is obtained at each simulation step. In order
to obtain approximate solution, the following basic fields in the velocity space
V are introduced

vy = [wy,0,0], va = [u}Q,U. 0,..., UN, = [U'NV,U,O].

Uy +1 = [0,w1,0], Uny42 = [0,w2,0], ..., van, = [0,wny, 0], (2.12)

VaNy+1 = [0., 0 'U)l], VaNy+2 = [(), 0, wg}, <oy UsNy = [U., 0., 'u.‘Nv].

The velocity field at a given time instant is approximated by the linear com-
bination of the basic fields

Ny Ny
n-+1 (m+1) (m+1) (m+1)
V(PH ) :Z(u] ) U +Z( ) ’U/v‘ +]+Z( ) ’Uz‘y\/\ 45
=1 7 ]

(2.13)
Analogously, the basic function {g;} in the @) are introduced and the pressure
approximation is defined as

p(m+l) = Z (7T(m’+l)) qj- (2.14)

Hence, at each time instant 3Ny + Nq coefficients, which represent the in-
stantaneous velocity and pressure fields. have to be computed.

It can be shown that in the effect the discretization procedure the follow-
ing algebraic structures are obtained
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(M\,-),-J- = (w;, w;) = / Wi ydx mass matrix,

0

(Kv);; = (Vw;, V) = / Vw; - Vw;dx — Laplace (“stiffness”) matrix,

Q
3
A = —UMy + Ky Helmholtz matrix,
At
(Du),,' = — (g, Ox,w;), w©=1,2,3, divergence /gradient matrices,
AR = d(v). i= Ny
( ”)iji i) = Lo N, ' _
B . ‘ ) 1O volumetric flux matrices
(A”)i_/’ :(I).m’[_‘+,‘(vj). § = 1 e N AT
j=(a—=1)Ny+1...., alNy, a=1,223.
1 N
(m+1)\y _ _ + y ~(m+1) _ N R T
(r“ )’_ i Z,ﬁ‘. ((Vk Jas u‘,), r-h-s vector
k=1
r=1,...,1 Ny, a=1.23

2.5. Spectral Element Method

In this section we describe briefly the main features of the spectral ele-
ment discretization using hexahedral elements and the nodal (or collocation)
approach. The computational domain is meshed with hexahedral cells. Each
cell can be mapped into the standard cube [—1,1]* where all differentiation
and integration operations are carried out.

The mapping from a physical element to the standard cube can be defined

in different forms dependently on the geometrical information included. In

P
e —"—#—b

\\J // X

FigUure 7. The standard cube and physical element
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the simplest variant. the vertex-based transformation of the standard cube

to a physical element can be written as follows

X(61,606) = 5 (1= E) (1 &) (1 - &) %1 + 5 (1 +6) (1 - &) (1 - &) %,
F0+8) (14 &) (1= &)+ 5 (1 - €) (1+&) (1 - &)x4
é(‘“El)(l—fz)(l+53)X5+%(1+§1)(1—E2)(1+£3)Xﬁ
|

1
+-(14+&)(1+&)(1 +E:3)XT+§(1 —&1)(1+ &) (1+&3)xz (2.16)

€
More sophisticated curvilinear transformations are also possible—the prac-
tical implementations are usually based on the Gordon-Hall blending proce-
dure (see for instance [7], pp.183-184).

Each cell of the grid is equipped with the pair of internal collocation
meshes, which are the transformation images of the two standard collocation
orid in the cube [—1, 1]*: one for the velocity and another one for the pressure.
The standard velocity collocation mesh is constructed as follows

0 = 1, gMv=1) _ g

{g{’) j=1,..., My — 2} roots of the Jacobi pol. P‘,{“,}_Az
and the corresponding local basic functions in [—1, 1]? are defined as
b p(€1.62.88) = LY (&)L} (&)L} (&), i.j.k=0,....My—1 (2.18)

where (‘(”) = 6;’-. (7 =10,....,1 My — 1) are the Lagrange interpolating
])()1_\'11()1{11(1lh corresponding to the nodes (2.17).

The pressure collocation nodes are constructed in the similar manner:
{E}f). 3=0,.... Mp — 1} roots of the Legendre pol. Py, -, (2.19)

The local basic pressure functions are then defined in the following form

bik(é1 &2 &) = LT (L] (&)LE (&), .5k =0,....Mp—~1  (2.20)
where I (C”)) = (5’ L= Oeswas Mp — 1) are the Lagrange’s interpolating

pt,:l),nummlh corresponding to the nodes (2.19).
Since detailed expositions of the spectral element approach can be found
in several recent handbooks and monographs [3, 4,6, 7], we will merely sum-

marize some basic features of this approach:
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Straightforward interpretation of the coefficients of the velocity and
pressure expansions with respect to the local basic functions—the co-
efficients are simply the values of velocity or pressure at the correspond-
ing collocation nodes.

Differentiation: local velocity representations are differentiated inside
the standard element and the derivatives are re-interpolated on the
collocation mesh (the pseudo-spectral approach). Next, the derivatives
with respect to physical coordinates are computed with the use of the
(inverse) Jacobi matrices.

Volume and surface integrals are calculated with the use of Gauss-
Jacobi-Lobatto and Gauss-Legendre formulae based on the velocity and
pressure collocation meshes, respectively.

The local basic functions are L*-orthogonal with respect to the Gauss
integration. Consequently, the mass matrix My (also the pressure mass
matrix Mp used in a preconditioner of the conjugate gradient itera-
tions) is purely diagonal.

Div-stability condition (necessary for the Stokes matrix be invertible)
is fulfilled when Ny > Np + 2.

2.6. Summary of the Computational Method

In this section we give a brief description of the OIFS-based spectral ele-

ment method using hexahedral grids. The numerical problem involves com-

putation of the velocity and pressure fields as well as the Lagrange multi-

pliers (section-averaged pressures at VF-type inlets/outlets). Superposition

of special Stokes solutions is used to construct the full solution at each time

instant.

A. Preparatory stage (time-independent space discretization and fized At)

The following Stokes problems are solved

A 0 0 (D)'] [ul® — (AF)T etk

0 A 0o Dy |u¥] |-(af) etk -
0 0 A (D) |u®| |- (A el (2-21)
D, D, Dy 0 | |k 0
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where

e —
! 1if j = k.

Then, the following array is created

A

Tp=| : : (2.22)
{1  Nvp
i s

where

3
fjfk} = (Z Aguff}) , j=1,...,Nyp. (2.23)

J
If the flow domain and grid geometry as well as the time integration steps

a=1
are fixed, the above solutions are computed once and forever.

B. Main simulation stage
The computational procedure to update the solution at t =t,, tot =,

consists of the following steps:

1. Integration of convective terms (K-steps OIFS)

F (ﬁ(})k = _C"n [(ﬁ] )k 3 (ﬁQ)k 3 (ﬁﬁ)};] (ﬁa’-)k , =123
dt (2.24)

(s, =t PG =glm ) g=1,... K.
Numerical integration: 4" order Runge-Kutta method with the sub-

step At/Mg up to the time instant ™1 = ¢(m) 4 At As a result we
get
(0a)" Y = (B0), (= £™HD), a=1,2,3, k=1,...,K. (2.25)

2. Solution of the reduced Stokes problem

A 0o o D)7 @™ Y

0 A 0 (D) [ul® e 2]
0 0 A (Dy'| o s o
D; Dy Ds O 10} 0
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where

K
1 5>y T .
(m+1) , o\ (mt1) i ntl) 1o
i = =g E_ HMy (1, ), = (A“) POt 0 =1,2,3.

(8%

(2.27)

Solution procedure consists in the following 3 steps

(i)

A, =MD _pTgl0km) o =1 9 3. (2.28)
(1)

3
S = ZD(,u“ 8= DA 'DI,
a=] a=1 (229)

_R,{U}(HH—I) — ,n_{()}(m) + !
(iif)

Au, = -DIn’, ufllm+d) — of0im 1y o =1,2,3. (2.30)

. Determination of the Lagrange multipliers

The following linear system containing Nyg equations is solved

TFA(”'+1) _ m+J Z A {l) bom+1) (2.3])

a=1
The physical interpretation of the computed multipliers: the section-
averaged static pressure at VF-type inlets, outlets, at the time t = £,,,1.
Computing the final form of the solution at the time t =,

The final solution is constructed as the lincar commbination of the Stokes

solutions

u(lnm'—l)‘ ui‘]}(“HH‘ uy;}‘
+1 0 th Nyp k
u;:::r ) Ug Hom+1) Ny bt u{) } .
= & rn Z AL (2.32)
(m+1) {0}(m+1) : {k}
u; Uz k=1 U3
o(m+1) ﬂ.{o}(nwn) k,r{‘k'}
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2.7. Selected Numerical Algorithms

2.7.1. Preconditioned conjugate gradients (PCG). The PCG method
[8] is used to solve linear systems with the Helmholtz and Uzawa matrices
(both are SPD-symmetric and positive definite). Here is the summary of this
algorithms for the SPD system Sx = b.
Start: x(9; rl9 = b — 8x(®; solve PF(®) = r(0); p(® = §(0)
Fork = 1,2,...:

() = = (79,50 / (), 5pi®),

(ii) x*HD) = x*) _ g pk)

(iii) v = k) 4 0, Sp*)  — convergence test (| = 1]/ l16]| < e,
(iv) solve Prlkt+l) — plkt1)
(v) ;jf (I'.(Fw'—i—l): I.(I\'+l)) / (f(k')AI‘U")),
(vi) p(A'-+-1) — plE+1) + ;‘ﬂ-pm.
The Helmholtz system can be efficiently preconditioned by the diagonal ma-
trix 3
P = diag{‘A—”tMv + uK}.

Fast computation of the pressure correction is much more tricky!

2.7.2. Preconditioning in the pressure solver. The overall performance
of the Navier-Stokes solver depends mostly on the efficiency of the pressure

determination. The corresponding algebraic problem is defined as follows

3 3
S’/ = Z D,ii,, S= Z DA, (2.33)
a=1 a=1
where

3o
A=—My K.
A + py

It has been demonstrated [9, 15] that appropriate preconditioning matrix
for this problem (suitable for both low and higher Reynolds numbers) can
be constructed in the following form

J

Pl=yMl+ ZE-1 2.34
yMg! + (2.31)
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where
3

' LT
E=> DM'D|
k=1
and Mp denotes the pressure mass matrix (diagonal). We still need an effi-
cient method for solving internally (i.e., at each iteration of the PCG method)
the system with the matrix E, which itself is poorly conditioned.

2.7.3. Solution of Eq = r. This section is based upon the references
[10, 16, 17, 19]; we shall use the following notation:
Np — number of the pressure collocation nodes in each spectral element
K — number of the spectral elements in the low domain
N = dimFE = Np - K — global number of the pressure nodes
Consider the rectangular matrix J, where dim(J) = (N, K'), such that:
e cach column of J has a structure of K blocks with Np entries,
e in k-th column all blocks are zero except the k-th block, which is filled
with 1's.
Thus, the columns of the matrix J are the orthonormal vectors in R

and JTJ = I. Next, the K-dimensional subspace
I={mr¢ RN iwr=Ju uc RK} in RV

is introduced. Conceptually, the space II contains representations of piece-
wise constant fields in the computational domain, i.e. such fields which are
uniformly distributed within each individual spectral element.

The solution is sought in the form of the sum of the piecewise constant

“background” and the “correction” belonging to the orthogonal space TT+
q=Jqo+q;. qycR". (2.35)
Projection operator on TI+ along E(T1) is introduced as
P =1-EJIE;1J7T, (2.36)

where Eg = JTEJ. Then. the vector q; is determined as the (unique) element

from I+ satisfying the following linear system

Hq] ZP“Lr. H:PIILE- (237)
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The linear system (2.34) is solved using PCG iterations with the block {E'}
preconditioner [10,19]. The efficient way to deal with the local systems for
each individual element is to use the method of fast diagonalization. The vec-
tor qq is determined from the following SPD system containing K equations,
solved by the noniterative method (e.g., the Compressed-Sparse-Row-based
Choleski solver)

Egqo = J' (r — Eq) (2.38)

The computational performance of the pressure solver preconditioning (Pen-
tium IV 2.6 GHz, 512 KB cache, 512 MB RAM), where K = 1536, N = 5,
£ = 107" has been summarized in the Table 3.

TaBLE 3. Performance of pressure solver

MinT 0 5 10 12 15 18 20

M 420 39 22 18 15 13 13
Time [s] 1398.8 | 198.5 | 150.9 | 136.3 | 129.1 | 125.8 | 134.9
Acceler. | 1 7 9.3 10.3 10.8 11:1 10.4

Mint denotes the number of internal PCG iterations for the linear system
with the matrix H and M is the number of PCG iterations of the pressure
solver.

2.7.4. Efficient solution of long sequences of large linear systems
with the same SPD matrix. The overall computational performance can
be improved much not only by using a sophisticated preconditioner. The
smart choice of the initial approximations turns out to be equally important.
In the nonstationary simulation, using the flow state from the previous time
step seems to be a good idea. Surprisingly enough, this approach is rather
disappointing. In this section we give a brief account of much better method
proposed by Paul Fisher

In the general setting, consider the sequence of the large linear systems.
These systems have the same SPD matrix A, but different right-hand side

vectors. The Fisher's projection method [11] can be described as follows:

Initiation:

A T o O U N r ey
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for k =2,3,...:

(a) Having the A-orthonormalized system of k—1 vectors e. e, ..., en_|.,
we define the vector
k—1
X = E (tJ‘eJ'
=1

such that

<e_,. b*) — Ai>A =1

Q= <€_,,b”‘"> :

(b) We seck the solution of the k-th system as x*) = % + x/, where Ax’ =
b*) — A% = b’ is solved iteratively by the PCGM with the stopping
criterion [|r'][,/|[b™)]|, < 2. One can easily show that r’ =r.

It is easy to show that

(¢) To continue the procedure, the next basic vector ep has to be deter-
mined. To this end, we calculate the part of the solution orthogonal to

the subspace spanned by the basic vectors generated so far

k-1
I / 'i
X =X — / _/9_;

=1
where 8; = {e;, X'} 4 = — (&5, ')

The following equivalent form, which avoids multiplication by the ma-
trix A, can be derived

k—1
HX’LH‘ = /(x', Ax") = , [(x}) b —r') - Z (aj + dJ-)Q.
J=1

and finally we get e = x’ x' || .. If k becomes to large (say k =
3 5 k B LA =4 ;

Kuax) the procedure is re-started: e; = xftmax / ||:n:”‘“"lx

Figure 8 shows the computational time per single simulation step, when
the Fisher’'s method is implemented. In the presented case. the sequence is
re-started every 100 time steps. After the restart, the computational time is
quite large but it drops drastically after several steps. The average compu-
tational time per one integrations step is about 17s (Pentium 1V, 2.6 GHz,
1536 elements, Ny = 6. Np = 4).
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[M1Gure 8. Performance of the Fisher's projection method—more details in the

text

2.8. Sample Results, Encountered Difficulties and Further Deve-
lopment

2.8.1. Simulation of an unsteady flow in the T-shaped junction

Ficure 9. Hexahedral meshes for the T-shape pipe junction containing 1536
or 3048 spectral elements. The computations have been performed with (Ny,
.\‘/~) (-'—D.:f) or (\\ s A\'p) ((i.‘”.
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time [s]

Ficure 10. The volume flux of the test flow plotted as a function of time,
calculated for different grids and collocation meshes: grid A with (5,3) mesh (blue
line), grid A with (6.,4) mesh (green line) and grid B with (5,3) mesh (red line).
The black line corresponds to reference result obtained with FIDAP. The brown
line depicts the time dependence of the prescribed inlet pressure.

2.8.2. Laminar flow in the T-junction accelerated from rest to a ste-
ady state

Figure 11. Contour maps of the steady-state velocity magnitude and the static
pressure computed at the symmetry plane. The velocity units are cm/s; the pres-
sure/density is shown in the bottom color map (the values are in em?/s%).
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Laminar flow in a "I'-shaped domain accelerated

55 = from rest tg{gteqdy state

@
|

Volumetrix flow rate [cm3/s]

time

FiGure 12. The volumetric flow rate as a function of time, for different driving
pressure difference between the inlets and the outlet (the pressure units are Pa,
the density is 10% kg/m?).

2.8.3. Laminar pulsatile flow in the simple model of the Blalock-
Taussig shunt

Ficure 13. Geometric model of the BT shunt. In the figure, the smaller test grid
of 1672 spectral elements is shown. The presented results have been computed
for similar geometry but using the grid of 3760 spectral elements. The density of
the internal collocation mess has been set to (Ny, Np) = (6,4).
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Fi1GURE
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Pulsatile laminar flow in the BT shunt using VF-type inlet/outlet
The left picture shows assumed volumetric flow rates at all 1/0O sec-

The volume-flux distribution ratios are fixed in time and equal 37.5%,

The right picture shows

the computed temporal histories of the section-averaged static pressure at the

[/ O sections. Note the initial peak of the inlet pressure,

reversa

| at the outlet 4.
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Ficure 16. Top and center pictures: the contour plots of the velocity magnitude
and the field of the static pressure to density ratio in the symmetry plane, com-
puted for the time of the maximal flow rate. Bottom picture: the contour plot of
the corresponding strain rate.
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2.8.4. Encountered difficulties. Numerical instability of yet not under-
stood origin appears at the inlet section. The scenario of the instability de-
velopment can be characterized as follows.

First, rapid increase of a cross-flow (tangent) velocity is observed, which
gives rise intensive generation of the “spikes” of the streamwise velocity, Even-
tuallv, the flow field quickly “blows up”. The characteristic structure in the

inlet velocity field is shown in Fig. 17.

FiGure 17.

2.8.5. Further development. The work of the improved versions of the

spectral solver is in progress. In particular:

. Experimental 2D codes with different inlet/outlet conditions (including
zero tangent velocity, anyway!) are being developed (some undergrad-
uate student’s projects are carried out in the Faculty of Aeronautical
and Power Engineering, Warsaw University of Technology). The main
purpose is to investigate numerically stability properties of the spectral

solvers with “deficient” inlet /outlet conditions.

b

Work on efficient parallelization of the solver(s) (with collaboration of
the Interdisciplinary Center of Mathematical Modeling, University of

Warsaw) will be continued.

3. Development of the spectral-clement 3D nonstationary convection-dif-

fusion solver based on preconditioned BiCGStab [8] iterations is in

Progress.
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l. Implementation and computational tests of new high-order Yosida me-

thods [18, 23] are planned.

3. Numerical Modeling of Blalock-Taussig Shunt Using Com-
mercial CFD Package FLUENT

The last part of the lecture covered the clinical application of findings
and assumptions given by the computational flow analysis in the group of

patients undergoing the systemic to pulmonary shunting operation.

3.1. Clinical Background and General Considerations

Systemic to pulmonary shunt operation was first performed on Novem-
ber 20'" 1944 by Alfred Blalock. The patient undergoing that procedure was
voung girl suffering from congenital heart malformation of the type of tetral-
ogy of Fallot (ToF). The most typical clinical finding in that subjects is
cyanosis resulting form low oxygen saturation of arterial blood. Natural re-
sponse to that condition is overproduction of the red blood cells (RBC) and
augmentation of the hematoerit (HCT-RBC to plasma ratio) which leads to
the strokes and haemorrhagic complications. The aim of the operation was
to augment the oxygen saturation of the arterial blood by redirecting part
of the blood flowing through the systemic circulation back to the pulmonary
circulation. The concept was developed by Hellen Brook Taussig, cardiolo-
oist, who noticed deterioration of clinical status in the subjects suffering form

ToF at the time of natural occlusion of the ductus arteriosus.

Aorta B-T shunt

Pulmonary
Artery

Fi1GURE 18. The general overview of the localization of B-T shunt
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Contemporarily the modified Blalock-Taussig anastomosis is very impor-
tant first stage of palliation in many forms ot congenital heart malformations,
especially requiring Fontan-like circulation as a final solution. The patency
of first stage palliation (mBT) delimits the time step length and the time

interval for the further surgical interventions.

3.2. Definition of the Model Geometry

Due to the complication of the geometry of the aortic arch and the pul-
monary artery branching the volume of the model submitted for further

investigation was greatly reduced and simplified.

BB/

() (b) (¢)

Ficure 19. (a) Complete voluine of the great vessels and prosthetic shunt, (b) ab-
stracted region of the systemic to pulmonary shunt, (¢) geometry of the munerical

model

Final geometry was meshed with standard domain meshing commer-
cial software Gambit™, [25]. The obtained tetrahedral mesh consisted of
90 829 cells, 187793 faces and 18 367 nodes. Total volume of the model was:

1.85929 x 10~%m? (1.86 ml).

3.3. Definition of Boundary Conditions

Boundary conditions were also greatly simplified. The walls of the model
were defined as rigid with no slip condition applied. Fluid flowing through
the domain was defined as Newtonian viscous with the following parameters:
p = 1060 kg 'm* and v = 0.004 kg /ms.

SA inflow (red arrow in Fig. 20) is defined as time dependant mass flow
inlet. The user defined function is equipped with basic driving curve of mass
flux changes and the linear interpolation between the given time instants is
used. The flow direction is set to be normal with respect to the inlet surface

and the distribution of the mass flux (pu,,) is assumed uniform.
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Frcure 20. Dimensions in mm and flow directions in the B-T shunt computa-

tional model

e SA outlet (blue arrow in Fig. 20) was defined as: outflow with flow rate
weighting = 0.5,

e PA outlets (blue arrows) were defined as: outflow with flow rate weight-
g = 1.

Such definition results in Howing How distribution:

e 20% of volumetric flow continues towards the SA outlet,

Mass Flux [kg/sm]

400 i - ‘

;I"lme [s]

Figure 21. Mass flux driving curve at the SA inlet
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e 30% of the volumetric flow is redirected towards both PA outlets.

e PA outlets How was cqually split between both of them.

The outflow distribution was chosen according to the clinical findings
based upon postoperative echocardiography.

With the outflow conditions, all flow parameters (except pressure) were
extrapolated to the outflow section from within the domain in such a man-
ner that the diffusion fluxes are zero (homogeneous Neumann b.c.). Such
approach is justified providing that the outflow is reasonably close to a fully-

developed state.

3.4. Solver Settings

The most of the default values were applied for solving the flow equations
inside the defined geometry.

e Viscous model: laminar.

o Pressure-velocity coupling: simple,

e Fixed time step: At =2 x 10745,

e Convergence criterion: £ = 107",
Solver b _ i x|
Sobser . Formulation
* Segregated & Implicit |
© Coupled € Explicit |
1 g W W ! L= J
Space ~ Time
LAy C Steady
€ Axisymmetric * Unsteady
€ Axisymmetric Swir | =
& 3D ]’fansnenl Controls

™ Non-terative Time Advancement
. ™ Frozen Flux Formulation

Velocity Formulation Unsteady Formulation

| = Absolute | € Explicit
| O Relative - 1stOrder Implicit
| & 2nd-Order Implicit
Gradient Option Porous Formulation
@ Cell-Based * Superficial Velocity |
' Node-Based | " Physical Velocity

oK | cancel| Help |

Ficure 22. Solver settings-— FLUENT 6.2.18
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3.5. Results and Conclusions

Computer models included left subclavian artery, graft. and left pul-
monary artery, and represented the average geometry of the graft in two
groups of patients. The size of the blood vessels was the same in both mo-
dels. but the graft was longer and narrower in model B (clotted grafts) than
in model A (patent grafts). Shear stress fields were calculated, and the vol-
nme within the model with high shear rate (over 2500 1/s) was determined,
in different phases of the cardiac cycle.

About 80% of inflowing blood was directed to the pulmonary circulation.
In both models we observed a large recirculation region at the inlet to the
graft accompanied by a high shear stress region at the opposite wall of the
eraft. The region of high stress was less than 0.5% of total volume of the
system in model A (patent grafts), and over 4% of total volume in model B
(clotted grafts).

Narrow and long grafts create flow patterns with high shear stress that
promote platelet activation leading to augmented risk of clot formation.
Therefore the graft geometry may be one of crucial factors in mBT anas-

tomosis failure.

ULLELELU T TF LT ELLHE

w
-

[m/s]

velocity magnitude static pressure strain rate

Iicure 23, Results obtained during systolic phase of the simulation

The most important findings from the medical point of view were the
results being in best agreement with the findings common in invasive and

non invasive clinical examinations.
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The best example of that was perfect explanation of the pressure loss at
the inlet of the graft commonly found in hemodynamic postoperative study
of the patients undergoing the mBT shunting.

The second important finding was the visualization of the high shear
stress regions at the inlet of the prosthetic vessel. Shear stress is conside-
red the most important mechanical factor directly influencing biochemical
reactions like thrombosis and intimal hyperplasia in vascular system.

Numeric models gave the unique opportunity to study in “patient safe”
environment such conditions like:

e Hydraulic pressure loss in the B-T shunt,

e regions of high shear rate can be localized,

e vulnerability of the low to the geometry of the proximal anastomosis.

During the evaluation period of the results we found some quasi-com-
pressibility occurring in solving method although the setting of the solver
explicitly was set to non-compressible.

TasLE 4. “Quasi-compressibility” effect of the solver results in relatively large

error in instantaneous volumetric flux balance

Inlet /outlet | Mass flow rate [g/s| | Vol. flow rate [em®/s| | Avg. density [g/cm’|
I (Out) 469714 1207437 1.09301

2 (Out) 4.69714 4.291925 1.09441

3 (In) —11.74285 —10.04857 1.16861

1 (Out) 2.34857 2.142215 1.09633

D) 0.0 —0.683007

From the computational point of view some safeguards and pitfalls had
to be mentioned for the “non engineer” user of the commercial packages. All
of the results obtained from the CFD methods has to be carefully evaluated
and the sole judge of their applicability for the medical doctor has to be

common sense and critical analysis.

Acknowledgement

This project was funded by Polish Committee of Scientific Research, grant
7TTIFO01820.

http://rcin.org.pl



MATHEMATICAL AND NUMERICAL MODELLING . .. 401

References

6.

=~

9.

10.

13.

16.

R. Aris, Vectors, Tensors and the Basic Fquations of Fluwd Mechanics, Dover, New
York 1962.

G.K. BAarcHELOR, An Introduction to Fluid Dynamacs, Cambridge University Press,
Cambridge 1967.

J.P. Boyp, Chebyshev and Fourier Spectral Methods, 2™ Ed., Dover, Mineola, New
York 2001.

. C. Canuro, M.Y. Hussaini, A. QuarTERONI, and T.A. ZANG, Spectral Methods

in Fluid Dynamics, Springer Verlag, Berlin/New York 1988.

M. GUNZBURGER, Finite Element Methods for Viscous Incompressible Flows: A Prac-
tical guide to Theory, Practice and Algorithms, Academic Press, Boston, 1989.

G. KARNIADAKIS and S.J. SHERWIN, Spectral/hp Element Methods for CFD, Oxford
University Press, 1999.

M.O. DevivLe, P.F. Fisuger, and E.H. Munp, High-Order Methods for Incompress-
wle Fluid Flow, Cambridge University Press, 2002.

Y. Saan, [terative Methods for Sparse Linecar Systems, 2 Fdl., SIAM, 2003.

Jo CanoveT and 1.P. CHABARD, Some Fast 3D Finite Element Solvers for the

Gleneralized Stokes Problems, Int. J. Numer, Meth. Fluids, 8:869-895, 1986.

W. Couvzy and M.O. DEVILLE, Spectral-Element preconditioners for the Uzawa pres-
sure operator applied to incompressible flows. J. Scientific Computing, 9(2): 107122,
1994.

. P.F. Fisuer, Projection techniques for iterative solution of Ax = b with successive

right-hand sides, Comput. Methods. Appl. Mech. Eng., 163:193-204, 1998.

J.G. Heywoob, R. Ranacuer, and S. Turek, Artificial boundaries and flur and
pressure conditions for the incompressible Navier-Stokes equations, Int. J. Numerical
Methods in Fluids, 22:325 352, 1996.

G. KArNtADakIs, M. Israenl, S.A. OrszaG, High-Order Splitting methods for the
Incompressible Navier-Stokes Fquations, J. Comp. Phys., 97 :414 443, 1991.

Y. Mapay, A.T. PatreraA, and E.M. RoNquist, An operator-integration-factor split-
ting method for tume-dependent problems: Application to incompressible fluid flow, J.
Sei. Comput., 5:263 292, 1990.

5. Y. Mapay, D. MeiroN, A. Parera, and E.M. RonqQuist, Analysis of iterative

methods for the steady and unsteady Stokes problem: application to spectral element
discretizations, STAM J. Sci. Comput. 14(2):310-337, 1993.

E.M. Roxquist, 4 domawn decomposition method for elliptic boundary value prob-
lems: Application to unsteady incompressible fluid flow, in the Proceedings of 5"

Conference on Domain Decomposition Methods for Partial Differential Equations,
D.E. Keves et al. [eds.|, pp.545-557, 1991.

http://rcin.org.pl



402

J. SzuMBARSKI and J.K. MIZERSKI

17.

18.

18.

20.

21.

[N
(S

23.

24.

J. SzumBarskl, P. Ovszewskl, A. Styczek, J. Rokickl, Z. Mavora, and K.
WawrucH, Computations of an Unsteady Viscous Flow tn a Three Dumensional Sys-
tem of Ducts, J. Theoretical Appl. Mech., 42(1)— Part 1, and (4)— Part 2, 2004.

A. QUARTERONI, F. SALERL, and A. VENEZIANIL, Analysis of the Yosida method for
the incompressible Navier-Stokes equations, J. de Mathematiques Pures et Appliques,
78 :473-503, 1999.

W. Couzy, Spectral Element Discretization of the Unsteady Navier-Stokes Equations
and Its Iterative Solution on Parallel Computers, Ph.D. Thesis, Ecole Polytechnique
Federale De Lausanne, No 1380, 1995.

Lecture notes of the Summer School on the Modelling of the Cardiovascular System,
(org. A. Quarteroni), EPFL, Lausanne, 25-30 August 2003.

A. QUARTERONI and L. FoOrmacGia, Mathematical Modelling and Numerical Simu-
lation of the Cardiovascular System, MOX Rep. 1, 2002.

2. A. VeNEZIANI and C. VERGARA, Flow Rate Defective Boundary Conditions wn

Haemodynamics Simulations, NMOX Rep. 35, 2003.

P. Gervasio, F. SavLeri, and A. VEeNEziaNi, Algebraic Fractional Step Schemes
with spectral methods for the Incompressible Navier-Stokes Equations, MOX. Rep. 61,
2005.

L. Formagaia, J.F. GerBeau, F. NoBiLE, and A. QUARTERONI, Numerical treat-
ment of defective boundary conditions for the Navier-Stokes equations, EPFL, De-
partement de Mathematiques, Preprint 20, 2000.

Fluent 6.2 User’s Guide, Fluent Inc., 2005.

http://rcin.org.pl





