
http://rcin.org.pl

Polish Academy of Sciences 

Institute of Fundamental Technological Research 

of----r/ 
Mechanics 

Archiwum Mechaniki Stosowanej 

volume 48 

Polish Scientific Publishers PWN 

Warszawa 1996 

issue 3 



http://rcin.org.pl

ARCHI VES OF MECHAN ICS IS DEVOTED TO 

Theory of elast icity and plasticity • Theory of nonclassical 

continua • Physics of cont inuous media • Mechanics of 

discrete media • Nonlinear mechanics • Rheology • Fluid 

gas-mechanics • Rarefied gas • Thermodynamics 

FOUNDERS 

M.T. H unER • W . N owACKJ • W. 0LSZAK 

w. W JERZ131CKI 

EDITORIAL ADVISORY COMMITTEE 

W . SzczEPJNSKI- ch airman • D .C. DRucKm 

W . F1szooN • P . G ERMAJN • W . GuTKOWSKJ 

G . HERI~MANN • J. R YCI II .EWSKI • I. N. SNmDON 

G . SzEr-ER. Cz. W o:lNJAK • H. ZoRsKI 

EDITORIAL COMM ITTEE 

M . SoKOLOWSKJ - editor • L. D11: mJcJJ 

J. HoLNJC'KJ-SzuLc • W. K os,r:;sKJ 

W.K. N owACKJ • M . N owAK 

H. Pr;mvK - associate editor 

J. SoK61.-SuPEL • A. SnczEK • Z .A . WALENTA 

n. WII~RZiliCKA - secr e tary • S. ZAIIORSKI 

Copyright 1996 by Pnlsb Ak:IJI.!miil Nauk. Warst:twa, Pol:!nJ 

Prinlcd in Pt,Jand, f--Ahto rial Orlkc: Swit.;tol.upka 2 1. 
(fJ..C)..t9 Warszawa ( PolanJ) 

Arluwy "'YJawnil'7)'t'h 10.25. Arkus7y drukarskKh 9 
Papil.!r nlrs~..·1. kl.lll 7hg. Bl. Q.IJdann dn sl laJama w m;tn'u J9<Jf, r. 

Druk ulmrk1ono w nmju J(}:X.r. 
Sllad i l.tm:mic: .. MAT -1 EX'' 

Druk i nprnwa: Oruknrn ia Brar.:i G mJ11d.H:h. i.:tt'lh.:Oh.:l' ul. l'fldtHowa 7 



http://rcin.org.pl

Arch. Mcch., 48, 3, pp. 447-473, Waruawa 19% 

Gas filtration through porous coal medium 
Effect of the gas constrained in micropores 

D. LYDZBA (WROCLAW) and J.L. AURTAULT (GRENOI3LE) 

GAS FLLT RATION through the macroporcs in porous coal media, with diffusion of a gas constrained 
in microporcs, is investigated by using the homogenization process for periodic structures. This 
technique leads to the macroscopic model of the considered phenomenon by starting from the 
description at the pore level. No prerequisite is imposed at the macroscopic scale. Three different 
macroscopic models arc obta ined. Their ranges of validity arc defined by appropriate dirnensionless 
numbers that describe the geometrical structure and the physico-chemical properties of the coal. 
In two of these models, the microporc diffusion is coupled to the filtration process by a source 
term in the macroscopic mass balance. Finally, wc investigate a one-dimensional flow through a 
semi-infinite coal seam, when the coal is assumed to be composed of grains. This simple example 
demonstrates the strong influence of the characteristic sizes of the grains and of the macroscopic 
sample on the filt ration process. 

I. Introduction 

ONE OF THE GREATEST DANGERS occurring in some underground coal mines are 
gas-coal outbursts. During this vio lent process, gas moving with a high velocity 
and crushed coa l mixture endangers the health and lives of the mi ners. To reduce 
the hazard connected w ith such d isast ro us explosions, it is necessary to know their 
causes. 

The mechanism of a coal outburst is invest igated in several papers [e.g. 1 - 4). 
Many factors are shown to be respo nsible for its occurrence. Large pressures, 
the kind of gas, the explo itat io n stresses, the physico-chemical and physico-me
chanical properties of coal and internal structure of the coal porous med ium play 
here the most impo rta nt ro le. Many factors lead to the numerous formulae for 
an outburst danger. For in stance, the influe nce of the geometrica l structure on 
the outburst pe ril is represented by the fo llowing empirical re la tion [5]: 

(1.1) 

where P1 is the mass of the grain fractio n of a d iamete r grea ter tha n 4 mm, P2 
is the mass of the grains of a diameter within th e range 0.5-4 mm, and P3 is the 
mass of grains o f a diameter smaller than 0.5 mm. Al l these values a re obta ined 
from the grain size distribu tio n of a coal specimen that was primarily crushed 
according to de finite prescript ion. When C' > 13, the p resence of an outburst 
danger is assumed. 
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However, a quantitative model describing such an instantaneous phenomenon 
is not available. We limit o urselves to the investigation o f the early stage, before 
the explosion. 

One of the most important factors is the gas seepage thro ugh the porous 
coal structure, representing a triple porosity system, with three different pore 
scales [6] : 

• The scale of network sorption is characterized by capilla ries with the pore 
radii up to 0.3 - 0.5 nm, in which the absorpt ion process resembles the phe
nomenon of dissolution . 

• The scale of micropo res comprises capillaries with the radii up to 1.2- 1.5 nm. 
• The scale of macropores comprises pores with greater rad ii , where single

and multilayer adsorption takes place and where free gas is present. 
Only a small part of the gas is in a free state. The main part of the gas is 

constrained at the two smaller scales, i.e., the scale o f micropores and the scale 
of netwo rk sorptio n. Depending o n the magnitude o f its pressure, the free gas in 
the macropores may be or may not be in a th ermodynam ic equilibrium with the 
constrained gas. When the equilibrium is d isturbed, the constra ined gas acts on 
the gas filtration in the macropores by its emissio n through the inte rnal surface 
of the coal. The intensity of gas emission th ro ugh the internal surface directly 
depends on the geometrical structure and the physico-chemical properties of 
the skeleton [7]. Therefore it often results in a strong coupling between the gas 
filtration intensity and the parameters mentioned above. 

The aim of this paper is to show the influence of the geometrical st ructure 
and the physico-chemical properties of the skeleton on the gas filtration pro
cess. The description of such complicated systems as porous media, with strong 
heterogeneities of high density, is practically possible at the macroscopic level 
only, where an equivalent continuous medium is defined. Th is can be obtained in 
the following two ways. The first way is the phenomenological approach. It was 
used in [3] to investigate the behaviour o f the gas-coal system. The second way 
includes a ll the different averaging (homogenization) processes for inves tigating 
the passage from the local to the macroscopic level. The main characteri stics of 
these processes can be fo und in [8]. 

H ere we use the multiple scale asymptotic method. This techniq ue has been 
already used in several papers to model porous materials. Some o f them con
cern multiple porosity med ia. D eformable double porosity media saturated by an 
incompressible fluid are investigated in [9], by starting from the Navier - Stokes 
equations in the micropo res and in the macropores. The analysis is extended to 
compressible fluids in [1 0] . In [11 ], the autho rs assume a rigid skeleton and a 
compressible fluid, with Darcy's law satisfied in the micropores and in the macro
pores. The analysis presented here is an extensio n o f these works to the study of 
a porous coal medium. 

In the Sec. 2, after introducing the local description o f the gas-coal system, we 
briefly present the homogenizat ion process. The flow in the macropores is de-
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scribed by the Navier - Stokes equatio ns fo r compressible flu ids. Because of the 
small radii of micropore capillaries, we assume that the mass transport of the gas 
constrained in the micropores is a molecular diffusion process. For simplicity, the 
porous matrix is conside red to be rigid. Since random and periodic microstruc
tures lead to the same macroscopic descrip tion, [1 4], we assume a periodic porous 
matrix. Then, the homogenization process is applied to our problem and different 
macroscopic equivalent descriptio ns are o bta ined. The main resul t consists in the 
fact that the macroscopic gas fi ltratio n can be modelled by three di fferent kinds 
of macroscopic descript ions. Their respective ranges of validity are defi ned by 
the values o f appropriate dimensionless numbers. The reader who is no t fa miliar 
with the mathematical approach used in the Sec. 2, can d irectly go over to the 
Sec. 3, where the results are summarized. 

The quantitative influence of the gas constrained in the microporo us part is il
lustrated in Sec. 4 of the paper. For this purpose, a one-dimensional flow through 
a semi-infinite coal seam is investigated, when the geometry of the internal struc
ture of coal is assumed to be composed of spherical grains. In particular, we 
investigate the distribution of the gas pressure and its gradient near the long-wall 
head, depending on the grain radius. Determination of the small parameter of 
scale separation in each point of the seam enables us to show the domains of 
val id ity of the three descriptions. 

2. The homogenization process 

Let us introduce the physics at the d ifferent capillary and pore scales. We 
assume that these scales are well separated from the macroscopic scale. The 
local physics and the separation of scales represent the basic assumptions that 
lead to the macroscopic descriptions. T he method of multiple scale developments 
does not introduce any p rerequisite concerning the macroscopic scale. 

2.1. Local descri ption 

Let us simplify the coal system to a single porosity medium composed of a 
solid part Vs and pores VP. The solid part Vs comprises the poro us matrix of 
coal and the capillaries of the two smaller scales. Pores l iP are the macropores 
introduced in Sec. 1. We assume that: 

a. Flow of the gas in the macropores (in VP) is described by the Navier - Stokes 
eq uations of a barotropic liquid. 

b. Motio n of the constrained gas (in Vs) obeys the Fick molecular diffusion 
law. 

c. The solid is undeformable. 
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With these assumptions, the local descrip tion (at the pore level) is given by: 

• the Navier - Stokes equation: 

(2.1) Llv + (.A+ J.t)grad(divv) - grad p = g~; + g(vgrad)v 

• the equation of mass conservation fo r free gas: 

(2.2) O(} d" 0 - + JV nv = at ~. .. 
• the ideal gas law fo r isothermic processes: 

(2.3) 
f1a [} = - ]) 
Pa 

• the equation of mass conservation for molecular difTus ion: 

(2.4) 
8C 8t- div(Dgrad C') = 0 

Here v is the velocity vector of the free gas in the macropores, 7' is the gas 
pressure, f1 is the gas density, C is the overall concen tration of constrained gas in 
the solid, D is the efTective micropore difTusion coefficient, p, is the atmosphe ric 
pressure, Oa is the gas density at atmospheric p ressure, and I' and .A are the gas 
viscosities. 

The set (2.1)- (2.4) is completed with the boundary conditions on the interface 
r between the solid and the macropores, i.e. continuity of the mass flux: 

(2.5) (gv + D grad C')n = 0 

and co ntinuity of the gas pressure. Due to relation (2.3), it is reduced to the 
condition of continuity of the density. The overall gas concentrat ion C in the 
solid pa rt can be equated to the overa ll gas density </>., (!. The refore, the condition 
of continui ty of the gas p ressu re on /' is written in the form 

(2.6) c = </> .. {!. 

The adhesion condition: 

(2.7) V7] = 0. 

H ere n and 17 are unit vectors, normal and tangent to the common surface r, 
respectively. </>s is the volume occupied by the gas constrained in the unit vol ume 
of the solid. In addition, we assume the thermodynamic equ ilibrium between the 
phases at th e initial insta nt. 

In many practical cases the bulk volume of the considered porous medium is 
very large compared to the size of the heterogene ities. Therefore a very good sep
aration of scales exists which enables us to determine the eq uivalent continuous 
macroscopic description. 
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2.2. Homogenization principle 

The separation of scales implies the existence o f an elementary representative 
volume (ERV). In the very particular case of a periodic medium, the spatia l 
period represents the ERV. If l is a characteristic length of the ERV and if L 
is a characteristic length of the sample of coal o r of the phenomenon under 
consideration, we have 

l 
c =z ~ 1. 

If the order of magnitude of l is known for a given material, L is determined by 
the solution of the macroscopic boundary value problem (see Sec. 4). Therefore 
the va lue of E is known a posteriori only. It is generally assumed that E = 0.1 is 
the limit fo r the separation of the scales to exist. 

When the medium is random, the separation o f scales implies a local asymp
totic invariance. The vo lume averages o f physical quantities in the ERV remain 
constant u nder a translation 0(/). When the medium is periodic, it results in the 
local periodicity of the physical quantit ies. However, independent ly of whether 
the medium is random or periodic, the st ructure of the macroscopic equiva lent 
description remains unchanged [14] . There fore it wi ll he assumed that the medium 
is periodic, since in this case the process is much more powerful. Nevertheless, it 
must be mentioned that the determination of efTective coefficients needs a priori 
difTerent approaches for the two kinds o f media considered . A periodic medium 
is shown in Fig.J. [2 is the un it cell, f? , is the solid part of rt, f?11 is the poro us 
part of f? and r is the inter face. The geometry of the pores inside the un it cell 
can be chosen a rbitrari ly. Variat ion of the geometry does not mod ify the structure 
o f the macroscopic description, but only th e effective coellicients appearing in it. 

I 

Ftc. 1. Schematic view of the medium at the microscop ic level : unit cell (20 case). 
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TWo characteristic lengths l and L introduce two dimensionless space variables 
x, y and each physical quantity F is a function of these two variables and time t. 

X 
X= L ' F = F(x , y, t). 

Variable x is the macroscopic space variable well suited to describe the macro
scopic variations, while y is the macroscopic space variable well suited for the 
local description. 

The existence of two dimensionless space variables has to be taken into ac
count in the expressions of the differential operators. Two equivalent descriptions 
are then possible. The first description corresponds to the microscopic point of 
view. We get: 

1 
grad = l(E gradx + grady) , 

(2.8) L\ = l~ (czL\x + 2:: D~i ( D~J + L\v) ' 

div = }(c divx + divy)· 

The second description corresponds to the macroscopic point of view: 

grad = 

(2.9) L\= 

Subscripts x and y deno te partial de riva tives with respect to x and y, respectively. 
By taking advantage o f the small parameter E, all the physical quantities are so ught 
for in the form of asymptotic expansions 

(2.10) 

where F(i ) is f2-periodic in y. 
The method consists in incorpora ting such expansions into the set of equations 

that describes the phenomenon at the local scale, and in ident ify ing terms with 
the same powers of E. Before that, it is necessary to normalize a ll eq uations of the 
local descriptions. This means that the local description is made dimensionless 
and the dimensionless numbers are evaluated according to the powers of c. A 
quantity q is said to be O ( EP ) if Ep+ l ~ q ~ Ep- 1. 

The result of the homogenization process is a set of equations satisfied by 
the first terms of th e asympto tic expansio ns, that represents the macroscopic 
description, within an approximation of the order of E. 
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2.3. Est imations 

Equations (2.1 ), (2.2), (2.4) and (2.5) introduce the following dimension less 
numbers: 

Q = 
lgrad PI 

fl = 
I(.-\+ p)grad(divv)! 

lft_\vl ' lft.:1vl 

Rt = 
le~;~ 

Re = 
le(v grad)vl 

IJL.d vi ' IJ.L.dvl 
(2.11) 

~~~~ ~~~~ St = ll / 1 = 
div gv! ' ldiv(D grad C) l ' 

Pe = 
lov! 

ID grad CI · 

Let us use the microscopic point of view. Therefore l is the characteristic 
length for estimating the dimensionless numbers (2.11 ). Using the characte ristic 
values v0 JJc, £?c, Cc, le of the velocity, p ressure, density, concentration and time, 
respectively, the dimensionless numbers (2.11) can be expressed by 

Q, = 
Pcf 

If, 
/\ + JL 

= 
JtVc I L 

R u = 
{!c f2 

Re~ 
l?c Ve l 

- , = 
(2.12) JLlc J1 

/2 
Su = - , Alu = , 

l e Vc Die 

Pel = 
(JcVc f 

D Cc 

We limit o ur study to the case when the gas flow in macropores is slow and 
quasi-permanent. It means that the Reynolds numbers R.c1 and l?u are assumed 
to be small, i.e., 

and R u ~ 0 (: ). 

We assume th at the gas viscosities .-\ and JL are of the same order of magnitude 
(with respect to .:). The dimensionless number lf1 becomes 

If, = 0 (1). 

The number Q 1 can be estimated by physical considerations (1 5). The gas flow is 
forced by a macroscopic gradient of pressure. Therefore, 

(Pc) lgrad p! = 0 L . 
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Since the gas is flowing through pores of size I, the cha racteristic length in evalu
ating the viscous term is l: 

I ( /I.Vc) '"·_jy = o 72 . 

For slow and permanent flows, the pressure term in Eq. (2.1) is eq uilib rated by 
the viscous term. It follows that 

JlVc = O (Pc) 
f2 L , 

and the dimension less number Q 1 becomes 

Estimates of th e dimensio nless numbers Su and llfu are obtained from the con
ditions for the homogenizatio n to he possible. As it was shown in [1 6], number 
Su should ful fi ll the fo llowing inequality: 

(2.13) Su ~ O(E). 

In the same way it is easy to ob tain a simila r rest rict io n on Afu: 

(2.14) Mu ~ 0 (1). 

Now, by tak ing into account the defin itions (2.12) of Pr~ , Su and Mu, the fo llowing 
relation can be written: 

P _ Mu (!c 
c~ - --sc;· 

tl c 

Assuming that (!c and Cc are o f the same o rder of magnitude, and assu ming 
for the moment th at 

and 

the fo llowing estimation o f P el is obtained: 

where m and s a re non-negative integers. 
It is well known that the filtration coelllcient is very much la rger than the 

coelllcient o f the micropore diffusion, and that th e main flux o f the gas fl ow 
through the porous medium is due to the filtration process. There fore we co nfine 
our study to the case 

pcl 2 0 (1 ). 
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This restriction, together with the above estimation of Pe1• leads to the inequality 
for m and s: 

m - s ~ 0. 

In the following, numbers 1n and s will be used to distinguish between difTerent 
types of the considered phenomenon. 

On the other hand, it is interesting to introduce two characteristic times To 
and T5 of the fluid difTusion and fluid seepage, respectively: 

L 
Ts = -. 

V c 

Their ratio A can be put in the form 

(2.16) 

Finally, by defi ning the dimensionless variables 

(2.17) * V 
V = -, 

Vc 

* ]J 
7J = - ' 

Pc 
* a a = -, 

f2c 

and by taking into account the above estimates of the dimensionless numbers 
and the relations (2.8), we obtain the following dimensio nless form of the local 
description: 

(2.18) 

(2 .19) 

(2.20) 

(2 .21) 

(2 .22) 

(2.23) 

(2 .24) 

( c:2.1x + 2£ &~; ( 0~,.) + _jy) v* + (c: gmdJ. + grady)(.: divx + divy)v* 

- (gradx + .:- 1grady)JJ- = .:g· ~;: + c:g·v*((E gradJ; + grady)v*), 

5 fJ (!• ( d" d" )( • *) 0 £ (} [ * + £ lVx + IVy {! V = , 
* Pc f2a * · n 

{! = - -p m JLp, 
f2c Pa 

Em ~~: -(c: divx + divy)D(c: gradx + grady)C'* = 0 

(c:m-s g·v· + D(£ gradx + grady)C*)n = 0, 

C * = ~ A-. • 
Cc '!-'s O ' 

v·77 = 0 on r. 
At the initial instant of time, the thermodynamical equilibrium requires that 

everywhere. 
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2.4. Macroscopic description 

We introduce into the no rmalized set (2.18)- (2.24) asymptotic expansions 
(2.1 0) for v·, p·, e· and c·. Grouping the terms with the same powers of E, we 
get sets of equations to be satisfied by the consecutive terms o f the asymptotic 
expansions. For the sake of simplicity, the asterisk marking th e dimensio nless 
variables is omitted in the fo llowing considerations. 

From Eqs. (2.18), (2.20), (2.23) and (2.24) we obtain : 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

grady7J(O) = 0, 

Llyv(O) + grady(divy)v(O) - gradxp(0 - gradyp(l) = 0, 

(2(0) = Pc f2a (0) - -p 
f2c Pa 

m flp, 

c <o> = ~</J. n(O) 
C'c s._ ' 

v<0>17 = 0, v(1 )7J = 0 on r. 

Equations (2.19), (2.21) and (2.22) directly depend o n the values of the par
ameters m and s. Therefore, to obtain the sequence o f equa tio ns for the con
secutive powers of E, it is needed to assume the accurate values of m and .s. 
Different va lues o f m and s lead to different sets o f eq uations and, as a conse
quence, to d ifTerent equivalent macroscopic descriptio ns. Four cases of interest 
can be distinguished : 

CASE I. Model I. DifTusio n-filtration coupling with memory efTects, s = 1 
and m = 0, A = 0 (1), To = O(Ts). 

CASE II. Model II. Classical d ifTusio n-filtrat io n coupling, 8 = 1 and m = 1, 
A = O(c 1

) , To ~ O(Ts). 

CASE III. Model Ill. Classical seepage law, s ~ 2 and m ~ 0, A = O(c), 
To~ O(Ts). 

CASE IV. Non-homogenizable situation, s = 0 and m = 0, A = O(c 1 
). 

Clearly in this case the cond ition (2.13) of homogenizability is no t fulfill ed. Case 
IV leads to a non-homogenizable situation, i.e. a situation where an equivalent 
macroscopic description is not possible. A d irect proof o f tha t is presented in the 
Appendix. 

Model I. DifTusion-filtration coupling with memory efTects, s = 1, m = 0, 
Su = O(c), Mu = 0 (1), Pet = O(c 1), To = O(Ts). 
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With this estimation we get from (2.19), (2.21) and (2.22) the following equa
t ions: 

DQ(O) 
8t + divx(Q<0>v<0>) + div.v (&>(l )v(O) + g<0>v(l>) = 0 m f2p, 

(2.29) 

(2.30) 
[)C (O) 
---a"t - divy(D gradYC(0)) = 0 m f2s, 

e<D>v<O>n = 0, 

(g<0>v(l ) + Q1"(1)v(0) + D gradYC <0>)n = 0 on r. 
(2.31) 

Equa tio ns (2.25)- (2.31) give a sequence o f boundary value problems fo r the 
first terms of the asympto tic expansions. 

The first problem fo llowing fro m (2.25) 1, (2.26) leads to: 

(2.32) 
7/0) = p<O> (x, t), 

g(O)(x, l) = Pc [) a ]J(O)(x , l ). 
[)c Pa 

The first te rms o f the gas pressure and o f the gas density are locally constan t over 
the macropo res ft p. 

The second problem is given by (2.27) and (2.30). It is similar to that discussed 
in [17]. Th solve it, the fol lowing substitutio n is applied: 

U(x,y, l ) = c <O) - ~: <Ps o<0>(x. l). 

This leads to the set o f equa tio ns 

8U . [)c [)g(O) 
-[) - d tvy(D grad.vU) = --C, </>5 - D-

l c /. 
(2.33) 

U(x ,y, t)=O on 1 . 

The thermodynamic equilibrium at the in itial time gives 

U (x , y, 0) = 0. 

Dy using the Lap lace transfo rm, we obtain 

(2.34) 

. • Oc ( [Jg(O) ) a£(U)- d tvy(D gradyL(U)) = -Cc <Ps £ Dt , 

£(U) = 0 on r, 



http://rcin.org.pl

458 D. LYD Zf3A AND .l.L. A u n.IAULT 

where a is the complex Laplace variable and 

= 
£(U) = j U e-at dl. 

0 

The right-hand side of (2.34)1 does not depend on the microscopic space vari
able y. 

Therefore the solution of (2.34) is a linear fun ction of this fo rcing term: 

(2.35) 

where C(C(y, t )) is the solution of (2.34), when the right-hand side of (2.34) 1 is 
equated to unity. We use now the volume average defined by the form ula 

and we apply the inverse Laplace transform to (2.35). We obtain from the con
volution theorem 

(2.36) 

Finally, introduction of the concen trat ion gives the solu tion of the considered 
second boundary value problem in the form: 

(2.37) 

where c/J is the porosity, cjJ = J21)/ rt. The average is evaluated by assuming the 
concentration C (O) to be zero in r2p. 

Relation (2.37) shows that the gas concen trat ion depends on the history of 
the first time-derivative of the gas density. Function C(t) represents a memory 
function. 

The third problem to be solved is given by the equations (2.25)2, (2.28)1, 

(2.29)1, (2.31)1 and the condition of J2-periodicity of ,P> and v<0>. By taking into 
account the relations (2.32), this set becomes 

L1y v(O) - grad
1
.]J(O) - grady7P > = 0, 

divy(v(0)) = 0, v<0>1r = 0. 
(2.38) 
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The system (2.38) represents the classical problem o f fl ow of an incompressible 
fluid through a rigid porous medium. At this stage, p(O) is considered as a known 
function of x. The unknowns vC0) and ,P> are linear functions of the macroscopic 
gradient grad xP(O) (see for example [1 8, 19]). In what follows, only vCO) is needed: 

v(O) = - /..:; (y/)]}0) 
l ) f)x j 

By taking the volume average of vC0>, we obtain the well-known Darcy law: 

(2.39) I . (0)) = - ' Dp(O) 
\V; (k,J ) Dx j . 

The fourth problem leads to the macroscopic mass conservation law and is 
given by (2.29)2, (2.30) and (2.31 )2. By integrating (2.29)2 with respect to y on 
nP and by using the divergence theorem, we obtain 

By taking now into account (2.30) and (2.31 )2, the above eq uat io n leads to the 
fo llowing form of the macroscopic mass conservation law: 

(2.40) 
D (O) D( C(0)) 

,~.. _(!_ + div . ( n(O) I vC0>)) + = 0. "" ut J. ~ \ ut 
The last te rm in the mass balance equatio n (2.40) represents a source term due 
to the difTusion process in the micropores. 

Equations (2.32), (2.37), (2.39) and (2.40) represen t the macroscopic descrip
tion. Re turning to the physical variables, they assume the fo rm 

p(O) = 7_/0)(X, 1), 

I?(O)(X, l) = (! rt 7/0)(X, !) , 
Pa 

(2.41) ( it i.Jo(O) ) 
(C' (O)) = cPs (1 - c/J)r)O) - O Dt(C'(l - T))dT , 

( v;o>) = _ (/•t.i ) 12 D1i~> . 
f t D.\ -' 

Dn(O) D(CC0>) 
ri>-~- + div .'· (n (O) I vC0>)) + = 0. 
't' Dt ·' ~ \ Dt 

The set (2.41) exhibits the memo1y efTects, similarly to [9, 10] or [11]. 
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Model 11. Clasical diffusion-filtration couplings, s = 1, m = 1, St1 = 0 (.:), 
Mt1 = 0(.:), P el = 0(1), To = O(c 1Ts). 

In this case we get from (2.20), (2.22) and (2.23) the fo llowing sequence of 
equations. 

(2.42) 
divy(e<0>v<0>) = 0, 

divy(D gradyc<0>) = 0, 

f)~:O) - divx(DgradyC<0>) - divy(DgradrC<0>+DgradyC{l))=O in n s, 
(2.43) 

(g<0>v(O) + 0 gradyC(0))n = 0, 

(e<0>v(l> + e(l >v<0> + D gradJ.c<0> + D gradYC'( 1l)n = 0 on /'. 
(2.44) 

Case II is described by the above system, togethe r with Eqs. (2.25)- (2.28). 
As before in the Case I, the first boundary value problem to be investigated 

is given by (2.25)1 and (2.26), and it leads to the relations (2.32). 
Equations (2.43) 1 and (2.27) constitute the second boundary value problem. 

I3y using an equivalent variational formulation, [17), and by taking into accoun t 
the equation (2.31 )2, we obtain 

(2.45) C' {O) = ~: 1Js!?(O)(x.t) in ns . 

The third problem is described by (2.25)2, (2.28) 1, (2.42) 1 and (2.44) 1• The 
above result (2.45) transforms Eq. (2.44)1 into the relation (2.31)1> and the set 
under considerat ion becomes eq uivalent to the corresponding one investigated in 
the Case I. Therefore the Darcy law (2.39) is valid in this case too. 

The macroscopic mass conservation law follows from the fourth boundary 
val ue problem. It is given by the set (2.42)2, (2.43)2 and (2.44)2. Using the above 
results, the considered system can be rewritten in a simpler form : 

ue<O) + div .(o<0>v<0l) + div (o{llv(O) + o<0lv(ll) = 0 at J ~ y ~ ~ ' 

f)C(O) 
(2.46) ---of - divy(D gt·ad;-C'(O) + D gradYC'(I)) = 0, 

(o<O>v<1> + 0 (1> v<0> + D gradl.c<0> + D gradYC{ll)n = 0 . 

I3y applying the same method as in the Case I, the set (2.42), (2.46) yields the 
macroscopic mass conservation law: 

(2.47) 
D !?(0) I ) f)(' (O) 

4JTt + divx (o(O) \ v<0>) + (1 - 4J)---o/ = 0. 
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As in the Case I, the last term occurring in the above equation is a source term 
due to the difTusion process. Therefo re, as in Case I , the gas constrained in the 
micropo res interacts with the filtrating gas. H owever, the co upiing is now clasical, 
and it does no t introduce the memory efTects. 

The macroscopic equivalent description is given by Eqs. (2.32), (2.39), (2.45) 
and (2.47). When they are expressed in terms of physical variables, they have the 
fo llowing fo rm: 

p(O) = p(O)(X, l ), 

g(0)(X, l ) = [)a p(0)(X, t ), 
Pa 

(2.48) C(O) = 4>sO(O) (X , t) , 

(
v(O) ) = - (k;j) l2 f)J}O) 

' 11- DX1' 

D g (O) ( ( ) ) DC(O) 
4>-----at + divx L?(O) v(O) + (1 - 9)----;)1 = 0. 

Model Ill. Classical seepage law, s ~ 2 and m ~ 0, Su :::; 0 (.:2), Mu :::; 0(1), 
Pel ~ 0(1 ), TD = 0 (.:1 s). 

For simplicity, we do no t presen t here the homogenizatio n process. The pro
cedure is very similar to that of the Cases I and IT. It results in a macroscopic 
descrip tion simila r to (2.48), without the time derivatives. 

T he Case III describes, a t the macroscopic level, the statio nary gas fil tration 
in the micropores, without any influence of the di fTusion. T he macroscopic equiv
alent descrip tion is given by the fo llowing set: 

(2.49) 

(vfO>) = - (k;j) t 2 Dp(O) ' 

Jt DX1 

divx (.q(O) ( v(O) ) ) = 0. 

Mo reover, the gas concentration in the so lid is given at the first order of magni
tude by 

for Mu :::; 0 (.:) 

fo r M u = 0(1) 

( 

t (0) ) 
(CI0l) = ~. (1 - </>)gl0l - ~ D~l (G'(I - r )) dr , 

where 
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3. Remarks on the macroscopic behaviour 

The passage from the pore scale to the macroscopic scale shows three different 
equivalent macroscopic descriptions, depending on the value of the dimension less 
numbers: 

CASE I. Diffusion-filtrat ion coupling wi th memory effects 

(3 .1) 

CASE II. Classical difTusion-filtration coupling 

(3.2) 

[)p(O ) ( (1- · ·)[2 ) Op (O) 
<PDt- div '~:t grad (p(O)? + 4>, (1 - <P)O/ = 0, 

C'(O) = <f>s f2(0)(x .t). 

i) fJ(O) 
The coupling is represented here by the term 9s (1 - <.~)01 . As in the Case I, 

the coupling term disappears when ~'>s = 0. 

CASE TII. Classical seepage law 

(3.3) 

and, additionally, 

for Al u ~ O(E) 

for Mu = 0(1) 

C' (O) = "' n(O)(x t) · 
'+"S._ , ' 

= 0, 

. ()(0) 

( 
t ) (C(0l) ~ ,P, (1 - d>)g(O) - [ 

0;;
1 

(C:(I - r)) dr 

The above equations have to be supplemen ted by sui tab le initial and boundary 
conditions for 7/0>. 
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We remark here that the physical meanings of the macroscopic qu antities p<0>, 
g<0l and (C<0l) do not pose any proble ms since they are equal or proportional 
to the corresponding local quantities. Relations (3.1 )2 and (3.2)2 represent the 
constitutive equations of the gas. They give the concentration in the micropores as 
a function of the gas density in the macropores. The gas fi ltration is governed by 
the classical D arcy law. The macroscopic mass bala nce is represented by (3.1 ) 1 or 
(3.2) 1 or (3.3)1. The ir respective ranges of validity are obtained fro m the values of 
the dimensionless numbers. H owever, the description I is the most powerful since 
it comprises the descriptio ns II and III as particular behaviours. The descriptions 
II and III are obtained in the limit from description I fo r slow and rapid transient 
excitations, respectively. 

L e t us now study the tota l mass flux of the gas. It is the sum o f the filt ra tion 
flux and the diiTusion flux, 

F = o(v)- (D grad C). 

To determine the con tributio n o f filtration and diiTusio n in the to tal flux, we use 
again dimensionless variables. For the sake of clarity of the descriptio n, we do 
not omit now the asterisk which denotes the dimensionless variables. Within the 
approximation of O (c ), the above relation becomes: 

F(O) = ocvc [o·<D>(v~<Ol) - ~-~~ (Egrad
1
.(c· (O) ) + (gradvc·<D>)) J. 

Now, from th e definition (2.12) of the surface Peeler number 

DCc = rr t 
l " ' (!cU,. 

we have 

F(O) = Oc Vc [ g*(O) (v·(O)) - Pe[ 1 ( [ grad,. ( c·(O)) + (gradv c·(O))) l . 
By using the estima tio ns presented in th e Sec. 2, it becomes in a ll cases 

IF(O) - {.)c'PcL?·(O)(v·(O)) I :S 0 (.:). 

The total mass flux is eq ua l to the pore filtrating flux within the app roxima
tio n O (E). 

4. One-dimensional problem 

To emphasize th e influence of the gas diiTusion, let us consider the o ne-dimen
sional macroscopic boundary value problem. Consider the gas fi ltratio n thro ugh 
a horizontal and semi-infinite coal sea m. In additio n, we assume that: 

• the coal stratum is an isotropic and homogeneous po ro us medium o f constant 
thickness, 

• the roof and the fl oor a re impermeable to the gas, 
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• the mine opening is maintained at the atmosphere pressure ]Ja, 

• the initial pressure p, in the coal seam is constant, 
• the long-wall head moves with a constant velocity w. 
With the above assumptions it is possible to change the problem to a steady 

state problem. We introduce the moving system of coordinates (~ 1 , 6 , 6 ), Fig. 2, 
with ~1 = x 1 - wt and~~ = 0 on the long-wall head. The derivatives are trans
formed into the fo rm: 

(4.1) 
[) [) 
- = - w-
ol 8~1 · 

x2 ~2 

F'JG. 2. Geometrical scheme of the one-dimensional problem. 

We investigate three boundary value problems where one of the three descrip
tions is assumed to be va lid everywhere throughout the seam: 

I. Gas filtration with d ifTusion in the solid part and with memoty efTects (the 
model (3.1 ), Case I). 

IT. Gas fi ltration with gas difTusion in the solid part and without memory efTect 
(3 .2), Case IT. 

TIT. Gas filtration without any gas difTusion in the so lid part (the classical 
model described by (3.3), Case TIT). 

The solution of the Problem liT can be obta ined by direct integratio n of the 
difTerential equation describing this case. Taking into account the boundary con
ditions 

2E_ = 0 
[)~ I ' 

]J = ]J; at ~~ - 00, 

P = Pa at ~I= 0, 

gives the gas pressure distribution and its gradient in the fo rm [4]: 

(4.2) (k) f2 [ (Pi- Pa)] ~ 1 = -- p" - p + p; In , 
cPJIW ]Ji - ]J 
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(4.3) - = -- -- 1 op <Pw 1L [Pi ] 
8 ( t (k) /2 p . 

Consider now the Problem TT. It is easy to conclude that its solution can be 
obta ined by changing <P into <P + <Ps (1 - <P): 

(4.4) = (k) /
2 

[ (Pi- Pa)] 
~I (<P + <Ps [1 - <P])f LW Pa- p + ]J; In ]Ji- ]J ' 

(4.5) O]J = [<P + <Ps (1 - <P)]w{L [Pi _ l] 
8(1 (k)/2 p . 

Solution of the Problem I necessitates the memo ry functio n (G(I)). It is de
fi ned from the set (2.34), where the right-hand side o f (2.34)1 is equal to uni ty. 
In order to p resent a closed analyt ical (not numerical) fo rm of the memory func
tion, we confine our study to a ve ry simple model of the periodic cell. We assume 
spherical grains with radii ll. The spa tia l structure o f the grain packing is shown 
in F ig. 3. The grains are assumed to constitute of a homogeneous and isotropic 
microporous medium. 

2R 
+-------+1 I 

f iG. 3. M icro-gcomct1y o f the porous coal medium. 

By using spherical coordinates and by putting !I (r.l) = C'(1·, l) ·r, the set (2.33) 
can be written in the fo rm: 

(4.6) 

a£(II (r, t.)) - D d
2
£(1/ ;r l)) = r, 

dr 

£ (!/(r, t)) = 0 fo r 1' = 0 

where r represents the radial coord inate. 

and r = R, 



http://rcin.org.pl

466 D. LYD/. IJ ,\ Af\' 1) .J. L. i\U il i ,\LILT 

The eigenvalues and eigenfunctions associated with the set (4.6) are: 

A =D (m7r)2 
m R ' 

{2 . (m7r ) 
'Pm = v R Stn R 1' • 

By looking for £ (11 (r, t)) in the form: 
00 

£ (11 (r, !)) = L dmt.pm , 
m =l 

we obtain 

and 
00 

1 cos(m1r) . (1n1r ) £(1l(r, t)) = - 2R L ~ stn - 1· . 
m= I a+ / m m.7r n 

The Laplace transform of the function G(r, l) is 

£ (C'(1·, t )) = - 2H f 1 cos(m 7r ) sin (m7r 7'). 
'/' a + Am m1r ll 

m= l 

Finally, by taking the vol ume average of the above equation and applying the 
inverse Laplace transform, we obta in (G(t )) in the form 

(4.7) (G(t)) = t _ l_r-D(m rr / f?)2t. 

m= l 11l2 7r 

Let us return to the Problem I. The memo1y efTect in Eq. (3.1) is given by 
the convolution product of the memory function by the time derivative of the 
pressure. By integration by parts, this product can be presented in the fo llowing 
equivalent form: 

By using the transformation rules ( 4.1) and by taking into account the above 
relation, we reduce the mathematical model of the Problem I to 

{)p (k;j) L2 {;2p2 . , {)p 
- </>w-- ---- - q>. (l - ~o)w-

{}f. l 2,L aE.? ·' of.1 
(4.9) 
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where 

dn = f (~) n+ l 
m = l 7?1, 

Clearly, Eq. (4.9) is too complicated for analytical solution. Therefo re, a nume rical 
iteration procedure is introduced to o bta in an approximate solution. I t gives the 
distributions of the gas pressure and its gradient. The results are p lo tted in F ig. 4 
and 5, together with the results o f III and IT. T he gas is ca rbo n dioxide. The 
fo llowing typical values have been used in the calculations: 

• macro po re porosity: <P = 0.05, 
• micro po re porosity: <Ps = 0.1 1, 

(k)/2 m 4 
• coefficient of filt ratio n: -- = 10- 4 MN , 

Jl s 
2 

• d iffusion coeffi cient in the micropo res: D = 10- 11 ~. 
s 

• radius of grain (three cases): R1 = 10- 3 m, R2 = 2 x 10- 3 m, 1?3 = 4 x 10- 3 m, 
• ini tial gas p ressure in the coal seam: Pi = 4 MPa, 
• velocity o f the lo ng-wall head: w = 8 x 10- 5 m/s. 

p 

(MPol 

3 

2 

0 5 10 15 20 Hml 

FIG. 4 . D istrib utio n o f the gas pressure in the coal seam: I - So lution 11, 2- Solu t io n I 
for Fl = 1 mm, 3 - So lu tio n I for ll = 2 mm, 4- So lu tio n I for R = 4 mm, 5 - So lutio n Ill. 

F igure 4 and F ig. 5 show that IT yields larger values o f th e gas p ressure and 
of its gradient, whereas III gives lower val ues. T he so lut ions III and II can be 
conside red as bo unds fo r the solut ion I. W hen there is no available info rmatio n 
about the geome trical structure of the coa l, they can be used as rough approxima
tio ns of the pressure and its grad ient. No te, hovever, the large di ffe rence between 
the two solutions TIT and IT, in part icular between the pressure grad ients a t the 
long-wa ll head. 

The most impo rtant factor responsible fo r the occurrence o f a gas-coal o ut
burst is the grad ient o f the gas pressure at the lo ng-wall head (4]. I t is shown in 
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grad (p) 

fMPalm/ 
5 

t 

3 

2 5 

0 005 010 015 020 f fm/ 

FIG. 5. Distribution of the gradient of the gas pressure in the vicinity of the long-wall head: 
1 - Solution II, 2- Solution I for R = 1 mm, 3 - Solution I for R = 2 mm, 4 - Solution I for 

R = 4 mm, 5 -Solution Ill. 

Fig. 6 as a function of the grain radius. We conclude that the solution I converges 
to the solution II when the radius of the grain becomes smaller and smaller, and 
converges to the solution Ill when the radius becomes larger and larger. The 
curve in Fig. 6 shows also that a smaller radius yields a larger value of the gas 
pressure gradient at the long-wall head. We can immediately see the important 
role played by the grain radius or, more generally, the geometrical structure of 
coal. Our results agree with the empirical re lation (1.1 ). 

grod(p) 

fMPoJtn 
5 

1 oL-----~-----2~-----3~----~,~----~5------6~R~fm-m~l 

F IG. 6. The gradient of the gas pressure at the long-wall head versus the grain radius. 

It is interesting to investigate the domain of val idi ty of each description in the 
seam. It is now possible to estimate the macroscopic characteristic length L(O in 
each point of the seam, by using 
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The solutions I, TT and HI give approximately the same result. The resulting pa
rameter E is shown in the Fig. 7. It is seen that E is small everywhere, except in 
a thin layer a t the long-wall head where it goes to infinity. In this region there 
is no separation of scale and, consequently, there is no macroscopic description. 
The solutions I, II and III remain valid outside this boundary layer, i.e., approx
imately where E ;::: 0.1. The results in Fig. 6 are nevertheless valid because of the 
momentum balance applied to the boundary layer. 

[ 

0.1 

001 

0001 

0.0001 

0 20 1.0 60 80 

FIG. 7. Distributio n of the parameter of scal e separation e in the coal seam. 

The domain of val idity of each description can be investigated by using the 
dimensionless number: 

where Vc is given by 
~~2 Dp 
Jl 8~1 . 

We have A= 0(1), O (c 1) and O (E) in the Case I, TT and III, respectively. A, E 

and E- 1 are plotted for comparison in the Fig.8. The figure shows four regions: 

~1 < 0.01 m, Le. E > 0.1 , 

corresponds to the boundary layer where no macroscopic description is possible. 

0.01 m < ~ 1 < 0.3 m, 

near the boundary layer, A = O(E), To = O(ETs ), and the classical description 
TIT can be applied. 
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0 .3m < ~ 1 < 20m, ri= O(l), To = O(Ts). 

and the description I, with memory efTects has to be considered. 

~~ > 20m, 

and th e description IT, classical coupling, is va lid. 

NH 

10000 

100 

FIG. 8. Domains of validity of the th ree models. 1: A= 0( 1), Mode l I. 11 A= O(o- 1
) Mode l 11. 

Ill A = O(o ), Mode l Ill. NH: no n-homogcnizable. 

S. Conclusions 

The above study shows that the innuence o f the difTusio n process in the mi
cropores on the gas filtra tio n in the mac ropo res depends o n a source te rm in the 
macroscopic eq uatio n o f mass conservat io n. The filtration and the simultaneous 
difTu sion of the gas are mode lled by three d iffere nt macroscop ic descriptio ns. 
Appropriate dimensionless numbers, re late d to the physico-chemical properties 
and the geometrical structure of the coal, dete rmin e the model to be used. In 
pa rticular, it is shown that the gas concentration exh ibits me mory e ffects if A, the 
ra tio of the difTusio n to the convectio n characteristic t imes, is of 0 (1 ). When , \ 
decreases to A = O (.s), the memo ry efTects d isappear and the model converges 
to the classical filtration model. The diffusion in the solid part is ignored. When 
A increases to rl = O (E- 1 ) , the memory effects disappear too, and the model 
converges to a filtration-like model. The be havio ur is described by a n equation 
similar to the classical filtratio n process, but where the porosity of the macropo rcs 
is replaced by the to tal porosity of the micropores and the macropores. The two 
last behavio urs, i.e., the fi ltra tio n without any diffusio n and the filtration with 
the classical difTusion process, give bounds for the solution of the filtration with 
memory efTects. 
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Appendix 

Non-homogenization situation : s = 0, m = 0 (Case TV) 

From (2.19), (2.21) and (2.22) we get 

dn(O) 
(A.1) -~-. - + div (i 0)v(O)) = 0 in ftp , 

Dt Y 

[)C (O) 
(A.2) -- - div (D grad C (0)) = 0 111 f2s, /) t y y 

(A.3) ( L>(O)v(O) + D gradyC(0))n = 0 on r. 

471 

T he above set, together with Eqs. (2.25)-(2.28), yields the sequence of the bo und
ary value problems to be solved. 

The first one is described by (2.25)1, (2.26) and leads again to the rela
tion (2.32). 

Equations (A.2) and (2.27) dete rmine the second problem. They are equiv
alent to the corresponding ones in the Case I. There fore the first term of the gas 
concentration satisfies the relation (2.37). 

Now we solve the fourth bo undary value problem described by (A.1 ), (A.2) and 
(A.3). Thking the vo lume average a nd using the divergence theo rem, Eq. (A.1) 
takes the form: 

Dn(O) 1 J ,~-._~_ + - (o(0) v (0))n r!S' = 0. 
'f' iJ I IJ21 -

df?p 

The conditio n (A.3) transfo rms the above equ a tio n into: 

D£?(0
) 1 J qyUt- fOT (D gradYC (0l)n rLS = 0 . 

df?, 

Now, by using (A.2) and again the divergence theore m, we obtain the following 
relation: 

D g(O) d(C(0)) 

qyUt- Dt = O. 

Substitutio n of (2.37) leads to 

[) (}(0) (le ( () [!(0) [) [it [) {_)(0) ' l ) 
qyDt- Cc 4Ys (1 - qy)Jt - dl 0 Jr (C (t - r )) riT = 0. 

Application of the Laplace transfo rm and the co nvo lution theorem leads to the 
eq uation 

£ ( /)~:O)) [4Y- ~: qy_, (1 - 9) +a ~: ~&_, £ ( (C(t) ) )] = 0, 

where a is the complex Laplace va riable. 
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The above relation must be valid fo r any values of a and for any geometry o f 
the period [2. Therefo re, it is clear that 

and then 

L (()g(O)) = 
Ot O, 

f) [>(0) 

Dt =O. 
This condition leads to the rescaling of the dimensionless number Su. This one 
becomes of the order of magnitude 0(.:), that is in a contradiction with our initial 
assumption Su = 0(1). R e mark that Su = 0(1) does no t satisfy the condition 
(2.1 3). We conclude that the case under consideration is not ho mogenizable. 
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Influence of the Schulgasser inequality on effective moduli 
of two-phase isotropic composites 

S. TOKARZEWSKI and J. J. TELEGA (WARSZAWA) 

THE A IM of this paper is to study the effective transpo rt coeffic ie nts Ae of macroscopica lly isotropic 
two-phase composites fo r the case, whe re die lectric coefficients .\ 1 and ,\2 o f co mponents a re 
rea l. As an input we take: ( i) N coefficie nts o f the power expa nsio n of ,\ e (~·) at x = 0, where 
x = ( .\zf ,\ 1) - I; ( ii) the analytical p roperty of Ae(l:), namcly .\ . ( - 1) 2' 0; (i ii) the Schulgasser 
inequali ty Ae(x).\ e(Y) = (.\ 1) 2, y = - x f (x + 1). By starting from (i), (ii) a nd ( iii), a n infinite set 
o f bounds on ,\ . (.r ) has been established a nd compared with the corresponding ones repo rted in 
literature. As a n example of illustration of the obtained results, the regular arrays of spheres has 
been invest igated numerically. 

1. Introduction 

THE EFFECTIVE TRANSPORTcoefllcients /\ , of composite materials may be evaluated 
by the method of bounds [5, 6, 7, 8, 12, 19, 20] . The bounds become increasingly 
narrow, when more information concerning the geometrical properties o f the 
medium is available. 

Milton has derived in the complex /\, -plane an infi nite set of narrowing bounds 
on >-e. The ca lculation of his bounds requires the knowledge of successive terms 
of the power expansion of A, in /\ 2 - /\ 1. The coelllcients of the expansion are 
geometrical in nature and the ir values are determined by the co rrelation fu nctions 
of disordered geometry. Milton's approach is based on an analyt ic rep resentation 
of the efTective dielectric constant due to DERGMAN [4]. The problem o f complex 
bounds was also discussed by FELDERIIOF [1 2], who obtained the estimation of >-c 
with the help of four characterist ic geomet rical functions introduced by DERGMAN 
[5]. Recently, interesting cont inued fract ion representa tions fo r the set o f complex 
bounds on /\ p were presented by DERGMAN [6] for three-, and by C LARK and 
MILTON [8] for two-dimensional systems. 

The fundamental estimations of /\,(.r) reported in literature [20] do not explo it 
the well known Schulgasser ineq uali ty >- r(.r )/\, (y) ~ (/\ 1) 2, y = - .r / (.r + 1) [22]. 
Direct lin ks of this ineq uality with bounds for isotropic, inhomogeneous materials 
has been advocated by MI LTON [20, p. 5297], see also [7, p. 927]. He suggested 
that some of the existi ng bounds on /\, (.t ) are not the best, cf. [20, p. 5297]. A 
simple case of incorporat ion of /\, (.r)/\ , (y) ~ (>. 1) 2 into the second order bounds 
on >.c(.r) only, was studied in [6]. 

The main aim of this paper is to include the Schu lgasser inequality >-c(:r) /\, (y) ~ 
(.A 1) 2, y = - .r / (.r + 1) in to an infin ite set o f fund amental real-valued bounds on 
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Ae(:t) reported by MI LTON [20). This aim is achieved by applying Pade apprcxi
mants and continued fractions to the formulation of a method of incorporat.o n 
of Schulgasser inequality into lower and upper bounds on scalar, hulk transp)rt 
coefficients of two-phase media, see Theorem 2. 

2. Basic definitions and assumptions 

This study is concerned with the efTective dielectric constant !le of a compmite 
consisting of two isotropic components of dielectric moduli ,\I> /\ 2 and volune 
fractions <p 1 and <p2 = 1 - <p 1, respectively. The overall dielectric coefficient !1 , is 
defined by the linear relationship between the volume-averaged electric field (U) 
and volume-averaged displacement (D): 

(2.1) (D) = !le(U). 

The value ( ·) is averaged over a representative volume or a basic cell. In general, 
!le will be a second-order symmetric tensor, even when /\ 1 and .-\ 2 are both scalas, 
and will depend on the microstructure of composite. Our consideration will be 
limited to one of the diagonal element of !le, say Ae, which has a well kno.vn 
Stieltjes integral representation [4, 9, 10) 

(2.2) 

I 

C(.'~: ) = Ae(x ) _ 1 = X J rl; (n) ' 
/\ 1 1+ xn 

0 

where 

(2.3) X = h - 1, 

Here C (.x) is defined for x E (- l ,oo), cf. [6, 12). The spectrum ; (n) appeanng 
in (2.2) is a real, bounded and non-decreasing function determined fo r 0 s; v < 
oo. The representation (2.2) was introduced by B ERGMAN [6) and referred to as 
characteristic, geometrical function. 

Let us consider the power expansio n of (2.2) 

(2.4) 

where 

(2.5) 

00 

C'(:t) = L Cnxn, 
n= l 

00 

C'n = (- l r -1 J un-1 d; (u). 

0 

For composite materials the coefficients C'n (n = 1, 2 .. . . , ) are finite and series 
(2.4) is convergent for lx I < l. 
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Now we are in a position to introduce the Pade approximants to Stieltjes series 
(2.4). To this end we consider the fo llowing ratio nal funct ions 

(2.6) 
[M+ J IM ] = Lllt +A x ) = a~J)x + · · · + a\~)+ .l xllf+ .f 

PAt(x ) 1 + &~J)x + . . . +~? xlll ' 
J = 0, 1, 

with the power expansion of [A/ + J I M] at x = 0 

= 
(2.7) [M + J IM](x) = L Gn,JXn, J = 0, 1. 

n =l 

The functions (2.6) are the subdiagonal (J = 0) and diagonal (J = 1) Pade 
approximants [M + J I M ] to the Stieltjes functio n (2.2), provided that 

(2.8) Gn,J = Gn for n = 1, 2, . .. , 2AJ + J, J = 0, 1. 

Pade approximants (2.6) can also be expressed in the form of S -continued frac
tions 

(2.9) [M+JI M ](x )=glx .rnx 921\f+JX , 
1 + 1 + .. ·+ 1 

.1=0, 1, 

equivalent to the following explicit expression, see [1 , 26] 

[M + .JIM] (:z:) = ___ ___::_:9 l:...,.,x--;:.,-----
!J2 X 1 + ___ ..:::....:... __ ----::-,.---

1 + 9211/+J-l :l: 
1 + 92M + JX 

The coefficients 91> ... , 92111 +J appearing in (2.9) a re posit ive and uniquely de
termined by the 2M + J coefficien ts Gn (n = 1, 2, ... , 2.A/ + J; .J = 0, 1) of a 
Stieltjes series (2.4) . 

After th is preparation, we can recall the infi nite set of funda mental boun ds 
on >-e(x) derived by M ILTON in [20]. I3y expanding his estimations U N,o(C) and 
VN,o(P) (p = xl(x + 2); x = >-21>- 1 - 1) [20, p. 5296] into 5'-continued fract io ns 
dependent o n x , we obtain: 

THEOREM 1. For two-phase inhom ogeneous media, the S-continued fraction s 
(2.9) generated by power expansion (2.4) obey the following inequalities: 

(i) If x ~ 0 then 

(2.10) N Ae N 
VN,o(x) ~ (- 1) ~ ~ (- 1 ) N N,o(x). 

(ii) If - 1 :S x :S 0, then 

(2.11) 
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where C N + 1 is given by the following recurrence formula 

(2.12) 
• [Jp 

Cp = 1 C ' 
- p+l 

p = 1.2, ... N, 

while U N.o(:r) and \1 N,o(.r) take the following S -continued fraction forms 

(2.13) 

U " a( ~· ) _ 1 + .rJL X (}2 X 
l v , '" -

1 + 1 +· .. + 1 

V ( ) 1 + 
!JL X [J N X 

N ,O .1: = 
1 + 1 + .. ·+ 

Here UN,o(:c ) is a Pade approximant given hy (2.9) to power series (2.4), N denotes 
the number of known coefficients of a power series expansion (2.4 ), while x = 
P.-2 / .-\1) - 1. 

For macroscopically isotropic composites the well known Schulgasser inequal
ity holds [22]: 

(2.14) 
Ae(:r) Ae(V) -- - - > 1 

AI ''I - ' 
if 

X 
!J = - -

.1: + 1 
and .r > - 1. 

The main purpose of this paper is to incorporate the relation (2.14) into S -fraction 
bounds (2.1 0)- (2.11 ). 

3. Schulgasser inequality >. , (.r) ,\ , (y) ~ (>. 1? 
Let us consider the following class of S -continued fractio ns 

(3.1) ( ) 
[JJ :Z. [)2:1' .rJJ\' .l' fJN + l·~' 

'!f-'N+ l X, rtN + l = 1 + -
1
- - .

1
- - - --

+ + .. ·+ 1 + 

Here 9J > 0 (j = 1, 2, ... , N ) are uniquely determined by N te rms of a power 
expansion of >-ef,\ 1, while q ' + I is a free parameter belonging to the in terval 

(3.2) R N+ l.o ={'IN+ I 1 'tN+ l ~ o}. 
Now we will seek the interval RN+ I,L(.r) of admissible values o f 'I.V+ I defin ed by 

(3.3) R,v+u(.r) = {'IN+ l I ~'N + l(:z·.qN+ l) l!·J\' + l( !J .'fN + l) ~ 1 }. 

where y = - .r j ( :z· + 1). It is obvious that 'IN+ l determined by (3.3) satisfy the 
Sch ulgasser rel ation (2.14) 

(3.4) 
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Of interest is the equality 

(3.5) y = -xj(:r + 1), 

i.e.: 

(3.6) +- - -- 1+- -- -- -1. (1 9JX 9NX CfN+JX) ( 9IY DN+IY fJN+ I !J) -
1 +·· ·+ 1 + 1 1 +· · ·+ 1 + 1 

The recurrence formula forS -continued fractions reported in [2, Chap. 4.2) yields 

(3 .7) 

where AN(z) and BN(z) are polynomials determined by 

(3.8) 

(3.9) 

Ao = 1, 

JJo = 1, 

A; (z) = ; \j -I(.:) + Z!Jj l l j -2(.: ), 

IJ; (z) = Bj -I (z) + z.r;; U; -2 (::: ) , 

On the basis of (3 .7), relation (3 .6) takes the form 

(3.10) 

Here y = - xj (x + 1). Simple rearrangements of (3.10) yield 

(3.11) 

where 

j = 1,2, ... , N, 

j = 1,2, ... , N. 

(3 .12) O' fV +I (x) = xy (;\ N-1 (.1: ):\N- I(Y) - j]N-J (.r )IJ:V- I(y)) , 

(3.13) fJN + I(x ) = :t· [AN-I(:r):I N(Y) - flN- J( .J.: )DN(Y)] 

+ y [A N (:~: ) t l N - 1 (y) - !]N(.r)flN- I (y)) , 
(3.14) OJV +J (.T ) = r\ JV (.t )t \ N(Y) - lJ,y(:t )/J,v (y) . 

The solutions of (3.11) are given by 

(3.15) 

1 fJN +J(.r) [ 
{/ JV +l(:!:)=- 2 (-) 1+ 

rl' N +I .l: 

11 ( ·) _ f] N+ I(.r) [1 fJN+l .1: - - -
2 fl'N + 1 (x) 

4oN+ I( :~· )8N+ I(·r ) l 
1 - 2 . 

f] i\' +I (.T ) 
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On account of (3.3) and (3.15) we have 

(i) if aN+ !(x ) ::; 0, then 

(3 .16) RN+ I ,I(x) = {fJN+I I fJA' +I(:t ) :S: fJN+ I :S: q;V+ I(.T)} , 

(ii) if O'N+ I(x) ~ 0, then 

(3.17) 

According to definition (3.3), a class of bounds given by 

(3.18) 1/JN+ I(x , fJN+J) , 

satisfies the Schulgasser inequality (2.14). 

4. Inequality >-e(x ) j )q ~ !l (x ) 

Let us assume now that for fixed x = (>.z/>. 1) - 1, the lower bound Jl (:r) o n 
the efTective modulus ,\e(:r) / >. 1 is known, 

(4.1) 

By using (3.1) we can write 

(4.2) V'N+ 1(x, fJN+1) ~ /l(.r). 

Of interest is the equality, cf. (2.1 0)2 and (2.14), 

(4.3) ·' ( . c ) - (1 [j ]X .rJNX CN+ J·?.:) - !I ( ·) v-'N+ l x , N+ l - + - - - .1: • 
1 + .. ·+ 1 + 1 

By applying recurrence formulae (3.8)- (3.9) to continued fraction ( 4.3), we ob
tain 

(4.4) 

Hence 

(4.5) C ( 
·) _ !l (x )DN(.?.: ) - AN(.?.:) 

N + 1 .1: - ) ) . )] :~· [ ri N- l(x - !l (x JJN- 1(.?.: 

Now we are in a position to introduce the interval RN+ 1,2(:z: ) of admissible values 
of qN + 1 given by 

(4.6) 
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On account of ( 4.5) and ( 4.6), R N+ 1 ,2(.x) takes a form 

(4.7) 

Note that, according to (4.6) and (4.7), a class of bounds determined by 

(4.8) 

satisfies th e inequality ( 4.2). 

5. Bounds exploiting Schulgasser inequality 

Let us introduce an intetval RN+ 1(x) 

(5 .1) 

where RN+ J,o, RN+I ,t(x ) and RN+2,2(:z: ) are defined by (3.2), (3.16)-(3.17) and 
( 4. 7), respectively. Note that the class of functions 

(5 .2) 

satisfy the inequalities (2.14) and (4.1). For x - - 1 + the lower estimation of 
>-e(x ) is well known, cf. [4, 5, 6, 23] 

(5 .3) 

For such a case it is convenient to introduce the notat ion 

(5.4) lim Q (.x) =: Q(- l +) :::: Q(- 1), 
x~- J + 

consequently used in the sequel. Now we a re ready to formulate the theorem 
solving the problem of incorporatio n of the Schulgasser ineq uality (2.14) into 
bounds (2.1 0) - (2.12). 

THEOREM 2. For macroscopically isotropic two-phase inhomogeneous m edia, the 
S-continued fractions (2.9) generated by power expansion (2.4) obey the following 
inequalities: 

(i) If x ~ 0 (x = (>- 2/ >-t)- 1). then 

(5.5) 



http://rcin.org.pl

482 S. TOI<A i lZEIVSI·.:I AND J .J . TELEGA 

(ii) If - 1 :S x :S 0 (x = (>-.2 / )q)- 1), then 

).,,(x ) 
'1/JN (:~:) ~ -)..-

1
- ~ ·t/JN +2(x, EN+ 1, If N+2) , 

(5.6) . ! ( ) glx gN X 
<r'N :l: = 1 + - - , 

1 + . . . + 1 

Here the coefficients Jf N +2 and EN+ 1 are given by 

(5.7) 
H _ AN(- 1)- EN+ 1AN-1(-1) 

N + 2 - AN(-1) ' 

(5 .8) D N+I = max{qf.v +1(- l), q;.(,+ 1(- J)} , 

If N+2X 

+ 1 

where qf.v+ 1(- 1). q;.(,+ 1( - 1) are determined hy (3.15). Relation (5 .8)2 is a conse
quence of (4.5) and (5.3). while N appearing in (5 .5) - (5.8) denotes the number of 
known coefficients of power series (2.4 ). 

P r o o f. It follows from Appendix A that oN+ 1 ( - 1) ::; 0 and b N + 1 ( - 1) ~ 0. 
Thus the roots of (3.11) qf.v + 1 and r;;~ + 1 have opposite signs, cf. (3.15). On account 
of (5.1), (5.7) and (5.8), we get 

(5 .9) 

Hence the class of bounds (5.2) takes a form 

(5.1 0) 
!J t :l: .fJN ·?: T:t: 

7/1N +t(X, T) = 1 + - .- -- , 
1+···+1+1 

0 ::; T ::; EN +l . 

The first derivative o f ·V1 N + 1 (.1·, r) with respect to r satisfi es 

04'N+1 (x, r) > 0, fo r x E (0, oo) , 0 :S T :S f~'N+ 1 and N = 0, 2, ... , 
OT 

(5.11) 
O'tPN+ J(.r, r) 

< 0, for :~: E (0, oo) , 0 ::; T ::; EN+1 and N = 1, 3, ... . 
OT 

H ence the continued fractio n V'N+ 1 (:~:.r) (.1: E (O,oo)) defi ned by (5.10) assumes 
its extremal values for 

(5.12) r =O and T = EN+I . 

By substituting (5.12) into (5.1 0) we obtain the formula (5.5). 
If -1 ::; x ::; 0, the inequa lities (5.6) result from the relations: 

(5.13) 
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where 

(5.14) ·' ( c ) .tJIX 9 NX (/N + I·l: CN+2X 
'I-1N+2 X, ·· N+2 = 1 + - - --

1 + ··· + 1 + 1 + 1 

(5.15) 
•1, ( E 11 ) _ 1 9 1X [}Nl: EN+ Ix l!N +2X 0 'f'N +2 X, -'N + I• N+2 - + - 1- - 1- 1 1 

+·· ·+ + + 
Note that for D N + 1 2 C N + 11 the bounds determined by Th. 2 reduce to the 
exist ing ones defined by Th. 1, since the parameters CN + 1 given by (2.12) and 
(5.8)2 coincide, while If N +2 = 0. H ence the estimations (5.5)- (5.6) obta ined 
in the present paper can no t be worse than the previous bounds (2.10)-(2.11) 
reported in literature [20). Moreover, for some cases they have to be better. In 
the next sectio n we demonstrate the analytical form of a low order bounds on 
>-e(x )/ >'I given by (5.5) and (5.6). 

6. Low order bounds on >-c 

To illustrate Th. 2 we will evaluate hounds on an eiTective die lectric constant 
>-e(:c) for the cases, where (i) no coemcients (N = 0), (ii) o ne coelllcient (N = 
1) and (i ii) two coefficients ( N = 2) of the power expansion of /\ c(:c )/ >. 1 are 
avai lable. 

(i) The recurrence fo rmulae (3.8) and (3.9) give: 

(6.1) ;\_2 = 0, , \o = 1. 

Then relat ions (3.12)-(3.14) yield 

(6.2) o- 1 (.r ) = xy, 

Hence from (3.15), ( 4.5) we get 

(6.3) ' x + y 
ql = ---, 

xy 

1 
C'1 = -- . y = -:rj (.1· + 1). 

X 

For :r = - 1 + the eq uations (6.3) reduce to 

(6.4) 

From (5.7) and (5.8), it follows that 

(6.5) /·.\ = 1. 

H ence, on the basis of Th. 2 th e boun ds o n >-c are given by 

no = 1. 

(6 .6) if - 1 ~ :r ~ 0; 
Ae 

1 + > > 1 if X >_ 0. .1:_At_' 
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(ii) N = 1. Then 

(6.7) Ao = 1, n0 = 1, 

(6.8) 
a2 (x) = 0, fh (x ) = 2g1 x y , 

02(x ) = !JJ X + !J IY + g? x y , y = -xj(x + 1), 

(6.9) I 
q2 = -00, 

For x = - 1 + we have 

(6.10) 
q2 = -oo, 

D - 1- 91 
2---

2 

C 
_ - (1 + .'JJ X) 

2- . 

c2 = 1 - ql , 

1 
][3 = 2 . 

X 

From (5.5), (5.6) and (6.10) we readily obtain 

(6.11) 

(iii) N = 2. Now we have 

(6.12) 

(6.13) 

a 3(x) = xy[(l + gl x )(1 + .'J JY) - 1], y = -x j (x + 1), 

fh (x ) = xg1[x + y + (IJJ + .rn)xy] + Y92[.1: + !J + (g , + .'12):q;], 

y = -xj(.1: + 1), 

(6.14) 03 (x ) = g,x (l + !J2Y) + !J tY(1 + .r12:r) + 92!J21'!J , y = -xj(:J.: + 1). 

Thus for x = - 1 + 

(6 .15) 
1 1 - !Jl - !J2 

q3 = 1 - !J l 

Hence 

(1 - !11 - .IJ2) .1: 

1 + 91 X !J2X 1 - 91 

(6.16) 1 + 1 + 1 

1 
!JI X !J2X + - -
1 + 1 + 

(1 - !Jl - [)2 ) X 

1 

if - 1 ~x~ O, 

Ae 9IX 92X < - < 1 + - - , if X >_ 0. 
- At - 1 + 1 

It is interesting to compare the low o rder bounds existing in literature (Th. 1) with 
the bounds incorporating the Schulgasser ineq ual ity (Th. 2). The basic bounds 
(6.6) are the same, the estimations (6.11) are more restrictive than the well 
known Wiener bounds (27] (Fig. 1 ), while the inequalities (6.16) coincide with 
Hashin - Shtrikman bounds reported in [14] . 



http://rcin.org.pl

INFLUENCE OF' T HE S C H ULGASSE11 I 'EQ UALITY ON E FFECTIVE 1\IODULI 

10 

9 

8 'lj (X, C,) 

7 

6 

5 

'lj(x.§.!__---- --------------

F I G . 1. Existing(- ) and improved (- --)bounds on the effective dielectric constant of 
a face-centered lattice of spheres for volume fraction 'P2 = 0 .71. Upper bounds t,J!N(x) 

(N = 1, 3 ,5 ) coi ncide, whi le lower ones l]iN+ i(r , C'N +i) and t,J!N+ i(r , F:N +I ) differ 
significantly for N = 1 and sl ightly for N = 3. 5. 

7. Even nu mber of terms of a power expa ns ion of ,\e 

485 

In this section we will compare the known (2.10)- (2.11) and obtained (5.5)
(5.6) bo unds calculated from an even number (N = 0, 2, 4, ... ) of coefficients of 
power series (2.4). Th th is end we prove that fo r :1: ~ - 1 +, thus y = -xj(x + 1) 

(N = 0 , 2, .. . ), the expressions (3.15) reduce via (3.12)-(3 .14) to 

(7.1) lim 2n N+t(.r) :f 0, 
J'- -1 

1 l' fJN+ l c~· ) ( 1 + qN+ l = tm - ---'----""--
x - - 1+ 2n N+l(:r ) 

(7.2) 
, _ 1. fJN+ l(x) ( 1 1 4(\'N+t(:r )bN+ l(:r)) _ O 

qN+ l - lm - - - - . 
x-- 1 + 2o-N+ l (:r ) /3~+ l (.r) 

P roo f. The recurrence form ulae (3 .8) and (3.9) fo r S-continued fractio ns 
[2] and the Schulgasser inequa li ty (3.4) yields 

AN (:r )tl .v (y) > 
1 

BN(.T)DN (.ll) - ' 

(7.3) AN(x)AN(.tJ) > 0, /JN(:c )IJN(!J ) > 0, 
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For even N, on the basis of (3.12), (3 .14) and (7.3), we have 

(7.4) ( 
~ ~ .Y- 1 (.c) , \N-1 (y) ) 

O:JV+I (x) = XY~N (x) = :ry /JN- i (x )IJN-I(IJ) ( ) ( ) - 1 f 0 , 
/JN- l .1" /JN- l Y 

( 
JJ,y (y)) 

f3 ( ) 1 ( )) 
ri N- J(x ) - /JN- J(.r)--(- ) 

lim N+ l X = - ;-\ N y r\ N y 
:r-- J+ 2oN+ I(:r ) y AN-l(.IJ) ( /JN- I(Y)) 

, \N- I(.t)- JJN- I(:r) ( ) 
1 \N- l Y 

(7.5) 

1 ( ri N(.c) - IJJv (x)~.V -I~Y~) + _ r N - 1 .1J _ _ ; l,v (- 1) 

X ( () ( )lJN- J(Y)) AN- I(- 1) ' 
, \N-1 X - IJN- l :!" ( ) 

rl N- 1 .lJ 

I
. O'N+ l(x ) bN+ I(r) 

1
. a:N+J (:t) 

1
. 8N+J (.T) 

un = tm tm 
x-- 1+ f3N+ J(:r) fJN+ I(.t ) x-- J+ f3N+ J(.1: ) 1'-- J+ f3N+ J(.1·) 

;-\ J\ ( - 1 ) I' h N + I ( J' ) = IITI 
ri N- 1(- 1) ~·- - J+ PN+ I (:r) 

(7.6) ~ ( ) 
1° N+l .1; I' tm = tm 

:r- - 1 + f]N +I (.1:) J'- - 1+ 

( , \s (:r) - ll.v (.r ) /Jv ((y)) ) 

------------------~~--------~~~ ·~"~.IJ~--------------~- =0. 
( 

/JN(.IJ)) y,\N- I(.IJ) ( /JN- I(Y)) 
x ri N- J(.T ) - /]N- !(.1: ) - (- ) + ( ) , \JV (.r ) - IJ,v(.r) ( ) 

, \ N .lJ , \ N .lJ , \ N - 1 .lJ 

From (7.4) - (7.6), follow the relations (7.1) and (7.2). o 
For !1 (- 1) = 0 and even N ( .Y = 0, 2 .... ), the relatio n ( 4.5) coincides with 

(7.2) 1• Hence inequalities (5.5) and (5.6) agree with (2.1 0) and (2.11 ). Conse
quently for even N , the S -cont in ued fraction method based on the Schulgasser 
inequality (2.14) does not provide better bounds than the approaches neglecti ng 
this inequal ity. Therefore an improvement of the existing bounds on /\ c(.r) can 
be expected for odd N (N = 1, 3 . .. ) of coefficients of power expansion of..\ , (.l') 
only. 

8. Regular arrays of spheres 

Now we are prepared to apply Th. 2 to regular latt ices of spheres embedded 
in an infinite matrix. By ..\0 ..\2 and /\ 1 we denote the dielectric constants of the 
composite, spheres and mat rix, respectively. The first three coeflicients of the 
power expansion of (.Ac//\ 1) - 1 are as follows [4], cf. ('2.2), (2.4): 

(8.1) 
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where, as previously, x = (>..2 / >.. 1) - 1. Here r.p2, r..p1 deno te volume fractions of the 
spheres and matrix. On the basis of (2.6), 5'-continued fractions (2.9) associated 
with (8.1) are expressed by 

(8.2) [0/ 0] = 0, [1 / 0] = r..p~x, [1 / 1] = r..p; x + ( <.? 1 ~3).t, 

where 

(8.3) !11 = <.?2 , !12 = <.?1. 

Hence from (6.6), (6.11) and (6.16) we have: 
(i) for N = 0 

(8.4) 
1 ~ >..e/ >.. 1 ~ 1 + x, 

1 ~ Ae/ ).. 1 ~ 1 + X, 

if /\2 ~ )q , 

if )..2 ~ A I ; 

(ii) for N = 1 

(8.5) 

(iii) for N = 2 

1 
<.?2X <.?JX/3 Ae 92·'1: <.? t·r/3 2.rj3 

+ - -- >-> 1 + - -- --
1 + 1 >.. , 1 + 1 + 1 

(8.6) 
<.?2X r..p ,xj3 Ae <?21· <P t·T/3 2.r/3 1+ - --< -> 1+ - - - --

1 + 1 - /\ 1 - 1 + 1 + 1 ' 

According to the results of Sec. 7 valid for even N , the bounds (8.4) and (8.6) 
agree with the existing bo unds following from Th. 1, where (8.6) are Hash in 
Shtrikman bounds. Of interest is the case (8.5). For N = 1, from Th. 1 follow 
the well known Wiener bounds [27] 

(8.7) 
<.?2X <.? I X /\~ Y2·r 1+ - - < - < 1+ - . 

1 + 1 - AJ - I 

By co mpari ng (8.5) with (8.7) we co nclude that incorporation of the Schulgasser 
inequality (Th. 2) improves lower bound of WI ENER [27], while the upper one 
remains the same (Fig. 1 ). To determine bounds more exactly, further terms of 
the power expansion of /\(.r )/ /\ 1 are required. For simple, body-centered and 
face-centered, cubic lattices of spheres, McPHEDRAN and MILTON [1 6] evaluated 
the coefficients of a power series expansion of -'e(a:)r \ 1, n = .1:j(:r + 2) at a: = 0, 
and gathered them in tables as discrete functions of r.p2. In [25] we derive a 
simple formula relating the terms of a power series of -'c(.r )/ /\ 1 to the terms of 
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Table 1. Low order coefficients C,, g, , CN +h E N+h If N+2 for evaluation of S -cont inued fract ion 

bounds for the effect ive conductivity of regul a r a rrays of spheres. 

Arrays of 
n= 1 n=2 n=3 n=4 11 = 5 11 = 6 n=7 

spheres 

'P2 = 0.52 c, 0.52 0.0832 0.0248 0.0102 0.0050 0.0028 
Simple 9n 0.52 0.1600 0.1 380 0.2420 0.1727 0.2579 
cubic Cn 1.00 0.4800 0.6667 0.7930 0.6949 0.7514 0 .6568 

En 1.00 0.2400 0.6667 0.7427 0.6949 0.7473 0.6568 
If, 0.0000 0.5000 0.0000 0.0634 0.0000 0.0055 

'P2 = 0.67 Cn 0.67 0.0737 0.0155 0.0053 0.0025 0.0015 
llody- 9n 0.67 0. 11 00 0.1009 0.2761 0.2020 0.2566 

ccntcred c, 1.00 0.3300 0.6667 0.8486 0 .6747 0.7006 0 .6337 
E, 1.00 0.1650 0.6667 0.8082 0.6747 0.6960 0.6337 
Hn 0.0000 0.5000 0.0000 0.0476 0.0000 0 .0066 

'P2 = 0.71 Cn 0.71 0.0686 0.0147 0.0058 0.0030 0.0018 
Face- g, 0.71 0.0967 0. 11 71 0.3342 0. 1221 0.3168 

ccntcrcd Cn 1.00 0.2900 0.6667 0.8244 0.5947 0.7947 0.60 13 
En 1.00 0.1450 0.6667 0.7794 0.5947 0.7889 0.60 13 
I!, 0.0000 0.5000 0.0000 0.0546 0.0000 0.0074 

the power expansio n of Ac(o:) jE1, n = :r j (:r + 2). Fro m the coefficients given 
in (1 6, Tabs. 6, 7, 8] we have calculated, by using the a lgorithm proposed by us 
in (25], the coefficients C n of power series (2.4). T he coefllcients .rJn, CN+ l and 
EN+ I gathered in Table 1 a re evaluated by means of the numerical procedure 
p roposed in (25]. Note tha t for even 11 (odd .V), the coefllcients E1, . + 1 ( n = N + 1) 
are smaller than CN +l• wh ile fo r odd 1t (even N) they take the same values. For 
face-cente red cub ic arrays of spheres (fee) the existing bounds and the improved 
ones are presented in Tables 2 and 3. 

Ta ble 2. Existing { 1/•N (; ·) , ifJN + l (;·, CN+l ), Th. I} a nd improved 
{'if•N(.r ), V'N+z(.c , E N+t . 11 N+2) Th. 2} low order bounds o n >.. < (~· )j )q 

for the fee la ttice of spheres. 

tpz N X 'if'N (;·) ~1 1\' +2(;· . EN+l , /J N + 2) C'N +i(J' , C N+d 

1 -05 0.6450 0.607011 0.584795 
0.71 3 -0.5 0.6258 0.624909 0.624863 

5 - 0.5 0.6255 0.625497 0.625497 

1 - 0.7 0.5030 0.4 11 030 0.3765 12 
0.71 3 -0.7 0.4634 0.457736 0.457466 

5 -0.7 0.4621 0.46 1837 0.461835 

1 - 0.9 0.3610 0.162217 0.1353 18 
0.71 3 -0.9 0.2921 0.252278 0.250850 

5 - 0.9 0.2872 0.282345 0.2823 19 
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Table 3. Existing { r/JN (l·), ifJN +I(r.CN+I), Th. I} and improved 
{ r/JN (x ), WN+ I(£ , E N+d Th. 2} low order bounds on >..e(J· )j)q 

for the fee lattice of spheres. 

<,?2 N X t/.•N (r) 'ifJN+I(.c , }j'N+I ) 'V'N+t(x, CN+ t) 

1 50.0 36.500 5.303030 3.290323 
0.71 3 50.0 21.8 17 7.806020 7.7685 16 

5 50.0 13.861 8.872180 8.870695 

1 70.0 50.700 5.457399 3.333333 
0.71 3 70.0 29.629 8.206098 8.163556 

5 70.0 17.539 9.442256 9.440478 

1 90.0 64.900 5.548043 3.357934 
0.71 3 90.0 37.427 8.449407 8.403644 

5 90.0 21.133 9.796655 9.794679 

9. Concluding remarks 

489 

By starti ng fro m: (i) N coefficients of the power expansio n o f /\e(.c) at x = 0, 
(ii) - the a nalyt ical p rope rty /\ c( - 1) > 0, and (iii) - the Schulgasser inequality 
(2.14), an infinite set o f uppe r and lower bounds o n the efTective transport coeffi 
cient -Xe(:r) o f two-phase, isot rop ic composites have been established (Theorem 2) 
and investigated in deta il. 

With respect to the correspond ing estimat ions reported in literature (Th. 1 ), 
the improvement has been obta ined fo r the case o f lower bounds on .Xe ( .~:) con
structed fro m an odd num ber N of coefficients o f a power expansion o f .Xc(:r), cf. 
Fig. 1, Tables 2 and 3. Fo r even N the incorporation of the Schulgasser inequ ality 
(2.14) does no t provide bette r bounds in comparison to the approaches neglecting 
this inequa lity (7, 8, 22). 

As an exa mple o f illustration of Theo rem 2, the existing and improved bounds 
on the e ffective dielectric co nstant fo r regular, face-centered arrays of spheres 
have been evaluated and depic ted in Fig. 1, Tabs. 2 and 3. A signi ficant improve
ment has been observed fo r V = 1. Fo r V = 2 the di ffe rence between the bounds 
reported in the literature (20) and in the present paper is re latively small, while 
fo r N = 3 it is negligible (Fig. 1 ). No te tha t the above conclusion is valid fo r a 
specia l geometry of two -phase co mposite, namely a regula r array o f spheres. For 
such a composite and fo r n = 4, 6, fro m Table 1 we have E11 /Cn ~ 1. Tn the 
case o f o ther geome trical structures, when the ratio /',11 / C, satisfi es fo r instance 
En/Cn < 0.5 (Tab. 1), it is possible to get much better improvement. 

Appendix A 

In this Appendix we demonstrate th e lemma indispensable fo r incorporating 
the Schulgasser inequality (2.14) into the bounds on /\r . 
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L EMMA A.l. If a Stieltjes fu nction 

I 

(A.1) Ac(:r ) = 1 + :J: j d1( 11 ) 
.-\ 1 1 + :rn 

0 

satisfies the relations 

(A.2) y = -:~: / ( 1 + .1: ), .1: E (- 1,oo) , 

then Pade approximants AN(x)/ llN(.1: ) to .-\ ,. (.1:)/ .-\ 1 obey the inequalities 

(A.3) }~;g;) ~:: ~~~ ~ 1 ( N = 0, 1, 2 ... ), y = -x/(1 + .r ), x E ( - 1, ) . 

Here AN(.T ) and BN(x) are polynomials determined by recurrence formu lae 
(3.8)- (3.9). 

Pr oo f. The analytical properti es of tl .-v (.T)/ /h,·(:r) (.'V = 0, 1. 2 ... ) yield: 

(A.4) 

then 111 .~: E ( - 1 , ), 

where y = - :r f (x + 1). Hence of interest is the inequality (A.3) taken for :r -
- 1 + . On the basis of Theorem 1 we have: 

(i) if V is odd, then 

i \N(- 1+) .-\ , (- 1+) 
----'----'------'- > ' 
JJN ( - J+) - AJ 

(A.5) 

(ii) If N is even, then 

AN(- 1+) 

(A.6) 
fh r(- 1+) 

AN( ) 
fl N ( ~ ) 

and if X~ 0. 

if - 1 ~ :r ~ 0, 

if X ~ 0. 

According to Th. 1 and T h. 15.2 reported in [!), Pade approximants r\N(- 1+)/ 
BN(- 1+) and AN(oo)/ lh r(oo) (N = 0.2, ... ) are the hest hounds for Stieltjes 
function .-\, ( - 1 +)/ .-\ 1 and Ar( ~ )/ ,\ 1 with respect to a given number of coefficients 
of a power expansion of ,\c(.r)/ .-\ 1 at :r = 0. Hence the relations 

(A.7) 
ri N(-1 +) riN(oo) 

1 _....:....._----'- --'----'- > , 
1J N ( - l +) /Jr.,· ( ) -

N = (0. 2 . ... ) 

have to be satisfi ed. From (A.4) - (A.7) one can easily derive the inequality 
(A.3). 0 
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Surface stress waves in a nonhomogeneous elastic half-space 
Part I. General results based on spectral analysis 
Existence and analyticity theorems 

T. KLECHA (KRAKOW) 

E XISTENCE of surface waves in a nonhomogeneous e lastic half-space is proved o n the basis of the 
stress c lastodynamics formulation (cf. II J). It is demonstra ted tha t in the case when non homogene ity 
depends on depth of the semi-space, bo th the velocity and amplitude of a surface wave are analytical 
fu nctions of the wave number. 

1. Introduction 

I N 1971 (cf. [1]) J. I GNACZAK showed that the problem of surface wave propagatio n 
in nonhomogeneous isotropic elas tic half-space can he reduced to the fo llowing 
eigenvalue problem: fin d a positive number ..\ and a real-valued symmetric tensor 
fie ld 

i,j=1,2) 

satisfying the fo llowing equation: 

(1 .1) A(s)a - ..\Ba = O, 

together with conditions 

(1 .2) 

where 

(1.3) a(x2) = [a il (x2) o·22(x2) T O'J2(.l:2)] , 

s2 
0 ~D 

(! (! 

A =: A(s, Q) =: 0 
1 1 

- D-D sD-
{! (! 

(1 .4) 

1 
-sD -

s 
--D 

s2 1 
--D-D 

12 (} 12 (! 
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I - IJ - V 
0 

2Jl 2Jl 

(1.5) B = fl(tt. 11 ) = - /1 1 - 11 
0 

2tt 2Jl 

0 0 
1 

f l 

Tensor a defines the stress tensor amplitude and symbol f) denotes difTer
entiation with respect to x2 ( D = d/ d.r2). Number s is the wave-number, and 
f2 = e(x2), JL = tt(x 2) and tJ = 1J(x2 ) are density, shear modulus, and Poisson 's 
ratio, respectively (0 :S x2 < ). 

The formulation (1.1)- (1.5) is based on a pure stress method of classical 
elastodynamics.ct) 

In an earlier paper [4] J. l GNACZAK showed, that the problem of surface wave 
propagation in a nonhomogeneous isotropic elast ic half-space with shear moduls 
J.L and Po isson's ratio v depending on x2, and with constan t density, can be reduced 
to the following one: find a pair (r n, j3(.1: )) satisfying the ordinary difTerential 
equation of the fourth order 

(1 .6) (
1 ] ) 1 [? [ 2 2 ] - D--D- 1 ---- /J - s ( I - J2r; ) !3 
s2 1 - f2 1 - 1-i. 2 - J2 

[ 
1 2 1 1 - [2 ] 

+ 4 2 _ J2 LJ - D 1 _ J? D 2 _ J2 13 = 0 for .T2 E (0, 

and the boundary conditions 

(1.7) 

where 

(1.8) 
2 tn 

[? (.!:) = - ( - ) . 
f l :1"2 

( ') The problem ( 1.1) - ( 1.2) can he discussed in a class o f sq uare integrable.: func tions, i.e.: 

o. = (a ll azz a ,zf E L2(0 ,oo) x 1} (0, ) x /} (0 . • ) = [i}(O. ·xo)J3 A, fl E 1L2(0, )J3, 

), 

and it is co rrec tly posed whe n the co nditio n 17(A) = H(U) is satisfied: H(A), l?( fl ) de note the ra nges o f 
operato rs A, fl (cf.J 2 J p . 16). Fro m equality R(A) = I?(U) it follows that: 

R(A) = R ( fl) = { ( CI' JJ ,CI'22.0 J2) E IC2!0, .· ) ]3 : 

The differentia l equation (' = D) in brackets corresponds to the compatibil ity cond itio n (cf. l3] p . 345) fo r the 
problem. 
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The surface wave velocity eR is the eigenvalue of the problem ((1.6)- (1.8)). 
Function {J(x2) describing the variation of no rmal stress is the e igenfunction as
sociated with eigenvalue eR, ({J (x2) = n22( :~.· 2 )). In 1967 C.R.A. R Ao [5] extended 
the formulation (1.6) - (1.7) to the case when density (!, shear modulus f l, and 
Poisson's ratio v are arbitrary functions of x2. In the particular case, when 

(1.9) [ > 0; 

vo = 11(0) , 1100 = 11(00 ), 
(1.10) 

[ 

IIQ - IIoo 2] -1 
11 (x2) = 1 - ( I - 11 ) 1 + (1 + EX2)- , 

1 - /I Q 

J. IGNACZAK (cf. [4]) obtained an analytical closed-form solution. C.R.A. RAO (cf. 
[6, 7]) investigated the problem in case: 

(1.11 ) 

using the power series expansion method. 
The problem (1.6)- (1.7) was also invest igated by T. Roi.NOWSKI, (cf. [8, 9, 

10]). 
In [8] a solution was fou nd under the assumptions that density and Poisson's 

rat io are constant, and shear modulus ;t is a "weakly" variable exponential fu nc
tion such that the term 

(1.12) 

can be neglected. 
In [9] T. Roi.NOWSKI analysed the eq uations of motion for a transversely 

isotropic no nhomogeneous elastic semispace, using the stress motion equat ions, 
and formulated the problem of surface wave of the Rayleigh type. He showed 
that the problem can be also reduced to an ordimuy d ifferen tial equation of 
the fourth o rder with variab le coefllcients. T. Roi.NOWSK I in [1 0] analysed five 
particular cases of the wave phenomena: 

a) transversely isotropic body with a "small nonhomogeneity", 
b) "weakly anisotropic" nonhomogeneous body, 
c) "weakly anisotropic" body with a "small nonhomogeneity", 
d) transversely isotrop ic homogeneous body, 
e) iso tropic nonhomogeneous body. 
The surface wave problem can be formulated in an al ternative way starting 

from the disp lacement equations. 
A.G. ALEN ITSYN (cf. [11 , 12, 13, 14]) investigated the equations of motion in 

the displacement formulation for large wave nu mbers using asympto tic methods. 
As a result, he obtained an approximate dispersion relat ion (cf. [1 5]). 
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In this paper some new properties of the surface waves will be presented. 
The stress formulation will be used. This paper consists of four sections. Sec. 2 is 
devoted to general formulation of the problem. In Sec. 3 qualitative properties of 
the solution are discussed. It is demonstrated that for density, shear modulus, and 
Poisson's ratio being bounded and of class C 2[0, oo ), the wave velocity and stress 
amplitude are analytical functions of the wave number. In Sec. 4 it is shown that 
at least one solution exists (and at most a finite number of solutions) under the 
assumptions, that density and shear modulus are constant and Poisson's ratio is a 
bounded function from C 2[0, oo ). The obtained results are limited to the surface 
waves propagating in a nonhomogeneous half-space under isothermal conditions. 

2. Stress formulation of a surface wave problem 

Let us consider the two-dimensional stress equation of the linear elastody
namics (cf. [1]) for a nonhomogeneous iso tropic medium e) 

[ 
fP D

2 l (2.1) }t-
1(:z: ) 

0 12 
rao (x, I) - tJ(:t:)ooo 012 r.,-y (:z: , I ) - [g-1(.t)r,..,,., (x, t)] .o 

- [g- 1(x)ro.,,, (:r, t)] ,o = 0, 

where 
(n, !3) = (1 , 2) , 

denotes nondimensional stress tensor, ft(.r ), g(.r ) are nondimensional shear mod
ulus and density, v(.r) is Poisson's ratio. Nondimensional time is defined by the 
formula 

(2.2) 
1/2 

T Jl l - 0 
- ~, 

xogo 

where r is real time and p0 , f!o and xo are units of stress, density and length, 
respectively. Moreover 

, f)Tofj 
T oO = Dt ' 

It is assumed, that the functions g(.r ) , Jt(.r ) and 11(.1') depend on .1·2 ( x2 E [0, ) ) 
and g(x2), p.(x2), v(.1:2) E C2[0. oo), and 

(2.3) 

0 < !?o ::; g(x2) ::; llt < oo , 

0 < Jlo ::; ft(x2) ::; 1'·1 < oo, 

- 1 < vo ::; v(x2) ::; tJt < 1/ 2 

(')See IGNACZAK (4], RAO [5]. 

for :~· 2 E [0, oo ). 



http://rcin.org.pl

SURFACE STRESS WAVES IN A NONII O~ IOGENEOU ELASTIC II ALF'- SPACE. PA11T J. 497 

The triplets (l?o./.to , v0 ) and (g1, p 1, v1) represent minimal and maximal values of 
(o,J.L,v). 

The solutio n Taf3 of Eq. (2.1) will be considered in th e half-space 

(2.4) 

for every t E [0, oo ). We shall look for a solution in the fo rm: 

(2.5) 

1ll(x,t) = Re a ,,(x2)exp[·i(sx , -tv'A)], 

122(x,t) = Rea22Cx2)exp[i (sx1 - tv'A)], 

112(x, t) = Re ia12(x2) exp[i(sx1 - t v'A)], 

where i = R, s > 0, >. > 0 and Re stands fo r the real part of a complex-val ued 
functio n. Moreover it is assumed that the solution satisfi es the conditions 

(2.6) 

(2.7) 

fo r x1 E (-oo,oo) , t 2:: 0, 

122(.1.: t , oo, t.) = 't2(.t,, oo, /) = ' ll (x , ,oo, /) = 0 

fo r ~~: , E (-oo,oo) , 1 2:: 0. 

The wave velocity, wave period and wave length are c n = V>. I~ . T = 2rr I V>., 
and l = 2rr Is. The functions a 11 (.r, t), n22(.r, 1), o 12(:t, t), and the velocity c n 
should be chosen in such a way that tensor fie ld T (x, t) defi ned by (2.5) should 
satisfy the fie ld equation (2.1) and the condit ions (2.6)- (2.7). 

Introducing (2.5) to (2.1), (2.6), (2.7) we obta in (cf. [1]) 

(2.8) 

[J-l (sa 11 + .5rl !2) - ,\ (2JL)-1(rr11- VO'-y-y) = 0, 

- [o-1(0. 22- sn12)] . - >.(2JL)- 1(o22- va,.,. ) = 0, 

- [e-1(sa 12 + so·11 )] . - sg- 1(ri-22 - sal2)- .-\ (2JL)- 12ot 2 = 0 

fo r x 2 E (0, oo ) , 

and the boundary co nditions 

(2.9) o22(0) = ol2(0) = 022(oo) = o!2(oo) = 0 , 

where 

a. = [ ~"Y11 022 n 12f E [C2[0, oo)]
3

. 

Start ing fro m Eq. (2.8), the do t over a symbol wi ll denote d i!Terent iation with 
respect to x 2. We shall a lso use the symbol D for the operato r D = dl d.1:2 . 
C.R.A. R AO showed (cf. [5]) th at the linear e igenvalue p roblem (2.8)-(2.9) can 
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be further reduced, by elimination o f n 11 a nd o 12. to th e no n linear e igenva lue 
problem 

(2.10) [{[o - (u1 - 2 ~ln ) ] a2 ~ c2 [D- (1 - 2,.)!!t) - 1} 

(2.11) 

(2.12) 

{ 2 ~ Q 1 ~ ~ (D2 + hD - i/)} l n22 + 4 { 2 ~ Q (D
2 + hD) 

- [D - (H~ - 2~ln) ] a2 ~ e2 [D - (1-2~)/ft]2 ~2n } a22 =0 

fo r x 2 E (0, oo ) , 

o22(0) = a 22 (oo) = 0, 

{ 1 Q 1[ 2 2 
2 2[D - (1 - 21;) 1/t] ------n -- IJ + liD - u 

(l - c 2 - J t 1 - ~ 

1 - 211(.r2) 
~cx2) = __ _;______;_ 

2 - 211(.t2 ) , 

4rt2 (1 - ~) ] } - (1 22 = 0, 
Q I c2=ll 

.r2=oo 

(2.13) h = eD(f!- 1
) , 

a2 = s2(1 - D), 

lf1 = [D/ (2 - D)]·[h/ (2 - 2 1~ )], 

From a solutio n ( >. , a 22( x2)) of Eqs. (2.1 0) - (2.1 2) o ne can obta in the functio ns 
a 11 (:z:2) and a 12(x2) using the formu lae 

(2.14) 

(2.15) 
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For the special case when the density is constant, f! = 1, h = f! D(g- 1) = 0 
and Eqs. (2.10)-(2.12) reduce to (cf. [4]) 

(2.16) (
1 1 ) 1 n [ 2 2 ] - D--D - 1 ----- D - s (1 - n,..) o22 
s2 1 - n 1 - " 2 - [2 

[ 
1 2 1 1 - n] 

+ 4 2 _ f? D - D 1 _ [2 D 2 _ f? o 22 = 0 for x2 E (0, oo ) , 

(2.17) o·22 (0) = 0'22(oo) = 0 , 

[ { n 1 [ 2 2 ] 2 1 - n }] 
D 2 - [2 1 - 1\, D - 8 (1 - [21-\, ) on - 4~ 2 - non I~~::, = 0, 

(2.18) a 11(:1:2) = - 82(
2 
~ r2 ) (s2

r2 + 2D
2
) a 22, 

(2.19) - 1 { [2 1 [ 2 2 l 
O t2(x2) = s 3(J - .l2) D 2 - n 1 - " D - s (1 - n,~) 0'22 

Clearly, in the eigenvalue p roblem (2.10) - (2.12) (or (2.16)-(2.17)) the eigen
value >. enters in a no nlinear way. Also, note that the pro ble m (2.1), (2.6), (2.7) 
is not a regula r o ne e). Indeed, writi ng (2.1) more explicitly, we have: 

1 - 1/ -11 i]2 

fl Jl 0 i)J2TII 

- 11 1 - /1 i]2 
0 

iJ/2 722 
(2.20) 

JL 

i]2 

i) /2712 
0 0 

1 

I I 

0 

= 0 
i) 1 i) 

2-o-
ih2 ~ iJ.r2 

D - I /) 
-g . 
8.r 2 D.r 1 

i) - i i) 
- () -
iJ.1· 1 ~ J.r2 

[
Till 
r22 · 

712 

The characterist ic determinant associated with R.H.S of (2.20) takes the form 

-2g- 1 ~? o - 2g- ~ ~ ~ 6 

(2.21) 0 

(')Sec }1 6, 17 , 18, 19 J. 
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and it is equal to zero for any point (E 1, 6 ). It can be shown that if suitable restric
tions are imposed on .,- at t = 0, Eq. (2.20) implies the compatibility condition of 
the two-dimensional elasticity theory (4

) 

(2.22) {J.L- 1[(1 - l/ )r11 - vr22]} + {J.t- 1[(1 - v)r22- vr1d} ,22 ,1 1 

- 2{J.L- 1r 12} = 0 for ( :~:, l) E U X [O,oo). 
,12 

So, the system (2.20) subject to the condition (2.22) can be considered as a regular 
one. 

The condition (2.22) follows from (2.20), if the stress field r af3 is sufficiently 
smooth on U x [0, oo ), and the L.H.S. of Eq. (2.22) together with its first time 
derivative vanishes fort = 0. The last conditions are equivalent to the assumption 
that deformation and its velocity satisfy the compatibility condition for t = 0. 
Vanishing of the determinant (2.21) implies that the operator 

2_i_o- 1_i_ 0 
ax, ~ ax1 

(2 .23) 0 2 
D _1 D 

- (2 -
ax2 ax2 
D _, a 

-(2 -
a:r 1 O:r2 

i) - 1 () 
2 - (2 -

Dx 1 0.1:2 

2 
i) - 1 i) 

- (2 -
Dx2 ax1 

a _, D a _, a 
- (2 -. - + -. -(2 
Dx2 0.1:2 iJ.1: 1 a:r 1 

defined on the domain 

D1(E) = { Cr1J , T22, r 12) E [C2(U x [O,oo))]3
: 

T22(x1;0, t) = TJ2(x , ; O,t) = r22(x ,; oo , t) = r l2(x, ; oo, t) = rll (x ,; oo, l) = o} 
or 

D2(E) = { Cr ll , r22,TJ2) E [L2(U X [O,oo))]3
: 

T22(x1;0, t) = TJ2(x1;0, l) = r22(x1;oo, l) = TJ2(x ,; oo , l) = rll (x1; oo, t) = o} 
is not invertible, unless the condition (2.22) is satisfi ed. 

( ' )The compatibility conditio n restricted to the field a takes the form: 

{!-i-!((1 - v)o ll - vo 22 l} · · - s {1-L- ll(l - v)o zz - v<> td } + 2s {,,- 1o tz}. = 0, 
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3. On the analytical dependence of velocity and amplitude of the sud~1ce wave 
on the wave number 

In this sectio n we shall analyse the problem (2.8) - (2.9) using D-holomorphic 
perturbation theory for linear operators proposed by T. KATO (cf. [2]). We will 
demo nstrate that velocity and amplitude of the wave are analyt ical functio ns of 
the wave number s. 

In the complex Hilbert space !I generated by the scalar product (5) 

(3.1) 

with norm 

(3 .2) 

00 

(o. , f3) = Jcall f3 tt + a22f322 + ri" t2f3!2)d:!;2 
0 

00 

llo. ll 2 = j (lrq tl2 + ln22 l2 + ln.t21 2) r/:!.·2 < oo, 
0 

Eq. (2.8) can be written in the operator form 

(3.3) A(8)o. - .AB o. = 0, 

or in the expanded form 

(3.4) A(s, o)o. - /\B(;t , /))o. = 0. 

The domain o f operators A and n may be defined as follows 

(3.5) V(A) ={a.: O'ij E C2[0,oo); n12(0) = o.22 (0) = at2(oo) = 0'22(oo) = 0} , 

(3.6) V(B) ={a.: a;_i E C2[0,oo)} , i,j = 1, 2. 

The sets V(A) and V(B) are dense in !I since the set C0 [0, oo) x C0 [0, oo) x 
C0 [0, oo) is dense in 11 and is contained in V(A) and V(B). We have 

PROPOSITION 1. Opera tors A and n are symmetric in the Hilbert space If. 

The symmetry of operator A results from the fact that operators on both sides 

of the principal diagonal a re fo rmally adjoint, e.g. ~ D with -s D~, -~ D with 
{! {! {! 

1 
sD-. 

{! 

(' )In oder to be able to apply Kato's pertu rbatio n theory, we have to extend the problem to the complex 
plane. 
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For arbitrary a , l3 E D(A) c fl we have 
00 

(Aa ,l3) = ;{g- 1 (.~h,,1 + 0*J2);J" _ [g- '( * 22 + s0,2)r ;3,2 

0 

T . J( LE\ IIA 

- [g-1(-ii 12 + s~ll)r (312 - sg- 1(i¥ 12 - $022)fJ J2 }d:t2 . 

Integration by parts with the use of boundary conditions shows that 

(A a ,l3) = (a. Al3) . 

The symmetry of operator n is obvious. Matrix 13 is positive defin ite and for 
every a E D(ll) c li we have(6) 

en a , a) ~ k(a , a) , 

where 

k = mm - -- - -. (1 - 2tl 1 1 ) 
J'2EI0, -·) 2JL ' jt ' 2Jt . 

Let us consider the forms U[a] = (A a , a ), B[a] = (lla, a) described by the 
formulae 

00 

(A a , a) = J ~ [I Cl 22 - S (\ 12!2 + I rt 12 + sn,,12] r/.1'2. 

0 
(X) 

(ll a , a) = j (2Jt)- 1 
[ (1 - 11)l n22l2 + (1 - 11)ln 22 l2 + 2ln121 2- 211Re (n1 1 n22)] rl.c2 . 

0 

In view o f (2.3) we have (A a , a) ~ 0. Operato rs A and n being symmetric, 
are closable in the space ff. Let A, B deno te th e closures of operato rs A and n. 
Let us set in if the form: 

(3.7) 
00 

U[a] = I:u(il (so)[a](.: - so)i 
i =O 

for z belonging to a certain neighbourhood o f the real semi-axis 8 , s0 E (0, )(), 
where 

(3.8) u<Dl[a] = (A(so)a . a) = J LJ- I (1 Cl 22 - 0ortl21 2 + I;, 12 + SQO' J1 12) r/.1:2 ' 

0 

(
6 Th . I f . I - 2" I I Tl ' . f . . . d . . ' tf 11 . ) c c1gcnva ucs o matriX B arc --, - , - . 1c symmctnc matnx l IS posit ive cli nl!c 1 a 1ts 

2,, 2J.I 11 

cigcnvalues ,\ ,arc positive and (B a: , a:) ~ min ,\,(a: , a:) (cf. I20 J). 

(')The neighbourhood is a set: I' = { :

0

: 1: - sol < - 1
- a nd : e ( -IX) , 01} whe re b = ~ . c = ~ . 

b + c < e 
< > 0. We can expand the regio n of ho lumu rphicity by c hoosing a suitable c The meaning of b, c, t: will be 
made clear in the sequel. 
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(3.1 0) 

(3 .11) 

CO 

U(2)(so)[a ] = j ~ (1rrd2 + lo 11 l
2

) dx2 , 

0 

u<n>(so)[a ] = 0, n = 3, 4, . . . . 

The fo rm u (l >(so)[a] is a deriva tive of (A(s)a , a ) with respect to the real 
parameter s at s = so, 

U
(l ) ( )[ ] _ 

1
. (A(s)a,a) - (A(s0 )a , a) s0 a - 1m . 

s-so S - so 

Similarly, 

• ••• • • •• •• • • • • • • •• • • • • • •••• • • • •• 0 •• • • • 0 • • • • ••• • ' 

We shall p rove the following lemma: 

LEMMA 1. T he closure a (:: ) of the fo rm U(:: ) generates a fam ily o f operators 

A(z) wh ich is D-ho lomo rphic(8 ) . 

In order to demonstrate that A(:: ) is a 13-ho lo mo rphic fa mily o f operato rs we 
shall u se Ka to's fl- holomo rph ism criterio n(Y). 

Let u<n>(so)[ a] be a sequence of sesq ui linea r form in fl (n = 0. 1, 2 .. . ), and le t 
the form u <0>(so)[a] he sectorial ( 10) and closab le, and with the doma in D (U<0) ) = 
D . Assume tha t the form s u<">(8o)[a] fo r 11 2: 1 are bo unded with respect to 
u <0>[a], i.e. D C D(U<">), a nd 

(*) iu<n>(so)[a) l ~ cn- 1(o llal l2 + &Re u<0>(so )[a]) . 

a E D , n> l , o, &2: 0, c> O. 

Then o perators A(::) correspo nding to the fo rms z) (:: )[a ] are a /1-holo mo rphic 

family o f opera tors for 1::- sol < -
1

- . 
& + c 

To show tha t the assumptio ns o f th is crite rio n are satisfi ed, le t us observe that 
u<O) = u <0)(so)[a] = ( t l(s0)a , a ) is a no n-negative, symmetric and hence the 

( 8 ) (cf. [21 p. 395 -397). 
(

9
) (cf. 121 p. 398). 

('
0

) (cf. 121, p. 3 10) . 
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sectorial form fixed in the dense set D. The density of D results from the fact 
that the set V(A) c D c If and I>(A) is dense. Thus the form U(O) is closable. 

From the inequalities(~ 1) 

(3.12) lu(l>(so)[a.]l = IJ ~[-a-12(&22- soa12) - (ii:-22 - soo12)a 12 
0 

<X) 

1 J 1 ( • 2 . 2) [ 2 1 (0) ( )[ ] + - - I a 22- soo-121 + I a 12 + son11 l c/ :~.·2 = - ll a. ll + -U 8 < a. 
E g go E 

0 

(") Th prove inequalities (3.12), (3. 13) we use the inequa lities 

2 1 2 2nb < ea + -b , 
- e 

where v , and .,., are complex fun ction, a and b a rc rea l funcrions, a nc..l c > 0. 



http://rcin.org.pl

SURFACE STHESS WAV8S IN A NONIIOI\10G£NEOUS E LA ST IC IIALF'- SPACE. PAnT I. 505 

and 
00 

(3 .13) IU(2\so)[a] l = j ~ (lo 11 l
2 

+ lo22l
2
) dx 2 

0 

2 loo ( 2 2 2) ~ max - lo111 + lo22l + lod dx2 
xzE IO,oo) 12 

0 
00 

+ [~ J ~ (1 0.22- soonl
2 

+I a 12 + soO JJI
2
) dx2 

0 

2 2 = -lla ll2 + 2 ReU0 (so)[a], 
Llo c 

it follows that D(U(n)) =:> D(U(0>), n = 1, 2, 3, ... , and that there exist a = !..._, 
120 

b = ~. c = ~.Thus the operator rl(z) forms a holomorphic fam ily of type (B) . 
E: [ 

From Lemma 1 it fol lows that the following Proposition is valid. 

PROPOSITION 2. The form U(:: ) given by (3 .7) is defi ned for lz- 80I < t:/ 2, and 
for lz- sol < t:/3 it is sectorial and closable. The closure i)(z ) of the form U(z ) 
generates a IJ-holomorphic family of operator A(::) where A(::) is the maximal 
and closed operator. 

Now we shall consider eigenvalue problem given by 

(3.14) A(::)a - J\ lla = 0, 

where A(z) is the operator defined in Proposition 2 and ll is the closure of B. 
From KATO'S theorems (cf. [2] p. 416 - 423) it fo llows: 

THEOREM 1. If the pair (,\ (::) ,a(::)) is a solution of the eigen value problem 
(3 .14), then it is an analytical function with respect to z for z E V = { z : lz- .sol < 
c/ 3 and z rJ (-oo, O]}. 

THEOREM 2. If the pair (J\(s), a(.r2 , 8)) is a solution of the eigenvalue problem 
(3 .3), then it is an analytical fim ction of the wave-number s. 

It means that 

(J\(s), a(x2, s)) = (f J\ ,. (.,- 80)" , a = :t a n(x2)(s- sot) , 
n =O n=O 

where 

1 (d!tJ\) 
An = I - n ' 

n . ds s=sn 
so E (0, 00) X2 ~ 0. 
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The proof of Theorem 2 follows directly from Theorem 1 and from the fact 
that each solution of (3 .3) is also a solution of (3.14). 

Natural approach to the considered eigenvalue problem 

Aa - >.na = 0 

is investigation of the generalized resolvent 

(A -~n)- 1 . 

Let us introduce the spaces X and Y defined by 

{ 2 3 [2 ]3 - [(\'112-,,1/0'ii ]" X = (all, a22, a12) E [L (0, oo)) , C [0 , oo) : ~· 

2 0'22- //CI'ii [0' 12] I } + s - s - = 0, i = 1. 2 for every ~·2 2:: 0 , 
2p J.L 

Y = {CYtt , r/22,912) E [L2(0,ooW , [C2[0,oo)) 3
: - Y11 (.r2) 

for every .1:2 2:: 0}. 
It is easy to check that the spaces X, Y are linear suhspaces of [!,2(0, oo)]3 and 
[C2[0,oo))3. 

Let C (X, Y) be a space of closed operators from X to Y. 
Let B(.Y, Y) be a space of bounded operators from X to }". 
Since A E C(X, Y), B E B(X, }' )and n- 1 E L3(X , }' ),thus n-=IA E C(X , X)= 

C(X ), A n- 1 E C(Y, Y) = C()' ) and the eigenvalue problems 

Aa - >.Ba = 0. B- 1Aa - >.a= 0, 

are equivalent (cf. [2) p. 417, 418). 
To investigate the reso lvent (1! - ~ JJ)- 1, let us take the homogeneous case 

f2 = const, p = const, v = const, as an illustration . 
A solution of the equation A a - ~n a = 0, a E D(A) n D(ll) c _y 1s 

a = [0, 0, Of if ~ f. {wi , w2, u:3}, where w1, w2, w3 are the roots of equation 

(2 - w)2 - 4J(l - ,_,_;)(1 - w1>) = 0, 

To prove this, note that a solution of the equation A a - ~no. = 0, takes the 
form: 
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Introducing such a to the compatibility condition (cf. [6] p. 7) we get 

I~ ~ 2 r;--;-: + iJOc e-z·2sV 1-{,; [ 0 ] = Q. 
2;1.(2 - 0(1 - v) 

T herefore if ~ rf. {w1, w2 , w3} then (2 - 0 2 - 4 ) (1 - 0(1 - ~~-.:) ::f 0 and fJo = 0. 
In this case (A- ~n)- 1 exists. 

Let us consider the multiplicity of eigenvalue .A = 0. Th is problem can be 
written in the form 

A(.,)a = 0. 

As the domain of the operator ;\ we take the set: 

D(A) ={a= [o-Ilo22n12f E [L2(0. oo)]3, [C2[0. oo)]3 : 

022(0) = nl2(0) = Cl22(oo) = nl2(oo) = n l t(oc ) = o}. 

We have 

where <p = <p( x 2) is an arbitrary di!Tercntial function . Selecting <p(.r2) in such a 
way as to meet the boundary conditions, we obtain 

ker A : 

where 

nll (.~; z) = C1(2 - 4rt~.-.r2 + o~ .. d)~::-o kJ·z, 

f\'22 (:r2) = - .,2:dC I e -ak""2. 

f\' 12(.r2) = - sC' 1 (2.rz - n ~.-:~·~ )r - a kx2, 

:~ · 2 E [0, ' ). 01,: > 0. 

It is clear that in this case 

dim ker A= oo . 

No te that in the case, when the domain of the operator is a subspace of the 
functions satisfying the compatibili ty conditio n, 

dim ker A = 0. 
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4. Existence of surface waves in nonhomogeneous isotropic elastic half'-space 
with arbitrary variation of' Poisson's ratio 

The problem of propagation of surface waves in a no nhomogeneous isotropic 
elastic half-space with variable Po issons's ratio can be reduced to the follow
ing eigenproblem (cf. [4]): find a nonvanishing pa ir (rn , o22(.r2)) satisfying t he 
relations: 

(4.1) 

(4.2) 

H ere 

(4.3) 
c2 

f?(x) = ..Jl' 
f lO 

rl 
D=

d.r2 ' 

v(x2) and /to are the Poisson's ratio and shear modulus, respectively; symbol 
en = p/ s, where 21r fp is the wave pe riod and 21r js is the wave length, denotes the 
velocity of surface wave. The e igenval ue r a corresponding to the e ige nfunct ion 
o 22 is to be identified with the Rayleigh velocity. 

Now we consider the case 

(4.4) { 
"" = ~-.: (x2) E C 2[0, oo ), 

PO = 1, 

0 < h:Q ~ ~;:( .1" 2 ) ~ h: J < 3/ 4, 

f? (.T2) = f?o = cy?. 
These hypotheses assure that the elastic energy of the ha lf-space is strictly 

positive. We shall look for an e igen function rr22 E r\· , where 

n22( ) = o}. 
The system (4.1)-(4.2) subject to the conditions (4.4) is equivalent to 

(4.5) 

(4 .6) 

(4.7) 

for x2 E (0, . ) , 

0'22(0) = 0, 

D { 
1 

_ ~~ . ) [D2 - s2(1 - f?o~-.:(x2))] o22 - 4s
2

(1 - f?o )0'22} I = 0. 
K. X2 x2=0 
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It is shown in (1] that if there exists a solution o f e igenprob lem (4.1) - (4.2), 
the eigen-value f?o = cy1 is strict ly positive. This fact with ( 4.5)- ( 4.7) implies that 
an admissible f?o be longs to the inte rval (0, 1 ). Consider now the homogeneous 
d ifTerential equation corresponding to ( 4.5): 

(4.8) 

which, by vi rtue of (4.4), is equivalent to 

(4.8') 

We have the fo llowing theorem 

T HEOREM 3. Equation ( 4.8) subject to ( 4.4) has two Linearly independent solu-
tions: 

of the form: 

(4.9) 

1' 2 

aW = a~~ (O, f?o, s) exp j ~; (r, s , f?o) dr 

0 

(i =1 , 2), 

where ~1 ( T, f?o , s ) , 6 ( r , f?o . s) satisfy the inequalities 

(4.10) a :S ~ I :S U < c :S (2 :S rl 
for eve1y (r , f?o , s) E (0, oo) x (0, 1) x (0, oo). 

Constants a, b, c and d in (4.10) are defi ned by 

( 4.11) 
a = -8v' l - f?oho , 

c = s / 1 - f2o~-.: 1 , 

b = -sv'1 - f2oh J , 

rl = s v'1 - f?o Ko . 

The proof of this th eorem is based on a theorem due to OLECI-1 (cf. [21], p. 323) 
and will no t be given he re . 

It fo llows fro m Theorem 3 and the co nditions ( 4.6), ( 4.7) that an admissible 
solution of Eq. (4.5) takes the form 

( 4.12) <>22(x2, llo, .•) = A, exp (l ~(r , s, llo) dr) 

where ( f?0 , s ) E (0, 1) x (0, ). Clearly, this so lution belongs to the class C 4[0, ). 
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Therefore, applying the theorem (cf. [21 ], p. 56) o n analytical dependence on 
the parameters to the eq uation 

(4.13) 

subject to the cond itions 

0'22(0) = 1, 

we conclude tha t the solutio n of (4. 13) given by o~~ = exp ([
2tJT,s, J20)dT) is 

analytic with respect to ( J20 , s) E (0, 1) x (0, oo ). 0 i 
Therefore ~ 1 (T,f2o , 8) is also analytic fo r (Jlo,s ) E (0, 1) x (O,oo). 
It is clear that analyticity of ~~'22 satisfying ( 4.13) subject to ~~'22(0) = 0, o-22 E 

C 4[0, oo) impl ies analyticity of o 22 satisfying (4.5)-(4.7). Substituting (4.12) into 
(4.6) and (4.7), and using condition C 1 :j:. 0, we arrive at the dispersion equation 

(4.14) (2 _ J2o)2 + 4J 1 - Jlo~ J (O,Jlo .. ~ ) = O. 
:; 

Since 
-8Vl - Jlo,.·•o ~ ~I(O,Jlo,s) ~ sJ1 - f?oh: J , 

fo r every (.00 , s) E (0, 1) x (0 , ), thus 

r 
(4. 15) 

J 2 4J1 - J2o~J(O.J2o,0) 
- 4 (1 - J20)(1 - Jlo,•o) + (2 - J20) ~ s + (2 - Jlo) 

for every (J20, 8) E (0, 1) x (0, ). 
Now, introducing the notat ions 

fo(Jlo) = - 4J (l - J2o)(1 - f?o,<o) + (2 - f2o)2, 

f(Jlo ,s) = 4J l - Jlo~l(O, Jlo,s) + (2 - Jlo)~ 
s 

we reduce ( 4.15) to the fo rm 

(4.16) 

It fo llows fro m the defi ni tio ns o f fo , f an d f 1, and from the analyticity o f 
~ 1 (0, J20 , s) tha t the functions fo, f and !1 are analytic fo r every ( .00. s) E (0, 1) x 
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(0, oo). Moreover, fo and ! 1 vanish fo r S?o = 0 and fo r S?o = d, S?o = c~, respec
tively. cf an d c~ are the squares o f velocities o f surface waves in the semi-space 
with "(:r) = "o, ;.t = 1 and n:(x) = "'' 11 = 1, respectively. Therefo re, the analyt
icity of f(S?o , s) for every (00 , s) E (0, 1) x (0, oo) together with th e inequalities 
(4.16) imply that there exists a t least o ne root (or a t most, a countable number 
of roots) of the equation f(S?o ,s) = 0 for every (S?o , .s) E [cf,c~] x (O,oo). This 
completes the p roof of existence of at least o ne solution to the eigenproblem 
discussed in the presen t section. The F ig. 1 shows the graphs of fo(S?) a nd ft (S?) 
corresponding to n:o = 0.1 a nd "' = 0. 7, respectively, as well as a hypothe tical 
graph of f over the interval 0 < S? < 1. 

j (D) 

c 

We have the fo llowing theorem: 

F IG. 1. 

A(0.2637; -0.1907) 

U(O 4780; 0) 

C(U.52 I5; -0.40..J4) 

D(ll H\19 I ; 0) 

s = const 

T HEOREM 4. For eve1y s > 0. the equation f(S?o , .s ) = 0 has ut most a finite 
number of solutions. 

P r o o f. If the number of th e solutio ns o f the eq uatio n f(S?o , s) = 0 fo r a 
given s > 0 is in fi nite, the n the setS= {f(S?0 . s) = 0} has a n accumulatio n po int 
in [c~ , cf]. Since the fun ct io n f (S?o, s) is analytical in the domain (S?o. 8) E (0, 1) x 
(0, oo), J vanishes in th e inteival [d, er] which contrad icts the inequality (4.15). 

R EMARK. If the branches of the dispersio n relat io n (4.14) intersect, then the 
in tersectio n points are algebraic branch-points (cf. [23] p. 11 9 part II), (cf. [24] 
p.174- 181 ). 

References 

I. J. IGNAC7.AK, Upf1er and lu"'er bound.,· un !he ve!uci1y uf swface "'""''.\' in JIOJI!WJIWf;eJieous isu1rupic cl11stic 
semi-.1pace, Arch. Mcch. Stos., 23, 789-800, I 971. 

2. T. KATO, i>erturbaliu, 1hewy fur /iJ1e11r Uf'emtulx, Springer Vcrlag, Berlin · Hc.:iuclbcrg - New York 1966. 



http://rcin.org.pl

512 T. 1\LECHA 

3. A .C. ERINGF.N and E.S. SUIIUIII, Efastudy110mics, vu/. 11, Linear themy, Academic Press, New York, San 
Francisco, London 1975. 

4. J. lGNACZAK, Rayleigh waves in a nunhumugeneuus isotropic elastic semi·.lpace, Arch. Mech. Stos., IS, 
341- 345, 1963. 

5. C.R.A. RAO, Separation of the .wre.u equation of motion in nunlwmogeneua.\· elastic media, JASA, 41 , 3, 
612--{)14, 1967. 

6. C.R.A. RAO, Separation of stre.~v equatiun1· of motion in mmlwmugeneua.\· i.wtrupic elastic m edia , Doctoral 
Thesis submitted to the Monash University, Aus tralia 1969. 

7. C.R.A. RAO, Wave propagation in elastic m edia with prescri!Jed vwiatiun in the pan1111eten ·. Modem prublent\' 
in elastic wave propagation, Symposium held at Northwestern University, Evanston, Illinois USA, A. Wiley, 
Interscience Publication, I 978. 

8. T. Roi.NOWSKJ, Swface waves i11 (Ill isotropic elastic .1·emi.1pace with small nollhomuge11eity, Bull. Po l. Sci. 
Tech., 25, 67- 77, 1977. 

9. T . ROi.NOWSKI, Swface .1-rress wa ves i11 a tmnwen ·e/y isotropic, nonhumuge11eou.\· .l·emi.IJ'ace jin Po lish] , Prace 
IPPT 31/ 1990, Wars1..awa 1990. 

10. T. Roi.NOWSKI, Swface stre.u waves in tranwersefy isotropic 110nhomugeneou.\· elastic senu'.lpace, P(ll1 I . Equa· 
lion of molion and equation of a Ray feigh · type .l'luface wave, Arch. Mcch., 44, 4, 41 7-435, 1992; l'w1 11. 
Surface stress wave in a weakly w risutrupir sem i·.1pace wirh small nulllwmogenity, Arch. Mech., 44, 4, 437-45 1, 
1992. 

11. A.G. Al.F..Nri"SYN, Rayleigh waves in an i11homogeneous e/a.1tic .\·emi·.lpace [in Russian] , Prik. Mat. Mcch., 
27, 3, 547- 550, 1963. 

12. A.G. ALENri"SYN, Rayleigh waves in an inlw11wge11eous elcl.l'tic .vem i.1pare of >w1ve guide t)'lJe [in Russian], 
PriJ<. Mat. Mt:ch., 31, 2, 222-230, 1967. 

13. A.G. AI.F.NITSYN, Rayleigh waves in inhumoge11eous elastic senri·.IJWCI! [in Russian], Pri.k. Mat. Mech., 37, 5, 
895--899, 1993. 

14. A.G. Al.F..Nil"SYN, A .1ympruric limiting ro1rclitimr on the bowrdcny of a licf1tid /aver a/Ill a11 elastic inhomoge11eoctS 
semi·.1pace Jin Russ ian] , Akust. Zu rn., 34, 9, 969-971, 1988. 

15. L.M. BREKIIOVSKJJ, IVt11•es in layered media I in Russian], Nau.ka, Moskva 1973. 

16. !.G. PLETROVSKU, On cenai11pmhfems oft'tf1Wtiuns wirh pwtiaf de1ivatives Jin Russian], UMN, I , 3-4, 13- 14, 
44-70, 1956. 

17. V.D. K UI'RAD7.E, Three·dimensional l'rol>ft'lll.l' of the matl11:111atical thcoty of t•la.ltil'ity ami themwelastil'ity J in 
Russian], Nauka, Moskva 1976. 

18. L. BERS a nd J .F. SOIF.Ci rrER, Ptutial liljfi:m rtiaf equatio11s , lntcrscicnce Puhl., New York - London - Sydney 
1964. 

19. I. M. G ELFAND, I. G. PI.ETROVSKJI a nd G .E. Su.ov, 71remy of rile .1)'.\'tt•nrs of JWttiaf dijf.:rentiaf eqcwtiwr.1· J in 
Russian], Trudy Il l Vsiesojuznogo Matiematiceskogo Sjczda, 3, 1zdatielstwo A.N. SSSR, Moskva 65 - 72, 
1958. 

20. G . STRANG, Linear algebra ami its llfJJificatimrs I in Russian, Nauka, Moskva 1980], Academic Press, New 
York 1976. 

21. C. OLECII, A .1ymptotic behaFiour of rile .wlution of second order dijf.:rential eq11ations, Bull. Acad. Polon. 
Sci., SCrie Sci. Math., 6, 6, 319- 326, !959. 

22. E. ICAMKE, Dijferentialgleiclrwrgen, Lv.1wrgmretlwden wrd Ui.1wrgen , Leipzig 1959. 

23. K. KNOPP, 17remy of fwrcrium, Pa rts I, 11, New York, Dover 1945, 1947. 

24. F. LE.JA, A11a~ytica/ fwrclions fi n Po lish] , PWN, Warszawa 1969. 

DEPARTMEr-T OF MATII EMAT ICS 

ACADEMY OF ECONOM ICS, KRAKOW. 

Received Augusl 18, 1995. 



http://rcin.org.pl

Arch. Mecb" 48. 3, pp. 5 1}...539, Warszawa 1991'\ 

Surface stress waves in a nonhomogeneous elastic half-space 
Part 11. Existence of surface waves 
for an a rbitrary varia tion of Poisson's ratio 
Approximate solution based on perturbation methods 

T. KLECHA (KRAKOW) 

T wo AI'PROACILES to the solution of the no nlincar e igenva luc problem of p ropagation of surface 
waves in a non homogeneous isotropic clas tic half-space arc co nsidered. In Sec. l the nonl inear 
eigcnvalue problem is transfo rmed to the equivalent integra l equation, and the method of solving 
th is equation is proposed. In Sec. 2 Fricdrich's perturbation theory 161 is used to solve an c igcn
valuc problem describing the surface stress waves in a "weakly" nonhomogcncous isotropic c lastic 
half-space. Two cases arc discussed in detai l: a) a half-space with a "weak" variation of density, 
b) a half-space with a "weak" variation of the shear modulus. In both cases an asymptotic solution 
is obtained and numerical results arc given. 

1. Effective form of amplitude of surface stress waves in a non-homogeneous 
isotropic elastic hal f-space 

1.1. Formulation of the problem 

IT IS SHOWN in [1] that the problem of propagation of surface waves in a non-ho
mogeneous isotropic elastic half-space can be reduced to the following eigenvalue 
problem: to find a nonvanishing pair (!3(x ), en) satisfying the relations 

(1.1) 

and 

(1.2) 

Here 

(1 .3) 

(
1 1 ) 1 n [ 2 2 ] - D--D - 1 ---- D - s (1 - J!h ) {3 
s2 1 - n 1 - 1-i. 2 - n 

[ 
1 2 1 1 - n] +4 --D -D--D-- {3 = 0 

2 -n 1 - n 2 -n 
for x E (0, oo), 

{

{3(0) = {J(oo) = 0, 

1 n 1 2 2 2 1-n 
. D{--[D - s (1 -J!i-i.)]f3- 4s -!3}

1 

=0. 
s2(2-fl ) 2-fl } -K 2- fl :r2=0 

"'2= 00 

1 - 211(x) 
2 - 211(x ) = 1-i. (x), 

d 
D =d.1: , 
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in which t/ (.1: ) and fL(x) are the Poisso n's rat io and shea r modulus, respectively, 
while the symbol en = pj ~. where 21r Ill is the wave period and 2r. ;.~ is th e ww e 
le ngth, deno tes the velocity o f surface wave. The e igenvalue en corresponding to 
the eigenfunctio n {3 is to be identifi ed with the R ayle igh velocity. 

Next we consider the case 

(1.4) 
{ 

{3 E C 4[0, oo ) , 

~ ~ ~x ) E_C
2
[0, ), 

fl(x) = 110 - 1, 

0 < ~0 :::_; ~.: ( .1: ) :::_; ~ I < 3/ 4, 

.!7(:r) = Do = c;l . 

These hypotheses assure that the e lastic energy of the ha lf-space is stricly posit' e. 
The system (1.1 ) - (1.2) subjected to co nditions (1.4) is equ ivalent to the fo llowing 
equatio ns: 

(1.5) 

(1.6) 

(1.7) 

\ ) [D2 - s2(1 - S?o,.:(.z: ))j {3 = Cte-s~x + C2csJl-rlox , 
1 - h" X 

f] (O) = ;J (oo) = 0, 

D { 
1 

_!2:(:~: ) [ D2
- s2(1 - S7oi{(.T))] !3- 4s\ l - S7o)f3 } = 0, 

l,=n 

D { 1 _
57
: (x ) [ 0

2
- s

2
(1 - S7o,{(.r ))j ;3- 4/ (1 - S7o).r3} I ~ = ·'" = 0, 

where C 1 is an a rb itrary constant, ('2 = 0, ;3 E C 4[0. oo ), ti ( ) = 0. 
The aim of this sectio n is to transform the problem (1.5) - ( 1.7) to an eq uiva

lent integral eq ua tio n and to construct an itera tion me thod of solving this equa
tio n. To this e nd co nsider the d iiTe rential operator L associated with (1.5): 

(1.8) 

(1 .9) 

L/3 = -D2j3 + . 2(1 - S7oh" (:r ))(3, 

{3 (0 ) = jJ( ) = 0. 

Le t g = g(.1·, t;f?0 ,s); (.T, I; fto,.s ) E (0 , ~ ) X (O,oo) X (0 , 1) X (O ,oo) be the 
Green function fo r the operato r L with a " frozen" coe ffic ient ,.,, In o ther wo rds, 
the Green functio n g ful fi lls the re latio ns: 

(1.1 0) 

(1.11) 

(1.12) 

fo r t ::j. :1:, 

fo r /. = 0, 
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Fo r the operato r with a variable coefficient '"• the Green functi on G = G'(x , I ; 
f?0 , s) satisfi es the fo llowing equatio n (c.f. [2], 123 - 149): 

(1.1 3) G'(.r, l;f?o,s) = .rJ (:t ,l; Do,s) 
,:x, 

-s2Do j .rJ (:r , ~;Do ,s)[~>· ( .t ) - ~(O]G (Ct ; f?o ,s)d~ 
0 

for every (x, I; f?o, s) E [0, oo ) x [0, oo) x (0, 1) x (0, oo). 
It is easy to show, tha t the function g = g(x, t; D0, s) fulfilling the conditions 

(1.1 0) - (1.1 2) has the fo llowing fo rm 

1 [e -s/1-n0,..(;:)(t-2') _ e-sjl -n0 ,..(x)(t+ :~.·)] 
2s J!- Do" (.~: ) 

fo r x ~ l < oo, 
1 [e-s JI -no,..(l ·)(.c-t) _ e-s j l -n0 ... (x )(t+x )] 

2s J 1- Do,:(.t ) 

g(x, l;f?o ,s) = (1.14) 

fo r 0 ~ l ~ :t . 

In the subsequent part, the properties of the Green functi ons r: = G(.1:, 1; Do, s) 
will be inves tigated and the solution o f e igenvalue problem ( 1.5)- (1.7) will be 
expressed using the function n. 
1.2. In tegra l equ a tio n for Green fun ctio n 

Let us deno te by X the Danach space of real functio ns A (.1:, 1), ( x, 1) E [0, oo) x 
[O, oo) with no rm ll·ll x given by 

(115) 11 A(x, 1)11} ~ l { / lA(' ·, 1)12 
dl } <h < 

Let N be the ope ra to r in X o f the fo rm: 

(1.1 6) 
00 

N 1\ ( x , I) = s 2 Do j .rJ ( :r , ~; Do, s )[" ( .r ) - ~-c ( 0] A ( ~ . I) d ~ , 
0 

where g(x ,C Do,s) is defin ed by E q.(1.14). 
One can observe, that fo r every (:r , O E [0, ) x [0, 00) there exists such m, 

that 

(1.17) 1~-c ( .r ) - h:(OI ~ ml.r- ~~-

The existence of m. follows from assumption (1.4) and from the fact, that ~-c (:t ) E 
C 2[0, oo ). It can be assumed that 

I 
rf,.._ I m = sup - . 

x EjO,.x·) d.'l: 
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The following lemma is valid: 

LEMMA 1. If the inequality 

(1.18) 

is satisfied, then operator N is a contraction in the space X, i.e. 

IIN Allx ~ lf iiAIIx · 
P r o o f. D ue to (1.16) and (1.4) we obtain 

N A(x, t) = M (x, t, Do, s) 
00 

T . 1-:LEC IIA 

= ~sDo j(l -noK)- 1/2 [e - sJ1-Dw•({ - l· ) - e- sJ1-Dr,"(.r+O] [ t.:( :r ) - 1~(0]A(C t)d~ 
X 

X 

+ ~sDo J (1- noK)- 1/2 [ e-sJ1 -Dn~<(x-~ ) - e - sJ 1-nn"(.r+o] [1~ (:r ) - t.:(0]A((, t)d~ 
0 

= o(:t, l; no, .s) + b(:c, t; Do, .s ). 

Hence, the following estimate can be deduced 

(1 .19) IM(x,t;Do ,s)i ~ ia(x , t.;Do,s)l + lb(:r , I;Do,.s)l. 

E stima ting from above the function a we get 

(1 .20) a2(x, t;no ,s) ~ ~s2D6 ·{J(1 - D0" 1) -
112 

l' 

[ e - •Jl-n,,(( -x) - e -•J ' - 0"'(•·+0] . H x) - " ( OJ· I A ( C 1)1 df.} 2 

From the inequalities (1.17) and (1.4) we have 

(1.21) (1 - DoK)-1 /2 [ e-s JI -Dn~<(( ->) - e-s yl! - Dn"(,·+o] . [ K(.<· ) - n(OH A((, 1)1 

~ (1 - Do ,.,.1) - l /2e-s Jl -Dr," I({-J')m(~- :t ) · I A(~ , t) l, 

and finally 

(1 .22) 
1 

a2(x , t; no , s) ~ 4s2m 2D5(1 - Do,.,.1)- 1 

· {l(f.- xV'J '- 0 ""(<-xliA(C t)l df.} 

2 
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Integrating inequality (1.22) with respect to :r on the interval [0 , ) and chang
ing the variables we obtain 

(1.23) 

00 

j a2(x,l; n o.s)rLr :S ~m.2n6(1- no'''1 )-3s-2 j l;l(x.l)l2 (h . 

0 0 

Integrating the inequality (1 .23) with respect to t on th e interval [0 , oo) we get 

1 
(1.24) Jla(x, t;no ,s)l lx :S 2f2om(1- no~1)-312 s- 1 I IA(x, l) llx. 

Now we shall estimate the norm llb(x, l; no , s) llx. From the de finition of the 
function u(x, t; no, s) we have: 

1' 

(1.25) u(x, l; no, s) = ~sf2o J (1 - no~)- 1 12 
0 

[e-sJ1-nn"(J·-o _ e-sJ1-nur<(.c+o]. [t.:(:l') _ 1~ (0]-lrl(~ , l)l d(. 

The inequalities (1.26) and (1.4) lead to 

(1.26) 
1 

u2(x, t;no ,s) :S 4s2nom2(1 - not.:1)- 1 

{ l (.> - Oe_,,;, -n,, ,(>-< l i A(~ , t)l d~ } 
2 

Similarly to the case of inequality ( 1.22), from (1.26) we get the following estimate 

(1.27) 

From the inequality (1.19), (1.24) and (1.27) it follows that the operato r N is 
a contraction in the space X , if 

(1.28) 

which ends the proof of Lemma 1. 
In the further analysis it will be convenient to introduce two other Banach 

spaces );~ 1 > , );~- 1 12> with the following norms 

(1.29) IIA(.?:, Y)ll2. ll) = sup j lr\(x, y)l rl.r, 
); 2 YEIO.oo) 0 

(1.30) 
2 loo lA (.?:. Y)l2 

II A(x, y) ll .(- 1/2) = sup .2[1 n ·( ·)] d:t . 
.>.I YEIO, > o s - ot.: x 
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The fo llowing lemma are valid: 

LEMMA 2. The operato r N given by fo rmula ( 1.1 6) is a contraction in X~ 1 l, 
i.e. 

(1.31) llN All ,.11) ~ rll ll All \ . (1) . 
,1'\ 2 ./ 2 

if '11 = Jri < 1. 

Here q is defi ned by the fo rmula (1.1 8). 

LEMMA 3. The operato r N given by formula (1.1 6) is a contrac tion in x[-1
/
2
), 

i.e. 

(1.32) llN All x:<-112> ~ rt ll ,IJl x: <- 112>, if q < 1. 
. I . I 

Here q is defi ned by the fo rmula (1.1 8). 

The proof of Lemma 2 and 3 is given in the Appendix I (le, la. la and 11 ) . 
We need the fo llowing lemma: 

LEMMA 4. For every (.Oo , 8) E (0, 1) x (0, oo) the fu nctions g(x, l;[. o, ·'), 
og(x, t; f?o. s) o2,r; (x, t; f?o. s) b 1 - (1) y (- 1/ 2) 

ol ' Dt2 e ong to .\ 2 ' -· I • 

. . uq(.r. I; Oo. s) ( I ) 
P r o o f. First, we show that the fu nction . belongs to X2 . 

i) l 
Indeed, di fTe rentiat ing the functions defined by (1.14) with respect to I we o1tain 

~ [r -sJl-fl11 ,.;(.r )(t+J·) _ l"-.sJ1-n11 ,,(J· )(t -,-)] 

(1.33) 
ug(:r , I ; Oo. s) 
-"--=-----'- = 

Dt 

fo r :r < I < 
~ [f -sJI -n""(J· )(J·- t) _ (-sJI -fl11 ~< (J· )(t +.r)] 

fo r 0 < 1 ~ .r. 

and we obtain the estimate: 

(1 .34) 
= 00 j I Dg(x - ~;1 Oo, s) I dl ~ ~ j lc -·• J l-n11 ... ( , )(t+J· ) _ r- .s J I -J?11 ,..(.l·)(t-:)l r/1. 

0 r 

J' 

+ ~ j le-sJ I-J?11 ,.;(.r )( .r-t) _ r- s J l -J?""(J)(;·-t/)1 dl 

0 

~ ~ (! 1'-sJI -J?""(l· )(t-x ) d/ + j e-sji -J?11"(1·)(:z:-t ) dl 

J' 0 

+} P- s J1-J?11 ,.;(l ·)( t+.l· ) dl) ~ ~ (! e-·•J I - J?ro ~< l ( t -1) dl. 
0 r 
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[cont.] 
+ j P-s~(2·-t) dl + J f'-sJ 1-n1,,.. ,(th) rll) 

0 0 

(1.34) 

= ~ ( - 1 c-sJ1- nu" J(t-2·)j 1
= -· + 1 e-sJ1- n 0 ,.. 1(t - x)lt=x 

2 sJl - S?0n: 1 t = x sJl - S20n: 1 t=O 

+ - 1 e -sJ1-n0 ,.. 1(t+3·)jt=x ) = ~ ( 1 + 1 
sJ1- .f20n: 1 t=O 2 sJ1 - J.?0n: 1 sJ1 - f?o,~ 1 

1 es J i-flct"CX _ 1 e-2sJi- fluli JX 
syl1 - S?oii: 1 ~J1- S?on:t 

+ 1 e- sJl- flu"Jl· ) < ~ ( 3 ) 
sJl - S?on:1 - 2 sv'l - f?oK 1 ' 

due to 

and 

And finally 

(1 .35) sup ;oc· l iJ.r; I rlt < 3 < 00 . 

xE [O. · ) 
0 

i)J - 2.~ J 1 - f?o" 1 

. . . Dq(s, l; f?o, s) . (t) 
Th1s 1mp!Ies th at · Dt E .\ 2 • 

For the o ther function s the proof is similar. 
Using the formula (1 .16), Eq. (1 .13) can be wri tten in the form 

(1 .36) (,'(s , t; f?o, s) = g(.~ . t; S?o. s)- NC(.~ . I ; f?o , s) 

and a solution to this equation can be obta ined by the iteration procedu re 
([3] pp. 30-31) 

(1.37) !Jn+ l = - Ng, +go, 

where 

(1.38) !JO = g(s . t; f?o . . ~). 
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1.3. Time derivatives of the Green function G 

Fro m Eq. (1.13) by formal difTerentiation wi th respect tot, we obtain: 

) 
8G(s, t; flo , ~) fJg(s , /.; flo . s) 

(1.39 fJt = Dt 

l
oo f) 

- s2 .00 g(s, t;[2o, s)[": (:~: ) - ~>:(0] Dt (,'(~, t ; f?o , > )d~. 
0 

From Lemma 2 and Lemma 4 it fo llows that the solution of Eq. (1 .39) beongs 

to the xi1
> space. It is easy to show: 

. fJG(s , t;f?o,s). . fi 
THEOREM 1. Functwn fJt IS contmuous or eve1y 

(x, t;f?o ,s) E (O,oo) X [O,oo) X (0, 1) X (0, 1) 

such that t -::j: x. 

P r o o f. Equation (1.39) may be written in the form: 

fJG(s, t; f?o , s) fJg(s , l; f?o , s) 
8t fJt 

(1.40) 

00 

2 J oq(( , l;flo s) = - s [20 q(:z· , ~;[20, s) [" (.r) - "(0] · fJt d~ 

0 
<X> 

2 J { Dn(c t; f2o. 8) D.r; (~, t; !20 , s } 
-s I2o g(:r' C f?o, s )("(.T) - 1>(0] iJI - i)l rlt . 

0 

Applying the estimates simila r to those used in the proof of Lemma L. one 
can show, that the fun ction 

00 

2 j ) )]fJ,r;(~ , t ;.f2o , s) 
l(:r , t;rt0,s) = -s rt0 g(.r, Cf?0 . s) [ 1~ ( .r - 1~(~ ut tL (1.41) 

0 

is continuous with respect to t, fo r every x E [0, oo) and (f?o, s ) E (0, 1) x (!, oo). 
Indeed, the integra l is uniformly convergent with respect tot, due to the es tinates 
used in the proof of Lemma 2. 

Continuity of l with respect to l and Eq. (1.41) imply that ~~; - ~·~ beongs 

to X, xi1
> or x~- 112> if the condition (1.18) is fulfilled. 

Applying the iterative procedure to Eq. (1.40) one can show, that the fUI::tio n 

f) f) 
fJt G(x, t; f?o , .') - fJtg(x, t; f?o, .s) 

is continuous with respect to l, for/. -::j: x, which ends the proof. 
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One can prove: 

THEOREM 2. The function gl C'(.T, I; n0, s ) has the same points of discontinuity 

as the function gl g(:r, I ; no, s ). 

P r o o f. From formula (1 .33) it follows that 

a D 
(1.42) -a g(x, t;no, s)l - -;=)g(x,t;no, s)l = - 1. 

l t= x +O ul t=x-0 

D Th 1 h f 
. fJG(x, t;no, s). . . h 

ue to eorem t e unct1on fJ t IS contmuous Wit respect to 

t , except l = x, where the discontinuity of the first kind appears, i.e. 

(1.43) fJG(x ,t;no,s)l _ fJG(x , t;no ,s)l = - 1. 
fJl t=J· +O ' fJt t=x -0 

The type of discontinuity of function G follows from the definition of the 
Green function for the operator L. In order to establish the properties of the 
second derivative with respect to l, we shall transform Eq. (1.39) to the form 

(1.44) l(x, t; no, s) = l{:r, I; no, s) 

where 

(1.45) 

00 

- s2 n 0 j g(.r , C n 0 , s)[n-(.1' ) - ~>: (0]L(C t; no , s) d~ , 
0 

[) [) 
l(:r , t ; no ,s) = iJt G'(.T, I;no ,s) -

01
!J(.r, t;no, s), 

~ 2 j- )[ () ( )]iJ£(~,t;no ,s) /(:r , 1; n 0, s) = -s n0 g(.r. ~;no. :; ~>: :r - 1" ~ fJ I df,. 

0 

Thking the derivative wi th respect to t we obtain 

fJ£ (f, . t;no, s) 
1 . ( {: 

ut " for t f; x. 

D enote the first term on the R.H.S. of Eq. (1.46) by ·iT1 (x, t; n0. s) and consider 
the equation 

(1.47) MCr, t; n o,s) = nl(x, t;no ,s) 
00 

-s2 f2o j y(:r , f,;fto , s)[h:(:r)- h:(O ]t\f(f,t;no ,s)df, 

0 
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in which A!(x , I ; .00 , s) is an unknown function. It can he shown that the function 
ih E X~- 1 / 2 ) . The proof is analogous to that proposed by K OST UC ENKO (2]. 

From Lemma 3 it follows that if 

q = S7om( 1 - S7o ~> 1 ) - 312s- 1 < 1, 

then a solution of Eq. (1.47) belongs to .Y ~- l / 2 ). We are to show that this solution 
for t :f: x is identical with the function 

[]2 

012 
[G(.1: , t; sto , .s) - g(.r, t ; sto , 8)]. 

In order to do this we integrate (1.47) with respect to /. over the interval [O . t ] 
and we get 

t t 

(1.48) j M (x, I; .Oo , s) rll = j 111.(.1:,/.; .00, s) dl 
0 0 

-s2 fio lq(x , I;; fio. <)[ o(.,) - "(0 ] {I ,\I (I;./; fio, s) dl} dl; 

From (1.44) it follows that the equation 

(1.49) £ (x, t; S7o , s) - £ (.1:, 0; S7o,s ) = i(.r, t; .Oo,s) - l(r , O; sto ,.~ ) 

-s2 S7o j y (x,C S7o. 8 )[~> (.r ) - ,;(0 ][L.:((.t;S7o, s) - L.:(.~:, OJ2o,s)]rl~ , 
0 

and existence as well as uniqueness of the solution of Eq. (1.48) imply that 

(1 .50) 

t 

j A! (:1: ,/; .Oo. s ) rlt = £ (.r , t; .Oo, s) - £(.r , 0; .Oo , s). 

0 

The last relation implies 

(1.51) 
D 

M (x , t.;.Oo. <>) = 
0 1

{ (.T, t; S7o . s) 

[) [ [) iJ ] 
= Ot iJ IG(x. t;sto ,s) - iJ t ·r; (x, t; S70 ,s) . 

02 
. ( - t / 2) D2G' 

Because Dt2 g(.1:, t; .00, s ) for x :f: I belongs to .\ 1 , therefo re dt2 belongs 

.(-1/ 2) D2G' .(- 1/2) . ' . . to .\ 1 • From Dt2 E --'\ 1 and Eq. (1 .51) we obta1n. 
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THEOREM 3. if q = no111(l - no1.: 1 )- 3/ 2 s - I < 1. then (,'(.1:, I; no. 8) satisfies the 
equation 

(1.52) 

D2C'(x, t; no.8) 2 , 
ul2 = ·' (1 - f2o,.(t))r.(.r. t; n 0 ,s), 

C(x, t; no, s) = C(t , ~· ;no , 8), 

and conditions 

(1.53) 
C'(.r , t;no,s)lt=O = 0, 

oC(:r: ,t;no.s) l D(,'(x, t;no,s) l _ 
- - - 1 ol t=.dO Ut t =x-0 . 

In other words, C (.t, t; n0 , s) is a Green function for the boundary value prob
lem: 

(1.54) 
/~ 13 (.r ) = 0. 

fj(Q) = 0. 

Clearly, a so lution to (1 .5)- (1 .6) expressed by C takes the form 

(1.55) {J(.r; no,,~) = C 1 j (,'(.r, t; Do. ·')(1 - "· (t)]r-"~1 dt (C1 = const). 

0 

Since cond ition (1.7) can be written in the form 

(1 .56) 

a solution to the eigen-problem (1.5) - (1.7) is defined by the pair (no ,/3(x)) in 
which n0 is a solution to the eq uation 

(1 .57) 

and {3(x ) is given by the formula (1.55). 
Using the formu lae (1.37)- (1.38), (1 .55) and (1.57), we get a solution of the 

eigen-problem if q < 1, e.g. 

(1 .58) 

In general, the Eq. (1 .57) has a finite number of solutions n0 = n0(s), (cf. (4]). 
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2. Surface waves in a weakly nonhomogeneous isotropic elas tic half-space 

The problem of propagatio n of a surface stress wave of the form 

(2.1) 

r11(x1, x2, l) = 0'11(x2)cos(sx1 - l ..f>.), 

r22(x 1,x2, t ) = a22(x2)cos(sx 1 - t..f>.), 

TJ2(X1, X2, t ) = -11'J2(X2) Sin(sx1 - t ..f>.), 

in a nonhomogeneous elastic half-space 

reduces to the following eigenvalue problem [5]: find a real symmetric tensor fi eld 
O'ij = O'ij ( x 2) ( O'ij E C 2[0,oo); i,j = 1, 2) and a real number A. (A. > 0) satisfy ing 
the system of equations 

(2.2) 

g- 1(-'2o1 1 + S0t2) - .X.(2Jt)- 1(11' JJ - IJO' .. ,n,) = 0, 

- [g- 1( 0..22 + sn 12)]' - ;\(2p)- 1(o 22 -va"~..., ) = 0, 

- (g- 1(s2 a 12 + Sll' tl)]' - .5 [1 - l ( 0 22 - S f~ J2 ) - /\(2ft)- 12rtl2 = 0 

fo r .r2 E (0, oo) (J = 1, 2) 

and the boundary conditio ns 

(2.3) 0'22(0) = o 12(0) = o22( ) = o 12(oc) = 0, 

s being the wave number (8 > 0), and g = o(x2). f L = Jt(.1·2), v = 11(.r2) denoting, 
respective ly, the density o f th e medium, the shear modulus, and th e Poisso n ratio . 
The functions are assumed to be o f the C 2[0, ) class, and to sa tisfy the fo llowing 
inequaliti es 

(2.4) 
0 < [lO :S g(x2 ) :S 01 < oo, 

0 < f.LO :S Jl (:1'2) :S Jl l < 
- 1 < vo :S v (x 2) :S IJI < 1/ 2. 

A dot over a symbo l denotes difTerent iation with respect to the variable x2 ; we 
will also use the symbol D to denote the deriva tive. 

The aim of this paper is to give an approximate solution o f the e igenvalue 
problem (2.2) - (2.3) in the fo llowing two cases: 

1) density g = g(x 2) is a "weakly" variable function, and fL and v are constant; 
2) shear modulus f.l = 11(.r2) is a "weakly" va riable function, and g and tJ are 

constant. 
In both cases we obtain the approximate so lution by using the perturbation 

method pro posed by F RrEDRICHS in [6]. 
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2.1. Analysis of the case - (
1 

) :-: ..!_ + _(
10 

)' Jt(r 2 ) = Jtt. v(;·2 ) = v 1 
f2 l'2 f21 {! ).'2 

Let us consider in the real Hilbert space H generated by the scalar product 

00 

(a, (3 ) = j (o'II fJ il + n22fJ22 + a 12fJ12) d:t2 
0 

and satisfying the condition 

00 

lloll2 =]coil+ o~2 + oi2)dx2 < oo. 
0 

Equation (2.2) written in operator form 

(2.5) Aa- >..Do= 0, 

where 

C") a = n22 , 
0 12 

s2 
0 !_ D 

0 0 

A := A(s;p) := 
1 1 

0 - D - D :; /)-
0 (} 

1 
-8 D-

s 
-- D 

1 s2 
- D- D + -

{} 0 {} {} 

1 - /) - /) 

0 --
2;1 2;t 
- /) 1 - j) 

0 --
2;t 2;t 

B := B(tt; v) = 
0 0 

JL 

The domains of operators A and n may be defined as 

(2.6) 

V(A) = { o : a;j E C'2[0 , ). o12(0) = a22(0) = (\.'12 (oo) = n22( ) = 0 }, 

V (D) ={a: aij E C'2[0,oo)}, i, j = 1, 2. 

The sets V(A) and V(D) are dense in H since the set C'0 [O ,oo) x C'0 [0,oo) x 
C0 [0, oo) is dense in Hand is contained in V(A) and V(D) . 



http://rcin.org.pl

526 T . I~LEC II A 

It can be demonstrated that operators , \ and D are symmetric. The symmet•y 
of operator A results fro m the fact that operators on both sides of the p rincipal 

diagonal are formally adjoint, e.g. -8 /)~ and ~ /J, sD~ and -s D. For any rr .{J E 
Q Q {] Q 

V (A) we have 

00 

(Aa, f3 ) = J {g-1(s2
0' J J + so· 12)/311 - [o-1( a22 - sn 12)] ' /322 

0 

Integration by parts with the use of boundary conditions shows that 

The symmetry of operator fJ is obvious. Matrix !] is positive defi nite and for 
every a E V (JJ) c 'H we have C) 

(2.7) (11 n , n) ::=: /, ( n , n) , 

where 

1.; = min --- -( 
1 - 2 11 1 1 ) 

~·zE I 0.= ) 2;t ' ;t' 2;1 . 

If in Eq. (2.5) we put g = {j = const, ;t = jl = const, 11 = 11 _ = const 
(homogeneous medium), the prohlem has precisely one solut ion (~, .\ ) of the 
form 

where 
1 - 2// 

"' = 2 - 2// , 

and w is a root o f the equation 

(2.9) 

1 
I - 2v I I . . . . 

( ) The cigcnvalucs of mat rix 8 arc --, - , - . From the theorem 111 [SJ saytng that a symnHctn: matnx 2,, J.l 2,, 
8 is positive definite iff all its cigcnvalucs arc positive and (Bo, u ) ~ m in .\ ,(cr . o ), results the Eq .. (27). 

' 
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such that 0 < w < 1; ~0 is an arb itrary real number. The surface wave velocity in 
this homogeneous mediu m is given by 

The relation between ~ and C11 is of the fo rm 

/5.. = sCf?. 

Le t us conside r the case when 

(2.10) 
1 1 [ 

- - = - + - -
e(x2) 01 g(:t2), 

V::: VJ 1 f-L ::: f-L I 

and c is a sufficiently sma ll positive real number. Mo reover, g1 is a positive 
co nstant, and g(:t 2) is a positive function (cf. (2.4)). A fte r substi tut ing (2 .10) into 
(2.5) we get the equation 

(2. 11 ) rlon + .: \ ' n = >..JJn, 

where 

rlo = ;\(.s ;u, ), 
\ : = V(8; g), 

D = /](JLJ ; II J ). 

The constra ints on [! (cf. (2.4)) and (2.1 0) yie ld the constraints on ii for .1:2 E 
[0, oo). Hence for every n E T>( : l) = I>(V) C 1-t 

(2.12) ( \ ' n.n) < oo . 

Moreover the ope rators ;10, V and /] are symmetric in the space H. Fro m the 
fact that ~(g 1 , ILJ , 11 1) is a simple eigenvalue (the e igenspace is o ne-d imensional) 
it fo llows that (rlo - ~n)- 1 is defi ned in the subspace 'H o rthogo nal to the 
vector n(g1,,t1, 1/ 1)e). H ence for sufficien tly small .: in a ne ighbo urhood of 

(~ (g 1 , v 1 , Jt 1 ).n (g 1 ,11 1 .p 1 )) there exists a solu tion ( /\ e , (l'E) satisfying E q. (2.11), 
analytical with respect to .: , of the form 

(2.1 3) 

(2.1 4) 

Ae = ~ + E ,\I + .:2 A2 + · · .. 
n e = ii + .: r1 1 + .:2

n2 + . . . . 
{') FKtrDKICIIS 161 formula tes the.: fo llowing assumptions o f a pertu rbation thc.:orr: the.: operator must be 

symme tric, it mus t allow fo r a spectral deco mposition, it must have a s im p le c igcnval uc.: .\ wi th the co rresponding 

e igenvector 7;, Hence the equation j .· \11 - \ a In = 1/1 has a solut ion for a ny right· hand side o f 1/1 orthogonal to 
-; in the space 'H. It is easi ly scc;n that Fric.:drich's assu mptio ns arc satisfied for the proble m (2.5)-(2.6). 
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where 

er; = ( :l~ ) , 
( i) 

er l2 

T. K LEC IJA 

i = 1, 2 , 3 . . . . 

Substituting (2.13) and (2.14) into (2.11) and comparing the expressions appearing 
at suitable powers of c we get 

(Ao - ~B)a = o, 
(Ao- ~B)a 1 = - (V- A1 B)a, 

(2.15) (Ao- ~B)er2 = - (V- AJfl)oi + A2flO:, 

(Ao - ~B)a3 = - (V - A1fl)a2 + A2Ba1 + A3flO:, 

Multiplying the fi rst eq uat ion by er 1 and the second by o, and subtracting we 
get 

(2.16) 
A _ (V a, n) 

1 - en- -). 0', 0 

Analogously, multiplying the first eq uat ion by n 2, and the th ird one by o and 
subtracting we obtain 

(2.17) 
, _ (VfY 1, er) - A1(/Ja 1, o) 
/ ' 2 - (D O: , a) · 

In general, we get A; (i ;?: 3) by multiplying the first equation by er; , multiplying 
the (i + 1)-th equation by o and subtracting bot h sides o f the re lat ions. 

Equations (2.13), (2.16) and (2.17) effectively determine the approximate 
eigenvalue in the pro blem with weakly variable density in the considered half
space. 

We now proceed to construct the seri es er; . It is easy to demonstrate that the 
right-hand sides of the system (2.15) are elements of a subspace H o rthogonal 
to the vector er. The construction o f the series a; is thus reduced to finding an 

operator [Ao - ~(e 1 , lLJ , v1) /J(;t 1 , 111 )] - 1 on a subs pace o rthogonal to er (o1, ;.t1, 11 1) . 

To this end, let us consider the equation 

(2.18) 

where 

(
!7 11) 

f) = !722 , 
912 
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and g is a vector of the subspace 1t satisfying the condition 

(2.19) (g , O:) = 0. 

The vector a e given by (2.14) should belong to V(A). Thus to construct a; it is 
enough to find a satisfying (2.18), (2.19) such that a E V(A). It can be shown 
that vector a is of the form 

(2.20) 

where 

(2.21) 

(2.22) 

= f l\"1(x2, l)F(l)dt 
0 
= J K2(x2 , t)F(t)dt 
0 
= f A"3(x2 , t)F(l)dl 
0 

LJ Cs ) J-:;;,; i(X2- t) + l2e-s~(3·2- t) + (l } e-s J J-:;;"1(t+x2) 

+ -s(~t+)l -:;;KJ1"2) + b C-s(JJ -:;;K Jl +~x2) a2e 1 

for t 2: x2, 

l, es ) l -:;;" J( l·2 - t) + l2cs~(x2 -t) + CL JC- sJl- :;;" 1(t+ x2) 

+a2e-s(~t+J!-:;; " J '!:2 ) + b 1 e-s()l -:;;" t l+~x2) 

for x2 2: l , 
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(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

T . 1\ LECII A 

ls e-sV1 -;,~<, ( t -.•·2) + l6 c-s~(t-J·2) + 01 hc-sV 1 -;,,I(~·~ +t) 

+o2h,, -.s(~t+J1 -;,, , ,_.2) + b11se-s(V1 -;,,,t+ ~J·2) 

- lses J 1-;,,..,(t -J·2) - l6c• ~(t-£2) + a1hr-s Vl -;,~< ,(x2+t) 

+ a2he-s(~t+J1-;,, , x2) + b11se-•(J1-;,, , t + ~.c2) 

for x 2 ;:::: l , 

F(t) = - LJt [ D2
- kf] £f22(l) + LJtW- t [2 - 2::J- 2ti:1 + wti:t) [ D2 + k~] 911 (I) 

+2g1 s (2 - w)(1 - ti: 1):i-
1 D.r;12(t) , 

G' 11(.1·2) = .~2(:i _ 2)(.'122 - .1111)· 

C'22(·1:2) = 0. 

c 12(.1'2) = 0. 

The coefficients l 1,l2, .. . , /g, kf.k~, rt 1 , o2, b1, b2, appearing in Eqs. (2.21) - (2.27) 
are given in the Appendix IT. 

Using Eqs. (2.18)- (2.27) and the re lations (2.16) and (2.17) we can find suc
cessively (Ai, n i). 

Let us now analyse th e eigenvalue A< (cf. (2.13)) in the case when the function 
g = g(T2) (cf. (2.10)) is a monotonic fun ction o f th e half-space d ep th coordinate. 

Assume that 

(2.28) 1 - 1 [ (1 -UJ"2) -- - - + - -e 
Q(X2) LJ1 g.x, . (o ;:::: 0). 

. 1 1 1 1 1 
Smce - ~ - (- ) ~ - we have on the one hand max - (- ) = - and on the 

Ql [J :r2 [JQ :r2E!O.·x·) [J .1:2 [JQ 

hhd 
1 1 E c . 

1 ot er an , max - ( . ) = - + -;:::- . ompanng these va ues we get 
x2EIO.co) (! .12 LJ 1 (!.x . 

(2.29) 
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Substitut ing (2-28) and (2.29) into (2.16), taking into acco unt the relations 

1 - 211] 
K-J = 

2 - 211] 

and limiting ourselves to two terms in Eq. (2.13) we get fo r the square of surface 
wave velocity the relation 

(2.30) 

(the polynomials P0 , f-11, F2, F3 , f>4• 1)5 are given in the Appendix TT). Introducing 
the following notation 

B = L'l 
f!o , 

~ . ~ 
a= - a 

2r. 

we rewrite the formula (2.30) in the form 

(2.31) 

(liE [O.oo)) , 

It is easy to demonstrate that the function w = w (li.fJ,,.;, 1) described by (2.31) is 
for every fixed B and '~I an increasing fu nction of the variable a. Figure 1 shows 

the fu nction w fo r: 1) ,.;, 1 = ~ , B = 1.1; 2) ,.;, 1 = ~' fl = 1.01; 3) 1,- 1 = ~, (} = 1. 
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w 

0.3 0.6 0.9 1.2 a 
FIG. 1. 

2.2. Surface wave in an elast ic ha lf-space with a weakly variable shear mod ulus e) 
Assume now that 

1 1 [ 
(2.32) -- = - + -- (! = Il l V= 111. 

Jt(x2) J.Li ji{x2) ' - "' ' 

Substituting (2.32) into (2.5) we get 

(2.33) A(s,g,)a- .-\ [!J(JLJ,vl) + .:B(,U ,v,)]a = 0. 

Operators A(s, g1), B(!lJ , v 1), JJ(jL , t/ 1) are symmetric in H. Moreover, IJ is a 
positive definite operator. According to the perturbation theory, there exists a 
solution of the eigenproblem (2.33) determined in some neighbourhood of(~ , fi,) 
which is an analytical functio n of the parameter .: . T he pair (>. ~, o~) is given by 
(2.13) and (2.14), while (~ , 0:) is given by (2.8) and (2.9), where g = {!J, j1 =PI> 
v = v1• Substi tuting (2.13) and (2.14) into (2.33) and comparing the values at 
suitable powers of c we obtain the following system 

[A(s, f! r) - ~ D(pJ , v,)]O: = 0, 

[A(s, g1)- ~fl(p, , t/ 1)]a1 = [~fl(ji , IJJ) + At D(JLJ, Vt))CY , 

(2.34) [A(.s , g1)- ~B(tt 1 ,v1 )]o2 = ~fl(jL , t; 1 )o 1 + ,\ 1[fl(tt 1,t/1)11' 1 + B(jL, v1)o] 
+ ,\2B(p, , t/ ,)0:. 

Performing scalar multip lication of (2.34) 1 by o 1, of (2.34)2 by n and subtracting 
by sides, we get 

(2.35) 
>. _ - >. [D(ji ,v1)0:,0:] 

1
- [/J(p1 , v1)lr,O:) · 

(')This problem was also analysed in (7J, usi ng another approach. 
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Proceeding similarly as in the derivat ion of the series (2.16) and (2.J 7), we get 

(2.36) 

A _ -~[n(;t , 11 1 )n 1 1 o]- ~\J{[!J(1 , 11 v 1 )a 1 1 n] + [D(;t . 111)o1a]} 
2

- [D(1t 1, ~~~)a , n] 

The vectors ai a re defined by the equations 

a1 = [A(s , e 1) - ~JJ(1 L J 111J)r 1 ~D(j:l1 vt) 2Y + AJB(11 t1vl )a, 

(2.37) - I -a2 = [A(s, .Q J) - Afl(JLJ, v1)] - {AJJ(;L1 v1)cq + A1[lJ(f.LJ , v1)a 1 
+JJ(;L , v1)a ] + A2D(!-LJ , vl)a}, 

We continue simila rly to the case of the half-space with "weakly variable" density 
and we assume 

(a ~ 0), I/ := II J 1 {! := {! ) 1 

where 

E = JLoo (~ - __!__) 1 t!..!_ rv 1. 
/LO fLJ JLO 

From relat ion (2.35) for the sq uare of wave velocity we get 

(2.38) 

Introducing the fo llowing no tations 

B = !!J_ 
JLO 

1 

s ~ 
a = 27r a, 
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we reduce (2.38) to the fo rm 

(2.39) - -eo 1 )~ [ r3 w = w - w - n 
J 1 - C·(a + 4rr J 1 - w) 

1'4 
+ -;-( v'1 :;=1 =_::::;w:;;:-:-+--/1 7'1 =_=:w~,..,=. I~) (-;:::a:-+-:-:::2-7r-Vr.1=-=w:;;;::_:--+:-::-2 7r-V--:;:;::1 =-=w;;=n.=· I~) 

+ (J 1 - wn. 1(a :
5 

47rj1 - wn.t )l 

[ 
P3 Ps P4 J - I 

X + + ---;:;=:::;;;:--:-r::;=.==;~ J 1 - w J 1 - wn.1 J I - w + J1 - wh: 1 

The function w given by (2.39) fo r a fixed 0 and " 1 is a decreasing functio n 
o f the argument cr. F igure 2 shows the diagrams of the fu nction w(O, n. 1 , Cl ) fo r 
1) KJ = 0.5, B = 1.1 ; 2) h: J = 0.5, f)= 1.01; 3) h:J = 0.5, B = 1. 

0 3 06 ll 'J 1 2 1.5 a 

f 1c. 2. 

Appendix I 

Ia: To obtain (1.23) from (1.22) we calculate the integral 

(A.l) Ia = Jd:r [J fl (~- ~·)u (O r/~]
2

, 
0 1 ' 

where 

(A.2) 
b(p) = I A (J>. t )i (p > 0). 
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Changing the variables in (A. l) and using the Fubini theorem, we ob tain 

(A.3) J. ~ l dx [l"(p)b(p + .x )dpr 

~ rlx [7" (p )b(p h )d 7' l· [l, (p)b(fi +x) dV l 
00 00 00 

= j a(p) dp • j a(j)) rlji • j dx [b(p + x)u(p + x)]. 
0 0 0 

From the Schwartz inequality it follows 

(A.4) 

Finally we obtain 

(A.5) 

Similiarly we estimate the integrals h, le, le~ : 

(A.6) h = Jdx {J (:r- Or- .. ~( ... -o · l tl(~.t)l rl~ 
0 0 . ! (x - n ,-•J l-fl,, ,(,-(') · I A((,l)l d(} 

•X> 

:S s-4(1- J2o1.: 1) -
2 j IA (.T, L) i2 rlx , 

0 
00 'X• 

(A. 7) f c = j ia(:r . t; .r?o. s)l d.r :S ~ f?om( I - f?o.1· 1 )-
312s- 1 j I A (.t. t) i d.1: . 

0 0 
00 ~ 

(A.8) Id = j lb(.r , I; r2o. s)l d.r :S ~J2o111 (l - .Oo.r ,)- 312s-1 j IA(.t, 1)1 rl :r. 
0 0 
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Integrating the inequality (cf. (1.1 9)) 

(A.9) IN A(x, 1)1 ~ la(x, t; f?o , s)l + lv(:r, t; f?o , s)l 

with resp ect to x over the interval [0, oo) and using the estimate of the integral 
l e and Id, we obtain 

(A.lO) 

and finally 

(A.11) 

00 00 00 

j IN A(x, t) i dx ~ j la(x, t; f?o, 8)1 dx + j iu(x, l ; f?o , s)l dx 
0 0 0 

00 

00 

~ f?om( l - f?ox t)- 3128- 1 j IA(x, t)l dx, 
0 

!IN A(x, t)1! 2
, cJJ = sup j IN A(x, t)l dx 

X2 tE [O, ) 0 

00 

~ f?om( l - f?o,. 1)3128- I sup j IA(:r, t) i 
tE !O,oo) 

0 

= f?om( l - f?o''J )312s-'ll r1 (:r:, t)112. c1J • 
; .; 2 

F rom the last inequali ty it results that N A is a contract ion operator in xf), if 

(A.1 2) fJI = ,fij < 1. 

Let us consider the integra l 

r = j' u2(.r, t ; f?o,8) l· 
e 2(1 - n ·) ( X. 

8 J tOh· 
0 

Due to (A.1 2) we get 

(A.13) 
82 f?2m2 J={ 1 I < o 

e - 4(1 - f?ot>. ) sJ1 - f?ot.: 
0 

• J (x - 0 exp [ -s)l - Jlo"J (x - 0] 1 , J((, 1.)1 <L< }'dx . 
0 

H ence, by making estima tes similar to those fo r the integra l h we obtain 

1 2 2 - 3 - 2]
00 

IA(:r, t )2
1 

le~ 4n0m (1 - f?o~-: 1 ) 8 82(1 _ f2o,..)d:z:, 
0 

(A.14) 
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and 

(A.15) llb(x 1 l; no, 8)11 2
, (-1/2) = sup l e 

~\I tE (O.oo) 

1 
:S 4nJm2(1- no~-.:J)-3 s-2 11A (:t, t)ll~, 1- 1 12 . 

Applying a similar procedure to that used for integral 1~ , we get 

(A.16) 

Since 

(A.17) NA (.T, I) = a(.1:, 1; f2o,s) + b(x, t;f2o ,s) 

and 

lla(x, l; no, 8)11 2
,( - 1/2) = sup f e 

.\I IE (O,oo) 

1 
::::; 4nJm2 (1 - no~-.: 1 )- 3 8-2 11 ~1(:r , t) ll~,:- 1 '2>, 

(A.18) 
llb(:r, t; no , s) ll 2

.( - l /2) = sup l e 
. .\ 1 tE (O,cv) 

1 ::::; 4nJm2(1 - f2o,..:t)-3s -2 11~ 1 ( :t, t) l l~:- 1 /2), 

the operator N is a contraction in xf-112
) if the fo llowing condition is fulfi lled: 

(A. ] 9) 

Appendix II 

Po(w) = a:}(l - w) + ~(2 - w)4w, 

P1 (w) = ~w2(1 - w)(2 - w)2 + ~(2 - w)4
, 

P2(w) = - [4W2(1 - w)(2 - w) + (2- w)4w], 
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P3(w, hi) = 8 - 4-:1 + w2
- 4Whi , 

P4(w, hi} = - 32 + 8.:;) + 24-:lf.:I - 4-:12h:I , 

Ps(w, hi) = 8 + hiw2
- 8:Jhi, 

kf = w- I[4s2(1- w)(1 - hi )(:J- wh i - 1)], 

k~ = s2(1 - w)(l - 2hi}:J[2 - 2.:;) - 2hi + Whi]- I, 

t, = [283w(l - hi)(1 - w''I)112
]-' , 

t2 = - [2s3w(1 - ii:I)(1 - w)I I 2r' , 

t3 = [2(1 - wh,) + w][2s3w(1 - hi)(w - 2)(1 - wKI)'I2ri, 

l4 = [2s3w(1 - ii:I)(1 - w)112]- I , 

T. I~ LEC' IIA 

ls = [ - 2(1 - wii:,)(1 -hi }.:;) + (1- 2hi)P - 2):J- 4(w- 2) - w2 (1 - hi)] 

x [8.-;3(1 - hi)2(w - 1)(:1- 2):Jr' , 

t6 = [883 (1 - h,)2 (w- 1)(.:;) - 2):r '[- 2P - 1).:;;- (1 - 2"I)(w - 2):J 

+4(.:J- 2) + w2(1 - '' I)], 

h = (1 - wh i)' I 2 [4(1 - ''I)P - 1)(:J- 2)ri[u(1- ::ih·,) -.:;;(1 - 2"I)(w - 2) 

+ 4(1 - hi)(w- 2) + w2], 

ls = (1 - whi)I /2 [1 6(1 - h·I)P- 1)(w- 2)(1 - ::;,, ,)] - I 

x [SW(1 - WI{ I)2 - w(1 - 21i,){:i - 2)3 + 4(1 - " I) (.:;) - 2)3 + w2
(.:;) - 2)2

] , 

a 1 = [8.~ 3 (1 - I~ I)2 (1 - C::•1.: 1)l/ 2p - 1):Jri[2(J - WI> I):J - {.:;) - 2)(1 - 2Hi):J 

+2(_::; - 2)(_::; + 6)(1 - "I)] , 

a2 = [1 6s3(1 - hi )2 (1 - w1;1)1/2p- 1):J(:J - 2)2]- I[- 4(1 - ,:,,,: I).:(.: - 2)2 

+2(.:;)- 2)3(1 - 2" 1).:;; + 16(1 - ::;:;,,.I)(-:1 - 1)(1 - h'I) 

- 8(-:1 - 2)\1- 1.: I) - w2
{.:;) - 2)(1 - lii)], 

b1 = - [1 6s3(1- ii:I)2( 1 - ::;:;,. I)I f 2(w - 1):·][4(1 - wh·I).:;;p - 1) 

- 2(.:;) - 2)(1-2,.1).: +8(w- 2)(1-h1)+ w2)(J-,.: 1)+4(.:- 1)(1 - w,, ,)] , 

b2 = [1 6s3(1 - '' I)2(1 - w~>I)I /2 (0- l):J(.: - 2)2ri x [4(1 - ::;:;,;I)W(:J - 2)2 

- 2(w- 2)\1 - 2"IP + 8(w - 2)\1 - hi):! + : 2p- 2)2 (1 - '' I) 
+1 6(1- :J,; I){:J - 1)(1 - "I)] . 
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Symmetrization of a heat conduction model 
for a rigid medium 

W. DOMANSKI, T. F. JABLONSKI and W. KOSTNSKI (WARSZAWA) 

THE SY MM E.IRIZATION o f the equations of a heat conduction model fo r a rigid medium in time 
and three space dimensions is petformed. The general symmctr izability condition is formulated in 
terms of the entropy function. Examples of particular moc.lcls (e.g. Dcbyc's model) are discussed. 

1. Introduction 

MosT OF THE KNOWN DYNAMIC (non-equilibrium) problems in nonlinear continuum 
mechanics and thermodynamics lead to quasi-linear hyperbolic systems of par
tial differential equations. The problem of well-posedness, i.e. exjstence, unique
ness and continuous dependence (stability) of a solution on the initial data, is 
fundamental for any system of equations. It is well known [1 , 2] that Cauchy's 
initial-value problem for symmetric hyperbolic quasi-linear system is locally well
posed in the Sobolev space JI"', with s 2:: n + 1, where n is a number of space 
variables. The quasi-linear systems of continuum mechan ics usually are not for
mulated in symmetric forms. To make use of the above well -posedness result, it 
is desirable to transform such systems into symmet ric fo rms, by the appropriate 
change of the unknown variables. 

The aim of this paper is to symmetrize the equations describing a non-equi
librium heat conduction problem in a rigid conductor governed by a modified 
Fourier law. The system of equations is of the second order in the scalar variable 
(3, called internal state variable (or a semi-empirical temperature), and of the 
first order in the absolute temperature e. In the general 3D case, this system 
can be transformed into the first order system in five unknowns. We symmetrize 
this system with the help of entropy function using some results of FRLEDRJCHS, 
BorLLAT, RuGGERI and STRUM IA [3- 5]. Instead of deriving the exact form of the 
entropy function from thermodynamics, we postulate the family of suitably cho
sen entropy-like functions that are then used to get the new dependent variab les 
(the main fi elds). 

In order to pick up the entropy from our family of postulated functions we 
formulate a general symmetrizabili ty condition. It turns out that this condition 
is in fact the model compatibili ty condi tion wh ich, on the other hand, can be 
obtained from the second law of thermodynamics. This symmetrizabili ty condition 
can be easily fulfilled not only in the Debye's model, which we analyze in details, 
but also under some more general assumptions. 
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2. Model with semi-empi.-ica l temper·ature 

Recently in a series of papers [6 -9] a thermodyna mic, pheno meno logical the
o ry o f heat cond uctio n w ith fin ite wave speed has been develo ped and appl ied 
to thermal wave propagatio n prob lems, mostly 1 D . The theory is based on the 
concept of a gra die nt gene ra liza t io n o f the in ternal sta te va riable approach, in 
which the gradie nt of a sca lar inte rn al state variable (3 (ca lled a semi-e mpirical 
temperatu re) influe nces the response of the material a t hand . The quanti ty f] 
cannot be measure d direct ly. Here it is considered as a potentia l, with the ana l
ogy to the classical heat co nduction Fo urier law. I n the new model th e heat nux 
is proportio nal to the grad ient of (3 , instead of to the grad ient of the classical 
absolute temperature B. 

In the mo de l considered (cf. [7, 9]) we assume that the evolution of (3 is 
governed by the following equa tio n: 

(2.1) ~ = j(B, !3) = j j (B ) + h((J ) 

(wi th fi, h be in g rea l fu nctions such th at rlh / rl{J < 0), wh ile the energy bala nce 
law reads: 

(2.2) iJgE d' • Dt + IV q = {! 1'. 

where e) {! is the mass d ensity, E - the specifi c inte rnal energy, r - the body heat 
supply, a nd q · is the heat nux vecto r. We also assume tha t the second law o f 
thermo dyna mics 

(2.3) 
Dut( d . q• g ,. -- + IV - >-

Dt fJ - e 
is sa tisfi ed, with 't( being an ent ro py. Mo reove r, in our mode l we make the two 
additio nal simplify ing assumpt io ns: 

(A. 1) 

(A.2) 

q · d epends linearily o n \ (3 , 

E is a functio n of 0 on ly. 

From the second law of thermodyna mics (2.3), under the assumptio n (A.1) we 
can express th e heat fl ux as: 

(2.4) q"' = - n"' (B) \tf3, 

where o "' is a positive function of dimensio n o f the th ermal conductivity coeffi 
cient. Also fro m (2.3) a nd from the assumpt io ns (A.1), (A.2) we can derive the 

( 
1

) T hroughout th is paper we ust: d ime nsio n less variables. However, tht: fol lowing uni ts have bee n assumed: 
temperature (0 and {3 ) in ,,. , length in ern, t ime in JlS, speed in cm/JLS, t:ncrgy in J. 



http://rcin.org.pl

SYJ\II\18TiliZAT IO ' O F A I I I':X I' C'ONI) l WTIOf\: ~ I OO E L FO I1 A lU C ID .\I E D i l '~ l 543 

fo llowing fo rm o f the e ntropy fun ctio n: 

(2.5) 

with c being a positive constant. 

3. Basic equations in a quas i-linear fo rm 

In order to express the syste m (2.1 ), (2.2), (2.4) in the co nserva tive fo rm we 
introduce the following vecto r of new dependent variables u: 

u(x, t.) = [e, q , ,6], :z: E IR3
, t E IR, q = [r/J , r12 , r13], 

where e = (!E is in ternal e nergy a nd q = - V' ,6 is the resca led heat fl ux vector 
(cf. (2.4)). M o reover, we introduce the flux ma trix F(u) a nd the vector o f external 
influences b(u) as: 

[ dh ] b(u) = g ·r , t!f] q , f1(c) + h (/3 ) , 

where 13 is the 3 x 3 identity matrix, n- is a positive functio n of d imensio n of the 
thermal co nductivity coefll c ie nt, and the fu nctio n j 1 is fi from (2.1) expressed 
as a functio n of e. In w hat fo llows we deno te: 

divA= \AT 

with \1 = [ i)~ , D~ , D~ ] and A being a n arbitra ry 3-column matrix. Now, a f-
x I ~ 2 .1. 3 

te r some calculat io n, we ca n describe th e process (2.1 ), (2.2), (2.4) o f the heat 
cond uctio n in a rigid med ium in the fo rm o f the fo llowing fi rst o rde r system of 
balance laws: 

(3.1) 
i)u Dt + d iv F(u) = b(u) . 

The q uasi-linear fo rm of th is syste m is: 

(3.2) 

with: 

Du 3 iJu 
-D + L A,(u) -:-) = b(u) 

I . I ( .T; 
I= 

- rr 
rlc 1 

r 

do 

Ai(u) = I} 
( I '/" 
-~ · 
de 1 

i = 1. 2 . 3 . 

whe re 04 is the 4 x 4 null matrix and ~ 1 = [1 . 0 , 0 , 0], ~2 
[0, 0, 1, 0] . 

[0, 1' 0, 0], ~3 = 
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4. New dependent variables 

In order to symmetrize our quasi-linear system (3.2) we make use of a well 
known fact [10, 3, 5] that a system of hyperbolic first o rder balance laws can be 
symmetrized, provided that it is equipped with a convex entropy function satis
fying supplementary conservation law. More precisely, such a system of balance 
laws becomes symmetric in the Friedrichs's sense when one takes the gradient 
components of the entropy function 17 as the new dependent variables (main 
fields) v: 

v = gradu 1] . 

In the case of our system (3.1), having in mind the form ula (2.5), we take as 
the candidate for the entropy 17 the family of functions that can be expressed in 
the following form: 

(4.1) 
1 

IJ (e, q) := 1Je(e) + 2c l q · q , 

where c1 > 0 and 7Je is the so-called equilibrium entropy that will be detailed in 
the next section. Co nsequently, we obtain: 

Since semi-empirical temperature (3 is not involved in the divergence term in 
the quasi-linear system (3.2), we are free to put an arbitrary function as l's (e.g.: 
vs = c2(3 with c2 = const). Hence, our main fi elds v are: 

(4.2) 

Using the main fi elds (4.2) we obtain the symmetrizing matrix H for our quasi
linear system (3.2) in the fo rm: 

(4.3) 

where gradu v = [gradu v1, gradu v2, ... , gradu v5f" and diag[ ·] denotes a diagonal 
matrix with the diagonal [ · ]. We can choose an appropriate sign of the constant 
c2 to make our symmetrizing matrix H positive defin ite. 

5. The symmetrizabili ty condition 

The matrix H of the form (4.3) symmetrizes our quasi- linear system (3.2) if 
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and only if, by the definition, the fol lowing matrices B;, i = 1, 2 , 3 are symmetric: 

(5 .1) B; = H. A; = ' de de2 

r 

do: d
2
·1.}e q·---

cl d!J ~T 
de 

0' d
2

rte ~ . ] 
de2 ' , 

0 

i = 1, 2, 3. 

Since the equalities of the corresponding ofT-diagonal e lements of the matrices 
B; do not depend on i, the condition (5.1) is reduced in fact to a single, general 
symmetrizabil ity condition in the form: 

(5 .2) cl= a (e) d21Je jdft . 
de2 de 

We remind that c 1 is a constant appearing in our family of functions (4.1). It 
can be shown that c1 evaluated from (5.2) coincides with the constant c from 
(2.5) which, on the other hand, is evaluated on the basis of the thermodynam
ical considerations. It is also worth mentioning that under o ur assumptio ns the 
equiiibrium entropy 1Je is a convex function of e, provided that rlf1 j de > 0. 

6. Specification of the equilibrium entropy 

Under our assumptions the equilibrium entropy 17;, as a fu nction of the clas
sical tempera ture B, is the derivative of the Helmholtz free energy '1/;1: 

(6 .1) 
• dif11 

1lc (B) := - dB , 

where V' l satisfies the following ordina~y differential equation: 

rl if' l 1 ~ 
- B dB + '1/;1 = Q e(fJ) 

with e being e as a function e) of B. Hence, V' l takes the form: 

0 

V' l(B) = coB - ~1 e(s) ds, 
(} s2 

eo = co nst. 

0 

Substituting the sol ution ·th into our postulate (6.1) we obtain the the equilibrium 
entropy as the foll owing funct io n of B: 

(6.2) 

0 
• e(B) 1 j c(s) 

17 (B)= - + - - ds- eo . 
e (! () (} s2 

0 

{') In o rder to disti nguish between a variable (e.g. e) and the same variab le treated as a function of another 
variable (e.g. e as a function of 0), introduce the symbol ~ to de note the functio n (e.g. ;;(B)). 
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All that we need now is to express the eq uilibrium ent ropy as the functio n of the 
internal ene rgy e o nly. To this e nd we introduce the specific heat Cu tha t re la tes, 
by the d efinition, e to B in the fo llowing way: 

1 d(:( B) 
Cv = --- . 

g dB 
(6.3) 

Hence, e as a function o f B reads: 

e(B) = (] J Cv (B) dB. 

Under the assumption that the specific heat cu is a positive funct ion of B, so that 
e(B) is mo notonic, the inverse functio n 

B : e- B, 

exists a nd the equilibrium en tropy 1le as the functio n o f the internal energy e 
takes the fo llowing fo rm (cf. (6.2)): 

O(c) 

~ e 1 J c(s) 
1Je(c) = 17; (0(r)) = -~- + - - 2 rls - eo. 

(! (} ( () {! 0 ·' 
(6.4) 

In te rms of such 17e (c), o ur general symme trizability cond itio n (5 .2) takes the 
fo rm: 

(6.5) 

rLH( c) 
n(r) -

dr· C I - - __ ___,_!..!....,.-~ 

g (B(r))2 rlf1 ' 
dr 

and the symmetrized matrices n; are: 

(6.6) 

7. Specification of f 1 for val'ious n (r) 

i = 1 '2, 3. 

We may re fo rmulate the symmetrizability co nditio n (6.5) to obtain, after inte
gratio n, th e gene ral fo rm o f the functio n ! 1 such t hat it a llows the symmetrizat ion 
by our metho d . The fun ction ! 1 in this fo rm is expressed in terms o f o (r. ) and 
the co nsta nt c 1: 

(7 .1) ! I (c) = n(~) __ 1_ j ~ rln(r ) r[ (' . 

CJ e B(c) CJ[} B(c) dr 
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Now we specify f 1 fo r two different functions n(f'): 

CASE 1 

(7.2) oo > 0. 

Then the function f 1 has the form: 

!
1 
(e) = _ cxo O(e) . 

Cl[> 

CASE2 

(7.3) 

Then the function f 1 is the fo llowing: 

fl(c) = oo{O(r ) - (B1 + B2)ln(O(c))} _ ooB;_f-h 
t1.Q CI.Q fJ(r) 

8. The example: Dcbye's model 

8.1. Arbitrary o(e) 

O ur general symmetrization formulas can be further specifi ed if the exp licit 
form of the 0-dependence of the specific hea t (·v is assumed. For example, in 
Debye's model with 

(8.1) C v = 4 C vO {}3' Cvo > 0, 

the inverse funct io n B becomes: 

(8.2) B( r) = (
_!!.._) 1/4 

C vO [l 

the symmetrizabili ty conditio n (5.2), (6.5) reads: 

(8.3) c I = - n (c) ( c uO ) I I 4 

df1 c5 o3 4- ~ 
de 

and the equi librium entropy 1), (c) takes the following form (cf. (6.4)) : 

(8.4) 1Jc(c) = CuO r (4 3) 1/ 4 

3 03 
- (eo + •uo/ 3). 
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8.2. Specified o:(e ) 

Let us recall that a is a positive function of dimension of the thermal con
ductivity coefficient. Now we specify the symmetrizability conditio n, symmetrized 
matrices B;, i = 1, 2, 3, and the functio n j 1 fo r two different a (e) taken from 
Sec. 7. 

CASE 1 (cf. (7.2)) 

(8.5) a ( e) = ao (if(e)i = ao {I_, V Q CuO 
a 0 > 0. 

Then the symmetrizability co nd itio n reads (cf. (5 .2), (6.5), (8.3)): 

oo ( 1 ) 114 
Cl = -

4 
df1 CvO e3 05 

de 

(8.6) 

the symmetrized matrices B; are (cf. (6.6)): 

(8.7) 
[ 

q; e-417 . 2 e-413 ~ i l ' 
ll · = - O'O 

' 8 (cvoo5)114 2 c-413t! o 
i = 1. 2, 3, 

and th e function j 1 has the fo rm (cf. (7.1 )): 

(8.8) 
( 

( ) 114 
! 1(r) = - no 5 , 

CvO t1 {! 

f j (B) = - no(} . 
Cl (! 

CASE 2 (cf. (7.3), (8.2)) 

(8.9) a (e) .= -O'o (Cu: f!) 114
- o ~ ) (Cu:f!) 114

- e2) . oo > o. B1B2 < o. 

Then th e symmetrizability cond itio n reads (cf. (5.2), (6.5), (8.3)): 

ao ( (} 1 ( c uO {! )I I 4 _ e I I 4) (f12 ( c t•O {!)I I 4 _ c I I 4) 

c l = 4 df l (cuo e5 g5)l l 4 

de 

(8.10) 

the symmetrized matrices B; are (cf. (6.6)): 

(8. 11) i = 1, 2, 3 , 
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where 

VJJ = -qi e- 2 {(cvo g)114 (fh + 82)- 2e114}, 

b 12 = 4e- 5 I 4 ( 0 I ( c vO g) I I 4 - e I I 4 )( 02 ( c vO [>)I I 4 - e I I 4)' 

and the function / 1 has the form (cf. (7.1)): 

D'O { ( e ) 114- 01 02 ( CvO) 114 (01 + 02~ ln(ell4)}' 
/1 (e) = CJ (c vo g5) e g3 

ao { o1 o2 } !i(O) = - 0 - - - (01 + 02) ln(O,Jg Cvo) 0 

g c1 o 

(8.12) 

9. Conclusions 

The equations of a heat conduction model for a rigid medium in time and three 
space dimensions are analyzed. Using the internal energy, the heat flux vector 
and the semi-empirical temperature as the dependent variables, we formulate the 
conservative, and the quasi-linear hyperbolic fo rms of these equations. 

We successfully symmetrize our quasi-linear system by introducing the family 
of suitably chosen entropy-like functions that are then used to obtain the new 
dependent variables, and by formulating additionally a general symmetrizabili ty 
condi tion that allows us to specify the physically justifi ed entropy function. 

It turns out that this symmetrizab ili ty condition is in fact the model compati
bility condition which , on the other hand, can be obtained from the second law 
of thermodynamics. 

We illustrate ou r approach on a detailed example of the Debye's model with 
specifi ed difTerent forms of the thermal conductivity coefficients. 

Our approach is efTective when the classical temperature is an invert ible func
tion of the internal energy. Then we can always symmetrize our system of equa
tions and the symmetrizing matrix is diagonal. 
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On the extension of Newton's second law to theories 
of gravitation in curved space-time 

M. ARMTNJO N (GRENODLE) 

W E INVESTIGATE the possibility of extending Newton's second law to the general framework of 
theories in which special relativity is locally valid, and in which gravitation changes the flat Galilcan 
space-time metric into a curved metric. This framework is tirst recalled, underlining the possibility 
to detine un iquely a space metric and a local time in any given n.:ference frame, hence to define 
velocity and momentum in terms of the local space and time standards. lt is shown that a unique 
consistent definition can be given for the derivative of a vector {the momentum) along a trajectory. 
Then the possible form of the gravitation force is investigated. l t is shown that, if the motion of 
free particles has to follow space-time geodesics, then the expression for the gravity acceleration is 
determined uniquely. lt depends on the variation of the metric with space and time, and it involves 
the velocity of the particle. 

1. Introduction 

THIS woRK COMES from an a ttempt to explore the possibili ty o f extending the 
"logic of absolute motion", which preva ils in the Lorentz- Poincare interpreta
tio n of special relativity [8-9, 15, 20-24], so as to obtain a consistent theory of 
gravita tio n. Thus, a theory with a preferred frame has been tentat ively proposed 
[1 -4]. Just li ke general relativity (GR), this theory endows the space-time with a 
curved metric. Just like in GR, special re la tivity (SR) holds true locally in this 
tentative theory. However, an extensio n of Newton's second law, or rather of 
its modifi ed expressio n va lid in SR , has been de fi ned fo r a test pa rticle (mass 
point o r pho ton) in the most general situation within this invest igated theo1y 
[4] . As it wi ll be reported here, the way used in this theo ry to defin e Newton's 
second law in a "cu1ved space-time" turns out to be bo th natural and general 
in its principle. Hence, it has been tried to fi nd in the lite ra ture such a natu
ral and general extension, but this quest has not been really successful. Apart 
from approximate equat ions occurri ng in "post-Newtonian" trea tments, two ex
act extensio ns of Newto n's second law to re lativistic theories of gravitatio n can 
be found among well-known textbooks: LANDAU and LJFCHITZ [11, § 88] defin e 
this law for a constant gravita tio n fi eld, and M0LLEK [1 8, § 11 0] "t ries to write 
[the equations of space-time geodesics] in the form of three-dimensio nal vecto r 
equatio ns" in a ge neral case but, as his sentence suggests, and as will be di s
cussed below (no te 1 and Sec. 4), his attempt is not fully satisfacto iy . JANTZEN 
et al. [1 0] review and unify the various a tte mpts, including the important work 
o f CATTANEO [6-7], to '·split space- time into space plus time" and to rewrite 
the rela tivistic eq ua tions of mo tion with "spatial gravitational forces". It appears 
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from their review that three d ifTerent definitio ns have been int ro duced, by va·i
ous authors, fo r the ti me-derivative of the momentum. These definiti ons will oe 
examined in Sec. 4. It will appear that one does no t obey Le ibniz' rule, whJe 
none of the o ther two does involve only the separate ingredients "space metri;" 
and "time me tric" in a given reference frame, as sho uld be true fo r a natu ral 
extensio n o f Newto n's second law. H owever, it seems tha t one has good reaso1s 
to search for such extensio n and hence to fi nd this " missing link" [17] betwetn 
classical and rela tivistic mechanics. 

Indeed , the Lorentz- Poincare construction of special re lativity [1 5, 20-2 ], 
fully developed by J ANOSSY [8- 9] and P ROKHOVNIK [22-24], obtains th e "rea
tivistic" efTects as being a ll consequences o f the " true" Lorentz co ntraction c.s
sumed to afTect all bodies in mo tion with respect to the "ether". As it has be!n 
recently reestablished [27] against contrary sta temen ts, it is impossible to mea
sure consistently the a nisotropy in the one-way velocity of light. This makes t1e 
Lorentz- Po incare version empirically undistinguishable from the Einstein w r
sion of SR [22]. The L o rentz - Po incare interpre ta tio n a llows to concile specal 
re la tivity with o ur intui tive no tio n of d ist inct space and time, and thus with t1e 
most crucial concepts of classical mechanics. H owever, special re lativity does rot 
describe gravitation: for gravitat io n, general re lat ivity is the current tool. I3 ut in 
GR, the laws of motion become a conseq uence of the space-time curvature, eg. 
the " free" particles are assumed to follow the geodesic lines of the space-tine 
me tric. Thus, a t least as long as the geodesic fo rmulat ion o f motion has not be~n 
derived from a generalization of Newton's second law, one is enforced to giv{ a 
physical status to space-t ime in GR. O n the other hand, despite the experimm
tal success of G R , it leaves unsolved p roblems as regards gravitation. We rmy 
mentio n the problem of the singularity occurring with the gravitational collapse o f 
very massive o bjects, and the need to postulate huge amounts of " da rk matter" in 
order to explain stella r mo tio n in galm<ies. We should a lso mention the q uest ims 
on the inOuence o f the coord inate condition in GR , wh ich were raised a long tine 
ago (e.g. PAPAPETROU [1 9]), but that have been newly d iscussed by LOGUNOV er d. 
[1 3-14]. LoGUNOV et al. present detailed argumen ts against the usual agreemmt 
that, in GR, the cho ice o f the coordinate condi tio n has no physical consequen:e. 
It thus may be wo rth to investigate alte rnative, specula tive theories a nd to <sk 
questio ns o n the formulation o f mo tio n. 

In this paper, an extensio n of Newton's second law will be given fo r theores 
o f gravita tio n in curved space-time in which SR is locally valid, including GR. rn 
doing so, care will be taken to ma intain space cova ria nce in a given refererce 
frame, in o rder that the fo rce be properly defined. H owever, no attempt will J e 
made to investigate the transfo rmatio n o f the fo rce fro m one refere nce frane 
to ano ther. Sectio n 2 will be focused o n the defin ition o f the righ t-hand sideof 
Newto n's law, i.e. the time-derivat ive of the momentum: it will be shown that t1 is 
may be de fined fro m ra ther compelling p rinciples, up to the same parameter .A 
as in th e te nta tive theory [4], and which a lso m ust be ,\ = 1/ 2 if Leibniz' nle 
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is to apply. In Sec. 3, it will be investigated which form of the gravitation force 
is compatible with Einstein motion (for "free" particles), i.e. the motion alo ng 
space-time geodesics. In the first step, Leibniz' rule will not be imposed but it 
will be assumed, in analogy with the Newtonian theory, that the gravitation force 
depends linearly on the spatial derivatives of the metric and does not depend 
o n its time-derivative. In the second step, Leibniz' rule will be assumed, but no 
restriction on the gravitat io n force will be imposed. In Sec. 4, the three anterior 
definitions of the time-derivative of a spatial vector, reviewed by Jantzen et al., 
will be examined from the point of view of "consistency" (validity of Leibniz' 
rule), and "naturalness" (space plus time separation). 

2. Definition of Newton's second law for a (pseudo-) Riemannian 
space-time metric 

2.1. Some clarification on the kind of theories considered 

We suppose that, accord ing to some gravita tion theory, the physical standa rds 
of space and time are influenced by a gravitatio n field, but that SR ho lds true 
locally (GR is the prototype of such gravitat io n theories, of course). It will he 
useful to recall in some deta il what is meant by this, no t the least because it w ill 
make clear that this framework does not preclude to consider a preferred-frame 
theory, nor does this framework imply that a fundamental physical meaning must 
be given to the mathematical concept of space-time. It wil l also give the way 
to separate the fo rce into a gravita tional force or ra ther a mass force, and a 
non-gravitatio nal force. 

i) Acco rding to a theory of th is kind, o ur space and time measuremen ts 
may be arranged so as to be described by a metric 1 with (1 ,3) signature o n 
a 4-dimensio na l, "space-time" manifold. This may be do ne as follows. Any possi
b le reference frame :F, physica lly defined by a spatial nefiVork of "obse1vers" (each 
one eq uipped with a rule r and a clock, a ll made in the same fac tory, say), a l
lows one to define (in many ways, actually) an associated coordinate system (.ra ) 
( lt' = 0, ... , 3), with x0 the time coordinate and .1: ; (i = 1, 2, 3) the space coordi
nates, so that each observer has constant space coordinates. Moreover, l = x0 j c is 
the "formal date" assigned to an event occurring at a point specified by the space 
coordinates :~· ; (I has in general no immediate re latio n to real time-measurements 
made by the obse1ver at this point). The observers in the same frame :F are 
not necessarily at rest with each o the r, i.e. they may find that their mutual dis
tances are no t conse1ved (case of a de form able frame). The manifold structure 
o f the space-time means simply that the same physical events will be given dif
ferent space and time coord inates by difTe rent networks of observers, say (.t 0

) 

and ( :~: 'a ), a nd that the correspondence between (:t 0
) and (. r'" ) is locally smooth 

(for smoothly de forming networks). So we have a space-time manifold J1/ 4 . The 
elemen ts (points) of the spa tial network cannot be identified with points in that 
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manifo ld but with "world lines", thus with lines in space-time. H ence, fro m the 
point of view of "space-time" , a refe rence frame is a 3-D difTere ntiable man ifo ld 
N whose each point is a (time-like) diffe rentiable mapping from the real line 
onto the space-time A/ 4

; moreove r, N is difTeo mo rphic to any spatia l section o f 
M 4 (this is only the sketch of a rigorous de finiti on; fro m the po int o f view o f 
"space + time", a much simpler definit io n may be proposed [I]) . Note that many 
new coordinate systems (x'(' ) do not change the refe rence frame (network) spec
ified by one syste m (:z: 0

): the frame remains unaltered if and only if the change o f 
the space coordina tes does not depend on the time coordina te, i.e. D.r'i j D.~;0 = 0. 
Up to this point, it seems that no physica lly restrictive assumption is invo lved 
(except, of course, fo r the fact that "classica l" p hysics, no t q uan turn physics, is 
envisaged here). 

The assumption that SR applies locally is the one wh ich a llows to define a 
(1,3) space-time metric. T his assum ptio n means, in the first place, this: in a ny 
refe rence frame, the velocity o f light, as measured on a to-and- fro pa th between 
infinitesimally distant posit io ns, is always the same consta nt r. Under this con
ditio n, the link between p hysical space and time measurements a nd the metric 
1 may be described as in L ANDAU a nd LJ FCHITZ [ 11 ], it is based o n using the 
Poincare - Einste in synchronization co nventio n for infi nitesimally dista nt c locks. 
Thus the prope r time along th e trajectOty of a mass point (" time-li ke" line in 
space-time), i.e. the time T measured by a clock bound to the moving point, is 
directly g iven by metric 1: 

(2. 1) I 2 - .2 I 2 - ~ I .o I .. J ( .<. - ( f T - [,,,3 f .I f .1 . 

Also, the d istance dl between neighbouring o bservers (of a given frame :F, spec
ified by a coordinate system), as they find by using the ir rule rs, or by measuring 
the inte rval riT of the ir proper tim e that it takes for a light signal to go forth and 
back, is expressed by a space met ric tensor h = hF (i t depends o n the frame :F): 

(2.2) h,j = -~,i.i + (io; /ojhoo). 

Mo reover, a synchro nized local time ' ~ (0 may be defined a lo ng any open line in 
space-time (i.e. a p iecewise diffe rentiable and one-to-one mapp ing ~ - (.r" (0) 
defined o n a closed segmen t of the real line), such that its variatio n a lo ng the 
given trajecto1y is given by: 

(2.3) rltx = J,Oo ( r/.r
0 + -1o, ~) . 

rl~ (' d~ / 00 rl~ 

As e mph asized by CATIA EO [6], the inte1val rllx is invarian t under any coordi
na te transformatio n that leaves th e refere nce frame unchanged (" inte rn al tram;
fo rmation") and has thus an objective physical meaning. If the /Oi compo nents 
(i = 1, 2. 3) a re ide ntically eq ua l to zero, the synchronization conventio n impl ies 
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that even ts occurring at a given value of :r0 are simultaneous in the frame F, 
independently of their spatial coo rdinates (this may be seen in Eq. (2.3)). Hence 
x 0 is a "universal ti me" in the frame F. As a consequence, if one uses such coor
dinates (x0

), then the trajectory of any test particle may always be parametrized 
with the coordinate time l itself and, moreover, the local time has the simple 
expression 

(2.4) 

The expression (2.4) of the local ti me has the immediate physical meaning of 
showing how clocks are affected by the gravitat ion fi eld (usually they are slowed 
down, i.e. 1'00 decreases towards the gravitational attraction). The property /Oi = 0 
holds true after any coordinate transformation of the form x'0 = </>(.r 0) , .r'; = 
1/;i (x 1, x2 , x3). Thus it is indeed a characteristic o f a given frame F. The restriction 
to space-independent transformation of time, x'0 = <Jy(.r0), renects simply the 
global synchronization. Using this time transformation, one may impose that the 
local t ime at a given po int bound to the frame, x0 = (.r0i), coincides with the 
un iversal time (i.e. /oo(.r0 , (.roi)) = 1 't/ .z·0), and then on ly a shift of .t0 is left free. 
The l oo component is invariant under the remaining, purely spatial coordinate 
changes. 

ii) The other assumption involved, in saying that SR app lies loca lly, is that 
the laws of non-gravitational physics are "formally unaffected" by gravitation, in 
the following sense: in the absence of gravitat ion, any such law must (or should) 
be form ulated in the frame of SR. Then, in the absence of gravitat ion, it may 
be expressed in a generally covarian t fo rm, in replacing the partial derivatives, 
val id in Galilean coordi nates, by the covariant de riva tives with respect to the flat 
space-time metric ,o (Galilean coordinates are the ones in which the nat metric 1° 
has the canonical diagonal form , y 0,"' = '""' with ( 7)1w) = diag(L - 1, - 1, - 1)). 
Now the assumption is that, in the presence of gravitat ion and hence (according 
to a theo ry of the class considered here) with a cwwd metric 1, rhe expression 
of any such laiV is exrended ro rhis situation si111ply by suhsritwing 1' for 1·0. This 
assumption is quite natural: physics must be described in terms of the local space 
and time standards which (cf. point (i)) are ruled by metric -1 in the frame of SR. 
And at the loca l o r rather at the infinitesimal sca le, the presence or absence of 
curvature plays little o r no role, i.e. any met ric behaves (in many respects though 
not in all ) as a nat met ric in the infinites imal. Some ambiguity may yet arise when 
t1y ing to use this assumption, if differential expressions of o rder greater than one 
are involved: since Schwarz' theorem does not apply to covariant derivatives fo r 
a curved metric, different higher-order expressions may become identical fo r a 
nat metric and yet remain dist inct for a curved one (e.g. W I LL [26]). In a such 
case, a comparison with expe riment may either decide between the possibiliti es, 
or show that they do not d iffer significantly. Such empirical procedure migh t lead, 
of course, to different choices for diffe rent gravitat ion theori es, i.e. for d ifferent 
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metrics 'Y in the same physical situation, and thus co uld create a b ias when test ing 
alternative theories. 

2.2. Extended Newton law for a constan t gravitation field 

Let us first consider the static case, i.e. the case where a frame F exists, 
defined by a coordinate system (x0

), in which a ll components ~/ofJ of metric 
'Y are independe nt of x0 , and mo reover the "/Oi (i = 1, 2 , 3) components are 
zero. The first pro perty holds true after any coordinate transformation o f the 
form x10 = ax0 + cp(x 1, x2, x3), x'i = cpi (x 1, x2, x3) , thus in a difTerent range for 
the time transformation than for the second property, discussed above. Then, 
the right-hand side of Newton's second law, valid for SR, i.e. dP /ell with P the 
momentum including the velocity-dependent mass, is easy to extend to any such 
theory of gravi tation. The velocity v of a test particle (relative to the frame F ) 
is measured with the local time lx of the momentarily coincident observer in the 
frame F, and its modulus v is defi ned with the point-dependent (Riemannian) 
space metric h in the fra me F. Thus 

(2.5) 

The momentum is hence for a time-like test particle (mass point): 

(2.6) P = m(u)v, 

(using the mass-velocity re lation of SR) et). For a light-like test particle (photon), 
one substitutes the mass content of the energy for the inertial mass m(u). Then we 
must define the derivative of the momentum with respect to the local time. Thus 
in gene ral we have to define the derivative of a vector w = w( \) attached to a 
point x(\) =(xi(\')) which moves, as a function of the real parameter.\_, in some 
Riemannian space: here this space is the 3-D do main V = N :F constituted by the 
spatial network which defines the considered frame F. Hence the points inN are 
specifi ed by their constant space coord ina tes .'L i , i = 1, 2, 3, and N is eq uipped with 
the space metric h. The derivative must be defined as the "absolute" deriva tive 
(e.g. I3RILLOUTN [5], LlCHNEROWICZ [1 2]), which is a space vector and accounts 
for the (merely spatial) varia tion of the space me tric alo ng the trajectory: 

(2.7) ( Ow) i rlw i · · rh·k - = -- + /'' k w1 -· - , 
/) \ (['\ J d \ 

(')Equation (2.6) implicitly assumes that the rest mass m (O) is the same constant mo, independently of the 
gravitation field. This may be seen as an immediate consequence of defining the inertial mass m as the ratio 
P/v ( = P' fv') and assu ming that the P' arc the spatial components of the 4-momcntum, this being in turn 
assumed to have the form po = mo <ix" fdr with a constant m11 . This is consistent with lANDAU and LirCIIIT£ 
IIJI. On the other hand, MOLLEI! 1181 defines the inertial mass as the ratio m ' = Pf v11 with vo = dx fdt, 
thus m ' = m dtfdtx , hence his rest mass m'o = m' (vo = 0) = mo dtfd tx depends on the gravitation field. 
However, the definit ion of vn and hence that of m'n depend on the chosen time coordinate t even in a given 
frame, while the velociry v used by Landau and Li.fchitz (and used here) depends only on the reference frame, 
as it should. 
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where the ri jk are the Christo fiel symbols of metric h in coordinates (.ri). 
As shown in ref. [2), the use of E q. (2.7) is enforced if one wants to know 
that Leibniz' rule applies, and that the de rivative cancels fo r a vector w that 
is parallel-transported (relative to the space metric h) along the trajectory. This 
is considered to be importan t, because it mea ns that Eq. (2.7) is not merely one 
possible formal rule to obtain a space-contravariant vector, but the unique consis
tent definition fo r the t ime-derivative of a vector along a trajectory, in the case o f 
a time-independent me tric. Now the left-hand side of Newton's second law is just 
the fo rce. This may be decomposed into a "non-gravitational" fo rce Fo, which 
should have the same expressio n fo r any gravitation theory in the conside red 
class e), and a "gravitatio nal" force Fg whose expression, of course, wi ll depend 
on the theory. Note that Fg will generally contain "inertial" forces as well (since 
a gene ral reference frame is considered here), hence "mass force" would be a 
more appropriate denomination [1 ). Thus fin ally: 

(2.8) Fo + Fg = DP/ D lx . 

Using the same equations (2.3) and (2.5) to (2.7), the sa me definition may a nd 
must be used in the stationa1y case, in which the /of3 's rema in time-independent, 
but the / Oi co mponents may be no n-zero: altho ugh a synchro nized local time 
can no t be defin ed in the frame F as a who le if the /o;'s are non-zero , what matters 
is tha t it is uniquely defi ned along the trajectory fo llowed by the conside red 
particle (p rovided that it fo llows an o pen line in space-ti me: a closed line would 
mean a travel back in time). 

2.3. Extended Newton law for a ge nera l grav ita tion fie ld 

In the general case where the gravitatio n fi eld is no t constant in the frame 
F, the new fea ture is that now the space-time metric ~/ depends also on x 0 . 

H ence also the space metric h (E q. (2.2)) va ries, no t o nly as a functio n of the 
space coord inates xi (wha t is natural fo r a general Riemannian metric in a space 
depending o n these coordi nates), but a lso as a fun ction of the time coordinate 
x0. What is re levant fo r Newto n's second law is, more precisely, the variatio n of 
h along a trajectory (o f a test particle), i.e. the fact tha t our spatial network N 
is equipped with a m etric field h\ that changes as the param eter \ evoh,es on the 
trajecto1y, thus fo r any value o f \: and at every poin t X E N we have a covariant 
tensor hx (X). In our case, the variation of the metric fi eld with x is due to the 
varia tio n o f h with the point in space-t ime, thus in coordinates: 

h\ ;j[(:rk)k= 1.2 ,3] = h;J(.c0( \ ) , (:z/ )1,=1.2,3]· 

(') The expressio n of Fo is take n fro m the situation wi tho ut gravitation: thus, as recalled in po int (i i) of 
Subsec. 2. 1, it invo lves the fi eld 'Y (in the p lace of the tlat metric -y0 ) , am.! it depends on the non-gravitational 
fields; in practice, these a rc the electromagnetic fie ld and/o r thermomechanical fi elds (the nuclear fie lds are 
very microscopic ma tter fie lds a nd moreover, their current theory does not belong to classical physics, i.e. their 
influe nce ca nnot be described in te rms of dete rminist ic trajcctories of mass poi nts). A "free" particle is one 
which crosses a regio n free from matter a nd electromagnetic field : for such a part icle, the force Fo wi ll be zero 
independently of tire reference [m111e consid,•red. 
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Moreover, we have a preferred parameter \ = lx on the traject01y. It is easy to 
convince oneself that nothing needs to be changed in Eqs. (2.3), (2.5) and (2.6), 
because they involve on ly the local components of the metric (which now become 
its local and "current" components), not its variat ion. In order to define properly 
an extension of (2.7), let us list the properties that should be satisfied by this 
searched derivative of a vector on a trajectory in a manifo ld equipped with a 
variable metric: 

a) It must be a (space) vector, i.e. it must be contravarian t for any coordinate 
transformation of the form x 'i = :z:' i (.r.i ). 

b) It must be linear in w. More precisely, it must obviously have the form 

(Dw/ D\); = (rlt"i/ rl\\ =\11 + Li; u.J (\o), 

with \o the point of the trajectOJy where the derivative is to be calculated, and 
where Li i behave as a mixed second-order (space) tensor (transforming a (space) 
vector into another one), for linear coordinate transformations. 

c) It must reduce to (2.7) if the metric fi eld h , does not depend on \· 
d) It should account for the variation of metric h, as a function of \. 
e) It must be multiplied by d\ / rl( if\ is changed to ( = <b(\). 
f) It must satisfy Leibniz' derivation rul e fo r the derivative of a scalar product, 

Le. 

(2.9) cl ( /)z ) ( /)w ) - (h\ (w, z)) = h\ w,- + h, - .z . 
d\ /) \ /)\ 

in wh ich it is understood that, on the left, the variation of metric h with .1'0 is 
accou nted for, as becomes obvious if one wri tes clown expl icitly the scalar product: 

(2.10) 

(Hence, it is likely that (f) implies (d)). 
First, we note that defin ition (2.7) still makes sense, and sat isfies requ iremen ts 

(a), (b), (c) ancl (e). Of course, it is now specifi ed that the ChristofTel symbols of 
metric h are those at the relevan t position and "time", thus in (2.7) 

(2 .11) 

The "candidate" thus defined by Eq. (2.7) will be now denoted by Dowf D \. It 
does not satisfy (d) (nor (f) , in fact), for it amounts to substitu ti ng the metric 
h\ 0 of the "time" a = x0(\o) for the variable metric h , . From (a), (b) and (c), it 
fo llows that we have to search an exp ression in the form 

(2 .1 2) Dw/ D\ = Dowf D\ + t · w(\o) , 

in which t is a mixed second-order space tensor (indeed, the orcl inaty derivative 
dwjdy_ = (rlu/ f d\) is already involved in D0wj D\., Eq. (2.7)) . But to sat isfy (d), 
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it is hence necessary tha t this tensor sho uld involve the variation of metric h \ 
with x. due to the variation of h with x0 : 

Thus, tensor t must conta in e ither h;j,O te rms or h ij ,o ones, with (h iJ ) the inverse 
matrix of (h;J ) . In order to be a mixed tenso r and satisfy (e), t sho uld have the 
form 

(2.13) or 'i - ij 0 t k - h ,o(rl.t ( d\)hi k , 

or any linear co mbina tio n of these two tensors. But since hijh1k = oi ~;, we have 
t+t' = 0, so that, without imposing Leibniz' rule, we a re left with a o ne-para me ter 
fam ily of candida tes: 

(2.14) D.,w/ D\ = Dow/ 0\ + .At·w. 

Fi nally, nearly the same sho rt calcula tio n as in R ef. [4] shows tha t Leihniz' rule 
(2.9) imposes ,\ = 1/ 2, hence o nly o ne definiti o n of the de rivative remains: 

(2.15) 

o r in coordinates: 

(2 .1 6) - / ' ' I . h'' h . k (/)·w)' rl 1"i · dr k 1 dr 0 
=- + ·~; 111·- + - · 1, o- u·. 

/)\ rl\ ) d\ 2 J . rl\ 

Thus, a theory o f the kind co nsidered should provide an expressio n fo r the mass 
fo rce Fg, and th is expressio n wo uld depend o n wha t the theo1y co nsiders as " the 
gravita tio n fi e ld" (this may include the space-time metric 1 , in any case it must 
determine 1 ) . Then o ne and on ly o ne "Newto n law" ca n be consiste ntly stated 
in such a theory: it is E q . (2.8), where th e mo mentum P is given by Eq. (2.6) a nd 
its derivat ive DP/ D lx is calcula ted using rule (2.16). The trajec t01y ~ - (:r .:' (O) 
being defin ed with th e he lp o f an arbitra ry parameter ~. the variatio n of the local 
time \ = lx a lo ng the t rajecto1y is g iven by Eq. (2.3). 

2.4. Comments a nd link ''ith the inves tig:Hcd preferred -frame theory 

It is seen tha t th e deriva t ive of th e mome ntum is de fin ed in any possible 
refere nce fra me (and it depends on th e frame). H e nce, if a the01y gives a covariant 
expression fo r Fg and 1, th e exte nde u second Newto n law do es no t restric t th e 
cova ria nce of the theory. On the ot her hand, a p re fe rred-fra me theory may give Fg 
and 1 in o ne re fe rence frame o nly; if o ne were able to ca lcula te th e t ransfo rm ation 
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law of the deriva tive DP/ Dlx, then this same law would apply to the force, so 
the law o f motion would be reexpressed in a covaria nt form. 

The investigated ether theory (1 - 4], which is indeed non-covariant, starts 
from a heuristic interpretatio n of gravity as Arch imedes' thrust in a perfectly 
fluid "micro-ether" (the rigid ether frame [ considered by Lorentz and Poincare 
would be defined by the average motio n of this " micro-ether" at a very large 
scale). The transition to account for "relativistic" efTects is based on a formulation 
of Einstein 's equivalence principle, natural in this preferred-fra me theo ry: the 
equivalence is stated to exist between the absolute metric efTects of uniform 
motion and gravitation. This leads to postu late a gravitational contraction (resp. 
a dila tion) of the space ( resp. time) standards, depending on the field of the "ether 
pressure" Pe. thus getting a curved (Riemannian) space metric g and a local time 
tx in the ether frame£, which together build a curved space-time metric 1 [2-3]. 
This theory gives Fg and 1 in the ether frame [ only, as a function of the scalar 
gravitatio n fi eld ]Jc, o r the associated fi elds f and f3 with 

(2.1 7) 

where Pe 00 = ]Je = (T) is the reference pressure (which , for an insular matter 
distribution, is asymptotically reached at large distance from the matter. H ere, T 
is the "absolute time"). The gravitat ion force is assumed to be 

(2.18) Fg = m( t> )g, 

with g the gravity accelerat ion, given by 

2 
grad

9
pc 2 grad

9
j3 c2 

g = -c = - (· = --
2 

grad0J . 
l'e J} 

(2.19) 

where g = h E is the physical space me tric in the framer, and whe re grad9 (resp. 
grad0 ) is the gradient ope rator relat ive to metric g (resp. relat ive to the " natural " 
metric g0, with constan t curvature, of wh ich the "e ther" network (3-D mani fold) 
AI = NE is assumed to be eq uipped with). And the line element of the space-time 
metric / , afTected by gravitat ional contract ion of the space standards (re la tive to 
metric g0) and by gravita tional dil a tion of the time standards (relative to the 
"absolute time" T), has th e fo rm 

(2.20) 

where rl/2 is the line elemen t o f metric g. This has the fo llowing simple expression 
in " isopotential" coordinates (y0 

), i.e . coord inates such that, at a give n time T, 
y 1 = const (in space) is equivalen t to Pc = const, and that th e natural metric g0 

is diagonal, (g0;j ) = diag(a0;): 

(2.21) (9;j) = diag(a ;) w ith 
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For a time-dependent field Pe, such coordinates are not bound to the ether frame 
[4] . From Eq. (2.20), it follows that, if one selects any coordinates (x0

) , with 
x 0 = eT, that are bound to the frame£, then the components /Oi are zero. Thus 
a simultaneity is defined for the frame £ as a whole; in other words, the absolute 
time T is a universal time in the frame £. For the important case of an insular 
matter distribution, the absolute time T is the local time measured at any point 
x0 which is bound to £ and far enough from matter so that no gravitation fi eld is 
felt there. Moreover, the global synchronization condition ( / Oi = 0) does not hold 
true in a frame that rotates rigidly with respect to £, nor in general in a frame 
that moves uniformly with respect to [e) (the condition /Oi = 0 holds true for 
any frame in uniform translation, in the case that no gravitation field is present, 
thus for the flat metric 1 = 1 °). These considerations justify the denomination 
"absolute time" for T. Hence, the ether frame £, which is already a global inertial 
frame in the sense that the mass force in £ (2.18)-(2.19) is purely gravitational, 
is really a physically privileged reference frame (according to this theory). 

3. Extended Newton law and geodesic motion 

3.1. A possible form for the gravita tion force in a gltlha lly sy nl'hronized reference frame 

We now investigate the possible form of the gravitation fo rce. In order to 
make some meaningful induction from the Newton ian theory, it is very useful to 
work in a reference frame F, in wh ich the / o, components of metric -y are zero 
(Subsec. 2.1 ). The concept of global simultaneity is indeed so deeply involved in 
any Newtonian analysis, that any induction from the Newtonian theory to the 
general situat ion with curved space-time, where a simultaneity is defined only 
along a trajectory, would seem dangerous. Whereas, if one works in a frame such 
that / Oi = 0, the o nly change in the time concept is that now the clocks go dif
ferently at differen t positions and times (Eq. (2.4)). We note that the existence 
of a frame F, in which the / Oi are zero, is not a physically restrictive assump
tion, since it breaks down only for rather pathological space-times: in "normal" 
space-times it is even possible to select a "synchronous" frame wh ich not on ly 
enjoys this global synchronization, but in wh ich the / 'OO component is unifo rm, 
i.e. the local time flows uni formly (LANDAU and LI FCH ITZ (11 ], MAVRIOES (1 6]). 
Thus there "normally" exist many different frames such that ~to; = 0. Which form 
of the gravitation force could one consistently state in such a reference frame? 

For the class of theories considered in Sec. 2, what is considered by any such 
the01y as " the gravitation field", has been assumed to determine the space-time 
metric 1 (for non-covariant theories, we should add that this has only to be true 
in some preferred reference frame wh ich is li ke £, i.e. such that / Oi = 0). H ere, 
we will assume, in a more rest rictive way, that the metric field 1 contains the 

(') Here, rigid rotation and unifo rm motio n ca11 be detincd , at leas t if tile metric ma nifold (A/ , g0) has zeru 
curvature, i.e. if it is Euclidca n. 
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gravitation field (at least in the preferred frame). This is true in any reference 
frame for GR and for the "relativistic theory of gravitation" (RTG) proposed by 
LoGUNOV et al. [13- 14], and this is true in the ether frame [ in the tentatively 
proposed theory. On the other hand, in order that SR would hold true locally and 
that the inertial and (passive) gravitational mass might coincide, the gravitation 
force must have the form 

(3.1) Fg = m(v)g, 

with g being a space vecto r in the considered frame. If we want the metric fi eld 
to play the role of a potential, we must ask g to depend linearly on the fi rst 
derivatives of 1 , and bearing in mind the Newtonian theory we should add that 
only the spatial derivatives liw,k are allowed. But, in a frame where ~fOi = 0, we 
have lij = - h ;j with h denot ing the space metric in this fram e, i.e. the metric 
1 reduces to the jo int data 1 = (!, h) with f = l OO· Thus, we are looking for 
a space vector g depending linearly on the spatial derivatives of f and h. To be 
contravarian t by a general space transformation, g must depend linearly on the 
covariant derivatiw:s of f and h (with respect to the space metric h! ). But, as is 
known, the covarian t derivatives of metric h with respect to h itself are a ll zero 
(in o ther words, one may cancel all spatial derivatives h i.i.k at any given point hy 
a purely spatial coordinate transformation). Hence, g should have the form 

(3.2) 

where a must be a given function of the valw:s of the metric fi elds at the con
sidered point (.1:c' ) in space-ti me, f = f(.r '' ) and h = h(.l' '' ) in Eq. (3.2), thus 
a(! , h) is completely independent o f the t·ariation of f and h with t ime and 
position. 

Now we add the condi tion that geodesic 111otion (Einstein 's assumption ) must 
apply to free particles (Fo = 0) for a slatic gral'ilation field. This is exactly equivalent 
to assuming the fo llowing expression for the gravita tion fo rce in the slatic case: 

(3 .3) 2 grad h,.:i 2 Fg = - m( u)c ,.:i = m(c) gradh(- c Log ;J) , where {3 = J/00. 

Indeed, it was already proved (and it wil l be proved again below, in a diffe ren t 
way) that Eq. (3.3), wh ich occurs natural ly in the ether theo1y, impl ies geodesic 
motion fo r mass particles in the static case [2]; this is also true for photons [3], 
substituting in that case the mass content of the energy r = h11 for the inert ial 
mass m(v). Conversely, it is proved in LANDAU and LIFCHITZ [11] that geodesic 
motion imp lies the expression (3.3) fo r the fo rce in the static case, defined as the 
deriva tive (2.7) o f the momentum (2.6) (4

) . Thus the reason for assuming geodesic 

(' ) Actually, LANDAU ant! L tFCI IIT/. I I I, !i 881 Jc:r i v~.: t! from g~.:otl ~.:sic assu111ption the ~.:x pression of the fo rce in 
the s1a1iomuy case, using the sa111e t!dinition for the fo rce (what is consistent with the prcs~.:nt work, Subs~.:c. 2.2). 
They fount! an expression invo lving a n aJJitional term which cancels if ' '" = 0. 
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motion in the static case is that it is indeed so for the ten tative ether theory as 
well as, of course (and in a ny situation) fo r the usual theories of gravita tion with 
curved space-time, in particular GRand the RTG. So we must have, by Eqs. (3. 1 ), 
(3.2) and (3.3): 

(3.4) i.e . 

when J,o = 0 and h,o = 0. 13ut s ince a(J, h) depends only on the local values of 
f and h, no t o n their variation, Eq. (3.2) implies then tha t g keeps the form (3.4) 
and thus Eq. (3.3) holds true in th e most general situa tion. 

3.2. Exp ress ion of the 4-accelcralion for a " free" partil'le us ing the extended f\'cwton law 

In theories with a (pseudo-) Riemannian space-time metric, two well-known 
space-time vectors may be defined fo r a time-like tes t particle (i .e. a mass point). 
These are the 4-velocity U, which is the velocity o n the world line of the particle 
in space-time, when the world line is parametrized with the proper time r of the 
particle, 

(3 .5) U" = rl.r" j rlr, 

and the 4-acceleration A, which is the absol ute derivat ive ....lU/ ... h of the former 
relat ive to the space-time metric I · Thus 

(3.6) ,\ = - = -- + !'' '' l 'l l_'_ = -- + /''" U''[!V 0 -
(

.JU)'' rill " rl1.v rl (''' 
....l r - dr 1"' dr - dr 1w • ' 

symbols r'~v being the Ch risto fTel symbols o f metric 1 in coordina tes (x" ). 

i) Spa tia l components of the 4-acceleration in a globally synchronized refe r
ence frame. 

It is recalled that we use coordinates (.r" ) that are bo und to a "glo bally syn
chron ized" frame F. Thus l'Oi = 0 (i = 1, 2, 3), from which it fo llows immediately 
tha t: 

(3.7) h,.l = -l'i), /,; I ,,, 
. ;k = jk. 

hence 

(3.8) 

In th is equation, we note that , in view of Eq. (3.7) 1 (and since h'·1 = -~fij is always 
true): 

(3.9) 
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By (2.4) and (3.5) we get: 

U0 = (dx0 jdlx)(rllx frlT) = c(rllx f dr) /J/00, 

but, using Eqs. (2.1 )-(2.3) and (2.5), it may be proved (cf. LANDAU and LIFCHITZ 

[11]) that, independently of the fact that / Oi = 0, one has always: 

(3.10) 
dlx - =, dr v 

as was already noted [2] for the tentative theory. Hence we obtain 

(3 .11) 

so we reexpress another term in Eq. (3.8), calculating J0b as for 1'0t in Eq. (3.9) 
and using again Eq. (2.4): 

We recognize here the component gi of the assumed gravity acceleration (Eq. 
(3.4 )), thus 

(3.12) 

It is now possible to calculate (.JUj .Jr Y with the Newton law, for a " free" particle 
(Eq. (2.8) with F0 = 0 and with Fg given by Eq. (3.1 )). In a first step, let us 
calculate with the incompletely defined Newton law, which is obtained if one 
uses the derivative D,\ P/ /Jix with the unspecified parameter .-\ (cf. Eq. (2.14)). 
Using (3 .10), we may write this in terms of r: 

(D:.. P / /Jix)i =::: (D,\ P/ Dr)i hv = m o/ u!/ , 

and we have by_ Eqs. (2.5), (2.6) and (3 .10): 

(3.13) 

so the "unspecified" Newton law has the form 

(3.14) 

where u' = (Ui ) means the spatial part of the 4-velocity U. Applying definition 
(2.14) which involves terms given by Eqs. (2.13) and (2.7), we get 

(3.15) ( 
DD,\ru' ) - dUi r i . u1 k ' i j rl.?:o 1 k 

- dr + 1k U + Ah h jk.O dr L . 
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Hence, the unspecified Newton law imposes the following values to the spatial 
components (in coordina tes bound to a globally synchronized frame F) of the 
4-acceleration of a free test particle (Eq. (3.8) with (3.9) and (3.12)), depending 
on the parameter A: 

(3.16) 

In particular, the spatial part of the equation for space-time geodesics is satisfied 
for a variable gravitation field (h Jk.O f. 0) if and only If the parameter A has the 
value A= 1. 

ii) Time component of the 4-acceleration in a globally synchronized frame 

For the time component, we have simply 

(3.17) Ao = (.:1u )o = duo+ r'o (Uo)2 + 2r'o LloUk + r'ou;u1 
I - l . 00 Ok I) . 

--lT (T 

Using Eq. (3.7) 1 and the fact that 1oo = ;32 (Eq. (2.4)), the 1''01w are easily calcu
lated: 

r'O _ !3.o F'O = f3.k F'O = h ,J,O 
. 00 - If ' Ok f} ' IJ 2 ;J2 . 

By Eq.(3.11), which implies also that Uk = (!·u/fJ)(dxkj(ll ), one then 
(3.17) as 

rewrites 

(3.18) 

At this point, we may inse rt the energy balance deduced from the " unspecified" 
Newton law fo r the free test particle (Eq. (4.21) in Ref. [4]): 

(3 .19) rl ) D/3 3 1 - 2ADh() 
dt(/3/u = / uDt + t/v~ Uf Y, Y 

with u; = (rl x;jdt) //3 by Eqs.(2.4) and (2.5)CS). We have thus in Eq. (3.18): 

d ('u) · d ( 1 ) 1 d [a ( 1 ) ( 1 ) dxkl 
dl /3 = dl j32(3~,l' = (32 dt (fJ~fv ) + /3/'u Dt (32 + (J2 ,k dt 

_ Ju (() ,3 
23 

d.tk ) / u 1 - 2 ~\{)h;j d.1:i d:tl - -- - + l k- +------
;32 Dt · dt J3 2c2 Dt dt dt ' 

e) Equation (3.19) is derived us ing the fact that SV/111! d~ riva tion rule o f a sca lar product can be obta ined 
even wi th the " unspecified" Newton law, al though it does not obey tlu; true Lcibni7. rule (Eq. (2 .Y)) unless 
,\ = 1/2. However, if ,\ -f' 1/2, th is balance equation canno t be rewri tten as a true conservation equation, at 
least in the scalar theory (1 - 41. 
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so that some cancella tio n occurs in (3.18). We obtain fin ally: 

(3.20) Ao = 1'~ (1 - A) oh;j dx; dx1 =-= (1 - A)h . UiUj = 2(1-A) f 'o UiU j . 
cf]4 Dt dl dl f32 '1•

0 
'1 

In particular, the time part o f the equatio n fo r space-time geodesics, as we ll as 
the spatia l part, is satisfi ed fo r a va riable gravitat io n fi e ld (h ;J,O :f 0) if and o nly if 
the pa rameter A has the value A = 1. H owever, it is recalled tha t t he va lue A = 1 
specifies the Newto n law in an incorrect ma nner, since it means that Newto n's 
second law is based o n a vecto r ti me de riva tive which does no t obey Le ibn iz' 
derivatio n rule. 

Let us summarize the results of Subsecs. 3.1 and 3.2, wh ich co ncern Newto n's 
second law and geodesic motio n: 

(NGM1 ) Consider a the01y with cw v ed space-time metric 1 and locally valid S R., 
and assume that in some "globally synchronized " reference fram e :F ( / Oi = 0). the 
gravitation force (3. 1) in 11olves a space vector g depending only on the metric field 
1'· More precisely, assume that g does not depend on the time l'ariation of 1 and is 
linear with respect to the space variation of I · In order that fi'ee particles would follow 
space-time geodesics in the static case (J ,,..,,o = 0). it is necesscuy and sufficient that 
the general expression of l'ector g in the fram e :F should be 

(3 .21) f =loo = tP, 

with h the space m etric in F. This expression implies Eqs. (3.1 6) and (3.20) for 
the 4-acceleration. thus it implies that. for a time-dependent field. geodesic m otion 
corresponds exactly to the incorrect Newron law (A = 1 ). 

3.3. Characteris ti c fo rm of the gr·avit n tio n l'urce assorinted with geod es ic motio n 

The assumptio n that the metric fi e ld 1 p lays the ro le o f a po tent ial fo r the 
gravity accelera tio n g seems qu ite natu ral, if o ne thinks o f a "soft" generalizatio n 
of Newto nian gravity. The fo regoing result implies, among o the r t hi ngs, tha t E in
stein 's assumption o f a mo tio n follow ing space-t ime geodesics is no t such a so ft 
extensio n. But, after all, in M axwe ll 's th eo ry the electric fi e ld invo lves a lso time 
d erivatives of th e electromagne tic pote ntia l, besides the usual space deriva tives. 
Moreover, t he Lorentz fo rce depe nds o n th e velocity of the charged particle. 
A mo re ge nera l expressio n t han we assumed fo r the gravity accelera tio n might 
hence be co rrect a lso , the mo re so as we now have empi rical reasons to th ink tha t 
the gravity interactio n indeed propagates, as does the electro magnetic fi e ld, and 
with the same velocity (TAYLOR and W EISBERG [25]). T ha t gravita tio n propagates 
wi th the velocity of light was fi rst e nvisaged by Po incare in h is "e lectromagnetic", 
Lorentz-inva riant th eory o f gravitat io n [20 - 2 1] and, as is well kn own, it is pre
dic ted by E instein 's theory. 
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Thus we now investigate the possible form o f the vector g, subjected to the 
unique constraint tha t geodesic m otion should occur with the correct form of New
ton 's second Law, i.e. A = 1 / 2. We continue to work in a globally synchronized 
reference fram e and, in order to simplify the exp ressions, we take g in the form 

(3 .22) 2 gradh,6 1 c2 gradhf , 
g= -c ,6 +g = - 2 f +g , J - - a 2 =tOO= fJ • 

Starting from Eq. (3.6) as before, nothing changes until Eq. (3 .12), which now 
becomes 

(3 .23) r l i (Uo)z 2( i 1i) 00 = -~V [} - [} ' 

And again nothing changes until Eq. (3.16), which is modified into 
. 0 . (.c..lU)' ·· d~: 1.: 2 · A' = --;-;---- = (1 - A)h'1 h;k o-l·-u · + l u!l. 

i..lT ' ( T 
(3.24) 

Hence, the spatial components of the 4-acceleration cancel with A = 1/ 2, if and 
only if 

(3.25) i.e. 
I - l - I Oh - 1 - I Dh 

g = - h • - •V = - h • - •V 
2/J iJ I 2 i)J X 

But does this expression also cancel the time part of the 4-acceleration? To check 
this, o ne must reexamine the energy balance derived in Ref. [4). Proceeding in 
the same way, we find easily that the energy ba lance resulting from the expression 
(3.22), (3 .25) of g is (with ,\ = 1 / 2) 

(3.26) !.!__ j- = - i) .3 - !h u D h V V 
rli (, 11 , ) tu 01 2c2 ()l ( ' ) , 

instead o f Eq. (3.19). Thus, with the correct Newton law (/\ = 1 / 2), the same 
expressio n is now obtained as it was obtained before with the incorrect Newton 
law (A = 1). Therefo re, the time part of the geodesic eq uat ion, :!0 = 0, is satisfi ed 
fo r A = 1/ 2, as it was previo usly fo r /\ = 1. We have proved the foll owing: 

(NGM2) Consider a the01y with curved :;puce-time m etric 1 und Locully valid 
SR. and assume the correct time derivatil ·e (2 .15) in the cxtl'llSion (2.8) of Newton's 
second law. In order that free' purticles (Fo = 0 in t:q. (2.8)) might folLow space-time 
geodesics. it is necessw y and sufficient that. in any glohully ::,ynchronized reference 
frame F (to; = 0). the gruvitation force (3 .1) should invoil ·e the following expression 
for the gravity acceleration (space w:ctor g) : 

2 gradh (j 1 _ 1 iJh 
(3.27) ggcod = -c .3 -

2
,) h • Ji •V. ,j = v0QO. 

with h being the space m etric in F and v - the velocity l'ector (Eq. (2.5)). 

This result provides the general link between Newron 's second law and E in
stein 's geodesic assumption. 
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4. Compa rison with the literature 

4.1. M0ller 's work and the rela tion be tween covariant a nd cont ravarian t form of Newton's law 

Amo ng attempts to de fi ne Newton's second law in the case o f a variab le 
gravita tio n fi e ld, a well-known o ne is that of M0LLER [18]. H owever, M0ller uses 
the absolute derivative with respect to the "frozen" space metric, thus ..\ = 0 in 
Eq. (2.14), so that Leibniz' rul e is not satisfied with the actual, t ime-dependen t 
metric. In co nnectio n with this, he no tes that this deriva tive does no t commu te 
with raising o r lowering the indices with respect to the space me tric h. As a 
consequence, when he rewri tes the equatio ns for space-time geodesics in the form 
o f Newto n's second law wit h gravitational fo rces, the la tte r look very d ifTere nt in 
covariant and in contravariant form. We show that this d ifficulty is absent with 
ou r defin ition. 

Indeed, it is easy to adapt our line of reasoning so as to defin e the time
deriva tive of a spatial covector w•. One finds in exactly the same way that, apa rt 
f ro m Leibn iz ' ru le, a one-parameter family of time-deriva tives may be defin ed as: 

(4.1 ) 

with 

(4.2) (t·w· ); = h;j,o(d.l: 0 / rl A. )hjk w· ~c 

= (dx0/d \) (h ,o ·h- 1 )/' w"~.: = (d.l:0 /d\ )(h - 1 · h .o)"';w · ~.: = fc ;w·~.:, 

and where Dow* / D \ is the absolute derivative using the " frozen" me tric. And 
one finds that Leibniz' rule imposes >. = 1/ 2. I t is also easy to verify that, for this 
correct value>. = 1/ 2 a nd, for a t ime-depende nt metric h, only fo r this value, the 
time-de riva tive D,\ / D '( does commure with ra ising o r loweri ng the ind ices with 
respect to the space metric h , t hat is 

(4.3) 

There fo re, if o ne takes the covariant components o f the mo mentum instead o f 
the co ntravar iant o nes, thus substitu ting p· = h·P for P, then the correspond ing 
"covariant Newto n law" will involve just the covariant components of the fo rce, 
F" = h·F = h·(Fo + F9 ) in Eq. (2.8). 

4.2. Newton's second law with the " Fermi - Wa lker" time-derivative 

Fro m now on, we will d iscuss the work o n "Newto n's seco nd law in re la tiv istic 
gravity" as reviewed and un ifi ed by J ANT Z EN er al. [1 0]. They defi ne the eq uivale nt 
of wha t we call a frame (spatia l netwo rk) by a 4-ve locity vecto r fi eld u, a nd they 
name it "observer congruence" . What they call "observer-adapted frames" is a 
very d ifTere nt notio n fro m tha t of adapted coo rdinates as defi ned by M0 LLER 
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[18] and CATIANEO [6, 7]. Here we continue to work in adapted coordinates, 
i.e. such that the observers of the network (or congruence) have constant space 
coordinates .. In such coordinates, the contravariant and covariant components o f 
u are given by 

(4.4) ( ttC\' ) = ( - J -!oo, ( ~) ) 
t OO i == I ,2,3 

(we keep our notations, except for the fact that we set 1t0' = d.1: 0' I ds and adopt 
the (3,1) signature as in Refs. [6- 7] and [1 0], until the end of this Section). It 
follows that the spatial projection tensor II = II(u) [7, 10], which is a space-time 
tensor de fined in general by 

Il''v = o'' v + u''uv ' 

has a simple expression: 

(4.5) 1! '0 = 0. If 0 - ~ ;~ 
J - - i OJ 100 , 

It corresponds to the projection of the local tangent space to space-time onto 
the hyperplane which is / '-perpendicular to the local 4-velocity u of the observer 
congruence. In connection wi th this, what is called a "spatial tensor" by CATIANEO 

[7] and by J ANTZEN et al. [10] is also a very different notion from tha t used by 
M0LLER [1 8] and in th e rest of this paper. For us (and for M0ller), a spatial tensor 
is just an element o f a tensor space at the re levant po int of the spatial network 
(3-D Riemannian man ifold) N, thus its components depend on the three spatial 
(Latin) indices o nly, 'i = 1, 2 , 3, in adapted coordinates. In Refs. [7, 1 0] and in 
the remainder of this section, a spatial tensor is a !)pace-time tensor wh ich is equal 
to its projection , the latter being generally defined by Eq. (2.2) of Ref. [10]. E.g. 
for a 4-vector (space-time vecto r) X, the projection reads: 

(4.6) 

H ence in adapted coordinates, by (4.5): 

(4.7) 

so that the "time" compo nent X 0 is not eq ual to zero for a "spatial vector" (ex
cept for a "normal congruence", i.e. the case where / Oj = 0 in some adapted 
coordinates). We also note that the " rescaled time" T(U,u) conside red in Re f. 
[10] (for a time- li ke tes t particle with 4-velocity U), as well as the "standard 
time" T considered in Refs. [6- 7], is the same variable as our " local time" lx , 

synchronized along the trajectory of the test particle, with their I' = I(U,u) be
ing our ru (Eqs. (2.3) and (3.10) here). On the o ther hand, what is called the 
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"Fermi- Walker total spatial covariant derivative" (fw TSCD) in Ref. [10), has 
the following expression fo r an arbitrary parameter \: (although it is defined only 
for X = T(U,u) = tx in Ref. [10]): 

(4.8) D(fw)X = IJ . .JX . 
D\. .Jx 

We have thus in adapted coordinates, by Eq. (4.7): 

(4.9) ( 
.JX) i - ( r[_\ -i f'i -~· d.l:v ) - - - + \ -
d \. - d X J.LV - d \ ' i=1,2,3, 

and the " time" part of the derivative is not independent of the "space" part: 

0 . 

( 
D(fw)X) = _ / Oj ( D(fw)X)

1 

D x loo Dx 
(4.10) 

What corresponds to Newton's second law in [1 0) is the evaluation of the spa tia l 
projection of the 4-accele rat io n A of the tes t particle. Apart from the d ifferent 
notation, it amounts almost exactly to Eq. (2.8) here, with the same defin ition 
(2.6) for the momentum, involving the same rela tive velocity (2.5), tho ugh with 
the derivative defined by Eq. (4.8) instead o fEq . (2.15). One difTerence is that the 
velocity v and momentum P are now spatial 4-vecto rs which turn out to be the 
respective projections of the 4-vectors U' and P' , with U' the 4-velocity U, rescaled 
to the local time, and P' the usual 4-momentum. Thus the spatia l compo ne nts 
of v and P are th e same as in this work, and the " time" components obey the 
general rule for a spatia l vector X, i.e. such that Il·X = X: 

( 4.11) 

Anothe r difTerence is that the gravitational force, which is the to tal force for 
a fre e particle, is necessarily ded uced, in th e frame of GR and o the r '·metric 
theories", from the geod esic equatio n, i. e. A = 0, whereas here geodesic mot io n 
is one possib ility among others. 

Having thus recognized th a t the spatia l part (4.9) of the derivat ive (4.8) p lays 
exactly the same ro le in R ef. [1 0) as the de rivative (2.15) p lays here, we may 
comment on the difTerence between the two derivat ives. Since the spatial com
pone nts (4.9) are just those of the space-time absol ute derivat ive .JX/ .J \, the 
Fermi - Wal ker TSCD invo lves space-time coupl ing in a generally inext ricable way, 
in that it cannot in general be de fin ed in te rms of o nly the spatia l metric h and 
the local t ime lx. H ence, this derivative cannot be used in a n arbitrary reference 
frame to defin e a " true" Newton law as it has been defined here, i.e. precisely 
a law involving only the separa te space and time met rics in the given reference 
frame, thus al lowing to " forget" the concept of space-time as long as one does 
not change the refere nce fra me. 
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4.3. The " normal" a nd "corola t iona l" Fermi - Walker derivatives obey Lei l.HtiL' r ule 

Surprisingly, the question whether the introduced time-derivatives satisfy the 
Leibniz rule is not investigated in Refs. [6, 7, 1 0]. However, it is not difficult to 
show that the two Ferm i - Walker derivatives do verify Eq. (2.9) fo r spatial vecto rs. 
The spatial metric in those works is of course the same thing as here, except for 
the signature and the fact that it is now a space-time tensor (for a given observer 
congruence u): 

(4.12) 
hoi = hio = hoo = 0. 

Equation ( 4.12)1 implies immediately that, for any two space-time vecto rs X 
and Y: 

( 4.13) h(X, Y) =~,- (X . II·Y) = ! (II· X. Y). 

O n the o ther hand, the absolute space-time derivative obeys the Leibniz rule: 

(4.14) d (' ..1Y) ( ..1X ) d \ [I(X, Y)] = 1 X, ..1\ + 1 ..1\ . Y . 

Using Eq. ( 4.13), we rewrite Eq. ( 4.14 ), if both vectors X and Y are spatial, as: 

_!}__ [h(X. Y)] = h ( x. rr . ..1Y) + h (rr· ..1x . v). 
d\ ..1 \ ..1 \ 

With the definition (4.8), this gives the Leibniz rule for the Fermi - Walker deriva
tive: 

(4.15) _:!__ [h(X, Y)] = h ( x . !)(fw)Y) + h ( f)( fw) X, v ) . 
d,\ /) \ /)\ 

The "coro tat io nal" Fermi - Walker (cfw) derivative, when acting on a spatial 
vecto r X, is related to the "no rmal" Fermi - Walke r derivative by [1 0]: 

( 4.16) ( /]~)X )£> = ( /)(fw)X) o + w0 ,c rllxX'' . 
}) \ I r/\ 

Here w 0
1, are the mixed components of the "spin-rate" space-time tenso r. This 

comes from the decomposit ion of the covariant "spatial 4-velocity gradient", 

(4.17) 

into symmetric and antisymrnetric part: 

(4.1 8) 
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and the mixed components wo- ~-' are obtained by raising the index o. with metric 
I· It appears that, just like th e ordinary one, the corotational Fermi - Walker 
derivative cannot in general be expressed in terms of the spatial metric h and 
the local time tx only. Moreover, it is difficult here to refrain from aski ng the 
question: with respect to what does the "spin rate" w measure the rate of relative 
spin of the considered reference fluid (network)? Already the understanding of 
the strain rate B is difficult: without any pre ferred reference fluid, we may only 
define, so to speak, the "strain rate o f the fluid with respect to itself' due to 
the evolution . of the spatial metric h, and this is precisely what measures the 
t = h- 1·h,o (rlx0 / dlx) tensor in o ur derivative (2.15) (with \.' = lx) - but the 
tensors t and B are two different objects. 

As to Leibniz' rule, it applies to the cfw derivative, at least if both vectors 
X and Y are spatial. Indeed, due to the antisymmetry of the covariant tensor w 
(Eq. (4.18)3), the definition (4.16) gives 

( 
D(cfw)y ) ( D(cfw)X ) ( /J(fw)Y) ( D(fw)X ) 

I X, D'( + ')' /J\ , Y -I X, /)\ -I D \ , Y 

= c ldlx IJ-LV (w~' g.ry ey v + w" eY !! XI') = c Ldlx (..vvg),"!! Y " + WJ.I(} y e x ~' ) = 0. 
c '( ( A. 

The Le ibniz rule fo llows from this by (4.13) and (4.15), the two vectors X and Y 
being assumed to be spatial vectors: 

(4.19) 

4.4. T he case of a globally synchronized frame a nd the " Lie" time-derivative 

d 
- [h(X, Y)]. 
d\ 

We co nsider the particular case of a globally ~ynchronized frame (or " normal 
congruence"), in which the ~fOi components of the space-time metric are zero in 
some adapted coordinates. Then the spatial projection tensor IT (Eq. (4.5)) is 
written simply 

(4.20) (171' .., ) = diag(O, 1, 1, 1) 

in such coord inates. Hence, in such coordinates, substituting its spatial projectio n 
IT(u) ·T for a space-time tensor T amounts exactly to taking its space components 
only. In particular, the " time" component of a spatial vector X is now eq ual 
to zero. Moreover, the spatial ChristofTel symbols of the space-time metric are 
equal to the ChristofTel symbo ls of the spatial metric (Eq. (3 .7)). This implies that 
the Fermi - Walker derivative coincides, for the case considered and for a spatial 
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vecto r X (thus X 0 = 0), with the D1; 2 de rivative. Indeed, using E q. (3.9), we find: 

(4 .21) ( D(fw)X) ' -= ( ..JX) ' _ dX; F' ..,.1 d.1:k r'' , .i dx
0 

D x ..Jx = d;.._ + 1u \ d\ + i D·· d'< 

= dX; + r i · kx J d.~:k + ~hik hk · oXJ d.t·o = ( D~~X') ; ' 
d '( 1 rLx 2 1

' d\ 

with X' :::: (Xi). 
Fo r the no n-zero co mponents of the k tensor (Eq. ( 4.17)), we o btain using 

Eqs. (4.20), (3.9) and (4.4) (and since hjk = /ik with the (3,1) signature): 

(4.22) 

The refo re, the "spin-ra te" tensor w is nil fo r a no rmal congruence [6], so tha t 
the corota tio nal Fermi - Walker de rivat ive coinc ides, fo r spa tial vec to rs, with the 
"no rmal" o ne, and thus with the proposed de riva tive, D = D 112. O n the o the r 
ha nd, we have from (4.18) and (4.22): 

W hat is called "Lie" TSCD deriva tive in R e f. [1 0], is not a Lie deriva tive in the 
usua l sense but the projection of a Lie de rivat ive [1 0], and is de fi ned in gene ral 
by [10]: 

(4.23) 

(exte nding again the defi n itio n [1 0] to an a rb itra ry parameter \ ). H ence, we have 
he re: 

(4.24) 

In othe r words, the so-called " L ie" de rivative coincides in tha t case with the 
absolute derivative with respect to the "frozen" spa tial metric, and so does not 
obey L e ibniz' rule . 

5. Concluding remar ks 

1. Fro m o ur b ibl iograp hica l research, it would appear tha t it had not yet 
been proposed in th e lite ra ture, as it is p roposed here, to in troduce a consistent 
d efin itio n o f the time-de rivative o f a vecto r, in the fol lowing re levant situa tion: 
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the vector is moving along a trajectory in a manifold eq uipped with a metric fie ld 
h:x. (the spatial metric in a given reference frame) that changes with th e paramete r 
x on the trajectory. Indeed, of the three different notions of frame-dependent 
time-derivatives that have been reviewed and unified by JANTZEN et al. [1 0] , the 
two first ones (the Fermi - Wa lker de riva tives) involve the whole ::.p ace-time me tric 
in an unseparable way, while the so-called "Lie" derivative does not obey Leibniz' 
rule. In our opinion, this would mean that no consistent and natural extensio n 
of Newton's second law to the case o f a variable gravitation field in a gene ral 
reference frame (in a theory with curved space-time as envisaged here) had yet 
been proposed either. It seems as if, from the orthodox rela tivistic point of view, 
it would be considered to be a priori impossible to defin e Newto n's second law 
"really as before"- because the absolute priority is to maintain consistency with 
the notion that the 4-dimensio nal space-time is the essentia l physical rea li ty. 
However, it turns out that the two Fermi - Walker derivatives coincide with the 
proposed derivative in the impo rtan t case of a globally synchron ized fram e (o r 
normal congruence) . 

2. We find that there is o ne a nd only one natural exten sio n of Newton's second 
law to any th eory with curved space- time metric, in the most general si tua tio n. 
In particular, one may uniquely identify that gravity acceleration ggcod which is 
necessa ry to obey E instein 's assumption, i.e. to ob tain geodesic motion for free 
test particles. In doing so, we did not merely rewri te the three "spatial" eq uatio ns 
for space-time geodesics as the space-vector rela tio n " fo rce = time-derivat ive of 
momentum": we also proved that the la tte r re latio n im pli es the " time" equation 
of geodesics, and th is does not seem to have been done in earlie r attempts. 
This "geodesic" gravity accelerat io n ggcod depends o n the reference frame, as is 
natural in a " relativistic" theory (since the acceleration is not Lorentz-invariant). 
It may seem mo re surprising tha t ggcod depends on the velocity o f the partic le 
(Eq. (3.27)). However, this is a lso the case fo r the Lore ntz force which a charged 
particle undergoes in an electromagnetic fi e ld. The striking difTerence is that the 
magnetic force does not work, whereas the ve locity-dependent part of ggcod does 
work. In the inves tiga ted case o f a no rmal congrue nce, it has the same fo rm 
as the Newto nia n inertia l force that appears in a reference frame undergo ing 
pure strain w ith respect to an inerti a l frame [1] . I3ut here this " inert ia l" force 
comes from th e st ra ining of th e reference frame "with respect to itself' (i.e. due 
to the fact tha t the spatia l metric evolves with time) and it ca nno t in general 
be cancelle d in a finite regio n by changing the refere nce frame. Thus, theo ries 
with geodesic mo tion inherently do no t al low global inertial frames, a lthough 
such global ine rtia l frames do appear in their Newton ian limit. We a lso note that 
any velocity dependence of the gravity accele ra tion, g = g(x, v), implies that the 
definition o f the passive gravitational mass, i.e. mg = Fg/g with Fg the gravitat io n 
force, becomes indissolubly mixed with that o f the gravity acce leratio n itself: one 
may change g and ·mg to n g and mg/ CI respectively, with rt any scalar function of 
the velocity (e.g. Cl = ! u'' where ·n is any real number), so that lllg is operationally 
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defined up to the arb itra ry functio n a· only. Hence, although Newton's second 
law can be defined in a "cuiVed space-time" afte r a ll , the statement "m g = 
inertial mass rn( v )" st ill remains partly conventional. I ndeed, the o nly testable 
sta te ment is then the universality of the gravita tio n force (which is rea lly a crucial 
po int, o f course). 

3. The identity between inert ial and gravi tatio nal mass would have a stronger 
meaning if g depe nded o nly o n the position of a given test particle. However, for 
the kind o f theories considered here, th is cou ld be true on ly in some preferred 
reference frame (this is, of course, in contrast with the Galilean situation). To 
check this identity, o ne might e.g. defi ne g fo r particles a t rest in the prefe rred 
re ference frame, thus g(x) ::::::: Fg(v = O)/ m0, and check experime ntally whe ther 
o r no t the gravi ta tio n fo rce Fg is indeed eq ual to 1n(v)g fo r an arbitrary velocity. 
In the scalar ether theory which has been ten tatively proposed [1-4], a vector 
g depending only on the position, Eq. (3 .21 ), has been fo und to occur naturally, 
consistently with the notion that g should be determined by the local state of some 
substratum. Thus this theory predicts "strong ident ity" between inert ial and grav
itational mass and, in connection with th is, geodesic motio n does not hold true in 
the general case in this theory. If one were to mod ify this theory so as to obtain 
geodesic motion, one would have to postulate Eq. (3 .27) instead of Eq. (3.2 1 ). 
T hen, the mod ified g-field would still be dete rm ined (in the p referred frame [) 
by the scalar fie ld ]Je or {3 (together with the particle velocity!) H oweve r, t his 
would lead to the energy balance (3 .26), which has been seen to be incompatible 
with the derivation of a true conservation eq uatio n for the energy in this scalar 
theory [4] . On the other ha nd, this th eo ry cou ld happen to predict unobseiVed 
post-Newtonia n e iTects of absolute motio n. 
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Non-uniform stagnant motions of materially non-uniform 
simple fluids 

S. ZAHORSKJ (WARSZAWA) 

NON-UNLFORM STAGNANT motions of materially non-unifo rm (inhomogeneo us) incompressible fluids 
arc reconsidered in greater detail. These motions may be used in many practical s iiUatio ns, such 
as fibre spinning and drawing processes. It is shown that the corresponding constitutive equations 
are very similar to those describing motions with constant stretch history or, in particular, steady 
extcnsional flows. 

1. Introduction 

THERE ARE AT LEAST three reasons for reconsidering non-uniform motions of ma
terially non-uniform (inhomogeneous) simple fluids. The first reason is connected 
with pretty weak interest of the researchers involved either in the continuum 
theories or in the rheology of polymeric liquids. Existing references are rather 
devoted to what may be called inhomogeneities (dislocations, aeolotropy etc.) in 
materially uniform simple bodies (cf. [1 ]). The second reason results from seri
ous needs for such considerations in the rheology of polymers when the material 
non-uniformity may be caused by a sensitivity of material properties to various 
temperature, viscosity, structure, etc. varia tions in the flows considered. The third 
reason, but not of minor importance, is the fact that the Referees of my previous 
papers on the necking phenomenon in fibre sp inning processes [2, 3) had some 
doubts about the possibility of applying the constitutive equations in a fo rm very 
similar to that describing uniform steady elongations of incompressible simple 
fluids [4] . 

In 1962 COLEMAN and NOLL discussed the class of substantially stagnant mo
tions [5) or motions with constant stretch history (MCSH) [6]. 

According to Noli's defin ition, a motion is called a MCSH if, and only if, 
relative to a fixed reference configuration at time 0, the deformation gradient at 
any time r is given by 

(1.1) Q(O) = 1, 

where Q(r ) is an orthogonal tensor and M is a constant tensor such that M = r.:N0, 

INol = 1, and "' a constant parameter. The above definition shows that in all 
MCSH, the history of the relative deformation tensor is one and the same function 
of t - r for all current instants t. 

Moreover, it results from WANG'S theorem [7] that in all MCSH, the extra
stress tensor can be expressed as an isotropic tensor function of at most fi rst three 
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Rivlin - Ericksen kinematic tensors, i.e. 

(1.2) To( I) = h(A t (t) , A2(t) , A3(t.) , ) , trTt: = 0, 

where by definition 

(1 .3) 

and the velocity gradient amounts to 

In the present paper we generalize the above results for the case of non
uniform stagnant motions (hereafter called NUSM) of materially non-uniform 
(inhomogeneous) incompressible simple fluids. It is shown that the corresponding 
constitutive equations are very similar in form to those val id fo r MCSH. 

2. Non-uniform stagnant motions (NUSM) 

Consider a more general class of motions for which the deformation gradient 
at any time r , relative to a configuration at time 0 is of the form: 

(2.1) Fo(X, r ) = Q(X, r ) exp(r M(X)) , Q(X, 0) = 1, 

where Q(X, r) is an orthogonal tenso r, and M(X) depends only on the position X 
of a particle X in an arbitrarily chosen reference configuration K (not necessarily 
at time 0). Thus, the non-uniformity of the quantities involved c:.~n be expressed 
either by X o r )( (X = K(X)). 

According to the definition (1.4), we obtain the following velocity gradient: 

(2.2) 
• T 

L1 (X, t) = Q (X, t)Q (X, t) + L(X, t) , 

where 

(2.3) L(X, I) = Q(X.t)M(X)QT(X, t) , 

is called the rotated parametric tensor (cf. [8]), and l denotes the current instant 
of time. 

The deformation gradient, relative to a configuration at the cu rrent time r, 
amounts to 

(2.4) 
F1(X,t. - s) = Fo(X,r)F0

1(X, t) = Q(X,I - 8)exp(-sM(X))QT(X, t.), 

T = t - S, 0 :=; s < oo, 
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wha t leads to the fo llowing history o f th e re lat ive de fo rmation te nsor (cf. [8]): 

(2.5) c;(x. 8) = C1(X , 1- s) = FJ' F1 = exp( -sLT(X. t)) exp( -sL(X, t)) . 

In ful l analogy to the case of M CSH , we may ask what will happen if L 1 (X) 
d efin ed thro ugh Eq. (2.2) is steady (independe nt o f time t) but no n-unifo rm in 
space? The answe r results fro m the fo llowing d iiTerential equation based o n 
Eq. (1.4): 

(2.6) 
d 
-l Fo(X,r) = L 1(X)Fo(X,r) , 
(T 

with the initial cond itio n: F0(X , 0) = 1. T he correspo nding solutio n can be wri t ten 
as 

(2.7) Fo(X, r) = exp(rL 1 (X)) . 

T he above expressio n evidently be longs to the class (2. 1) with Q = 1. Tt is obvio us 
tha t for steady fl ows in an E u lerian sense 

(2.8) L 1 (x) = V(x) · \' L1 (x) , 

where V is the velocity and \ denotes the gradient with respect to place x. 
Tt is wort hwhile to mention that No li 's classificat ion of MCSH based o n the 

tensor M (X) (or L(X, t)) can be general ized to the case of NUSM. T herefo re, in 
certain parts of a fl uid, we may have the following classes o f flows: 

(T) non-unifo rm visco metric flow 

(IT) non-unifo rm do ubly-superposed viscometric flow 

(TTT) non-uni fo rm trip ly-supe rposed viscomerric flow and extensiona l fl ow 

l\1 11 f= 0 fo r a ll '' = 1, 2 . . ... 

The non-u niform extensio na l fl ows, because o f their techno logical validity, will 
be discussed separa te ly in Sec . 4. 
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3. Constitutive equations of materially non-unifo1·m (inhomogeneous) 
simple Huids 

As mentioned at the beginning, in many practical situations, instead of solv
ing the usually complex problems, it is more useful to assume a priori that 
unknown temperature, viscosity, structure, etc. distributions lead to a material 
non-uniformity (inhomogeneity). In other words, such a non-uniformity means 
that the mechanical properties of a fluid vary from particle to particle. 

The constitutive equations of materially non-uniform incompressible simple 
fluids can be written in the form (cf. [9]): 

(3 .1) 
CO 

TE(X, t) = 1{ (C:(x, s); X), 
s=O 

where T E is the non-uniform extra-st ress tensor, and 7{ denotes a constitutive 
functional. Such a definition is not in contradiction with the principles of deter
minism and local action. Equations (3.1) also satisfy the principle of objectivity 
(invariance with respect to the reference frame) since all the tensors involved are 
objective (cf. [8]). 

For non-uniform stagnant motions (NUSM) defined by Eq. (2.10), after intro
ducing Eq. (2.5) into Eq. (3.1) and taking into account the properties of tensor 
exponentials, 

(3 .2) 

we arrive at 

(3.3) Tc (X, t) = h(L(X, I); X). 

where h is an isotropic function of the tensor argument. Tn particular, if the 
rotated parametric tensor L(X) is a steady one, the particle position X may be 
replaced by its place in space x. This leads to 

(3.4) T E(x) = k(L(x); x). 

Since for the motions considered (NUSM) the following relations are als 
valid: 

(3.5) n 2: 1, 

the corresponding representation theorem analogous to that derived by WANG [i ] 
can easily be proved (cf. [8]). Thus, it can be shown that the extra-stress tenser 
in the most general case amounts to 

(3.6) TE(X , I) = f(At (X, 1), A2(X, 1), A3(X, t); X), 



http://rcin.org.pl

ON-UNIF'Oill\1 STAGNANT I\10TIO S OF 1\ IATEIUALLY NON-UNIFORI\1 SIMPLE FLUIDS 581 

where a ll the quantities depend on the particle position X. Similarly to the case of 
MCSH, a knowledge of the first two kinematic tensors A1 and A2 is suflicient to 
determine q(X, s) uniquely, if eithe r A1 has three difTerent eigenvalues, or two 
of them are equa l but difTer from the third one and, moreover, (A2) = (Ai] in 
the same basis in which A1 has a diagonal form . Such a generaliza tion is possible 
since the proof of the theorem is based o n the geometty o f matrices involved, 
independently of whether they are functions of X or not. 

4. The case of non-uniform s teady extensional flows 

The non-uniform steady extensional mo tio ns, under the assumption of quasi
elongational approximation (cf. (2, 3]), may be useful as applied to various fi
bre spinning and drawing processes (10). Fo r example, any temperature distri
bution may lead to observable mate rial non-uniformity (inhomogeneity). We will 
show th at the above motio ns are particular cases of those described by Eq. (2.1) 
(NUSM). 

To this end, consider the fo llowing exponential deformation gradient at time r 

(4. 1) Fo(X. r ) = exp(rM(X)) , 

where X, like in Sec. 2, deno tes the particle position at an arbitrary re ference con
figuration, and the time-independent tensor M(X) is of a diagonal form. Instead 
of Eqs. (2.2), (2.4) and (2.5) we arrive at 

(4.2) 

(4.3) 

and 

f) 
L, (X) = -

0 
F1(X, r ) l = L(X) = M(X), 

T r=l 

F1(X, I - s) = exp( -sM(X)). T = I -s, 0 :::; s < oo, 

(4.4) c:cx, s) = C1(X, t- s) = exp( -.~LT(X , !)) exp( -sL(X, t)). 

Therefore, for the flows conside red, the veloci ty gradient L1 (X) is equal to the 
parametric tensor L(X) and a lso to M(X). 

Now, the constitutive equations (3.1) lead to 

(4.5) T t,· (X) = g(L(X); X), 

where g is an isotropic functio n of the tensor argument, or to Eq. (3.4), if the 
spatial description of mate rial no n-uniformity is used. 

Since for general extensio nal flows with d iagonal A1 we have 

(4.6) n :::: 1, 
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we can write instead of Eq. ( 4.5) 

(4.7) TE(X) = k(A 1(X); X). 

After taking into account the relevant represen tation of an isotropic te nso r func
tio n o f o ne symmetric tensor argument (cf. [8, 9]), we finally obtain 

(4.7) trA 1 =0, 

where the material functions (3 1 a nd (32, depending on the invariants of A1 a re 
also explicit functions of the posit ion X (or the place x in steady Oo ws). 

5. Concl usions 

Non- unifo rm stagnant motio ns (NUSM) are some generalization of the well 
known mo tio ns with constant st re tch history (MCSH) defined by Coleman and 
Noli. In the case of materia lly non-uniform incompressible simple Ouids, the 
constitutive eq uatio ns take a form very simi lar to that val id fo r MCSH. 

In th e case of no n-uniform steady extensional Oows the corresponding consti
tutive equations simpl ify considerab ly and, o f co urse , are independent of time. 
Those eq uatio ns may be used in many practically impo rtant quasi-etongationat 
flows such as fi bre sp inning and d rawing processes. 
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XIII Polish Conference on Computer Methods in Mechanics 
(PCCMM'97) 

Sectio n of Structural Mechanics o f the Committee for Civil Engineering of 
Po lish Academy o f Sciences, Polish Association for Computatio nal Mechanics 
and the Institute o f Structural Engineering of Poznan University of Technology 
will o rganize the XIII Po lish Conference o n Computer Methods in Mechanics 
(PCCMM'97), which will be held at the Scienti fi c Center o f the Po lish Academy 
of Scie nces in Poznan on M ay 5-8, 1997. 

Following a long traditio n go ing back to the I Polish Conference on Computer 
Methods in Mechanics in 1973, the objective o f this meeting is to bring toge ther 
researche rs engaged in a reas o f co mputatio nal mechanics, mainly of solids and 
structures. The program of the conference will tradi tionally include a number 
o f invited lectures and contributed papers. 

The contributions on the foll owing subjects are welcome: 

1. No nlinear Analysis o f So lids and St ructures 
2. Stability, Bifurcatio n and Chaotic Motion 
3. Numerical Modelling of Mate ri al F racture 
4. R e li ability and Fa tigue Durability 
5. Numerical Stochastic Problems 
6. The rmal Problems 
7. M athematical Founda tio ns o f N umerical Methods 
8. Adaptive Methods 
9. Structures (Bars, Beams, Plates and Shells) 

10. Optimum D esign and Sensitivity Analysis 
11. Computatio nal Geomechanics 
12. Computa tio nal Fluid M echa nics 
13. Para ll e l Algorith ms 
14. Geo metrica l Modelling and Mesh G eneration 
15. Visua lisation a nd Animation of Numerical Results 
16. Industria l Applica tions 
17. Knowledge-Based Design, Experts Systems 
18. Computer Aided Teaching, Design and Experiment 

Fo r details please contact the organizers: 
HTTP: //www.pu l.pozna n.p 1/ hype rtext/pu t/1 KB/pcc mm.h lm 
E -mail : pccnun@ pul.pozna n.pl 
M a il: P CCIVII\1'97 Secretary 

Dr T. Lodygowski 
Ins titute of Structural Engineering 
Pozna11 Univers ity of Technology 
ul. Piotrowo 5, 60-965 Pozna11, PL 

Phone: (0-61) 782 454 or (0-61 ) 782 ~50 
Fa x: (0-61) 7 66 116 
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The Second International Symposium 
o n 

Thermal Stresses and Related Topics 

THERMAL STRESSES '97 
will be hosted by 

Rochester Institute of Technology, Rochester, N.Y. 
June 8-11, 1997 

The Symposium will feature invited lectures and presentation of contributed papers. 

Submission of abstracts: September 30, 1996. 

A family program for spouses and children wi ll be arranged. 

A trip to Niagara Falls is p lanned for Monday, J une 9, 1997. 

Write for the F irst Announcement brochure to: 

Richard B. H etnarski 
l ames E. G leason, Professor 

of Mechan ical Engineering 
Rochester Institute o f Technology 
Rochester, NY 14623, USA 
Telephone: 71 6 475 5788 
Telefax: 71 6 475 7710 
E-Mail: TS97@rit.edu 

Professor Naotake Noda 
Department of Mechanical Engineering 
Shizuoka University 
5-1 , Johoku 3 chome 
Hamamatsu, 432, JAPAN 
Telepho ne: 81/ 53 478 1026 
Telefax: 81/ 53 474 7499 
E-Mail: tmnnoda@eng.shizuoka.ac.jp 

http: //www.rit.edur ts97/ 
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XXXIst Solid Mechanics Conference 

XXXIst Solid Mechanics Conference So1Mec'96, traditionally organized by Insti
tute of Fundamental Technological Research PAS, will be held on September 9- 14, 
1996, at Hotel KORMORAN in MTERKI near Olsztyn, approximately 200 km 
north of Warsaw. 

Main topics of the Conference are: mechanics and thermodynamics of solids 
with microstructure, dynamics of solids and structures, computational solid mechan
ics, mathematical and computer methods in mechanics and engineering sciences, 
experimental methods in mechanics, contact and interface problems in mechan ics, 
environmental mechanics. 

Conference Chairman is Witold KOSINSKI. 
Inquires can be made to the Organizing Committee 
IFTR PAS, ul. Swi~tokrzyska 21, 
00-049 Warszawa, POLAND; 
Phone: + +4822-268802, Fax: + +4822-269815, e-mail solmec96@ ippt.gov.pl 
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INSTITUTE OF FUNDAMENTAL TECHI\OLOGICAL RESEARCH 
is publishing the fo llowing period icals: 

ARCHIVES OF MECHANICS - bimonthly (in English) 

ARCHIVES OF ACOUSTICS- quarterly (in English) 

ARCHIVES OF CIVIL ENG INEERING - quarte rly ( in English) 

ENG INEERING TRANSACTION - quarterly (in English) 

COMPUTER. ASSISTED M ECHAN ICS AND E NG INEERING SCIENCES -
quarterly ( in English) 

JOURNAL OF TECH NICAL PHYSICS - quarterly (in English) 

Subscriptio n o rders for the jo urnals edited by IFTR may be sent directly to the 

Editorial Office 
Institute of Fundamental Technological Research, 
Swi~tokrzyska 21, p. 508, 
00-049 WA RSZ AWA , Poland. 
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The j ournal A RCIITVES OF MECll/lNI CS (A RCIIIWUM MEC/l/lNIKI STOSOWANEJ) deals with the 
printing o f original papers which should not appear in other per iodicals. 

A s a rule, the volume of a paper should not exceed 40 000 typographic signs, that is about 20 type-written 
pages, format: 210 x 297 nun, leaded. The papers should be submitted in two copies. They must be set in 
accordance with the norms establ ished by the Editorial Office. Special importance is attached to the fo llowing 
directions: 

1. The title o f the paper should be as short as possible. 

2. The text should be precedcd by a brief introduction; i t is also desirable that a l ist of notations used in 
the paper should be given. 

3. The formula number consists of two figures: the fi rst represents the sect ion number and the other 
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the initials of the fi rst name o f the author and his surname, also the full t itk of the paper (in the language of 
the or iginal paper) ; moreover; 
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b) In the case of a periodical, the full title o f the periodical, consccutivc volume number, current issue 
number, pp. f rom ... to ... ,year o f publ ication should be mcntioned; the annual volume nu rnb~r must 
be marked in black penci l so as to distinguish it from the current issue number, e.g., 
6. M. Sokolowski, /1 themwcla.rtic JmJhlem for a stnjJ with disconrinuuus boundwy cunditionv, A rch. 
M cch., 13, 3, 337-354, 196 1. 

7. The authors should enclose a summary of the paper. T he volume of the summary is to be about 100 
words. 

8. The authors arc kindly requested to enclose the figures prepared on diskettes ( format PCX, BitMap or 
PostScript). 

Upon rece ipt of the paper, the Ed itor ial Office forw:~ rds it to the reviewer. His opinion is the basis for the 
Editorial Commit tee to dete rmine whether the paper can bc accepted for publication or not. 

The printing o f the paper complc.: tcd, the author receives 10 copies of repr ints f ree of charge. The authors 
wishing to get more copies shou ld advise the Editorial Office accordingly, not later than the date of obtaining 
the galley proofs. 

The papers s ubmitted for publication in the j ournal s hould be ·written in 
English. No 1·oyalty is pa id to the authors. 

Please send us, in addition to the typescript, the same text prepared on a 
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