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Scattering of oblique waves by a thin vertical wall

with a submerged gap

P. DAS, S. BANERJEA and B.N. MANDAL (CALCUTTA)

THiIs PAPER is concerned with scattering of an obliquely incident train of surface water waves by a
thin vertical wall with a submerged gap. Utilizing Havelock’s expansion of water wave potential, two
integral equations, one involving the horizontal component of velocity across the gap and the other
involving the difference of velocity potential across the wall, are obtained. The quantities of physical
interest, namely the reflection and transmission coefficients, are related to the solutions of these
integral equations. For the case of normal incidence of the wave train these integral equations have
exact solutions. These exact solutions provide one-term Galerkin approximations to the solutions of
the corresponding oblique incidence integral equations. Identifying the reflection and transmission
coefficients as some inner products involving the solutions of these integral equations and exploiting
the properties of self-adjointness and positive semi-definiteness of the integral operators defining
the integral equations, the one-term approximations result in some lower and upper bounds for
the reflection and transmission coeflicients. Numerical evaluation of these bounds for any angle
of incidence and any wave number reveals that they are very close to each other, and as such
they produce good approximations to the exact values of the quantities of physical interest. For
the special case of normal incidence this method produces numerical results which are in good
agreement with the results available in the literature obtained by other methods.

1. Introduction

WATER WAVE scattering problems involving fixed plane vertical barriers are be-
ing studied in the literature, assuming linear theory, over the last fifty years by
employing various mathematical techniques. Since a thin barrier models a break-
water which shelters a port from the rough sea, study of its effect on surface
water waves is of some physical importance. PORTER [1] considered the prob-
lem of water wave diffraction by a thin vertical wall with a submerged gap for
the case of normal incidence of the wave train, and used a complex variable
technique as well as an integral equation procedure based on Green’s integral
theorem to solve it in closed form. A number of researchers also studied the
narrow gap problem assuming the gap width to be very small compared to the
depth of submergence of its midpoint below the free surface. Tuck [2] used the
method of matched asymptotic expansion to obtain the transmission coefficient
approximately. PAckHaM and WiLLiams [3] used an integral equation formulation
based on a suitable use of Green’s integral theorem for uniform finite depth of
water, wherein the integral equation was solved approximately by exploiting the
concept of narrowness of the gap, and then the transmission coefficient was ob-
tained approximately. MANDAL [4] also considered the narrow gap problem for
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960 P. Das, S. BANERJEA AND B.N. ManpaL

deep water by an integral equation formulation based on Havelock’s expansion
of water wave potential and used the idea of PAckHAM and WiLLiaMS [3] to solve
it approximately, and also obtained the transmission coefficient approximately.

For oblique incidence of the wave train, the narrow gap problem was con-
sidered by Liu and Wu [5] who utilized Tuck's [2] idea of matched asymptotic
expansion to obtain the transmission coefficient apparently for low wave numbers,
since approximation of Helmholtz’s equation by Laplace equation for obtaining
the near-field solution is not valid for large values of the wave number. MANDAL
and Kunpu [6] used Havelock’s expansion of water wave potential satisfying
Helmbholtz’s equation to obtain an integral equation across the gap, which was
then solved by assuming the gap to be narrow and the transmission coefficient
was determined approximately.

ManDpAL and Dovar [7] recently used the idea of Evans and Morkris [8] to
obtain very accurate lower and upper bounds for the reflection and transmission
coefficients in oblique wave diffraction problems, involving four basic configura-
tions of a thin vertical barrier present in water of uniform finite depth.

In the present paper the problem of oblique water wave diffraction by a thin
vertical wall with a submerged gap (not necessarily narrow) is studied by utilizing
the idea of Evans and Morris [8]. The reflection and transmission coefficients
are obtained in terms of two integrals involving the unknown horizontal compo-
nent of velocity across the gap, and difference of velocity potential across the wall,
respectively. These unknown functions satisfy some integral equations which have
exact solutions for the case of normal incidence. Following Evans and MorRis [8],
these known exact solutions for normally incident waves are utilized as one-term
Galerkin approximations to the solutions of these two integral equations. The
reflection and transmission coefficients are identified with some inner products
involving the solutions of these integral equations. Exploiting the properties of
self-adjointness and positive semi-definiteness of the integral operators defin-
ing the integral equations, the one-term Galerkin approximations produce upper
and lower bounds for the reflection and transmission coeflicients for any angle
of incidence and any wave number. It is analytically verified that for the nor-
mal incidence case, the upper and lower bounds coincide. The bounds involve a
number of integrals which are evaluated numerically by standard techniques. The
numerical results reveal that the two bounds for any angle of incidence and any
wave number are very close, and as such they produce very good approximations
to the exact values of the reflection and transmission coeflicients. In our numeri-
cal scheme, if the angle of incidence is taken to be zero (for the case of normal
incidence of the wave train), the numerical values of the two bounds coincide
by more than four decimal places. This verifies the correctness of the numerical
scheme. Also, for the normal incidence case, the numerical results obtained by
the present method are in good agreement with the graphical results obtained by
PorTER [1] and Tuck [2].
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SCATTERING OF OBLIQUE WAVES 961

2. Formulation of the problem

We choose a rectangular Cartesian coordinate system in which the y-axis is
taken vertically downwards into the fluid, y = 0 is the undisturbed free surface.
A train of progressive surface waves represented by the velocity potential

Yo(z,y,2,1) = Re {exp(— Ny + ipx + ivz — iot)},

where ¢ = K cosa, v = Ksina, K = ¢%/g, and ¢ is the gravity and o is the
circular freequency, is assumed to be obliquely incident (from negative infinity)
on a fixed thin plane vertical wall at an angle « to the normal to the wall. The
wall occupies the position z = 0 and has a gap which is represented by z = 0,
y € 5,5 = (a,b). The geometry of the problem allows the z-dependence to be
eliminated by assuming the velocity potential to be of the form

Y(z,y,z,t) = Re{o(z,y) exp(ivz — iot)}
throughout. Then ¢(z, y) satisfies the boundary value problem described by

(2.1) (VZ-v¥p =0 for y >0,
(2.2) Ko+¢, =0 on y=0,
(2.3) b =0, y =0, ye S =(0,0x)-S5,
(2.4) P29 ¢ is bounded as r — 0,
where 7 is the distance from a submerged end of the wall,
(2.5) Vo —0 as y— o,
and
Te Nyt s & — o0,

where R and 7" are the (complex) reflection and transmission coefficients, respect-
ively, to be obtained.

3. Method of solution

By Havelock’s expansion of water wave potential, a suitable representation for
¢(x, y) satisfying (2.1), (2.2), (2.5) and (2.6) is given by

T e Kutive 4 / AL, e+ g for 2 >0,
0

(G.1)  éx,y) = . y F .
E—I\y+z,u.r 4 RC—I\;;—ULJ‘ +/B(k)[,(k,y)€(w+k2)”zr (”C
0

for = <0,
with L(k,y) = kcosky — I sin ky.
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962 P. Das, S. BANERJEA AND B.N. MANDAL

Let us define

(3.2) f) =¢:0.y), 0<y<oc,

and

(3.3) 9() = ¢(+0,y) - ¢(-0,y), 0<y< o,
then

(3.9) fw)=0 for yeb,

and

(3.5) g(y)=0 for yes.

The constants 7', R and the functions A(k), B(k) are related to f(y) and ¢(y) by

(3.6) T=1-R-= —21“[‘ /f(g;)(_""y dy,
S
3.7) 1K) = —B(k) = — : /f( L(k, y)d
' A T TR R+ 20+ K7 DLk y)dy,
(3.8) R = —1\'/;/(_11)(-_1"-" dy,
g
1
(9 AW = - e [ YWLE .

s

Using (2.3) in (3.1) along with (3.9) we obtain an integral equation for g(y) in
the form

(3.10) /g(u).-\f(y. a)du= wip(l— )XY  for ye3,

%))

where

T (k2 + v2)1/2 .
G.11) Mg, )= ET:tOOf T L0 ) LGk, wye™ k.

so that M (y, u) = M (u,y) and the exponential term is being introduced to ensure
the convergence of the integral.
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SCATTERING OF OBLIQUE WAVES 963

Again, use of (3.5) in (3.1) along with (3.7) produces an integral equation
for f(v)

(3.12) /f(u)‘\'(y.n)du =-ZRe M for yes,
5
where
T Lk, y)L(k, )
r B, S ’
(3.13) N(y,u) 0/(,,2 + RO + K2
so that N(y,u) = N(u,y).
If we let
2
(3.14) F(y) = —N—Rf(!/) for yes,
i N 1 i rad
(3.15) G(y) = il = R)g(y) for ye b,
then G/(y) and F'(y) satisfy the integral equations
(3.16) f(:'('u)M(y. u)du = e~ MY for yeS,
s
and
(3.17) / F)N(y,u)du = e~V for yeS.

It may be noted that the functions ((u) and F'(u) in (3.16) and (3.17), respectively,
are real.
The relations (3.6) and (3.8) can be written as

(3.18) f Fly)e-Kvdy = C,
S

and
(3.19) /G(r;)( Ny gy = ——-—!-—

’ J st : T2h2C

S
where
. 1-R

(3.20) £= iTRseca

It is very important to note that €' is real.
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964 P. Das, S. BANERJEA AND DB.N. MaANDAL

4. Upper and lower bounds for ('

As in Evans and Morris [8], we define an inner product

(4.1) (f,9)= /f(y).r/(.u)rly-

Then obviously (f,g) = (g, f) and (f,g + L) = (f,g) + (f,h). Also, let us define
the operator

(4.2) (M) = (M(y.w). [(u).
Since

M(y,u) = M(u,y) and  (M(/1 + f2))y) = (Mf1)({Y) + (M )W),

we find
(Mf.q) = (f. Myg)

and
(Mf, fy>0 for all  f(y).

Following Evans and Morgis [8], for the solution of (3.16) we choose a one-term
approximation as

(4.3) Gy) = arg1(y)-

where «a; is a constant and ¢;(y) is to be chosen suitably. Then

(1(y). e~ Y)
(01 (w), Mg )(w))

(4.4) a; =

Hence from (3.19)

1

=y eTel (G(y), e "V)

> (arg1(y), e ™Y),

by utilizing the properties of self-adjointness and positive semi-definiteness of the
operator (cf. Evans and MoRrris [8]).
Thus we get an upper bound for ' as

(4.5) C < Ay,
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where
. 2

oc (1'/2 4 A_Z)I/Z(,—sk . '

po g Ras s jﬁmeUmyw dh

(4.6) Ag= — S

i /gl(g)r_l"-” dy

S

2

Again, let us define another inner product
(4.7) (9} = [ 1)y

and another operator

(4.8) NV N) = {N(y. u), [(0)}.

Then it is obvious that the inner product {/, ¢} is symmetric, linear, and also the
operator A is linear, self-adjoint and positive semi-definite.
Choosing a one-term approximation to F'(y) as

4.9) F(y) = by fi(y),
where by is a constant and fi(y) is to be chosen suitably, we find that
b= AW

{/1i(y), NV 1))}

Thus, by using (3.18) and the same argument as before, we find a lower bound
for (" as

(4.10)

(.11 C > By,

where

(4.12) By = 5

2
L/ﬁwy”wd4
1

./(1/2 + L'Z)I/Z(!‘.Z + I\‘Z) /fl(.U)L(k~y)‘[y dk
’ S

Hence for the unknown real constant ', which involves R, we find

(4.13) By < C < Ay,
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966 P. Das, S. BANERJEA AND B.N. MANDAL

where Ay and By are given by (4.6) and (4.12), respectively. Thus the upper and
lower bounds for |R| and |7'| are obtained as

(4.14) Ri<|R|< Ry, T<|TILTy,
where

Cosa COS v
415 Ry = _ B = 1
(415) ' (cos?a + T2 A)1/2 7 (costa + w2 B2)1/2
@16) Ty = 7By T, = 7 A

(cos?a + sz‘%)”z ‘ (cos?a + 7r21)’5)1/2 )

5. Functions g;(y) and f(y)

The functions ¢1(y) and fi(y) are chosen as the explicit solutions of the ap-
propriate integral equations associated with the problem of submerged gap in
deep water for the case of normal incidence of the wave train. These are given
by (cf. PORTER [1], MANDAL and Dotat [7]).

(5.1) g1i(y) = An(y) (M #0)
and

(5.2) hwy) = BN () (B #0),
where

Yy

) te Kt 2
_C—f\y/ [(, - mli(a b, I)] dt for 0<y<a,

J S1(t)
(53) x= y
—Ky teh b — EH(a b f)} dt for y>0b
‘ S3(1) T !
b
and
K tel 2
(5.4) Ay)=e y_/ 50 6 — —I[(a b, t)| dt for a<y<b
with
b ;
Kt ela
2 2()11((1 b.t)dt + - i
§ = )
[CI\’
52(’)
H(a,b,t) =/ '210) ds
g2 —
0

http://rcin.org.pl



SCATTERING OF OBLIQUE WAVES 967

and
si(t) = {( - &e? - A},
sty = {2 - - D},
S50 = { - a2 - )},

Substituting these in the expressions (4.6) and (4.12), Ay and By are obtained as

. 2
(V;2++k;3;/2 [_smkka. " y;:;)(syl.) y { H (@b y)} (ly] "
(5.5) Ag=2 = o
—7
4
and
1,12
(5.6) By= 4 —

b
sin ka ycosky 2 }

66— =H(a,b,y)pdy| dk

/(I/2+L2)1/2(k2+[\ 2)[ ke + S2(y) { ﬂ_H(“ b,y)pdy| dk

where
2
I = 6{a(N) - a3(N)} - 7_,{”1([\" i) — a3(K, )},
—Ka
F = bog(KY = SR, HY + 5
™
with )
wy= [E 2 ' =1,2,3
a;(K) = - dy, 1=1,2,
Si(y)
I,

and

% _ y][(([,b_l y)c—]\-y ' L
o (W ) = / S:(s) dy, i=1,23,

where the curve [ is the interval (—a,a), 13 is (a,b) and I3 is (b, ).
For the case of normal incidence, the numerator of the expression (5.5) and
the denominator of the expression (5.6) are identical and equal to

2

00 b
k sin ka ycosky { 2 }
: = - —H(a ( dl:.
(5.7) O] 21 L2 { 3 + 50 ) . H(a,b,y)rdy| «
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968 P. Das, S. BANERJEA AND B.N. MANDAL

Integrating
tkz

{(:2 - )22 - 1)}

in the complex z-plane along the contour consisting of the arc of the quarter
circle of large radius and centre at the origin, the positive imaginary axis, and
a line along the positive real axis cut from 0 to @ and b to oo, the line running
slightly above the cuts, we get

(k> 0)

a . 00 ) b
rsinkz i z sinkx / T coskzr
- dx - dx = -
S1(x) / S3(x) Sa(x)

a

dz (k> 0).

Again, integrating

Jthz
zZ€
k>0, O<v<a
oA :
along the same contour together with an indentation above the pole at = = v

(0 < v < a) on the positive real axis, we obtain

/ rsinkz e+ / rsinker J T cos kv
a.r aQr = =
(2 = 2%)5)(x) (12 — 22)53(x) 2 51(v)

acosha
dr k>0, 0<ov<a).
/(1" o )H ( ) (

Using the above two identities suitably in the expression (5.7), interchanging the
order of integration and utilizing the result (GRADSTEYN and RyzHIK [9]), pp. 415)
0 : Zr""“ cosh 'y, 0<y<u,
] kcos kysin ku m ;
——dk =
2+ K LT " SR
K5+ R —E(_"*’ sinh A u. 0<u<y,
we obtain after some calculations that the expression (5.7) is equal to —(7/4)./1.
Hence for o = 0, we have

Ao = By = '—;'—]

thereby giving an exact value of ' for a = 0, so that in this case # = il /(J +i]),
which was earlier obtained by PORTER [1].
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SCATTERING OF OBLIQUE WAVES 969

6. Numerical results

The expressions (5.5) and (5.6) of Ay and B, respectively, and hence the
lower and upper bounds for |®| and |7'| are evaluated numerically for a number
of values of the non-dimensional parameters A'b, «/b and the angle of incidence
«. The various single integrals appearing in these expressions are evaluated by
using the Gauss quadrature formula appropriately. For the repeated integrals,
the inner integrals are evaluated by using the Gauss quadrature formula while
the outer integrals over (0, ) are split into those over (0,1) and (1,oc). The
integrals over (0, 1) are computed by using the Gauss quadrature formula. The
integrals over (1, o0) are evaluated by Simpson’s rule over (1, X') (X > 1), where
X increases till the values of the integrals correct to some desired decimal places
are obtained. A representative set of values of the lower and upper bounds R,
and R, of |R| for various values of the parameters is displayed in Tables 1 to
3. Table 1 gives the bounds of |R| for various values of the wave number A'b,
the angle of incidence o and for a/b = 0.05. Tables 2 and 3 give the same for
a/b = 0.1 and 0.5, respectively.

Table 1. Lower and upper bounds for the reflection coefficient || for o /b = 0.05.

a=10° a = 30° o = 60° a = 85°

Kb Ry = R, i, R R, R, Ry 1¢8)

0.05 0.7065 0.6256 0.6376 0.3899 0.4062 0.0712 0.0783
0.4 0.3250 0.2412 0.2580 0.1181 0.1376 0.0194 0.0233
1.2 0.0787 0.0492 0.0565 0.0215 0.0282 0.0034 0.0047
2.0 0.0316 0.0214 0.0245 0.0100 0.0132 0.0016 0.0023
3.0 0.0382 0.0320 0.0326 0.0178 0.0186 0.0030 0.0032
4.0 0.0657 0.0564 0.0565 0.0321 0.0323 0.0056 0.0056

Table 2. Lower and upper bounds for the reflection coefficient | 2| for a /b = 0.1.

a=0° a = 30° o = 60° o = 85°
Kb Ry =R, Iie) Ry Ry R> R, R

0.05 0.7072 0.6264 | 0.6384 | 0.3907 [ 0.4070 | 0.0714 | 0.0785
0.4 0.3284 0.2444 | 0.2612 | 0.1200 | 0.1397 | 0.0197 | 0.0237
1.2 0.0963 0.0640 | 0.0722 | 0.0292 | 0.0374 | 0.0047 | 0.0063
2.0 0.0806 0.0636 | 0.0671 | 0.0335 | 0.0377 | 0.0056 | 0.0065
3.0 0.1545 0.1324 | 0.1327 | 0.0751 | 0.0756 | 0.0130 | 0.0131
4.0 0.2802 0.2411 | 0.2414 | 0.1378 | 0.1386 | 0.0239 | 0.0241

It is observed from the Tables 1-3 that in most cases the bounds are very close
to each other so that their mean value provides a very good approximation to
the actual value of | Z|. Tt may be noticed that the difference between the bounds
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970 P. Das, S. BANERJIEA AND B.N. MANDAL

Table 3. Lower and upper bounds for the reflection coefficient |R| for «/b = 0.5.

a=0° o = 30° a = 60° a = 85°
Kb Ri=R, R R, Ry R, Ry R,
0.05 0.7251 0.6473 | 0.6586 | 0.4106 | 0.4266 | 0.0758 | 0.0831
04 0.4343 03456 | 0.3624 | 0.1824 | 0.2060 | 0.0308 | 0.0059
1.2 0.6502 0.5870 | 0.5891 | 03752 | 0.3793 | 0.0693 | 0.0705
2.0 0.9466 0.9230 | 0.9245 | 0.7861 | 0.7953 | 0.2094 | 0.2175
3.0 0.9960 0.9931 | 0.9936 | 09725 | 0.9771 | 0.5661 | 0.6106
4.0 0.9996 0.9993 | 0.9993 | 0.9967 | 0.9975 | 0.8949 | 0.9206

increases with the increase of the angle of incidence, but not significantly. For
fixed Kb and a/b, from each table it is further observed that | R| decreases with
the increase of the angle of incidence. For fixed a/b and a, |R| first decreases
with the increase of A'b until a minimum is reached, and then it increases to unity
asymptotically for further increase in A'b. This behaviour of | R] is expected phys-
ically since for small /'b, the wavelength of the incident field is large compared
to the width of the gap, so that there occurs a small energy transmission through
the gap giving rise to large reflection coefficient. However as A'b increases, the
wavelength of the incident field and the width of the gap become comparable,
resulting in an increase of energy transmission through the gap. As A'b further in-
creases, wavelength of the incident field further decreases and the waves are then
confined within a thin layer below the free surface and as such, the wave energy is
almost totally reflected by the part of the wall above the gap. The presence of the
gap is hardly felt by these short waves and in the limit || — 1 as A'b — oc. Thus
|R| has a minimum for some moderate value of A'b. For the normal incidence
case, qualitatively similar behaviour of || is noticed in the figure presented by
PoRrTER [1]. It may be noted that for the complementary problem of submerged
plate, the reflection coefficient exhibits the opposite behaviour (cf. Evans [10]).

The results obtained from our numerical scheme for normal incidence have
been compared with PORTER's [1] results. PORTER [1] used the non-dimensional
parameters p and & which are given here by

_ 2(b—a) b= N(a+0)
= %a o 2 ’

For 1 = 0.1 and 1.5 with & = 0.5, 2.0 we obtain from our results the following
numerical values of || (taken as the mean of the two bounds).

1
k\ 01 1.5

0.5 0.8080 | 0.1609
2.0 0.9995 | 0.4368
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SCATTERING OF OBLIQUE WAVES 971

These coincide with the results estimated from the graphical result of PORTER [1].

Again, for a narrow gap, the results obtained from the present numerical
scheme for normal incidence are also compared with Tuck's [2] numerical re-
sults obtained by utilizing the method of matched asymptotic expansion. The
dimensionless parameters used in Tuck’s [2] analysis are 2¢/h and h/A (where
2¢ is the width of the gap, & is the depth of the mid-point of the gap and A is the
wavelength) which are given here by

2¢ _ 2(b—a) and ho_ K(a+b) .

h b+a A 4r

For 2¢/h = 0.05, 0.15, 0.4 and h/A = 0.05 we obtain here |T|*> =1 — |R|? as
0.3972, 0.5459 and 0.7202, respectively.

For 2¢/h = 0.4 and h/\ = 0.1, the corresponding value of |T'|? as obtained
here is 0.5982. As before, for || we have taken the mean of its two bounds.
These values of |T'|? coincide with the results estimated from the graph of |T'|2
against i/ given by Tuck [2].
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Some existence result for a Stokes flow
between two arbitrarily closed curves

M. KOHR (CLUJ - NAPOCA)

THE PROBLEM of determining the slow viscous flow of a fluid between two arbitrarily closed curves
is formulated as a system of Fredholm integral equations of the second kind, addying a pair of
singularitics located outside of the flow region. We show that the integral equations proposed here
have a unique continuous solution, when the two closed curves are Lyapunov curves and the fluid
velocity is continuous on these curves.

1. Mathematical formulation

WE coNsIDER the creeping flow of an incompressible viscous fluid between two
arbitrary closed Lyapunov curves (i.e. they have a continuously varying normal
vector) denoted by C'! and (2, and supposed to be on the upper half plane
R% = {(z1,22) € R* : 25 > 0}. Also, we suppose that the Reynolds number
of the flow is very small. Under this condition, the governing equations for the
velocity u(u;, u3) and pressure p can be reduced to the Stokes equations:

(1) Au(r) = Vp(z), r €,
Veu(z) = 0, x € R,

where the symbols ¥V and A mean the gradient operator and the Laplace operator,
respectively. Here z(z1,2,) € 2 and 2 is the two-dimensional bounded domain
with the boundaries C'! and (2, respectively, such that C'! is located inside of the
domain bounded by C?.

The fluid velocity u must satisfy the following boundary conditions on the
curves C'! and %

u(x) = fi(x). for » € (2,

(k23 u(z) = (). for ze€n,

where the boundary velocities f; and f, are supposed to be smooth vector func-
tions.
Using the continuity equation (1.1),, we deduce the following relation:

/ wij(a)n;(r)ds, =0,

cluc?
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hence, a necessary condition for our problem to have a solution in (2 is that

(1.3) /fl_i(.l')n‘,'(a.')d.sf = /fz_,-(.r)nj(.r)(lsr.
ct c?

Here n(ny, n;) is the unit outward normal vector at points of C'! and (2.
By applying the Green identity for a smooth and solenoidal vector v(v;, 1)
and a scalar function ¢, we obtain:

. (‘) ()llJI ()IL,' OUj al},‘ .
(1.4) /(.-.\ll - 8.7:]-) ujde + = 2 / (017 ()1“,‘) (()—.1'1 + a.r_j) dzx

04
= ]‘T,J(v)u,--nJ ds — /T,-J(v)u,nj ds,
oy c?

where

(1.5) T,(v) = —qbi, + (— § 3 i,je{1,2},

are the components of the stress tensor, corresponding to the flow (v. ¢).
The formula (1.4) applied to u = v and p = ¢, gives the following equality:

(1 6) j (()Hq ()H,)Z [ /,lw (u) [ /1 ( ) [
: = | dx = G(w)uin; ds — g(wuin; ds.
2 dz; Oz F4 2

If we suppose that our problem has two solutions u; and uy, then the vector
u = u; — u, satisfies homogeneous boundary conditions on C'' and 2, and the
formula (1.6) gives:

() U () w;

@) =0, ze@ ije{l2).

(1.7)
This system has three linearly independent solutions:

(1.8) ul(z) = (1,0), w@)=(0.1). ()= (22.-2), z€1

Hence, we conclude that the fluid motion compatible with homogeneous
boundary conditions on C'! and (' is given by the null solution u = 0.

In the following we consider the components of stress tensor /T corresponding
to the Stokes equations (see [1] and [8]):

r, g
(19)1 rﬂ-(r y) = _([J(r J)hzl. + ]( ) ()IIA] (.’I.‘.,y),
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where ¢;; and ¢; are components of Green tensor (i and pressure vector q,
respzctively. & and q satisfy the following equations and conditions:

-
Apgis(z,y) - ‘JZ—J(I y) = —4x6,6(c —y),  for x>0,
13

7]
(1.92_5 Equ(.x, y) = 0, for x>0,
qij ('r! !/) = 0» for Ty = 0’
(Iij(l‘,y) — 0, gi(z,y) — 0, as |1| - o,

where 4 is Dirac’s distribution.
From [8] it results that the Green tensor (i can be written as:

(1.9% Gla,y) = GCT(@=y)-G @y )+ 253G (2 —y'™) 202G (e - y™),

where '™ = (y;,—1yz) is the image of the pole y with respect to the boundary
v, =0, the Green tensor (77 has the components (see [8]):

(1.9) 57 (r) = = nfel; + T
: : X

The matrices which correspond to the tensors G and G;°" are given by
D _ .'l"J'.'
o) = = (- 25)

by — bpr
rlz_)l)( r) = "2'1’:'1 (') 2 z| 1.|2’ :

(1.9%x-9

where the plus sign applies for j = 1, in the Or; direction, and the minus sign
for 7 = 2, and in the Ox; direction.

The pressure tensor P, with components /1, is associated with the tensor /1.
Precisely, we have

dq;
(1.10), Mij(r,y) = — Pz, y)b;; + ); (x, )+ (1 v),
where
(1.10), (y.x) =0, for z#y, z€ Ri
and
dqi 2
(1.10)3 E y,x) =0, r e RS, T #Fy.
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The pressure vector q can be written as (see [8]):

(1.10)4 a(*.9) = ¢°T(z - 9) - T (@ - y™) - 200¢°" (= - ™),
where

g 2.171' J 2
(1.10)s ¢?T(z) = oE’ q®P(x) = —W(Z.rlzz, z? — 2d).

With the above notations, we consider the following relations:

Kij(z,y) = Tji(y, 2)ne(y),

1.11
( ) Ki(z,y) = IT;; (@, y)n;(v),

where y(y1,12) € C1UC2,
We determine the solution (u, p) of the Stokes problem (1.1), (1.2) in terms
of the following double-layer potentials:

uj(z) = f Ko, p)di)dsg, =R, j€{1,2),

cluc?

p(r) = / Nz, y)o;(y) ds, , r € 1.

cluc?

(1.12)

From the boundary conditions (1.2) we obtain a Fredholm integral system of
the second kind for the unknown density ¢(¢;, ¢3):

—2m¢i(x) + / Kz, y)o(y)ds, = fi;(x), z €,
ctuc?

2r¢j(x) + / Kj(r.p)oi(y)ds, = fr;(x).  x€C?

cluc?

(1.13)

We used here the following jump relations of the double layer potentials:

(113) i j SilpIE sl e, = £3rdi(s) -+ / $: (WK (z, y) dsy
C c

where (' is a closed Lyapunov curve, the sign + corresponds to the internal side
of C, and the sign — to the external side.

The above integrals, which appear in (1.13), are considered as the principal
values in the Cauchy means.

The system (1.13) has a solution if and only if the non-homogeneous term

f:CluC? — R% f(z) = fi(x), for 2 € C', i € {1,2}, is orthogonal to the
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solutions of the corresponding adjoint homogeneous system. We used here the
second Fredholm alternative for Fredholm’s type integral equations (see [3, 4]).
Let us consider the homogeneous system of (1.13):

—2r¢(x) + f Kz, 9)ed(y)ds, =0, z€Cl,
cluc?

27r¢?(.1‘) + / 1\'11(:1',;?/)96?(};) ds, = 0, z €O
Ccluc?

(1.14)

Also, the homogeneous adjoint system of (1.13) has the form:

2@+ [ Ky@aon@)ds, =0, aec,
cluc?

(1.15)
2rnti{z) + / Ky (y.2)n(y)ds, = 0, z € C2
cluc?

From the first Fredholm’s alternative (see [3, 4]) it results that the vector
solutions of the system (1.14) and (1.15), respectively, form two vector spaces of
same finite dimension d.

If we use the following properties of the stress tensor:

07‘,‘_,‘ k
dx;
J

gor [Eim e Tnge(e. )

0Ty ,
(z,y) = —()I—l— r,y) = —dnby;6(x — y),

(1.16)

Il

—4reyirib(x — y),

where ¢ is the Dirac distribution, and using the divergence theorem in a bounded
domain D ¢ R?, having the boundary (', we obtain the next properties:

iR = e, = 2F6ij » for ze€C,
J o) ds, = 4 DI
(1.17) '

jfijk?/kafm(%-T)"m(y) ds, =

{ 271'&'1",'(:2?1 . for z € C,
C

0, for z¢ DuUC,

where the components 773, are given by (1.9);, the unit normal vector n is directed
inside of D, and the symbol ¢;;, means:

_ 1, for an old permutation of numbers 1, 2, 3,
LA for an eden permutation of numbers 1, 2, 3.
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By applying the properties (1.13), (1.17) we deduce that the functions u’,
1 € {1,2,3}, given by (1.8), are solutions of the following equations:

(1.18) —21r1¢;1(.1-)+/1\'j,(.q-.y)u;‘(g)(/.sy =0, zeC!, ie{1,2,3}, je{1,2}
cl
and
(1.19) /]\'jg(:lr,y)lt;(y) ds, =0, z€C? ie{l,23).
cl

Let the vector functions ¢ : €' U2 — R?, i € {1,2,3}, be given by
0, \ _ u'(z), x € CH,
¢z(‘l’) {0‘ T 6 Cyz

From (1.18) and (1.19), we deduce that these functions are three linearly
independent solutions of homogeneous system (1.14). Hence, we conclude that
d > 3. In the next we shall prove that d = 3. For this aim we consider the
single-layer potentials

(1.20) V@ = [ aom@ds, ie{12)
cluc?
with their corresponding pressure
(1.20) Plz) = f q;(r, )T (y) ds,
cluc?

where T is a possible solution of the adjoint system (1.15), ¢;; and ¢; are given
by (1.9)—9 and (1.10)4 5, respectively.

From (1.9),3 it results that the potentials (1.20), (1.20") determine a Stokes
flow in £2.

Since the potentials (1.20) and (1.20’) are continuous on C'! and 2, it follows
that (1.20) can be considered as a continuous velocity field at every point z € R2.
On the other hand, the vector tension, of (1.20) and (1.20’), has a jump in points
of C! and C2. Tt is easily seen that the limiting value of the vector tension, when
z € 22 = R3\(2' UT) tends to a point 2 € C'2, is given by the left-hand side of
Eqgs. (1.15),. The limiting value of the vector tension, when 2’ € 2! (the domain
bounded by the curve C'!) tends to a point = € C'!, is given by the left-hand side
of Egs. (1.15);.

We can see that, for = € 2!, the potentials (1.20) and (1.20) represent a
Stokes flow with zero vector tension in points of (', As in (1.6), we deduce that:

(121)  V2)=4i(x), for ze R, je{1.2}, ie{1,2,3)},

where the functions u', i € {1,2,3} are given in (1.8) (or a linear combination of
these functions).
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In the same way, the potentials (1.20) and (1.20"), for all z € 22, represent
a Stokes flow in 22 with zero vector tension on C2, with zero velocity on the
boundary z; = 0, and the asymptotic form at infinity:

V(@) =0(1), as |z| — .

In the above statement we consider the boundary z; = 0 as a rigid wall,
bounding a Stokes flow in 22,
By using the Green’s formula in 22, it results that

(1.22) Vi@z)=0, forall ze 2%

The previous arguments show that the potentials (1.20), (1.20") represent a
Stokes flow in 2 with the following boundary conditions on C'! and C'?%:

o AT N ‘ 1 : s
Vi(z) = uj(x), reC’, je{l,2}, ie{l,2,3},

(1.23) . L
Vi(z) = 0, reC? je{1,2).

The above conditions determine the following Fredholm integral system of
the first kind for the unknown function T:

/q,-j(rqy)rj-(y):zsy F@), reCl, ie{l1,2}, ke{1,2,3},

(1.24) V¢

I
<

qij(x, y)i(y) dsy = zeC? ie{1,2).

cluc?

Using the Fredholm’s alternative (see [3, 4]), we prove that the system (1.24)
has a unique solution, for each k € {1,2,3}. In fact we show that the correspond-
ing homogeneous system (1.24) has only a trivial solution.

For this aim, let us consider the following system:

qu(:l',y)'r}()(y) (l""y = 01 € e (‘]5 i e {15 2}-\

(1.25) Ehge
gij(z, P ds, =0,  zeC? ie{1,2}.
ctuc?

If we consider the single-layer potentials (1.20) and (1.20") with density given
by any possible continuous solution T° of (1.25), then we conclude that the Stokes
velocity VO = VO(70) vanishes identically on ("' and (2. From the uniqueness
result of the solution corresponding to the boundary-value problem (1.1), (1.2),
we conclude that VO = VO(7%) must be equal to zero in 2.

On the other hand, from the continuity property of single-layer potentials
I"J-O = VJO(TO), J € {1.2}, in each point of upper halfplane Rﬁ,, it results that

http://rcin.org.pl
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VY = V(T)(z) = 0, for all z € 2% Therefore, T;;(V'(7%)(x)) = 0, for all
z € 22, and in particular we obtain

(126)  lim T (VO (702" Y)n; (z") = =2770(z) - j Kji(y,2)r(y) ds, = 0.
1:’;172 cluc?

Also, we have

(1.27) 1’_I‘i1nt;lc72 T,‘j(‘IO(TO)(.I,‘I))HJ'(.‘I") = ZTI'TP(.‘I') = / ]{ﬁ(y.m)rﬁ(g) ds, = 0.
1’en< cluc?

From (1.26) and (1.27) we obtain that T%(z) = 0, for 2 € C%. Analogously,
we can prove that T0(z) = 0, for z € C'. Hence, the only solution of the
homogeneous system (1.25) is the trivial solution, and also the system (1.24)
(with k fixed) has a unique continuous solution. Because the system (1.24) has
three linearly independent non-homogeneous terms u', u?, u?, it is easily shown
that the corresponding solutions, denoted by 7!, T2, 73, are linearly independent.
For this aim, let us consider the real numbers v, 72, ¥3, such that

3
Y () =0, zeCluC?
=1

Using (1.24) and the above equality, we obtain:

3 3
0= / {(][J(.J‘.y)Z"“f:(fj)} ds, = Z Yiup(z), zeCl, le{1,2].
1=1

cluc? g

By applying the linearly independent property of the functions u', u?, u?, we
deduce that 9; = 9, = 73 = 0, hence the functions T!, T2, 73, are linearly
independent.

On the other hand, each solution T of the adjoint system (1.15) is also a
solution of system (1.24). Hence, the system (1.15) has at most three linearly
independent solutions, which shows that ¢ < 3. Now we conclude that d = 3 and
that the system (1.15) has the same solutions as the system (1.24).

By following the second Fredholm alternative (see [3, 4]), it results that a
necessary and sufficient condition for the solvability of system (1.13), can be
written as:

(1.28) / fri@)ri@) ds, + / fy(@)ri@)ds, =0, i€ {1,2,3),
ct 2

1 3

where T!, T2, 73, are linearly independent solutions of system (1.24).
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Finally, we can formulate the following result:

THEOREM. The Stokes problem (1.1), (1.2) with the boundary condition (1.3),
has a unique solution (u, p) on the bounded domain 2., if and only if the functions
f; and fy satisfy the conditions (1.28).

The above condition (1.28) is restrictive. Then we consider a modified form
for the flow (u, p).

2. Another form of solution

Using the singularity method, we determine the flow (u,p) as a sum of a
double-layer potential plus some singularities located in a point x. from the
domain 02

w;(z) = f Kz, p)oily) day + cigz(z, )

cluc? By
+ V‘E,,,'—J';‘,.‘,., 7 1,2 5
2.1 Wietmigy, (OoFeh € L2}
p(z) = / K;i(e,y)o;(y)ds, + ovgi(a, x.)
cluc?

+e lnudq (z,z)wy, z € 0.

771

We choose the constants o, w3 € R in the following manner:

1]

a ol () ds,.  je{1.2},
(2.2) Gluc
W3 = a3 / Gy} (y) dsy.,

cluc?

where the functions u', u?, u® are given in (1.8).
By applying the boundary conditions (1.2), we obtain the following Fredholm
integral system of second kind, with the unknown function ¢:

- 2n¢;(z) + / Kji(x, y)o(y) ds, + oqi(x, x;)
cluc?

9q.; '
+u'151,,“‘(,)yi(.r) = flj(-7')~ T € C—l,

(2.3) .
2rgj(z) + ] K, y)ou(y) dsy + oigq;i(a, z.)

Ccluc?

Ll (2 2wy = foi@),  w € CP.

”l
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According to Fredholm’s alternative (see [3, 4]), in order to prove the exist-
ence and uniqueness result of solution of system (2.3), it is sufficient to show that
the following homogeneous system (2.47) has only the trivial solution:

- 27r¢9(1:) + / Kule, y)q')?(y) ds, + (j?([j,‘(l‘,.‘lfc)

cluc?
+“’?Eimi% =0, azeC
OYm
(2.4) .
2 (a) + ] K (2, 9)¢0(y) ds, + o%g;i(z, z)
cluc?
+uwle %('L‘ z.)=0 z € C?
ay”l - ’
where
(2.5) 2= [ Hededs,  e{1.23)

cluc?

and wg = 0(3’.

From (1.13') and (2.4) it results that the vectors v! and v, given by:

L’J] (z) = / K;ilz, y)cp?(y)(lxy .

cluc?

(2.6) 5
g, y
vi(z) = {r.?qj,(.l-..rp) + U‘?s(,”,#(.r.n‘f)}. je{1,2}

can be considered as Stokes velocity flows in 2, which are equal on C'! and
(2. From the uniqueness result of solution corresponding to the Stokes problem
(1.1), (1.2) we deduce that v! = v? in 2. Tt is easy to show that v! gives zero total
force on C'! or C'? (when the tension vector is considered in points of C'! and
C? as limiting values), and v? gives a non-zero total force on C'! or (%, equal to
+4ral, where a? = (!, oY). Hence, we obtain

2.7) n? = ng = [

On the other hand, v! yields zero total torque on C'! or (2, and v* yields a
non-zero torque on C'' or €2, Precisely, this torque is equal to £87aflk, where
k is the unit vector of the Oz3 axis, orthogonal to the Ox,z, plane. We conclude
that

wo
I
wo
1l
o

(2.8) a
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From (2.7) and (2.8) it results that the system (2.4) is reduced to the system
(1.14), which has three linearly independent solutions:

0 u'(z), z € CH, .
(z) = 1,23}
HO {O Cecr  fe(n23)
Then, any solution of system (2.4) can be written as follows:
3
(2.9) $°(2) =Y Bidlz), zeC'uc?

=1

where (3, 32, 33 are some real constants.
Using (2.7), (2.8) and (2.9) we obtain the following linear algebraic system
with unknows /3,, 7 € {1,2,3}:

3 .
(2.10) > 5 / uj(y)ul(y)ds, =0,  je{1,2,3}.
1=1 -

1

Using the form of functions u', i € {1,2,3} we infer that the corresponding
determinant of system (2.10) is non-zero. Hence, 3, = [, = 3 = 0, which
shows that the only solution of system (2.4) is the null solution. It results that
the Fredholm integral system (2.3) has a unique continuous solution. With this
argument we have proved the existence and uniqueness of solution corresponding
to the Stokes problem (1.1)—-(1.2).

REMARK. An analogous problem for the creeping flow of an incompress-
ible viscous fluid between two arbitrary closed surfaces, was studied recently by
H. Power and G. MIrRANDA (see [7]). Using the theory of single layer potentials,
T.M. FiscHer, G.C. Hsiao, W.L. WENDLAND studied the slow viscous flows past
obstacles in a half-plane (see [2]). Using the theory of double layer potentials, H.
Power and G. MIRANDA solved the problem of a three-dimensional Stokes flow
past a rigid obstacle (see [5]).

The same method as that used in [5], was applied by H. Power to solve the
problem of a Stokes flow past » bodies (n > 1) of arbitrary shapes (see [6]). A
complete double-layer method was given by N.P. THieN, D. TuLLock and S. Kim
in [9], to solve the problem of a Stokes flow past obstacles in a half-space.
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Thermoelastic materials with heat flux evolution equation

GH.GR. CIOBANU (1ASD)

THE RESULTS obtained in this paper refer to the class of materials for which specific free energy 1, the
specific entropy 1, and the first Piola-Kirchhoff stress tensor S are, respectively, determined through
the constitutive functionals 3, 7, and S which are defined in their common domain consisting of
quadruples (F, 0, G, Q), called states of the material, and where F is the deformation gradient, 6 is
the absolute temperaiure, G is the material gradient of the temperature, and Q is the referential heat
flux. The heat flux Q behaves as a “hidden variable” or an “internal variable” [1] and its evolution in

time is described by a differential equation Q = H(F, 6, G; Q), where H is a constitutive functional
of the material. Such materials will be called thermoelastic materialy with heat flux evolution equation.
To a certain extent, this class of materials may be considered as a limit case of thermomechanical
materials with internal state variables examined by CoLEMAN and GURTIN [1]. It is for this reason
that this fundamental work of modern continuum thermodynamics inspired much of the results in
this paper. On the other hand, the above heat flux evolution equation is generalizing Cattaneo’s
heat conduction equation [2] for isotropic materials. So this theory is convenient for predicting
thermal waves propagating at finite speed.

Introduction

THE BASIC FUNCTIONAL and conceptual underpinnings of the classical continuum
thermodynamics are briefly presented in Sec. 1.

The axiomatic definition of thermoelastic materials with heat flux evolution
equation and their constitutive equations are given in Sec. 2.

The general form of constitutive functionals ¥, 7, and S in the assumption
that the heat evolution functional H is linear in G and Q, i.e. in the Cattaneo’s
case, is presented in Sec. 3.

The notions of equilibrium state (E.S.), isothermal E.S. and its domain of at-
traction for a given material point are introduced in Sec. 4. We point out that our
definition of E.S. includes the usual one as a special case, but it is not confined
to it. A state (Ao, Gg; Qo), No = (Fy.6p) is an E.S. if

G(] g Qn = 0, H()\O- G(); Q()) = 0.
The strictly E.S., i.e. a state (g, 0; Qg) which satisfies the condition
H(X\(.0;Qp) = 0,

coincides with what is usually understood by an E.S. It is showed that the free
energy function has a local minimum at an asymptotically stable isothermal E.S.
and that if a strictly isothermal E.S. is a strict local minimum for the free energy
function then this E.S. is Lyapunov stable. Results regarding asymptotic and Lya-
punov stability of a strict isothermal E.S. for strictly dissipative materials are also
obtained.
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A theorem of consistency with thermostatics [3] on the set of asymptotically
isothermal E.S. is proved in Sec. 5.

The specific entropy is taken as an independent variable in Sec.6. In this
case the implications of the Cattaneo’s equation on constitutive functionals are
derived and conditions of asymptotic and Lyapunov stability of an isentropic E.S.
at constant strain for a material point are obtained.

In Sec.7 the specific internal energy is taken as an independent variable and
results regarding the asymptotic and Lyapunov stability of an isoenergetic E.S.,
similar to the results in Sec.4 and Sec. 6, are established. Some links between
asymptotic and Lyapunov stability of isothermal, isentropic, and isoenergetic E.S.
are rendered evident, and the restrictions the Cattaneo heat flux evolution equa-
tion imposes upon constitutive functionals are pointed out.

Finally, we mention that some of the problems here discussed have been
approached by the author in [10].

1. General formulae
1.1. The basic functional framework

Let E be the three-dimensional Euclidean point space, V the translation space
of E, and Lin the space of linear transformations of V. We denote by V the set
of triplets

(1.1) A=(Aaa)eLlinxRxV.

V is a 13-dimensional Euclidean space with respect to the linear operation
(1.2) a(A,a.a) + 3(B,b,b) = (0A + B, aa + 3b, aa + 3b)

for every (A.a.a), (B,b.b) € V, o, € R, and the inner product

(1.3) (A.a,a)-(B,b,b)=A-B+ab+a-b,

where A+ B = tr(AB7) and a - b are the inner product in Lin and V, respectively.
The corresponding Euclidean norm in V is given by

(14) (A,a,a)— |[(A,a,a)| = (A-A+a’+a-a)/2>0, (Aa,acV).
Also, the notation X = (A, «) € Lin x R will be used, so that

(1.5) A = (A a.a) = (N a).
We denote by V* the subset of V defined by
(1.6) vt =Lin* xR* x¥,

where Lin® = {A € Lin/detA > 0} and R* = (0, ).
Of course, V is a Banach space with respect to the Euclidean norm (1.4) and
V* is an open set in V.

http://rcin.org.pl



THERMOELASTIC MATERIALS WITH HEAT FLUX EVOLUTION EQUATION 987

1.2. Classical continuum thermodynamics

A body [3], or a continuous medium, B is identified with the region [S] B C E
it occupies in a fixed reference configuration «, and the material element, or
particle X € B is identified with its position X € B. It is assumed that a referential
mass density p, : B — (0,00) of B in the reference configuration is given such
that the mass of the subpart P of B is

m(P) = ]QK dm.

P

Along with B and its referential mass distribution, the process class P(B) ([4,
5]) is given characterizing the material comprising 5. The elements = € [P(5) are
called processes and they are ordered 8-tuples of mappings on B x R.

(1.7) T =(%.0,5,7,5.Q.b,r),

where, during the process w, at particle X, and time ¢, x = x(X,?) € E is the
motion, § = 6(X, 1) € R" is the absolute temperature, ¢ = (X, t) € R is the specific
internal energy per unit mass, 1 = (X, 1) € R is the specific entropy per unit mass,
S = S(X,t) € Lin is the first Piola— Kirchhoff stress tensor, Q = Q(X.,{) € V is
the referential heat flux, b = b(X.t) € V is the specific body force per unit mass,
and r = r(X,t) € R is the radiant heating per unit mass.

DEFINITION 1.1. A process © € P(B) is said to be admissible if its components
mappings are satisfying sufficiently smooth conditions and the laws of balance of lin-
ear momentum, balance of moment of momentum, balance of energy, and imbalance

of entropy [3].
The deformation gradient

(1.8) F = F(X,1) = Gradx(X, 1),
where Grad denotes the gradient with respect to X, is assumed to be in Lin™,
ie. J = det I > 0. The velocity v of particle X at time ¢ is determined by the
material time derivate of motion
(1.9) v= X, )= ¥ (X, 1)

The mass conservation law requires

(1.10) o= Jo.,

where p = o(X, ) is the mass density at particle X at time .
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For any admissible process = € P(B) the laws of balance of linear momentum,
balance of moment of momentum, balance of energy, and imbalance of entropy
are equivalent to the local referential equations [3]:

(1.11) 0. = DivS + o.b,

(1.12) FST = S¥7,

(1.13) 0. =S-F -DivQ + g.r,
(1.14) 0xM > 0x(r/0) — Div(Q/6),

where Div denotes the divergence operator with respect to X.
By using the specific free energy v = (X, t) per unit mass defined by

(1.15) p=c—0y

and taking into account the energy balance equation (1.13), it results that the
Clausius — Duhem inequality (1.14) takes the form

(1.16) o (¥ +n0) =S+ F +Q-(G/0) <0,

where G = G(X,t) = Grad (X, t) is the temperature gradient with respect to the
reference configuration «. The inequality (1.16) is called the Reduced Dissipation
Inequality [3]. If v = v(X. 1) denotes the specific rate of entropy production [1] of
particle X at time t

(1.17) 047 = 0u 1) — [04(r/8) - Div (Q/6)].
then the Clausius-Duhem inequality (1.14) asserts that
(1.18) v 2 0.

From the energy balance equation (1.13) it follows that for any admissible
process m € P(8) we may write (1.17) in the form

(1.19) 7= = 8/0+(1/0.0)8+ F ~(1/0,6)Q-GC

and, since vy = £ — 01 — (.)1], from where we get

(1.20) by =10 18 +(1/0,)8- F ~ (1/0.6)Q+G.
The following implications hold:

(1.21) § = F=0
(1.22) 7 =0, F=0 and Q.G=0 = ¢ <0,
(1.23) £=0, F=0
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2. Thermoelastic materials with heat flux evolution

The theory studied in this paper assumes that the material comprising the body
undergoes only admissible processes, in the sense of Definition 1.1, and that the
specific free energy »(X, ), the specific entropy 1(X, t), the first Piola - Kirchhoff

stress tensor S(X, ¢), and the specific time rate of the heat flux Q of a particle X
and at time ¢ are determined by the state functions corresponding to the admissible
processes © € P(B)

(2.1) (A;Q =(F.0,G;Q) : BxR—Lin* xR" xVxV=VtxV

through the constitutive functionals of the material

(2.2) P(1) = (A1) Q)
(23) n(t) = 7(A(1); Q(1)).
(2.4) S(1) = S(A(1);Q(1)),
(2.5) Q(1) = H(A(1);Q(1)).

The variable X € B is understood to enter both sides of (2.2)-(2.5), but it is
not written there because all the subsequent considerations refer to one particular
material point X € B.

We now make the following constitutive assumptions defining the material un-
der consideration. These assumptions refer to the common domain of the con-
stitutive functionals ¢, 75, S, H and their smoothness properties.

A 1. The constitutive functionals ¢, 7, S, and H have for their domain of
definition the set D x V, where D C V* is an open and connected set satisfying
the condition

(2.6) (A.a,a) € D = (A,a,0) € D.

A 2. The free energy functional ¢ is continuous differentiable on D x V, i.e.
for every A = (N\,G) € D, X = (F,#), and Q € V we have

(2.7) P(A +T5Q +u) = 0(A;Q) + dpv(A;Q) - T + dgvA; Q) - u
+o(|I'] + [ul),

forany I' = (A,a,a) € V,and u € V, with (A + [;Q +u) € D x V.
Moreover, the partial derivative of 1> with respect to A

(2.8) oAU = (W, 06Y) : DxV =V, K= (I, ),
and the partial derivative of i with respect to Q
(2.9) ot : DxV =V,

are continuous applications on 1 x V.
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A 3. The mappings 7, S and H are continuous on D x V.

A 4. The heat evolution function H is locally Lipschitzian, with respect to Q, on
D x V for any fixed mapping

A:BxR—=D.

REMARK 2.1. From the assumption A1 it results that if (A, a,a) € D, then for
every a € V\{0} there exists é > 0 such that (A, a,ca) € D as soon as |a| < 4.
REMARK 2.2. Suppose we are giving an initial time {o, an initial heat flux

distribution on B,
X Qp=QuX) eV, X € B,
a smooth motion x = x(X,t), and a smooth temperature field # = 6(X. ) such
that
A(t) = (F(X,1), 6(X,1), G(X,1)) € D, tel,

where I C R is an interval containing t,. Assumption A 4 guarantees the existence
and the uniqueness [6, 7] of the solution

(2.10) Q = H(A(1); Q).

With (A(1);Q(1)) € D x V, t € (tg — é,1p + 8), determined in this manner, from
(1.15), (2.2)-(2.4), we obtain (1) = ¥(X,1), n(t) = n(X,t), e(t) = «(X,t) =
P(t) + 0()n(t), S(t) = S(X.t) and, from (1.11), (1.13), we get the specific body
force b(X, t) and the radiant heating (X, ).

Thus to each sufficiently smooth choice of Qq, \, and # there corresponds a
unique process

(2.11) = (.0.6.17.8.Q.b.r) € B(B), on (lo— 6.1y + &).

REMARK 2.3. For every state (Xg; Qo) = (Fo.00,Go,Qg) € D x V, given at
the material point X' € B occupying the place X € B, for every {3 € R, and for
arbitrarily chosen I" = (A,a.a) € V there exists an admissible process = € P(B)
such that the states

(ACX, 1) Q(X. 1)) = (F(X. 1), 6(X. 1), G(X. 1); Q(X. 1))

corresponding to the process 7 satisfy the conditions

(2.12) (AKX, 10); Q(X, 1) = (Ap; Qo). A (X,t0) = I.

The proof of the statements in this Remark may be found in [1, 4, 5].

DEFINITION 2.1. The constitutive equations (2.2)—(2.5) are said to be compatible
with the Second Law of Thermodynamics if for every choice of sufficiently smooth
initial heat flux distribution Qq, motion X, and temperature field 8, the process
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™ € P(B) is an admissible process i.e. the constitutive functionals 1, 7, S, and H
satisfy the dissipation inequality (1.16) at each time t and for all material points
X e B.

The content of this definition is referred to as the Principle of Thermomechan-
ically Compatible Determinism |3].

Using the line of arguments in [1, 4, 5] and the results of the Remark 2.3 the
following theorem can be proved (cf. [8]).

THEOREM 2.1. If the functions v, 7, S, and H obey the assumptions A1 — A 4
then the constitutive equations (2.2) — (2.4) are compatible with the second law of
thermodynamics if and only if for any smooth motion, temperature field, and initial
heat flux distribution, the following conditions hold:

1) the free energy function ¥ is independent of G, i.e.

(2.13) D) = bOND; Q). N(1) = (F(1),0(t));
2) the functions 7 and S are independent of G, i.e.
(2.14) n(t) = aND; Q1) 8(1) = SON(1); Q(1)),

and the functionals ij and S are determined by the function 0 through the relations
(2.15) = -0  S=0.00;
3) the Dissipation Inequality is satisfied
(2.16) 080 v (N(1); Q(1)) + HIA(1); Q(1) + Q(1) - G(1) < 0.
REmMARK 2.4. Following [1], the quantity
(2.17) o =3(A;Q) = —(1/0)d?(X; Q) H(A; Q)

is referred to as the internal dissipation.
If we denote by o the restriction of & to the set

(2.18) A={(A;Q)=(F.0.G;Q) €D xV/Q:G =0},
then from (2.16) we get the inequality
(2.19) op = 9(X.G; Q) > 0,

which is called internal dissipation inequality. In virtue of (2.6) we remark that
¢ # 0 and that

(2.20) 5o(N, 0;Q) = —(1/0)dg(X\; Q) - H(A,0;Q) > 0.
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Because of (2.15) we have
2.21)  © = &OONQ) - F + d9t(N; Q)0 + dgir(h; Q) - H(A; Q)
=S.F—30 —fo
so that
(2.22) X =(F.0)=0=0=—(1/6)1.
Since, as it results from (1.15) and (2.21),,
(2.23) ¢ =8.-F -0 —fo,
we obtain the following implications
(2.24) F =0, #=0 = o=-(/0),
(2.25) F=0, #=0 = o=7.

In the present theory o plays the part it did in [1].

REMARK 2.5. The Dissipation Inequality (2.16) imposes a severe limitation
on the free energy functional ¢ and on the heat evolution functional H. The
restriction of this limitation to the set A (see (2.18)) takes the form

(2.26) do(N; Q) -H(A; Q) <0,  (N.GQ)eDxV.
In particular, we have

(2.27) dot(N;Q) +H(A.0;Q) <0,  (N.0;Q)eDxV.

3. Materials with Cattaneo heat flux equation

In this section we suppose that the heat flux evolution functional is linear in
Q and G, ie.
G3.1) H(A;Q) = M(X)Q + N(N)G.
(A;Q) = (N.G;Q)eDxV, X = (F,0),
where the second order tensor functions
(3.2) A — M(XN). N(X\) € Lin, A.GQ)eDxV

are nonsingular, and we derive the implication of this assumption on the consti-
tutive functionals ¢, 7, S, and

(3.3) F= 1+ 0.
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Inserting (3.1) into (2.16) we conclude that the tensor functions (3.2) must
satisfy the inequality

B4 ox MT(NIPN Q)] - Q + [N (N)i(X; Q) + (1/0)Q] -G <0

for every (X\,G;Q) € D x V.
THEOREM 3.1. The inequality (3.4) holds on D x V if and only if the relations

(3.5) M7 (M) (Z; Q)] +Q <0,
(3.6) 2 N"(N)dgv(X;Q) = —(1/6)Q
are satisfied on D x V.

Proof If QG € V are arbitrary, as they are supposed to be in [8], the
theorem is rather evident. But this is not the case because (X\,G;Q) € D x V,
and the domain D is a priori given. It is obvious that (3.5) and (3.6) are sufficient
for (3.4). On the other hand, (3.4) and (3.6) imply (3.5). So it remains to prove
that (3.4) implies (3.6). To prove this implication we will prove its contrapositive
assertion. The relation (3.6) does not hold on D x V if there exists Ag = (Fp, fy) €
Lin* x R and G € V with (A\g.G) € D such that QNNT()\U)OQJ()\O;O) =u#0.

From the assumption A1 and from Remark 2.1 it results that there exists
ag > 0 such that (X\g, Gy) € D where Gy = agu. For the point (A9, Gp;0) € DxV
the left-hand side of (3.4) becomes agu-u > 0 and this contradicts (3.4). The
theorem is proved.

REMARK 3.1. For any (A, () = (F.4,G) € D the mapping
(3.7) INT(N)dg(A;+) : V=V

is an invertible linear transformation on V, namely a similarity transformation of
coefficient k = 1/p,.

REMARK 3.2. Let us introduce the notations
(3.8) T=-M1, = -N"1, K=TZ
With these notations, from (3.1) and (2.5), we obtain
(3.9) TAQ +Q=-KO)G.  (A\GQeDxV,

where the tensor functions X — T(\), K(\) € Lin are nonsingular.

Equation (3.9) is the Cattaneo heat flux evolution equation.

Supposing that b is twice continuously differentiable on D x V it results that
Z, and therefore N, is symmetric and it is given by

(3.10) Z = -N7" = 000 (X; Q).
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On the other hand, in view of (3.8) and (3.6), from (3.5) it follows
(3.11) Q-K'(N)Q >0,

which shows that K is positive definite because Q € V is arbitrary and K is
invertible.
The internal dissipation (2.17) is now given by

(3.12) o =5(A;Q) = (1/0,6%) [Q-K'Q+Q-G,

and (3.11) is a consequence of the internal dissipation inequality which now
becomes

(3.13) 79 = 50(A; Q) = (1/2:6)Q - K~'(N)Q > 0.

Taking into account that N = N = -Z~!, from (3.6) we obtain (see [9]
and [8])
(3.14) 2.0 Q) = 2ato(N) + (1/200Q - Z(NQ.

From this relation, (2.15), and (1.15) we get
(3.15) 0:E(X;Q) = 0:50(N) + Q-AN)Q,
(3.16) 2x11(X;Q) = 0x70(X) + Q- B(N)Q,
(3.17) S(A;Q) = So(N) + Q- P(N)Q.
where
(3.18) fio = —de¥0 , Eo = o — B0gt0 = Y + Biip So = 0,91
and

A= —(1/26%0, [(1/6%)Z)] | = —(1/20)0; [(1/0)Z],

(3.19)

P = (1/20)%FZ.

ReEMARK 3.3. When the heat flux evolution functional H is of the form (3.1),
the observations in Remark 2.5 are more specific. From (3.10) it results that for
every (A, G) € D the mapping

(3.20) o(X;+) : V=R

is a nonsingular quadratic form having the matrix —(1/0.60)N"'(X\) = (1/0.0)Z.

So the nonsingular tensor N(X) in (3.10) is completely determined by the free
energy functional v The invertible tensor M(\) in (3.10) depends on " through
the relation M(X) = N(X)K~'(X\) where K(X\) is a arbitrary positive definite
second order tensor.
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4. Stability of isothermal equilibrium states (E.S.)

Throughout this and the following section we suppose that the heat flux evol-
ution functional H is continuously differentiable on D x V and that the second
order tensors dgH(X, G; Q) and doH(\, G; Q) are nonsingular on D x V.

With these conditions, the equation

(4.1) H(X\.G;Q) =0

defines the implicit functions

(4.2) Q=Q\.G), HA.GQXG)=0;  Qy=Q(N.Gp)
and

(4.3) G=G\Q),  HXAGXQkQ) =0 Gy =G(N;Qo)

in a neighbourhood U C D x V of a solution (X\g, Go; Qg) of the equation (4.1).
The functions (4.2); and (4.3), are satisfying the indentities

(4.4) QX G;Q)=Q, G\;QN.G) =6

on U and are differentiable in certain neighbourhoods of (Xg, Gg) and (Xg, Qq),
respectively.

All the following considerations refer to an arbitrary fixed material point X €
B having the position X € B in the configuration k.

DEerFINITION 4.1, The state (Xo,Go;Qq) € D x V, Xg = (Fo,by), is called an
isothermal E.S. at constant strain ¥y for the material point X € B if it is a solution
of Eq.(4.1) and if Gy+Qqp = 0. The state (X\g,0;Qq) € D x V, N\g = (Fy,0) is
called a strictly isothermal E.S. at constant strain ¥y for the material point X € B if
it verifies Eq. (4.1).

With these definitions, the following theorem can be proved (see [8]).

THEOREM 4.1. If the functional H satisfies the above conditions, then:

1) every state (X.0;0) € D x V is a strictly E.S.;

2) the second order tensor

(4.5) [0gH(X. 0;0)] " 9GH(X. 0;0)

is positive definite.
We denote by & C D x V the set of isothermal E.S. and by & C & the subset
of strictly isothermal E.S. at constant strain for a material point X' € B.

RemARK 4.1. The preceding theorem shows that & and therefore £ are non-
void sets. Moreover, for every a priori given g = (Fy.6p) € Lin* xR* at X € B
the nonvoid set

(4.6)  TNo)={R.G;Q EDxV|G-Q=0. HXp.G;Q) =0} € £

http://rcin.org.pl



996 GH. Gr. CIOBANU

is a 2-dimensional manifold in the 6-dimensional space of tuples (G;Q) and
(0;0) € 3(Ng). From (4.1)—(4.4) it results that for every (Gg; Qp) € X(N\o) there
exists a neighbourhood U(Gg; Qg) such that

47)  UG.QINE0)={(X, G Q)€ Px V|G = G(Xg;Q). Q-G(Xo; Q) = 0}
= {0.6;Q) € D x V| Q= Q\i;G), G-Q(Ny;G) = 0}
= {0, G;Q €D x V|G =G Q). Q=QNg; ). G(ro; Q) QNo; G) =0},

REMARK 4.2. The only isothermal E.S. at constant strain for a material point
X € B of the thermoelastic materials with Cattaneo’s heat flux evolution equation
(3.9) is the strictly E.S. (Xg, 0;0).

DEerFINITION 4.2 If (No. Go; Qo) € &, then the set D(Xg, Go; Qo) C V of vectors
Q* €V for which the solution Q = Q(t) of the Cauchy problem

(4.8) Q = H(%\.G;Q), Q) =Q",
exists on [0, ) and satisfies the condition
(4.9) Jim Q(1) = Qo.

is called the domain of attraction of the E.S. (XNg.Gg; Qq) at constant strain and
temperature.

If Qo € D(Xg, Go; Qo) is an interior point, then (X\g, Gg; Q) € & is said to be
an asymplolically stable E.S.

The ES. (Xg, Go; Qo) € & is called Lyapunov stable if for each = > 0 there exists
6 = 6(¢) > 0 such that every solution Q = Q(t) of Eq. (4.8), satisfies

(4.10) [Q(t) — Qq| < ¢, 1 >0
whenever
(4.11) 1Q(0) - Qf < 4.

REMARK 4.3. For every Q= € D(Xg,Gy; Qp) and every X € B there exists at
least one process 7 € P(B) such that

QX.00=Q", FX.))=Fy, 6(X.1) =6,

(4.12)
G(X,1)-Q(X,1) =0, >0

Indeed, using the Remark 2.1 it results that the process 7= € P(8) defined by
the motion

(4.13) x=X(Y,t) = X+F[Y-X]. (Y.1) € B x [0.).
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and by the temperature field
(4.14) 0 =0(Y, 1) =6y +g(t)-[Y - X], (Y,t) € B x [0,00),

where t — g(t) € V, t € [0,), is a differentiable application satisfying the
condition g(t)- Q(t) = 0, ¢t > 0, and Q(¢) = Q(X, ), the solution of the Cauchy
problem (4.8), satisfies (4.12). For the process here defined we have f?(x, ty=10
and 0 (x,t) = 0.

THEOREM 4.2.

1) If (X0, Go; Qo) € & Xo = (Fo, o). then

(4.15) v(Xo; Q%) > ¥(Xo; Qo). Q € D(Xo. Go; Qo);

2) if (N, Go; Qo) € € is asymptotically stable then the preceding inequality holds
in a neighbourhood U(Qq) of Qo U(Qp) C D(Xq, Go; Qo) and, consequently, there
exists vg € R such that

(4.16) dU(No; Qo) = 19Go;
3) if (X0, 0; Qo) € & and there exists a neighbourhood U(Qyq) of Qq such that

(4.17) P(; Q) > ¥(Ne;Qo),  Q # Qo € U(Qo) N D(Xo, Go; Qo)
then (Xg,0; Qq) is Lyapunov stable.

Proof
1. From (1.21) it results that for processes 7* constructed as in Remark 4.3

we have ¢ (t) <0 on [0, 00), and consequently
PN Q) = $(1) < $(0) = v(Xo; Q) = ¢ i Q) 120,

If we make here { — oo, and take into account that llim Q(1) = Qg because
s de o

Q* € D(Ng, Go; Qo), we obtain (4.15).

2. In our hypotheses the differentiable function v:(X\g, « ) attains its minimum
at Qg on the set U(Gg, Qp) N X (Ng), as described in (4.7),. This means that Qg is
a point of local conditional minimum under the side condition Q - G(Xy; Q) = 0.
Therefore there exists vy € R such that

@ 9v(ho; Qo) = 1o [G(No; Qo) + QuideG(No; Q)|

On the other hand, differentiating the relation Q(Xg;G) - G(Xg; Q) = 0 (see
(4.7)3) with respect to Q at the point Qg and taking into account (4.2); we obtain

(b)  QodgG(Xo; Qo) = 0.
From (a) and (b) we get (4.16).



998 GH. Gr. CIOBANU

3. From (2.20) we have
dot(No; Q) + H(Xo, 0; Qp) < 0, QeV.
This condition together with (4.17) shows that the function
(A +):V—R
can serve as a Lyapunov function [6, 7] for the autonomous differential system

(4.18) Q = H(X0.0; Qo)

and therefore (Ng,0; Q) € & is asymptotically stable.
Concluding this theorem we note that if (Xg,0;Qq) € & is asymptotically
stable then

(4.16') dov(Xo; Qo) = 0.

DEFINITION 4.3. Let X! = (F9,0%) € Lin® x R" be given at the material point
X € B. The vectorial equation
(4.19) do(N\% Q) = vG
is referred to as the equation of isothermal internal equilibrium at constant tempera-
ture 8° and constant strain ¥° for the material point X € B.

REMARK 4.4. The unknowns in (4.19) are the triplets (G, Q, ) € VxVx[R. The

part 1 of the preceding theorem shows that if (A”, Gy; Qq) is an asymptotically
stable E.S. then there exists 15 € R such that (Gg, Qq, 1) satisfies (4.19), i.e. is a
solution of the system

(4.20) G:-Q=0, HX\“.G;Q =0,  3dgt(N\%Q) = vG.

DEFINITION 4.4. The thermoelastic material under consideration is called strictly
dissipative [1] if

(4.21) X =(F,0)=0, G.Q=0. Q#0= >0,

where v is the specific rate of production of entropy defined by (1.20).

REMARK 4.5. From (1.20) and (2.16) it follows that the considered material
is strictly dissipative if and only if

(422)  Gp-Q=0 and (X\o.Gp; Q)¢ & = dgv(No; Q)-H(Ng, Gp; Q) < 0.

Using the same line of arguments which leads us to the part 1 of the preceding
theorem we can prove the
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THEOREM 4.3. If (N\o.Go; Qo) € & is asymptotically stable and if there exists
U(Qo) € D(XNo,Go; Qo). a neighbourhood Qq, such that the inequality in (4.22)
holds on U(Qo)\{Qo}, then

(4.23) (X0, Q) > (X, Qo), Qo # Q € U(Qu).

THEOREM 4.4. If (Xg,0;Qq) € & and

(4.24) ot (ha; Q) - HX.0:Q) <0, Qo # Q€ U(Qu),
where U(Qq) is a neighbourhood of Qq, then:

1) (X0, 0; Qo) is asymptotically stable if and only if (4.23) holds;

2) if (Mo, 0; Qq) is asymptotically stable then it is Lyapunov stable.

P ro o f. The necessary part of 1 is a result of the preceding theorem. The
sufficiency of 1 follows from Lyapunov’s theorem on asymptotic stability since in
this case the function ¢/(Xg; + ) is a Lyapunov function [6, 7] for the autonomous
differential system (4.18). The part 2 of the theorem is a consequence of the
preceding theorem and of the Lyapunov’s stability theorem [6, 7].

REMARK 4.6, If the material is strictly dissipative and (Xg,0;Qq) € & is
asymptotically stable, the inequality (4.23) holds and (X, 0; Q) € & is Lyapunov
stable.

REMARK 4.7. The only E.S. (X.0;0) € & (see Remark 4.2) of a thermoelastic
material obeying the Cattaneo’s heat flux evolution equation (3.9) is asymptoti-
cally stable if and only if the characteristic roots of T~'(\) have positive real
parts [6, 7].

5. Consistency with thermostatics

In this section we assume that for each Ao = (Fy.6p) € Lin® x R" there
exists a unique pair (Gp, Qq) € V x V such that (Xg. Gg; Qp) € &. Using (4.2); we
denote
(5.1) Do = {(Xo.Go) € P (Xo.Go; Qo) = (No. Go; Q(Ng; Gy)) € £}

The set Dy C D is referred to as the equilibrium part of D and is supposed to be
a subdomain of D. B B

On Dy we define the equilibrium response functions 1, 7, and §q giving the
equilibrium free energy 1y, the equilibrium entropy 1, and the equilibrium first
Piola—Kirchhoff stress tensor Sy through equilibrium constitutive equations.
(5:2) Yo = Yo(ho; Go) = v(Xo; Qo3 Go)),
(5.3) o = To(Xos Ga) = 11(No; Q(No; Go)) = —dat(Xo; Q(No. Go)),
(54) So = So(Xo; Go) = S(Xo; Q(X0; Go)) = Jrt(Xos Q(No, Go))-
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REMARK 5.1. If (X9, Gg) € Dy is asymptotically stable, i.e. (Ag.Gg;Q(Xo;Go)) € €
is asymptotically stable, then

(5.5) BGII_JO()\O;GQ) = 0,
(5.6) doo(Nos Go) = g (No; Go),
(5.7) I o(No; Go) = Jkt(No; Go).

Indeed from (4.7); and (5.2) it results that in a neighbourhood of (X\g. Gg; Q)
we have

(58)  Yo(N\G) = v(NQNG),  Q=Q(\G), G-Q\;G)=0

Applying the chain rules with respect to G, ¢ and F for (5.8); we obtain

(59 360N G) = dv(X QN 6)IcQ(N; 6),
(5.10) D Po(N; G) = gv(N; QN G)) + Do (N Q(N; G Q(N; G),
(5.11)  Pe(No; G) = Fr(N; Q(N; G)) + dot(N; Q(N; G))kQ(N; G).

If (X0, Go) € Dy, is asymptotically stable then in view of Theorem 4.2, there
exists 19 € R such that (a) ()Qg (N\0; Qo) = Gy, and therefore we have (b)
d61o(Xo; Go) = 1GodeQ(No. Go). Differentiating Q(X\; G) - G(X\;Q) = 0 with
respect to G in the point (Xg. Gg) € Dy and taking into account (4.2); we have
GOUGQ(XO;G()) = 0 which, together with (5.9) and (b), implies (5.5). Differ-
entiating (5.8); with respect to ¢ and F in the point (Xg,Gg) € Dy we obtain
(c) G(,i)g(}()\g;(io) = 0 and (d) G(,(')FQ()\(,;GO) = (. If we evaluate (5.10), (5.11)
in (Ao, Gg) € Dy we obtain (5.6) and (5.7) in virtue of (b), (¢) and (d).

Thus we obtain the following theorem of consistency with thermostatics ([1, 3]).

THEOREM 5.1. If the set D C Dy of asymptotically stable pairs (N*,G"). X™ =
(F*,0%) is an open and connected set then:

1) the equilibrium function of free energy is independent of G*, i.e
(5.12) o = Uo(N7);

2) the equilibrium functions of entropy and of the stress tensor are independent

of G*, ie.
(5.13) =\, So = Se(N7),
and they are determined by the function Vg through the relations

(5.14) H= — Dpe o So = dp+y.
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REMARK 5.2. Of course we have
(5.15) G*-Q\";6) =0, (\,G)eD;.

Writing the first order Taylor’s formula of Q in the point (X\",0) € D we
obtain

(5.16) Q(\*;G*) = Ko(A*)G* + o(|G*)),
where
(5.17) Kox) = [9-QON50)]

because (5.15) implies Q(X™;0) = 0 [4].
The relation (5.16) shows that at an asymptotically E.S. the Fourier law holds
within an error of order o(|G*|) ([4, S, 1]).

6. Entropy as an independent variable

The quantity

(6.1) e = HhEN; Q).
is called the heat capacity of the body. In virtue of (3.3) and (2.15),
(6.2) ¢ = 00pn(XN; Q).

In what follows we suppose ¢ > 0 [1] on D x V. This hypothesis implies that the
function

(6.3) NQ —a™QeR, (MGQeDxV, X=(Fb0),

is smoothly invertible with respect to # on D x V. Consequently the constitutive
functionals of the thermoelastic material may be written as follows

(6.4) e = &X: Q).
(6.5) 0 = 6%\ Q).
(6.6) S = S(X\;Q).
6.7)  Q =H(X\ GQ). (N.G;Q)eDxV, X\=(Fn),

where the function 6(F. -;Q) is the inverse of the function 7(F, +; Q) defined in
(6.3), D C Lin®" x R x Vis a domain completely determined by the domain D,
and

68)  EXQ) =EF6XQ:Q) = U(F. A% Q) Q) + (% Q).
(6.9) S(A\;Q) = S(FA(X; Q) Q)
(6.10) H(X.G;Q) = /I (F.6(X\;Q).G; Q).
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Applying the chain rule to (6.8) with respect to 7 and F and taking into account
the entropy relation (2.15);, we obtain

(6.11) 0 =0, S= 0.

which means that the temperature functional § and the stress tensor functional

S are determined by the internal energy functional .
The chain rule with respect to Q applied to (6.8) and the entropy relation
(2.15), leads to

(6.12) dgF(X; Q) = d1(F.0(X; Q). G; Q),
so that the Dissipation Inequality (2.16) becomes

(6.13) 0:0,E(%; Q)dg(X; Q) - H(X, G; Q) + GQ < 0.
Therefore
(6.14) Q-G=0 = do5(X\;Q)-H(X.G;Q) <0,

and, in particular, we have
(6.15) d9E(X; Q) - H(X.0;Q) < 0.
The counterpart of theorem 3.1 is the
THEOREM 6.1. If € is twice continuously differentiable and the heat flux evolution
equation (6.7) has the Cattaneo’s form
(6.16) TA)Q +Q=-KN\G. X = (F.y).

where the second order tensors T and K are nonsingular, then the dissipation in-
equality (6.13) holds if and only if on D x V:

1) K(X\) is positive definite and

2) the second order tensor function

(6.17) X —ZN) = [RN)] TR e Lin. X =(Fy).
is given by
(6.18) Z = 0, [0209) © (9g7) + 0,032 .

Proof Asin the proof of Theorem 3.1, we conclude that the inequality
obtained by inserting (6.16) into (6.13) holds if and only if we have

(6.19) (TN 9eF(A; Q)] - Q > 0,
(6.20) 2:0, 5N QUZT (N 992(X; Q) = Q.

http://rcin.org.pl



THERMOELASTIC MATERIALS WITH HEAT FLUX EVOLUTION EQUATION 1003

Using the temperature relation (6.11); we write (6.20) in the form

(6.20) 0,008 QoE(N; Q) = ZT(N)Q.

Differentiating this relation with respect to Q we get (6.18). From (6.20') and
(6.19) it results

(6.21) Q-K'NQ=>0, QeV,

which means that K~!, and therefore K is positive definite.

REMARK 6.1. We have to note that in this case it is difficult to derive relations
similar to the relations (3.14)-(3.19). On the other hand, the Z is not symmetric.

DEFINITION 6.1. The state (XO,GO; Q) € D xV, io = (Fo.10) is called an
isentropic E.S. at constant strain ¥y for the material point X € B if

(6.22) Go-Qu=0,  H(No. Gg; Qo) = 0.

The state (in.(); Qp) € D xV, )~\0 = (Fo,n0). is a strictly isentropic E.S. at
constant strain ¥ for the material point X € B if

(6.23) H(Xo.0; Q) = 0.

We will denote by ¢ E the set of isentropic E.S. and by &y C & the subset of strictly
isentropic E.S. for a given material point X € B.

REMARK 6.2. From (6.10) it follows that if (. GO,QO) €D xVand
()\0,(;(), Qo) € D x V are two states related by ¢, = H()\ Qo), then

(6.24) (N\.Go;Qo) € € & (Xo.Go; Qo) € £.

DEeFINITION 6.2. If ()\0 Go; Qo) € £, then the set D(X\g, Go; Qo) C V of points
Q~ €V for which the solution Q = Q(I) of the Cauchy problem

(6.25) Q =HX.Gi;Q),  Q(0) =
exists in [0, o) and satisfies the condition

(6:26) lim Q1) = Qo.

will be referred to as the domain of attraction of the E.S. ():0. Go; Qo) ar constant
strain and entropy o = (Fo, o).

The isentropic E.S. ()\0 Go; Qo) is said to be asymptotically stable if Qq € D
()\0, Go; Qo) is an interior point.
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The isentropic E.S. (X\g, Gg; Qp) will be called Lyapunov stable if for every
¢ > 0 there exists a 6 = (¢) > 0 such that every solution Q = Q(¢) of the
differential equation (6.25); satisfies the condition |Q(?) — Qo] < ¢ on [0, )
whenever |Q(0) — Qq| < é.

Similar results to those of theorem 4.2 are given by the

THEOREM 6.2. .
1) If (X0, Go; Qo) € & No = (Fo, 10), then
(6.27) EX0:Q7) > EX0i Qo). Q" € D(Xo, Go; Qo);

2) if (io; Go; Qo) € Eis asymptotically stable then the preceding inequality holds
in a neighbourhood U(Qg) C ﬁ(XO,GO;QO) of Qq and there exists vy € R such
that
(6.28) 90Z(Xo, Qo) = #Go;

3) if ():0, 0; Qo) € & and if there exists a neighbourhood U(Qq) of Qg such that
(6.29) EX0;Q) > #X; Qo). Qo # Q € U(Qo) N D(XNg. Go; Qo).

then (io. 0; Qq) is Lyapunov stable E.S.

REMARK 6.3. From (6.10), (6.12) and Remark 4.5 it results that the material
is strictly dissipative if and only if
(630) Gp-Q=0 and (Xg.Gp;Q) & E = o=(ho; Q)+ H(Xp; Go; Qo) < 0.
Thus we obtain the following two theorems which are counterparts of Theorems
4.3 and 4.4.

THEOREM 6.3. If (XO.GO;Q(}) € & is asymptotically stable and if there exists
a neighbourhood U(Qq) C ]5()\0. Go; Qo) of Qq such that the inequality in (6.30)
holds on U(Qg)\{Qo} then

(6.31) EXe:Q) > EX0;Qo), Qo # Q € U(Qo).
THEOREM 6.4. 1f()~\0;0; Q) € & and
(6.32) 90F(Xo; Q) - H(Xp;0;Q) < 0, Qu # Q € U(Qy),

where U(Qo) is a neighbourhood of Qq then:

1) (io. 0; Qo) is asymptotically stable if and only if (6.31) holds and

2} ()~\0 0; Qo) is asymptotically stable then it is Lyapunov stable.

REMARK 6.4. From theorems 6.3 and 6.4 we conclude that if the material is
strictly dissipative and (Ao, 0; Q) € & is asymptotically stable, then (6.31) holds
and (X, 0; Qo) is Lyapunov stable.
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7. Internal energy as an independent variable
Because # > 0, the temperature relation (6.11),
(7.1) 0=0,:Q), X=(F7),
implies that the function  — ¢ = & (F,7;Q) € R, n € R, is smoothly invertible
for any fixed F and Q. Denoting by ¢ — 7 = 7(F,¢; Q) € R, ¢ € R the inverse of

the function &(F, «; Q) and substituting it into (6.5) - (6.7) we obtain the following
constitutive equations of the thermoelastic material

(72) n = 1(x;Q),
(73) 0= 0(X;Q),
(7.4) s = 8(\; Q).
(15) Q= H(\.G;Q), (A.G;Q)eDxV. X=(F.n),

where D C Lin* x R x Vis a domain completely determined by the domain D
and therefore by the domain D, and

(7.6) A(X;Q) = A(F.ii(X; Q) Q),
(1.7) S(X\;Q) = S(F.ii(X\;Q); Q).
(1.8) H(X\;Q) = H(F./(X;Q); Q).

Applying the chain rules with respect to ¢, F, and Q to the identity
(7.9) e =#F,i(X;Q)Q). X\ =(F.q),
and taking into account the temperature relation (6.11);, we obtain
(7.10) 6=00)"" S=—p 0080 =—0,(0-1)"" 07
which means that the temperature functional # and the stress tensor functional

are determined by the entropy functional 7.
Differentiating (7.9) with respect to Q and using (7.1) we get

(7.11) doF(X; Q) = —Hgi(X; Q).

Thus the Dissipation Inequality (6.13) becomes

112 o [0 Q) (R Q) - H(X.G:Q) - G-Q 2 0.
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From here we have the implication
(7.13) Q-G=0 = Jgi(X\;Q)-H(X.G;Q) >0,
and in particular we get
(7.14) do(7;Q) - H(X.0;Q) > 0.

DEeFINITION 7.1, The state (XO.GO; Q) € DxV, )'\0 = (Fy, =), is called an
isoenergetic E.S. at constant strain ¥y for the material point X € B if

(7.15) H(X3,Gp; Qo) =0, Go+Qp=0.

The state (X, 0;Qq) € D x V is a strictly isoenergetic E.S. at constant strain F
for the material point X € B if
(7.16) F(X.0;Qq) = 0.

We will note by & the set of isoenergetic E.S. and by & ¢ & the subset of strictly
isoenergetic E. S. of the material point X' € B.

RemMaRk 7.1. From (7.8) it follows that if (X(). Go. Qo) € D xV, o = (Fo, m0),
and (X, Gg; Qo) € DxV, N\ = (Fo. cg) are two states related by 79 = 7(X; Qo)
then

(7.17) (NG Qo) € € & (X, GpQo)eé.

DerFiniTION 7.2, If (5\0. Go; Qo) € & then the set 15(5\(), Go; Qo) C V of vectors
Q™ €V for which the solution Q = Q(t) of the Cauchy problem

(7.18) Q =H(X.G;Q). Q) =Q"
is defined on [0, >) and satisfies the condition
(7.19) (ll_m\ Q(1) = Q.

is called the domain of attraction of the E.S. (X\g.Go; Qp).

The isoenergetic E.S. (5\0.(}0;00) is said to be asymptotically stable if Qy is
an interior point of the set I')(X Gg; Qo).

The isoenergetic E.S. (5\. Go; Qo) will be referred to as Lyapunov stable if for
each ¢ > 0 there exists a &6 = &(<) > 0 such that every solution Q = Q(f) of the
differential system (7.18), with |Q(0) — Q| < ¢ satisfies |Q(1) — Qo < ¢ for all
t > 0.

The following three theorems are counterparts of theorems (4.2)-(4.4) and
(6.2)-(6.4).
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THEOR?M ¥ £ 8 o
1) If(XO,Go;Qo) € ¢, )\0 = (F(),EQ). then
(7.20) i(Xo; Q) < 1(Ro; Qo). Q€ D(Xo. Go; Qo);

2) if (Mo, Go; Qo) € & is asymptotically stable then the preceding inequality holds
in a neighbourhood U(Qy) C b()\o, Go; Qo) of the point Qg and there exists iy € R
such that

(7.21) 0qii(Xo: Qo) = #0Go;
3)if (X0, 0; Qo) € & and for a neighbourhood U(Qq) of Qg we have
(722) i@ < iR Qo). Qo # Q€ U(Qu) € D(Ro, Go; Qu),

then (Xg,0;Qq) is Lyapunov stable.
REMARK 7.2. From (7.8), (7.11), and (6.30) we come to the conclusion that
the thermoelastic material is strictly dissipative if and only if

(7.23)  Gp+Q=0 and (Ap.Gy;Q) €& = dgi(No; Q)+ H(Xg, Gy; Q) > 0.

THEOREM 7.2. If (No.Go; Qo) € & is asymptotically stable and there exists a
neighbourhood U(Qg) of Qq, U(Qq) C D(X,.GU;Q(,), such that the inequality in
(7.22) holds on U(Qo)\{Qo}. then

(7.24) i(Xo;Q) < 7(Xo; Qo). Qo # Q€ U(Qy).
THEOREM 7.3. If (No.0; Q) € & and
(7.25) do1(Ro; Q) - H(Xg,0;Q) >0,  Qp # Q€ U(Qq).

U (Qq) being a neighbourhood of Q. then

1) (XN, 0; Qq) is asymptotically stable if and only if (7.24) holds and

2) if (5\0‘0; Q) is asymptotically stable then it is Lyapunov stable.

REMARK 7.3. In virtue of Theorems 7.1 and 7.2 it results that if the thermo-
elastic material is strictly dissipative and (X, 0; Qq) € & is asymptotically stable,
then the inequality (7.24) holds and (. 0; Q) is a Lyapunov stable E.S.

Now, by using arguments similar to those in Sec. 9 of [1] we prove the following
theorem giving some relations between isothermal, isentropic and isoenergetic
asymptotic stability of an E.S.

THEOREM 7.4. Let (XN, 0;Qq) € & No = (Fo. 8y). be a strictly isothermal E.S.
at constant strain ¥ for the material point X € B, and let us suppose that

(7.26) o = To(Xo; Qo); c0 = (X0; Qo) Xo = (Fo, n0);
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1) if the inequalities (4.24) and (6.32) hold, then the asymptotic stability of
(X0, 0; Qo) entails the asymptotic stability of (X, 0; Qo) € &o;

2) if the inequalities (6. '32) and (7.25) hold, then ()\0, 0;Qp) € &y is asymptot-
ically stable if and only if ()\0, 0;Qo) € & o = (Fo, cq) is asymptotically stable.

Proof.
1. Making use of the assumption

e = 3E(N\; Q) = 8947i(X;Q) > 0
from (2.15); we obtain
(7.27) RN Q) < 0,

due to the hypothesis that ¢ is twice continuous differentiable.
Writing the second order Taylor’s formula with respect to the variable # and
using again (2.15); we have

(F,6,Q) = U(F,¢,Q) + (8 - 6)i(F.0';Q) = 1/2(0 — 6/)*0;U(F. 6., Q),
where 6. = 6.(F,6.6.Q) € (6.6'), and in view of (8.27) we get

(@)  $(F.05Q) > v(F.0;Q) + (¢ — #)ii(F.¢; Q).
From (6.5), (6.8), and (7.26), we get
®) R Q) ERo; Qo) = [V(Fo, 6(Ro; Q); Q) — ¥ (Xo; Qo))
+ [50\0;0) - 6’0] 0 -

Because 6(F, +;Q) is the inverse of 7j(F. «;Q) we have i(F, 5(&0;0);Q) =1
and, in view of (a) and (b), we obtain

(7.28)  &(Xg;Q) — €0 = E(Xg; Q) — E(X0; Qo) = ¥(No; Q) — P(Ng; Qo).

Our hypotheses, Theorem 4.3, and (7.28) imply that if (Xg,0;Qq) C & is
asymptotlcally stable then it holds (6.27). Now by Theorem (6.4) we have that

()\0 0;Qp) € & is asymptotlcally stable. The conclusion 2 of the same Theorem
6.4 shows that (X\g.0; Qg) € & is even Lyapunov stable,

2. From (7.10); it follows that the function 7(F,+;Q), which is inverse of
£(F,+;Q), is a strictly increasing function and therefore we have

(7.29) 0 < E(ho; Q) & o = 7(Xo; Q) < 7(Fo, &(Xo; Q); Q).
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Now, the desired result is an immediate consequence of the Conclusion 1 of
the Theorem (6.4), of the equivalence (7.29), and of the Conclusion 1 of the
Theorem 7.3.

REMARK 7.4. Combining this result with the point 2 of Theorems 6.4 and 7.3
it follows that if (X\g,0;Qp) is an isentropic (resp. isoenergetic) asymptotically
stable E.S., then it is an isoenergetic (resp. isentropic) Lyapunov stable E.S.

The counterpart of Theorems (3.1) and (6.1) is the following

THEOREM 7.5. If the functional 17 is twice continuously differentiable and the
heat flux evolution equation (7.5) is of the Cattaneo kind

(7.30) TN Q +Q = -K(\G,

where the second order tensor functions T and K are invertible, then the Dissipation
Inequality (7.12) is satisfied if and only if on D x V

1. K(\) is positive definite and

2. The second order tensor function

v o b 1=l g ) w
(7.31) X—2ZX) = [KX)| TR)eLin, X =(Fe),
is given by
(7.32) Z = 0. 000471 — 20:01 © doil] (2:7)*.

The proof of the theorem follows by using the same line of arguments as in
the proof of Theorem (6.1).

References

1. B.D. CoLEMAN and M.E. GURTIN, Thenmodynamics with internal state variables, J. Chem. Phys., 47, 597-613,
1967.

2. C. CATTANEO, Sulla conduzione del calore, Atti. Sem. Mat. Fis. Univ. Modena, 3, 83-101, 1948.

3. C.A. TRUESDELL, A first course in rational continuum mechanics, The Johns Hopkins University, Baltimore,
Md. 1973.

4. B.D. CoLeMAN and W. NoLL, The thermodynamics of elastic materials with heat conduction and viscosity,
Arch. Rational Mech. Anal., 13, 167-178, 1963.

5. B.D. CoLeMAN and V.J. Mizer, Thennodynamics and departures from Fourier’s law of heat conduction,
Arch. Rational Mech. Anal., 13, 245-261, 1963.

6. V. BARBU, Ecuayii diferentiale |[in Romanian], Editura Junimea, lasi 1985.

7. C. CORDUNEANU, Principles of differential and integral equations, Chelsea Publishing Company, The Bronx,
New York 1977.

8. T.S. OncO and T.B. Moobit, On constitutive relations for second sound in elastic solids, Arch. Rational
Mech. Anal.,, 121, 87-99, 1992.

http://rcin.org.pl



1010 CGH. Gr ClIOBANU

9. B.D. CoLEMAN, M. FaBrizio and D.R. OWEN, On the thermodynamics of second sound in dieletric crysials,
Arch, Rational Mech. Anal., 80, 135-158, 1982.

10. GH. GR. CI0BANU, Some results of the thermoelasticity theory with heat flux evolution equation, Rev. Roum.
Math. Pures Appl., 40, 301-324, 1995.

SEMINARUL MATEMATIC “AL. MYLLER™,
UNIVERSITATEA “AL. 1. CUZA™, 1ASI, ROMANIA.

Received March 13, 1996; new version June 10, 1996.

http://rcin.org.pl



Arch. Mech., 8, 6, pp. 1011-1024, Warszawa 1996

Analysis of stress distribution in a thin rectangular plate
by the method of caustics

J. WANG, R.C. BATRA (BLACKSBURG) and K.ISOGIMI (TSU)

WE piscuss some characteristics of caustics in a rectangular plate loaded by distributed in-plane
loads on a part of two opposite edges with the other two edges kept traction-free. It is assumed that
plane state of stress prevails in the plate. The theoretical developments are valid for an arbitrary
location of the reflective plane within the plate. A good agreement is found between the computed
and observed caustics. A simple inverse problem of determining the intensity of the distributed
load from the size of caustics is also investigated.

1. Introduction

THE METHOD of caustics was first proposed by MANOGG [1] and has been employed
by THEOCARIS [2, 3] and KALTHOFF [4] to ascertain stresses at singular points.
The method is widely used in fracture mechanics to determine stress intensity
factors under Modes I, II and IIT loading [5]. Here we apply this method to
another kind of singular problem, namely, distributed load acting on a part of
the width of a plate; this is a simplified model of loads acting on a cutting tool.
The deformations and stresses will be singular at points where the distributed
load jumps from zero to a finite value or vice-versa. Here we consider a thin
plate subjected to in-plane distributed loads at two opposite edges with the other
two edges traction-free and assume that a plane stress state prevails in the plate.
We use the method of caustics to transform the stress singularity to an optical
singularity and determine the stress distribution at singular points. It is assumed
that the intensity of the distributed load is such that the linear elasticity theory
can be used to describe deformations of the plate. The work is motivated by
the desire to ascertain stresses induced in a cutting tool; however no machining
problem is studied herein.

2. Analytical developments of caustics

Referring to Fig. 1, consider parallel rays impinging upon the plane surface
of a transparent, homogeneous, and both mechanically and optically isotropic
rectangular plate subjected to in-plane distributed loads on two opposite edges.
The direction of the light reflected from a point on the incident surface will
depend upon its deformations. This light when projected on a screen, will form
caustics whose patterns will depend upon the state of stress at points on the
incident surface. If the location of the plane from which the incident light is
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reflected can be varied, then the state of stress at points within the body can also
be ascertained by the method of caustics.

y
P
PiC ~ '
Y x'
/ incident light
- = R - _
/ VWoa— | Zr gradAS
7 | T
- R Zr
L |
|
specimen screen

FiG. 1. A schematic sketch of the problem studied.

2.1. Optical path difference

We assume that the distributed load on the edge of a plate can be approxi-
mated by a series of step loads as shown in Fig.2. Herein we assume the dis-
tributed load to be such that points on the central plane of the plate do not move
laterally. Also with the plate divided into several layers with thickness of each
layer equaling the thickness of the edge over which the load intensity is constant,
we presume that a plane state of stress exists within each layer. Let the plate
be divided into n layers of thicknesses dy,d;. ..., dx and in-plane loads acting
on their edges equal Pyo, Pyo,..., Pya, respectively. Under the action of these
loads, the thickness d; and refractive index n; of the ¢-th layer (1 < < N) will
change by Ad; and An;, respectively. We designate by subscripts ¢ and m the
central surface of the plate and the plane from which light is reflected.

A lateral displacement of a material point in the direction of increasing op-
tical path is taken as positive. Thus under a compressive edge load, the lateral
displacement of the front surface of the plate is —Ady and that of the rear sur-
face equals + Ad,. Of course, as assumed above, the lateral displacement of the
central surface is zero.

As shown in Fig. 2, we consider a reflective plane located at a distance of kd
(0 < k < 1) from the front surface of the plate. Measuring distances from the
deformed position of the front surface, the optical path 57 to the reflective plane
in the unstressed reference configuration is given by

(2.1) S1 = 2(Ady + nkd),
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. (mirrOf)
plane |
- 2a o
Pic
(b)

load along the width direction

FiG. 2. a) Load distribution along the thickness of the plate; b) load distribution along the width
of the plate.

where n is the refractive index of the plate material in the unstressed state and
the refractive index of air equals 1. After the load is applied, the optical path will

change to S, given by

m—1
Sy =12 Z (n + An))(d; + Ad))
=1

2.2)

m—1

+(n + _\nm)% (L‘rl— Z
(7”

=1

11!-) (dv + Adyy) | -
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In writing equation (2.2) we have assumed that the reflective plane (or mirror)
is located in the m-th layer. Subtracting (2.1) from (2.2) and neglecting terms of
second order in Ad and/or An, we obtain the following formula for the optical
path difference

m—1
Z (An;d; + nAd;)

1=1

(23) AS=2

T l=1

m—1
n
+ (_'\71,,1 + d—.Jdm> (kd - Z d,’) — Ady

The variation in the thickness of the i-th layer subjected to in-plane edge loads
P,o can be expressed as

(2.4) Ad; = —%P,d.;(ol + o)),

where E and v equal, respectively, Young’s modulus and Poisson’s ratio for the
material of the plate, and o7 and o, are the principal stresses induced at a point
in the plate layer subjected to in-plane surface traction o (recall that the third
principal stress is zero because of the assumption of plane stress). Since the
central plane is assumed not to move laterally, therefore, the displacement Ady
of the front surface is given by

T .. d
(25) .J(l’f = _E [; ]’,‘([" — P‘ (; (l,‘ — §>“ ((Tl + (Tz).

where it has been assumed that the central plane lies in the c-th layer. For an
optically isotropic i-th layer, the change in the refractive index at a point is
given by

(2.6) An; = AP;(o + 02),

where A is the optical constant for the plate material. Substitution from (2.4),
(2.5) and (2.6) into (2.3) results in the following expression for AS:

2.7 AS = K(oy + 02),

where

m—1 m
, v R v
(2.8) K =2 { (A - nf) ;=1 Pid; + (/,-rl - E r];) (Alm —npPp, 75)

1=1

n(ge )

=1
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2.2. Equation of caustics

Referring to Fig. 1, let R’ be the image of I? on a plane screen located at a
distance Z, from R when there is no load applied to the plate, and R"” be the
image of R when the plate has been deformed by in-plane loads applied at the

—_—

two opposite edges. The vector w = R'R" is given by [6]
(2.9) w= Z grad AS = K'Z, grad (o, + 03)

where we have used (2.7).

Let the stress state at an arbitrary point in the plate with two opposite edges
subjected to uniform in-plane tractions o be described by the complex-valued
function ¢(z) of the complex variable = = z + iy. Then

(2.10) 4Re (4(2)) = oy + 02,

where Re (¢(z)) denotes the real part of ¢. In the complex variable notation,
Eq. (2.9) becomes

(2.11) w= 4K Z,3'(2),

where ¢ denotes the complex conjugate of ¢. Assuming that the origin O of
the rectangular Cartesian coordinate system is located on the top surface of the
undeformed plate and the applied tractions are distributed symmetrically about

it, O’ is its image on the screen and r = O R, then

(2.12) W=0R'"=wH+r.

However, when the incident light is not a parallel beam but a convergent beam,
then Eq.(2.12) is modified to

(2.13) W=w+ Ar,
where
(2.14) A=(Z4; - Z.)]7;,

and Z; is the distance of the focal point of the light from the reflective plane (cf.
Fig.3). Of course, for a parallel incident beam, A = 1.
In the complex plane, Egs.(2.11) and (2.13) yield

(2.15) W =a'+iy = Mz +iy)+ 4K 7,8 (2)

http://rcin.org.pl
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Zi

incident li

Screen

specimen
Zr

lens

FiG. 3. A schematic sketch of the convergent light beam and illustrations of distances Z; and Z,.

and the condition

_ gl y)
T y)

for the existence of a singular point becomes

(2.16)

(2.17) ‘;I\'Z,.<.>"(:)1 =1.
Thus the caustic curve is obtained from Egs. (2.17) and (2.15).
For the load distribution depicted in Fig. 2, Eq.(2.17) gives
(2.18) AB = 4darC/A,
where
A = r2 + a® = 2ar cost,
(2.19) B = r*+ a* + 2ar cosé,
C =20N2Z/m,

(r,0) are the cylindrical polar coordinates of the point (r, y) (e.g. see Fig.2), and
2a is the width of the loaded region. Equation (2.15) describing a caustic curve
can be written as

8
1l

"= Ar (cosH = %sin 20) .
2.20
( ) 1a?

) - 1
Y Ar (sln()—icosﬂ)—ir—z).
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We identify the size of a caustic curve with the maximum horizontal distance, D =
Lmax, between any two points on the curve. For the load applied symmetrically
about O, it is reasonable to assume that the caustic curve is symmetrical about
O'. Thus if points (rg, ) and (rg, —6p) on the caustic curve determine D, then

(2.21) D = Lpax = brg,
where
(2.22) b=2\ (cos()g — %sin 200) .

Equations (2.18) and (2.21) give the following relation between the applied uni-
form traction ¢ and the size of a caustic.

N D[/D b ,\?
(2.23) o= 8]?7 - K? 3 5{12) — 4a? cos? 90] .
e O ]

Knowing D, nonlinear equations (2.18) and (2.21) can be solved iteratively for
ro and #, and then o can be evaluated from Eq.(2.23). Subsequently, the stress
distribution at any point in the plate can be ascertained.

3. Experimental method

A schematic sketch of the experimental set-up is shown in Fig.4. All of the
components depicted in the figure, except for the video monitor and recording
equipment, are mounted on a vibration-isolated table. A laser light from the

lens 1 lens 2 half-mirror
expander
-
He-Ne laser s rd incident
over-ray cutter light  specimen

_l = | CCD camera

monitor  video-tape recorder

F1G. 4. A layout of the experimental apparatus.
source is expanded by the expander, changed into collimated light by lens 1 and

into a convergent beam by lens 2. The region of interest with singular stress
distribution in the object is illuminated with the laser light through a half-mirror.
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Light falling from the object and the half-mirror is received by a CCD camera,
recorded on a video-tape and monitored. The dimension ratio A, defined by
Eq. (2.14), of the convergent light is determined and adjusted by altering the
positions of lens 2, the half-mirror and the CCD camera.

The specimen length, width and thickness equal, respectively, 63 mm, 45 mm
and 6 mm and it is made of transparent acrylate. The reflective surface of the
specimen is formed by vapor depositing a layer of aluminum film on either the
front or the rear surface of the plate.

40
3o

26

(0] [¢) o (8] g g
|H'|'"' 1

M ) 3)

4o
30
20

(1) (2) (3)
4o
30
20
o o g © o o
|"’|l|I o i e
(1) (2) (3)

I'1G. 5. Different load distributions considered.

Nine different loads described below and shown in Fig.5 were examined. The
plate thickness is divided into three equal parts; on each part the tractions are
uniformly distributed and span over the middle 4.5 mm width of the plate.
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4, Comparison of experimental and computed results

Figure 6 shows the experimental and computed caustic curves for the three
load distributions of group (a) of Fig.5; the top, middle and bottom figures cor-
respond respectively to load distributions 1, 2 and 3. Unless otherwise noted,
the reflective plane is located on the front surface of the plate. The computed
results are obtained by assigning following values to the material parameters:
A= -055%x10"8m?/N, n = 1491, £ = 1.6GPa, v = 0.399. The experi-
mentally obtained caustic curves are not completely symmetric about the center-
line probably because of the slight asymmetry in the externally applied tractions.
However, the experimental and computed curves look similar implying that the
assumptions made in deriving the equation for a caustic curve are reasonable. In
Fig. 7 we have plotted the computed and experimental values of the size of the

o))

Fia. 6. Experimental (1) and computed (2) caustic curves for the three load distributions
of group (a) of Fig.5 with the reflective plane located on the front surface of the plate.
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caustic curves for the load distribution of group (a) versus the maximum trac-
tion; it is clear that the two sets of values agree well with each other. The plot of
the optical path difference computed from Eq. (2.7) shows that there is an affine
relationship between it and the maximum traction.

L) (S, P O, 0 L0, . 0. 0 . 51 (.0, -5 6
12
——L (calculated)
1 1 max ) 5
2 Lmu (experiment)
z 10 z
& o[ 4%
RN 2
P 35
- i N Rl optical path
difference 5
6 ,’ = f’ rsosssrrn .
5 T PO DU B U D 1
1 2 3 4 S
GTHHX/G

FiG. 7. Dependence of the size of the caustic curve and the computed optical path difference
upon the magnitude of the maximum load.

The effect of the location of the maximum traction on the experimental and
computed caustic curves is illustrated in Fig. 8 where the two sets of caustics ob-
tained by applying the maximum traction (= 40) on the front layer, middle layer
and the rear layer (i.e. loading 3 of groups (a), (b) and (c)) are exhibited. It is
clear that the shape of the caustic produced depends strongly upon the location of
the maximum traction. The computed and experimental values of the size of the
caustic curve versus the location of the position of opmax are compared in Fig. 9;
the two sets of values match well with each other. Also shown in Fig.9 is the
dependence of the computed Lnax upon the location of onmax with the reflective
plane located on the rear surface of the specimen. One can conclude from these
results that the location of o,y influences strongly the size of the caustic curve
only when this location is near the reflective plane. Figure 10 depicts the experi-
mental and computed caustic curves under the third loading condition of group
(a) of Fig.5 and with reflective planes located on the front and back surfaces
of the specimen; it is evident that the curves obtained with these two locations
of the reflective plane are dramatically different. However, the experimental and
computed curves coincide well with each other.



(a)

Fi1G. 9. Dependence of the size of the caustic curve upon the location of the maximum traction
for two different positions of the reflective plane.

(x10°m)

L
max

12
11

(2)

Fic. 8. Experimental and computed caustic curves for different locations ((a) the front layer,
(b) the middle layer and (c) the rear layer) of the maximum load 4.
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(H (2)

F1G. 10. Experimental and computed caustics for loading 3 (a) of Fig.5 with (a) reflective plane
located on the front surface of the plate, (b) reflective plane located on the rear surface of the
plate.

5. A simple inverse problem

In applications one wishes to determine the externally applied load and/or the
stress distribution from the knowledge of the shape and dimension of the caustics.
However, if the external force pattern is known, its amplitude may be estimated
from the dimensions of the caustic curve. We assume the load distribution a(1) of
Fig. S with the reflective plane located on the front surface of the plate. In Table

Table 1. Comparison of the tractions computed from caustics and the applied tractions.

s Py Py Py
" 2:141 3:1:1 4:1:1
D or Lmax (mm) 7.82 9.22 10.69
Applied traction ¢ MN/m?’ 2.00 2.00 2.00

Computed traction g MN/m* | 215 | 215 | 226

Difference % TS 7.5 13.0

1 we have listed the measured L.y, the traction computed from Eq.(2.23), and
the traction applied in tests. The maximum difference between the computed and
the applied tractions of 13% suggests that the method gives acceptable results.
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Figure 11 shows contours of nondimensional principal stresses o) and o, obtained
from the experimentally observed caustics. Here pegt (MN/m?) is the intensity of
applied tractions estimated from Eq.(2.23) and the size of the caustic curve.
These contours show high gradients of stress near the point where the applied
traction jumps from zero to a finite value.

0

(a)

y - coordinate (mm)
o)

Y=
™ s qlfp

-10-8 -6 -4-20 2 4 6 810
X - coordinate (mm)

est
1

2,=N0, /B

| 1 1 1 1 i 1 1 1

y - coordinate (mm)

-10
-10-8 -6 4 -2 0 2 4 6 8 10
X - coordinate (mm)

FiG. 11. Distribution of nondimensional principal stresses.

6. Conclusions

We have studied some basic characteristics of caustics produced in a homogene-
ous and both optically and mechanically isotropic thin rectangular plate sub-
jected to in-plane loads on two opposite edges, with the other two edges kept
traction-free. The applied load is such that points on the central plane of the plate
do not undergo any lateral displacement. The effects of different distributions of
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the edge loads and the location of the reflective plane upon the caustics produced
has been discussed. Computed shapes of caustics and their sizes have been found
to compare well with those observed experimentally. The pattern of the caustic
curves produced is found to depend strongly upon the location of the reflective
plane; the shapes of caustic curves are quite different when the reflective plane
abuts on the front or rear surface of the plate. The magnitude of the applied
load influences strongly the size of the caustic produced if the reflective plane
is located near the point of application of the peak load. An inverse problem of
determining the applied tractions from the size of the caustic curve has also been
studied.
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Experimental study of pseudoelastic behaviour of a Cu Zn Al
polycrystalline shape memory alloy under tension-torsion
proportional and non-proportional loading tests

C. ROGUEDA, C. LEXCELLENT and L.BOCHER (BESANCON)

SOME TENSION-TORSION loading experiments on thin-walled tubular specimens of a Cu Zn Al poly-
crystalline shape memory alloy have been performed using a special experimental device. Propor-
tional loading tests allow to verify the normality rule for the pseudoelastic strain rate and enable
the experimental validation of the thermodynamical model of pseudoelastic behaviour developed
by Raniecki et al. Non-proportional loadings show how the pseudoelastic behaviour depends on the
chosen loading path. The chosen training path seems to have small effect on the obtained efficiency
values which are very high (around 70 -80%). A microstructural experimental study must be done
to understand the mechanism of formation and reorientation of martensite plates when the stress
vector direction changes.

1. Introduction

THE MECHANICAL BEHAVIOUR of shape memory alloys (S.M.A.) is studied, as a rule,
through some uniaxial tensile or compressive tests. As a consequence, mechanical
models of, e.g., pseudoelastic behaviour, are usually written and also validated
only in the case of uniaxial stress. However, it is necessary to understand the
S.M.A. behaviour under multiaxial loading since it is the case in most of the in-
dustrial constructions. Some tests on mechanical structures have been performed
for “complex” loadings: thin rectangular plates loaded in torsion [1], thin rectan-
gular plates loaded in bending by a terminal force [2], springs loaded in tension
[2] or in compression [3], ... But these tests were done either in order to study
the efficiency of training, or in order to analyse the microstructure evolution.

In [4], B. Raniecki er al. proposed a three-dimensional model of the pseu-
doelastic behaviour of S.M.A. In order to verify some of those hypotheses, the
three-dimensional (3D), or at least two-dimensional (2D) loading tests have to
be performed. The simplest two-dimensional loading to apply is a tension-torsion
one. Some such experiments on SMA have been reported in [5] but the speci-
mens used were rigid bar specimens (Cu Al Zn Mn) which were associated with
an important shear stress gradient in torsion.

Some results of this kind of test on thin tubes are also reported in [6], but
these experiments were performed on a Ni Ti polycrystal and the results are still
quite qualitative. Moreover, only a few tests were performed.

In this paper, the experimental device and the results of proportional loading
tests are discussed. Some non-proportional loading tests are also exposed, to show
the importance of the loading sequence. Training of samples during these tests

http://rcin.org.pl
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have been analyzed. Finally, the modelling described in [4] (and applied to pro-
portional loading tests) is used to show a reasonable agreement with experimental
data.

2. Material and technique

The tests have been performed on a Cu Zn Al polycrystalline S.M.A. with-
out any additional components (weight composition: Cu 70.17 %, Zn 25.63 %, Al
4.2 %) prepared by the “Tréfimétaux” company. Its characteristic phase transfor-
mation temperatures, determined by home electric measurements, are 287 K for
Ms, 278K for M (temperature start — and end — of the austenite to marten-
site phase transformation) and 290K for Ag, 293K for Ap (temperature start —
and end - of the reverse transformation). The heat treatment is quite standard.
Specimens are heated at 1123 K during 15 minutes, quenched in a 393 K oil bath
and maintained at this temperature for one hour. The specimens are carried out
few days later, in order to make the austenitic phase more stable.

Section A-A
“_8‘_8\ 71
200 | o
: y
I,
115

4

FiG. 1. Sample shape definition.

In order to avoid internal stresses, samples were manufactured by electro-
erosion technique from 30 mm diameter rigid bars. Their dimensions (given in
Fig. 1) are characteristic for thin tubes condition. During the tension-torsion tests,
the stress tensor has the form:

0 0 0
0 0.6 0.
with
(2.2) 0., = F/2rRe, 0. = C/27 R%,

F, C, R and e are, respectively, the axial loading force, the torque, the mean
radius and thickness of the sample. It must be remembered that in the S.M.A.
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case, the thin tube condition must take into account the mean grain size which is
about 1 mm (see Fig.2). Some 1800 grains have been numbered in the measured
part.

The sample shape is adapted to a specific mechanical device which takes over
the whole loading and ensures the specimen to be properly fixed. Tests were
performed on a Schenk 3D test machine (tension, torsion and internal pressure),
connected with the H.P. microcomputer. This hydraulic machine has load limits
+63 kN and +£1000 Nm. Every test has been performed under a force control.

The temperature was maintained constant at 7' = 303K (T > Ap).

Stresses are calculated from /' and C' values with the accuracy of +£3.1 N and
+0.12 Nm. Axial and torsional strains are obtained from a mechanical differen-
tial system illustrated in the Fig.3. Linear and rotative sensors (L.V.D.T and
R.V.D.T) are linked to each stem of this system, in order to separate strain com-
ponents from each other. They measure axial and angular displacements (AL
and Af).

Assuming the strains to be small, axial and torsional strains ¢,. and .4 can
be easily calculated from the formulae

rAf
2L

Here L is the effective length, estimated by means of a classical extensometer to
be equal 69 mm. Displacements are known with the accuracy of +5-10~%m for
the axial sensor and +1.22-1073 rad. for the angular one.

Strain gauges were also tried but it was so difficult to obtain a good adherence
between the sample and gauges that this technique has been abandoned. This
behaviour is probably due to copper corrosion.

(2.3) c.. = ALJL, e =

3. Experimental results
3.1. Proportional loading tests

In tension-torsion loading tests, the equivalent stress, in agreement with the
von Mises criterion, is defined by

G.1) o= (o2 +30%) """,

For each proportional test, the maximum equivalent stress Tmax is 110 MPa.
Hence, each point corresponding to the end of loading belongs to a quarter of
circle, the radius of which is 7,y in the (0., \/3_0'39)13]3[18 representation. The
courses of the five tests performed in this quarter of circle is presented in the
Fig.4. As the loading is proportional, axial and torsional stresses are connected
with each other by the relation

(3.2) 0.0 = Q0 (@ = ).
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The value of a, fixed in each test, characterizes the direction of loading and can
vary between O (pure tensile test) and oo (pure torsional test).

The test frequency is 10~2 Hz. Loading and unloading periods are similar. The
first cycle is repeated 35 times in order to evaluate the possible training of the
samples.

46 @ (MPa)

[ﬂﬁze
q /7 : , i
60 7 e N\ tension

= /’7\ torsion

20+

I/

O : T L T T T

1

€20 (%) 0.45
04r

035 A
03 /
0.25 //

0.2+ yrZ

0.15 /

01r

0osf & oo 3
0 T g | ' T
0 0.1 0.2 03 04 0.5

F1G. 5. Tension-torsion proportional loading test (o = 0.577).

0.6

The stress-strain curve corresponding to the No. 4 test (a = 0.577) is presented
in Fig.5, as a representative test. In the following parts of this paper, the elastic
behaviour, the yield stress of phase transition, the pseudoelastic behaviour and
finally the training efficiencies are studied.

http://rcin.org.pl
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3.1.1. Classical elastic behaviour. Elastic strains and stresses are related by the Pois-
son coefficient » and the Young modulus E as follows:

v 1
- € 1 —_—
Err = €og = _f 2z E3: = Eozz’
(3.3)
€ —1+Vrr ey =€, =0
20 = E 726 » rd T “re

E and v are calculated from the slope of each stress-strain curve. A consider-
able scatter of E values can be observed. This can be explained by a possible
dispersion during heat treatment because the samples are thick, or by a relative
non-homogeneity of the alloy. This observation in the elastic domain, where the
behaviour is well known, is important to estimate the dispersion of further results.

3.1.2. Yield stress of phase transformation. To characterize the beginning of the direct
phase transformation (i.e. austenite to martensite), the usual von Mises yield
stress is defined as:

(34) EAM — (( A’U 2 +3( 7M)Z)

where (o2AM) and (04V) are the axial and torsional threshold stresses. They cor-
respond to the linearity loss of the (c..,0..) and (.4, 0.4) curves. For each test,

the M value is calculated and (((r AMY /(oM ) are given on the (0., v/30.5)

plane. As it is shown in Fig.6, @'Y seems to be rather constant in these tests,

and a criterion surface can be defined as M = 30.3 MPa.

40 N30z
—AM

1 GA— 30.3 MPa
30
20+
10-

G

0 T . * = ZZ;

0 10 20 30 40

F1G. 6. Yield surface phase transformation: austenite — martensite.
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In a tensile test, the critical stress o4’ and the temperature 7 are linked by
the following relation:

(3.5) oM = b(T — Ms).

Generalizing this relation for multidimensional loading tests, the constant
is found to be equal to 1.9 MPaK~! which is a known value for a Cu Zn Al
polycrystal. In [7], uniaxial tests with the same alloy were presented and b was
estimated to be 2.0 MPaK~!.

3.1.3. Study of pseudoelastic behaviour. First, the total deformation is split into two
parts, the elastic and the pseudoelastic deformation:

(3.6) € =€ +eP.

For tensile tests, VACHER in [7] has established the proportionality between the
pseudoelastic deformation and the volume fraction of martensite, by performing
the electrical resistance measurements during mechanical tests.

For a 2D or a 3D proportional loading, as in “plasticity”, the existence of a
current flow surface (¢ = cte) is postulated. It is homothetic to the initial one
(@M = cte); the normality rule, i.e. the pseudoelastic strain rate is perpendicular
to this surface.

In a classical way, it follows that

s pe _ L H_f
3.7 € = )\ 9’
with
(3.8) fE-7AM@T), A=4:

So, the pseudoelastic strain rate is obtained as

. pe 3 devo
€ =z

2 G
where 7 is the maximal pseudoelastic strain obtained for a complete phase trans-

formation occurring in a tensile test.
In a tension-torsion proportional loading test, the expressions (3.2) and (3.9)

lead to:

tie

5

N

(3.9)

épe _ Oz & 1 .
== T 1P T A+3at)2 *
. . pe 1-

6.10) = emeben,
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In this case, the integration yields

3d
(3.11) el = > ejc'yz.

It is possible to evaluate f;/c%¢ from strain measurements obtained by the
gauges. As it is shown in Fig. 7, the experimental value of €77 /c?¢ is not far from
the theoretical value which is —0.5. The small dispersion can result from the
position of the gauges.

4 e e
-0.4 1 gge/ggz

-0.45- -
o 5 gd}
'05 ‘puuu -
-0.55- C e

c,,(MPa)

-

e 20 .+ 40 . 60 o
30 50 70

Fia. 7. Ratio €} /<P% evolution during a tensile-torsion proportional loading.

Validity of the expression (3.11) is verified by studying the evolution of £7} /<2<,
Parameter () is defined as:

cpe
(3.12) Q=222

“z T2z

From (3.11) it follows that @ is theoretically constant and equal to 2/3. The
evolution of ) with respect to the tensile stress 0., during the test No.4 (o =
0.577) is presented in the Fig.8. It can be noticed that even though @ seems to
be a constant, its value is slighty higher than the theoretical one. () values for the
three biaxial loading tests are presented in the Tab. 1.

Table 1. Value of () obtained for each proportional test.

Test 3 4 5

Q 0.72 0.75 0.75

http://rcin.org.pl
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16 - i
12
0.8 e
0.4
. 7 cfZZ(MF’al)>

20 40 60 80

FiG. 8. Experimental evolution of the @ parameter (during the test described in Fig.5).

The equivalent pseudoelastic strain is defined by:
4 7 1/2
(3'13) (“""’) + 43 ( ‘rﬂ)

Its maximum value is reached when 7 is maximum (Fma, = 110MPa). The
Tab.2 shows Zhax for each test. In a pure tension test, ¢7; is theoretically null,
and in a pure torslonal test, ¥ is also zero. From the Tab. 2, the material seems
to be slightly anisotropic. This can explain why ) is not equal to its theoretical
value.

Table 2. Experimental tensile and torsional pseudoelastic strain values.

Test 1 2 3 4 5
ebF (%) 0.339 0.011 0.384 0.369 0.193
eff (%) 0.025 0.215 0.173 0.277 0.356
ePE (%) 0.34 0.248 0.433 0.488 0.454

The pseudoelastic strain measurements allow also to determine the pseudo-
elastic strain rate vector € P°. As the loading is proportional, the following relation
holds (expressions (3.9) and (3.11)):

!
<

|
[~
S ~Ta )

™Me

(3.14)

n |
N

0

e
-]
o

Then, it is easy to draw €7¢ on the (0..,V/30.4) plane, for each test, when the
equivalent stress is maximal, as it is shown in the Fig. 9. This figure shows also that

http://rcin.org.pl
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the strain rate vector is perpendicular to the loading surface (Gmax = 110 MPa)
what proves the validity of the normality rule. Moreover, it allows to see the
expansion of the criterion surface from 7'M = 30.3MPa t0 Fyax = 110 MPa.

“@GZO (Mpa)

Smax=110 MPa

—_—

gpﬁ) C’_zz(rv”:)a)

0 "20 "40 "60 " 80 T100"

F1G6. 9. Experimental validation of the normality rule.

3.14. The training process.  After Npax = 35 loading-unloading cycles (between
@ = 0and @ = Gpax = 110MPa), the training effect is measured. Figure 10
represents the first ten cycles corresponding to the test No. 4. The Fig. 11 shows
the training effect in this sample, placed (at a stress-free state) in an oil bath of
temperature varying from 232K to 313 K.

In order to study the training effect, it is necessary to define three training
efficiencies: the tension efficiency (0.. = (A¢..)s=0/(c5: max)N=Npx)> the tor-
sion efficiency (0:6 = (Ac-0)s=0/(c5 nax)N=Naw) and the equivalent efficiency
(Q = (J€)0=0/(frr;1f;ix);\’=:\:max)'

These efficiencies are measured for the five training tests. These values seem
to be much higher (around 75-80%) than the ones obtained under a more
complex loading (c.f. for example [1]). In [5], where rigid bars are also loaded in
tension and torsion, the first cycle is repeated in order to study the stabilization of
stress-induced martensite. Unfortunately, the efficiency values are not presented.
Nevertheless, the pseudoelastic loop stabilizes after a few cycles, as in our experi-
ments. Training values lead us to assume that the density of dislocations is quite
important since, according to [8], the density of dislocations is a good parameter
helping to evaluate the training effect. Until now, no microstructural analysis has
been performed to verify the assumption.

http://rcin.org.pl
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traction
e

e (%)
—P

0 0.2 0.4 0.6 0.8
FiG. 10. The first ten half-cycles of a training process (test No. 4, o = 0.577).

lg (0/0) tension \ gy
05+
04+
03} torsion ~
0.2t
01F
T(K) |

0 L— .
250 559 270 g9 290 3pg 310

FiG. 11. Two-way shape memory effect measured after training process of Fig. 10.

3.2. Non-proportional tests

Even if the modelling of non-proportional loadings is, in most of cases, not
simple, the importance of such tests appears to be in answering the queston:
“what is the effect of a rough change of the mechanical loading upon the matrial
behaviour ?” Indeed, in every single crystal, the best oriented habit planes are
activated (with respect to the maximum shear rule) for a given loading direcion
[9]. If the direction of the stress vector is changed by applying torsion uponthe
tension, other variants (“secondary variants”) can be activated and interact vith
the primary variants. Here, it is interesting to see what happens macroscopially
to a polycrystalline sample.

http://rcin.org.pl
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V3 Oz
y C then
pt Ozz
A B
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V3020 4\30z9
, C then D_‘/_C
’ Ozz \ s Ozz
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B _,7(: then : C
: Ozz s Ozz
A A D
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4302 430z
B s G then D _47(:
1/ Ozz K Ozz
A A

Path of type IV

F1G. 12. Definition of non-proportional paths.

As in the proportional loading tests, the maximum equivalent stress Tpmay is
110 MPa, but it is reached through four different possible paths: I, II, TIT and
IV (see Fig.12). 3 is the angle characterizing the test [tg3 = (V3 a™¥)/am].
Its possible values are 30°, 45°, 60° as in the respective tests 3, 4 and 5 with
proportional loading.

3.2.1. Pseudoelastic loop of the first cycle. For each path, the tensile (o..,¢..) and
torsional curves (0.4, .g) are given (Figs. 13 to 16). So, the resulting deformation
path (c.¢,¢..) is known. As it was already observed in the previous part, material

http://rcin.org.pl
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isotropy is not perfect since during the first loading (uniaxial), the small strain is

measured along the other axis.
Y302 Y30z
¢ then C
7 Ozz s

5 A B A D
80 o (Mpa) o iensnon o o ) c
60 -
40
<4—torsion
20
0 e (%)
0° 0.2 0.4 0.6 0.8
€26 (Y)0.51

Cf
0.4 /
03r
va
02r / /
D

P
-

7
//U/
//

C1r

A/// €2z (o)

O 1 1 1 1 1 1 ]
0O 01 02 03 04 05 06 07 08 09

F1G. 13. Tension-torsion non-proportional loading test (path I, 5 = 45°).

—pe

Maximum equivalent pseudoelastic strain Zp,y is higher than that in the pro-
portional loading tests. This observation confirms the assumption that new habit
planes (“secondary” planes) are activated when the mechanical loading direction



EXPERIMENTAL STUDY OF PSEUDOELASTIC BEHAVIOUR 1037

V3020 V3020
IC then DEC
100 ‘AG (Mpa) ’ Ozz # Ozz

tensio AOE 8
n
80 B - Y C
60
40
20 torsion
£ (%)
0 A5 T - ; —>
0 0.2 0.4 0.6 0.8
€20 (%)0.4 -
C
0.35r
0.3
0.25 P
0.2
0.15
0.1
0.05
A B E“ZZ (%)
0 =7 | T ' |
0 01 92 g3 04 55 06 4y

F1G. 14. Tension-torsion non-proportional loading test (path II, § = 45°).

changes. Moreover, it seems that the hardening induced by interactions between
primary and secondary habit planes does not play any important role. Moreover,
during the second loading (BC'), a reorientation of primary variants may occur
with the change of the stress vector orientation. Such variant reorientations are
reported in [5].
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F1G. 15. Tension-torsion non-proportional loading test (path III, g = 45°).

In fact, during these non-proportional loading tests, observation of the mi-
crostructure evolution is necessary to understand the micromechanisms invoved
by the stress path. From the phenomenological point of view, the comparson
between the shape of the imposed stress path (rectangular in Figs. 14 and 15)
and the resulting shape in the deformation path is interesting.
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F1G. 16. Tension-torsion non-proportional loading test (path 1V, 3 = 30°).

3.2.2. The training process. The ten first cycles of a training are presented in Fig. 17.
After N = Nmax = 35 cycles, the training effect is measured (Fig. 18). Efficiency

definitions are the same as in the previous case.

The global efficiency o lies between 60 and 80 % and its dependence on the

chosen path is not clear.
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FiG. 18. Two-way shape memory effect measured after training process of Fig. 17.
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4. Modelling of a proportional loading test
4.1. General equations

In [4], RANIECKI et al. propose to model the pseudoelastic behaviour in two
steps. First, the free energy of the two phases system (A + M) is written as

(4.1) b= (1-2)0 + 28, + A,

@, and &, are the specific free energies of the austenite and of the martensite
phases, respectively. A@ is called the configurational energy and represents the
interaction which appears between the two phases, for example produced by
incompatibilities between deformations. The main property of this energy is that
it disappears if only one phase is present in the material. In agreement with
MuLLER and Xu [10], the simplest expression for A is:

(4.2) AP = 2(1 — 2)P;
where @, is the interaction energy (®;:(T") = g — T5).
In [4], the free energy expression is obtained in the form (z is the volume
fraction of martensite and ¢ the mass density of the material):
1 ‘
(43) ¥, T,2) = up— Tsh — 2xf(T) + 5-(e —€")L(e — &™)

+e, [(T = Ty) = Tln (%)] + Ad

0

with

o

- i =L _ by = L e.
o =05 (e —€™)=Le

0P
44 § = -,
(4.4) or

Trg(T) = (u) = ud) = T(s} — s5) = Au—TAs.

7r({ is the thermodynamic force of the martensitic transformation at stress-free
state. uj and sjj are the specific energy and entropy of the o phase (o = 1 for
the austenite and a = 2 for the martensite).

The thermodynamical force associated to the phase transition under non-zero
stress is:

od _
(4.5) rd = 5 = ng(T) +93/0 — (1 — 22).
The Clausius - Duhem inequality (7/ d> > 0) is chosen to be the criterion of
phase transition [4]:
direct transformation dz >0 rf >0,

(4.6) ; .
inverse transformation dz<0 rf <0,

http://rcin.org.pl
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m/ = 0 represents the absolute equilibrium states of the system. It is unstable if
&;, > 0, what characterizes the martensitic transformations.

(&)
v, =0 g
A y, =Cte<0
l4’2=Cte>o\ N
SN 9 z=Cte
G Aq
M v, =0 B
€

F1G. 19. Description of the external and internal loops in the model of Raniecki et al. [4].

It is then possible to determine the equivalent stress threshold of the marten-
sitic transformation M (point A in the Fig. 19) and for the reverse transforma-
tion M4 (point A,) as:

Ty —
(@M, :=0,T)=0 = aM(T) =5%(:=0) = Q‘Pu(T) ' T (T) ’
(4.7) BT
(@ ,2=1,Ti=0 =% #¥4T)=7"C=1)=7"M(T) - 2 )
P

The instability of the equilibrium yields the conclusion that there exists no
thermodynamical relation which could give the equations of the hysteresis loop.
Taking a similar framework as in the plasticity approach, the functions ¥; (for the
direct transformation) and ¥, (for the reverse one) are assumed to be constant
during the phase transition. ¥, = 0 and ¥, = 0 are the functions which represent
the complete martensitic and reverse transformations (they describe the “external
loop”). ¥; = n and ¥; = m (m and n are negative constants) represents the

internal loops where the transformation is not total.
vi(o,T,z2) = n/(0,T,2)— k(2),

(4.8)
Uy(o,T,z2) = -1/ (a,T,2) + k().

The functions k;(z) and k(=) are chosen [4] such that the kinetics of the phase
transformation are in agreement with the ones proposed by metallurgists [11]:
k1(z) = =(Ay + B12)In(1 — 2) + Cy 2,
(4.9)
ka(z) = (A2 — By(1 - 2))Inz — Co(1 - 2)

http://rcin.org.pl
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with
Cr = 28,(M,),  Cp = 2,(A,),
(4.10) a1 A; = As + 3, ayAy = As — 3,

a1 By = ay By = 25g.
4.2. Application to a tension-torsion proportional loading test

The behaviour is elastic as long as the equivalent stress does not reach the
critical equivalent stress 74 (= = 0):

(4.11) 7 = (0. )% V1 + 30l

Then the pseudoelastic behaviour must be simulated. The volume fraction of
martensite is increasing from 0 to z4, which is the z value obtained just before
the unloading. The pseudoelastic flow is represented by ¥; = 0. It gives:

(4.12) 1l +ya/0 — Bu(1 = 22) = ky(2).

Since during the whole test tensile and torsion stresses are proportional
(@ = (0..)V'1+ 3a? with 0.4 = aoc..), it is possible to determine the stress
values from the relations
ky(z) + @i(1 - 22) — «]

1 "‘) li( < TrO )

o
Opy = ————————
o5 (1 + 3(.2
(4.13) " *)

Tr9 = (XT 55 .
The corresponding strains follow from (3.6) and (3.11),

£ —
c

3 E

(4.14)

m
t
.
]
Q
I3}
>
P
—
~| +
<
(%]
2
o
|-

The reverse transformation is represented by the ¥, = ky(z4) curve (ky(zq)
is a negative constant) where z, is the volumic part of martensite at the end of
the loading process. So, during the unloading to the stress o, the stresses are
given by

7T 7(1—+03c?3 [kz(s) = ka(zq) + Pie(1 - 22) - “tﬂ ,
(4.15)

0:6 = Q03 .

The corresponding strains are still given by Eq. (4.14).
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The seven parameters A;, By, C, Ay, By, C, and 7 which determine the
functions k; and the k,, ®;; and w({ are determined from tensile loading tests
described in [2] by the following constants.

Au As uy 30 Y a az
(kg™ | Okg™'K™") | (Jkg™") | Ukg™'K™") (K | (K™Y
6 944 23.36 1 495 4.22 0.0416 | 0.032 0.06

N30,

te (MPa) Oz

80
’ traction
601
40+
fe—- torsion —  model
E — experiment
20+

! e (%)
0O 01 02 03 04 05 06

FiG. 20. Experimental and modelled curves concerning the test No. 4.

0

Modelling of the test No.4 is presented in the Fig.20. The form of the theo-
retical loops are acceptable but some corrections are necessary. The results prove
the validity of the 3D model proposed by RANIECKI ef al. in [4] and the proposed
state equations of pseudoelasticity (3.11).

5. Conclusion

Proportional and non-proportional tests have been performed by means of
a special experimental device, in order to increase the number of experimental
data in the case of complex loading.

Proportional loading tests allows us to verify the normality rule for pseu-
doelastic strain rate, and hence it enables the experimental verification of the
thermodynamical model of pseudoelastic behavior developed by RANIECKI et al.
in [4]. In the future, other stress-strain curve simulations will be presented.
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Non-proportional loading tests brought a lot of informations not easy to inter-
prete. It shows the evidence that the pseudoelastic nonlinear behavior depends
on the chosen stress path. The main physical features are the creation of new
variants (called “secondary” ones) when the stress direction change, or (and) the
reorientation of the first variants under the stress.

Only a microstructural observation will allow us to describe the mechanism of
martensite plates displacement and creation by the stress path.

For an isothermal pseudoelastic cycling (Nmax = 35), both proportional and
non-proportional training processes are associated with very high efficiency val-
ues: this is a very good information for technical applications.

We believe that the analysis of such complex loading processes will help us to
understand the S.M.A. pseudoelastic behaviour.
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Integral equations for disturbance propagation
in linearized Vlasov plasmas
Numerical results

A.J. TURSKI and J. WOJCIK (WARSZAWA)

SPACE-TIME responses of linearized Vlasov plasmas on the basis of multiple integral equations are
considered. An initial-value problem for Vlasov-Poisson/Ampere equations is reduced to one in-
tegral equation and the solution is expressed in terms of a forcing function and its space-time
convolution with the resolvent kernel. The forcing function is responsible for the initial distur-
bance and the resolvent is responsible for the equilibrium velocity distribution. For Maxwellian
equilibrium distribution, a closed-form solution of the resolvent kernel equation is still unknown
but the equation is eligible for computer calculations. Three types of exact analytical solutions of
the space-time resolvent equations are shown to relate them to Maxwellian plasmas. Numerical
calculations reveal the nature of the plasma response as a compound of a diffusive transition, being
essentially a plasma oscillation mode with plasma frequency, a Gaussian type of amplitude profiles,
and also a damped dispersive wave mode. The plasma response appears immediately in the whole
space of z and zeros (nodes) travel according to the diffusion law, at least for long times. By use of
the resolvent equations, time-reversibility and space-reflexivity can be revealed. The step-density
disturbance of electron Maxwellian plasmas appears to be the electric current forcing function,
which is proportional to the Maxwellian plasma kernel; hence the resolvent is the plasma response
to the step-density disturbance. From inspections of the series representations of Maxwellian re-
solvent and its Fourier transform, a symmetry property with respect to the transformation is found.
It is used for constructing approximate formulae for the resolvent kernels.

1. Introduction

THIS ARTICLE contains a unified treatment of disturbance propagation in linearized
Vlasov plasmas, based on the space-time convolution integral equations. Although
there already exists a vast literature on the subject, a complete and coherent dis-
cussion of space-time plasma response in relation to equilibrium distributions
of particles, especially the Maxwellian equilibrium, is still lacking. Most of the
papers are dealing with dispersion relations, approximate Fourier transforms of
disturbances and asymptotic evolution of time-dependent stationary waves. How-
ever, papers dealing with integral equation presentation of wave propagation in
linearized plasmas appear rather seldom, see the recently published paper [1].
The problem is of a linear nature but can be considered in relation to non-
linear Langmuir waves and solitary wave excitations, where we need space-time
solutions, but under simplified assumptions concerning equilibrium of plasmas
and the so-called “far field” approximations, which allow us to reduce the prob-
lem to model equations, e.g. NLS, KdV, Boussinesq, see [2]. To be more specific
and at the same time, to present the general issue in the simplest way, let us
consider the ion-sound solitary waves in Vlasov plasmas. It can be shown [3]
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that assuming a delta-Dirac velocity distribution for cold ions, “square distribu-
tion” for hot electrons, “far field” dependence of space-time in the form z — vt
and nonlinearity of the second order, we arrive at a Boussinesq equation for
space-time propagation. The equation can be exactly solved leading to nonlin-
ear oscillations or solitary waves. The seemingly simpler case of linear plasma
of hot electrons and cold ions has no exact solution to an initial-value problem
for linearized Vlasov-Poisson eqations. In Sec.3 of the paper, we present the
exact solution for the response function, but only for one-component electron
plasma with square equilibrium distribution. The solution is a Riemann func-
tion for a wave equation with dispersion. The other exact solution in the case of
the Lorentz equilibrium distribution of electrons is presented and the solution
demonstrates “diffusive transition of oscillations”. The space-time response for
Maxwellian equilibrium is very important but a closed-form solution is still un-
known (e.g., see [4]). The problem is easily analysed by computer calculations.
There is another point of a general nature that deserves mentioning, namely, the
way in which the disturbance propagation behaves. The question arises whether
we are faced with diffusive transition of oscillations or with wave propagation.
We shall especially focus on two distinctive features of the disturbance of the
Maxwellian equilibrium. The first is that a step-density disturbance response is
proportional to the resolvent kernel of our space-time convolution equations,
that is a unique property of Maxwellian electron plasmas. The second feature is
that the resolvent kernel is invariant with respect to the Fourier transform since
the original and its transform are expandable in symmetric Hermite orthogonal
series.

The article is organized as follows. In Sec.2 analytical initial-value and one-
point boundary-value problems of linearized Vlasov -Poisson/Ampere equations
are reduced to equivalent two-dimensional integral equations to demonstrate the
analytical approach to real functions in real space-time as compared with the
Fourier-transform techniques. Section 3 is devoted to the main features of the
integral equations in relation to plasma responses, dispersion relations and a pre-
sentation of exact solutions. Section 4 constitutes the main body of the article and
contains a complete description of the Maxwellian plasma response based on or-
thogonal Hermite series presentations of the response. The computer-calculated
characteristics are discussed on the basis of approximate formulae and compared
with the exact solution of the “square” equilibrium case. Diffusive transition of
resolvent zeros (nodes) is revealed for long time range. The final section contains
the general discussion and conclusions.

2. Convolution equations for electric field, potential, current and charge density

We investigate the Vlasov - Ampere/Poisson system of equations for multicom-
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ponent plasmas, i.e.
G

My

(2.1) [01 + ud, + E(x, /)(')“] Fo(u,z,1) =0, d/ou=a, (Vlasov),

22)  dE+Y g / wFodu=0, 8/0x=0,, 9/dt=28 (Ampere),

23)  c00E-Y qs / Fodum0, Ew=—8,4, (Poisson),

where z, u and ¢ are independent variables of one-dimensional space, velocity
and time, respectively. E = E(z,1), ¢ = ¢(x,t), Fo = Fo(u,z,1), ¢ and m, are
electric field, potential, velocity distribution, charge and mass of a-particles, re-
spectively. In view of (2.1), equations (2.2) and (2.3) are equivalent if appropriate
constrains are applied to initial conditions for F,. We emphasize that in order to
derive the Vlasov equation, one must assume that F, is analytic in its variables.
This assumption of analyticity is reasonable since F, is a physically measurable
quantity, see [5].

Let us assume
(2.4) Fa(u,z,t) = Ny Foo(u) + Fra(u,z,t),

where N, Fo,(u) are the equilibrium particle concentration and velocity distribu-
tion for E = 0, and F,,, is of the order E.
Substituting (2.4) into (2.1), we derive the well-known linear equation

2.5) (O + ud)F1y = —(N§ qa/ma)ED,Foy -
For the initial-value problem

(2.6) Fio(u,z,0) = g,(u, ), 9o,z = +xx) =0
and E(z,t) =0 for ¢t <0

we write the solution of Eq. (2.5)
t
2.7 Fio = ~(:\”6’([(,./11‘1(,)%“(u)/E(.r —uty, t—ty)dty + go(u, z — ut).
0

Substituting into (2.2), we have

00 t
(2.8) OE = Ew% / UFbu(“)] E(x — uty,t — t))dty du
[e] —co O

o0
- Z(%/Eo) / ugo(u,x — ut)du
“ —-00

http://rcin.org.pl
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where w2 = N§¢2/com.,, and changing variables of integration in Eq.(2.8) as
follows: tu = £, t du = d¢, then integrating by parts, we obtain
(2.9) E(e, 1) = / dty / K(@, OF( — &1 — ) dE dty + G(a,1),
0 —00
where

t oo
G(z,t) = — Z(qa/so)/ / uga(u,z — uty) dudty, for ¢t >0,

and

K(z,t) = =Y wZFoa(/1).

More detailed derivation of Eq. (2.9) can be found in [6-8].

It is worth noting that the charge density, electric current and electric potential
satisfy the same equations with the same kernel K(z,t) but with the respective
forcing functions.

In the same way, we can derive the following integral equation, see [7].

(2.10) E(z,t) = /(15 / K(, 1)E(x — &£, — t))dt; + G(z,t)

0
for the one-point boundary value-problem
Fio(u,2,t) =g, (u,t) for z =0, E(z,t)=0 for z <0,
where
K(z,t) = =Y w? [FO(, ( ) FO(,(O)}
and

Zﬁ: E—a/("é—f ('u,i = %) du.

Taking space-Fourier transform of (2.9) one can derive one-dimensional Yol-
terra integral equations for plasma density and plasma in an external electric ield
obtained in [1], where complex space-Fourier components are assumed. Similirly,
time-Fourier transform of (2.10) leads to the planar case of the forced oscillatons
investigated in [1]. We have derived here equations (2.9) and (2.10) analyticlly,
without use of the Fourier - Laplace transform technique. It guarantees analtic-
ity, existence and uniqueness of the solutions.

The existence and uniqueness of an analytic solution of Eq. (2.5) is determned
by ga(u,z) alone. The fact that we are given an independent function g,(t,1)
does not contradict this statement since the solution is not necessarily anaytic
along the characteristic = = ut.
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3. Properties of convolution equations in plasma context

Space-time convolution equations (2.9) can be solved by use of resolvent (re-
ciprocal) kernels R(z,?). We write the solution in the form

t 00

(3.1) E(.r,f)=G(.r,t)+]d!1 / R(z — &, 1 — 11)G(E, 1) dE,
0 -0

where G/(z,t) is a forcing function and R(z,t) satisfies the following resolvent
equation

t [o'<]

(3.2) R(z, 1) = K(:c,t)+/dl, / K(z — £, — 11)R(E, 1y) dE.
0 -0

The last equation describes plasma dynamic response R(z,t) and its functional
dependence of the plasma equilibrium state only. We note that for the infinite
support z € (—oo0,00) of a kernel K(z,t), the resolvent R(x,?) also possesses
the infinite support @ € (—o0,o0). The physical consequence of the property
is that the plasma response to any disturbance, even if with a limited support,
appears immediately in the full space # € (—o0, o). On the ground of Eq. (3.2)
we note, that for K(z,t) = K(r, 1) it follows that R(z,t) = R(z,—t) and for
K(z,t) = K(—z,t) we have R(x,!) = R(—z,t). The property is reversible with
respect to R(z,7) and K(z,1). It is called time reversibility and space reflexivity.

3.1. Dynamic response of Maxwellian plasmas to step-density disturbances

It is obvious, that the resolvent kernel can be considered as a response to the
Dirac-delta disturbances é(¢)é(«) and sometimes the resolvent kernel is misnamed
a Green function.

We show that a step-density disturbance of Maxwellian plasma will now be-
come proportional to the kernel K(xz,?) and according to Eqgs. (3.1) and (3.2), it
leads to plasma response being the resolvent. Considering the electric current
forcing disturbance

(3.3) Gy(z,t) = Jo(z,t) = Z o / ugo(u, x — ut) du

for multi-component plasmas, we have the following step-density disturbance
(3.4) Y ga(u,x) =" AN,Fo, (u)H (),

where I (x) is the Heaviside unit-step function, and
(3.5} Foo (1) = aam % exp(—u?d?), a=e,t,

where (u2) = 1/242.

http://rcin.org.pl
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Roughly speaking, the disturbance can be realized in double- or triple- plama
devices.
According to (3.3), we have

Jo(z,t) = Z G / wFou(u)H (z — ut) du

and by virtue of

(3.6)  uFg,(u) = —F,(u)/2a>,  since  F,(u) ~ exp(—a2u?)

we have .
/ uFo, (u)H (z — ut)du = —(1/2a%)Fy, (%)
and

Jo(z,t) = = Y AaFoa(a/t) ~ — A Foc(2/t),

where A, = ANuqa/Zag. Neglecting the ion contribution to the electron plaima
oscillations in view of the equation

t

J(.r.!)=JQ(:r.I)+/rH] / R(x — €.1— 11)Jo(E, 11) de

0

and Eq. (3.2), we have
Iz, t) ~ (A JwHR(x, 1).

The dynamic response of electron plasmas to the step-density disturbanc: is
proportional to the resolvent R(x, ). It takes place uniquely only for Maxwelian
plasmas because of relation (3.6). In order to obey linearization assumptions, the
step-density AN must be small enough in relation to Ng.

3.2. Exact solutions

The advantage of the integral equation treatment of Vlasov plasmas conssts
in obtaining the solutions separately composed of the forcing function /(:,1)
resulting from the initial value disturbance ¢(u.t), and the resolvent kernel de-
pending only on the plasma equilibrium 5 Fg,(«). It opens up new possibiliies

for computer calculations. One may expect readily available computer progrim,
say for PC, calculating and graphically illustrating resolvents, forcing functpns
and convolutions of these functions for real time and space. First of all, were-
view exact and approximate solutions for resolvent kernels and compare tlem
with numerical results.
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Assuming the hot electron plasma with the so-called “square” electron equi-
librium velocity distribution

Foc(u) = [H(u + a) - H(u — )] /20,

we have
K(z,t) = —w(z,[H(Jr + at) — H(z — nl)] [2a,
and the transforms of the kernel are
K(k;t) = —(w§/ak)sin(kat),
38 2712 2 2
K(k;s) = —wy/(s™ + k%a”).

The resolvent kernel can be readily calculated as follows:

wb : 2 . 12, 231/2

R(k; 1) = —m sin [(“"0 + ko [] -
(3.9) 0

R(k; s) = g

e 32@‘3 + k22’
and
(3 ]0) R(‘l‘ {) — 7(\#'8'/2(1).]0 [w‘()(fz _ ‘,.2/”2)1/2] for 12 > -,1.2/(12‘
0 elsewhere.

The dispersion relation takes the form
D(k;5) = 1 — K(k;8) = (7 + wd + K2a®)/(s? + K2a?) = 0.

Substituting s = —iw and since (1?) = ?/3, we have the well-known Bohm - Gross
dispersion relation, see also [2],

w? ~ Wl + 3(uP)k2
We note, that K(z,t) and R(z, t) are time reversible and z-space reflexive and
the resolvent is an undamped dispersive wave, i.e. the Riemann function of the
following dispersive wave equation
(3.11) (02020 — O + W )R(z.1) = 0.

The asymptotic expansion of the function is

(3.12) R(z, 1) ~ —wo(dn D)~ 2sin(wot + 7/4),  t — oo,

http://rcin.org.pl
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where D = 3(u?)/2wy. It appears that the asymptotic formula is common fr all
resolvents in cases of equilibrium velocity distributions possessing all monemts
and the mean-square velocity being (u?). We do not present here the prcof of
these properties.

The next exact solution known to us is the resolvent for the Lorentz ele:tron
plasma. The equilibrium distribution is

1 A
Fol) = 2 332

where A is a positive parameter. The distribution has some unrealistic feaures,
for instance, infinite mean-square velocity, but many authors consider it :0 be
of interest. A generalized Lorentzian distribution (possessing a finite number of
moments) is useful for modelling plasma with a high-energy tail that typically
occurs in space [9].

We quote results of papers [6, 7] presenting kernels

K(z, f) = _(w»(%/';r) /\/(/\2 + uz)L:r/l s

(3.13)
K(k;t) = —wit exp(—|k| A1),

and resolvents
R(z,t) = —(wo/t)Fo(x/t)sin(wpt),
R(k; 1) = —wo| exp(~|K|A1)] sin(wot).

The resolvent is drastically different from the previous one. It does not exhibit
wave propagation and there is no dispersion relation. We observe a rather “dif-
fusive transition” of oscillations. The amplitude (~!'-Fg(z/t) of oscillations does
obey the Chapman - Kolmogoroff equation (see Eq. (4.12) and [6]). Wave damp-
ing has no meaning, but time reversibility and space reflexivity are preserved.

Let us note that for the kernels

K(z,t) = —wi(t/4n D)% exp(—z?/4D1),

(3.14)

(3.15)
R(z,t) = —wo(4r DI)™'/2| exp(—2?/4D1)| sin(wot),

Equation (3.2) is satisfied. The example exhibits a pure diffusive transition of
oscillations. However there is no equilibrium velocity distribution Fo(u), which
could be regained from the kernel (3.15), and there is no time reversibility.

4. Maxwellian plasmas

Maxwellian equilibrium distribution (3.5) is considered to be most appropriate
but analytically almost intractable. In this section, Maxwellian plasmas are anal-
ysed by means of approximate formulae and computer diagram presentations.
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For numerical calculations we introduce dimensionless variables, based on
the following characteristic quantities; wy = 27 fy [1/s]-plasma frequency, (u?) =
1/2a* [m?/s*]-square of thermal velocity, A\p = 2r/kp = 2r(u?)/wy [m]-Debye
length.

We scale the independent and dependent variables as follows:

X = kpz = 2xz/Ap [r], T = wyt [7], K =k/kp, =1/f,
K(X,T) = (1/a)K(z,1), R = (1/a)R(z,1).

Before commenting on the computer plots we would like to remind the reader
that the amplitudes of all physical quantities are arbitrary, as in all linear theories.
Following [7], we may write

(4.1) R(k;1) ~ —wgsin(wo(1 + 3k%/4a%wd)) exp(—sp (k)t),  k — 0,

where s, (k) is the Landau damping [10] and by virtue of the method of stationary
phase, the asymptotic expansion takes the form

(4.2) R(z,1) ~ —wo(dr Dt) Y 2sin(wot + 7/4)  for t — oo

and D = 3/4awy = 3(u?)/2u. We observe that the Landau damping has no
influence on the asymptotic formula (4.2) since s, (k) and all its derivatives dis-
appear as & — 0 and, according to stationary phase method, it does not appear
in Eq. (4.2), which is identical with that of undamped waves (3.12). "

According to our numerical results, the effect of Landau damping is insignifi-
cant up to i’ = 0.2 but for &' = 0.25 the damping rate reduces the amplitude
of R(A',T") to approximately one half for each 507y-interval, so that for 1507,
the amplitude is smaller a little less than 8 times. In the case of &' = 0.3 the
damping rate is drastically increased and the amplitude decreases 50, 70 and 90
times for the succesive intervals of 507, that is about 3:10° times for the whole
1507y interval.

The properties of the damping phenomena of the resolvent F-transforms are
summarized in Fig. 1. It refers to the behaviour of the resolvent as a function of
K for fixed values of dimensionless 7'. We observe that in the vicinity of A" = 0.2,
a rapid increase of the damping rate starts. The distributions of zeros (nodes) of
R(K,T)is in general agreement with the approximate formula (see Eq. (4.1)). The
last feature should be emphasized as it also takes place for R(z, 1), see formula
(4.9). For comparison, the resolvent R(/\", T') of the undamped dispersive wave,
Eq. (3.9). is shown in Fig. 2.

Figures 3 and 4 refer to the behaviour of the Maxwellian resolvent R(X,T)
versus time T for fixed values of dimensionless .X'. To comment on the diagrams
we recall Eq. (3.15). According to the graphs of Figs.3 and 4, we do not observe
the wave fronts, which could be distinguished like in Fig.5, where the R(X, T of
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F1G. 3. Resolvent kernels of Maxwellian plasma R(X',7) vs T' for X = 57, 107, and 15x.

“square” equilibrium is exhibited. However, there are two characteristic features
of the Maxwellian resolvent profiles. The time period is slightly less than the
electron plasma period 7 at the begining of time scale, but later on is equal to
the period with computed accuracy. The second feature is that the profiles of
amplitude envelopes behave according to the Gaussian distribution, that is like
A, T2 exp(-B./T), where A, and B, are constant values for fixed values of

X. These features are in agreement with the formula (3.15).

To discuss the remaining diagrams we need to use the formulae, which could
explain the R(.\', 7") characteristics versus X for fixed values of 7},. One can note
the striking resemblance between the R(N,7) and R(X,7") characteristics for

fixed values of 7),.
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F1G. 4. Resolvent kernels of Maxwellian plasma R(.X,7) vs 7' for X = 20x, 307, and 40~.

The Maxwellian kernel can be expanded in the following Taylor series
(43) Kz -€) = K(z) + EK'(x) + (E2/2D)K" () + . Z (€ /1HKO ().

We note, that
K(z) = —wdar~ Y2 Ho(Z) exp(—2Z?),
KM (z) = —wdar 2 H|(Z) exp(-2?),
where Z = az/t and Hermite polynomials //;(7) are determined by the formula

2

N T ld.r?'d_'[ -
Hi(z) = (-1)e pr A

http://rcin.org.pl
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F1G. 5. Resolvent kernels for “square” velocity equilibrium; R(X, 7)) = —0.5.!0((’.'(“2 - XHi?y
vs T for X = 107 and 157.

Substituting (4.3) into Eq. (3.1), we have

o0

@4)  R(n.t) = —wBar 12[(-1 s

n=0

(2n)' j?‘zn(t -1 (%)271

x Han(Z1)e™ % a’tlJ ,

where

Zy = ax/ty,

o e]

ra(l) = /.rZ"R(;r,t)dz,

-0
(o] o0

/a"”R(.r,t)a’;r /J:mK(.r.!)d;v =0 forodd m.

—0co —-00

Equations determining 72,,(¢) can be derived by multiplying Eq.(3.2) by 22" and
integrating it with respect to z. The first two solutions are

ro(t) = —wy sin(wyt), r2(1) = —2wo D [sin(wyt) — wol cos(wot)] .
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The Fourier transform of Eq.(3.2) takes the form
t
(4.5) R(k; 1) = K(k, 1) + / K(k,t — t))R(k;ty)dty
0

where
K(k;t) = —witexp(—p?t?), p? = k?/4d?,

and proceeding like in the previous case, i.e substituting the Taylor series for
K(k;t — t;) into Eq. (4.5), we obtain

o0

t
(4.6) R(k;t) = —wi |:fc—ng2+ (2}—’)'/@”(1 = 1) (%) by Han(pty)e P tid 1].
7L=0 '

0

Equations (4.4) and (4.6) are symmetric and invariant with respect to ‘he
Fourier transform, due to the Hermite function properties. The following charzes
of variables lead from R(k;t) to R(z,t) and conversely,

te_’)ztzilzn(p{) — ((t/:frl/z)(f_zszz,,(Z),

(4.7

¢ g2, 2

€ — ie :
<172

From relation (4.5) it is evident that (k. t)/p is a function of pt only for a fized
value of w?/p?, and this property was also exhibited by the numerically calculaed
plots in [1]. The property of (4.7) will be exploited to derive an approximate
formula for R(z,t) by use of an approximate expression for R(&; (). By virtue of
the dispersion relation

w? ~ (1 + 6p2fwh + 60p* /oy + ..., p—0
and following the derivation of Eq. (4.1), we have
(4.8)  R(k;t) ~ woe™*t®sin(de? + 6p*° + 60p*? /uftHV? for p—0,

where sy (k) is a damping coefficient.
In view of the symmetry (4.7) we may expect the following approximate or-
mula

(4.9)  R(z,1) ~ —(woa/x?)e T D sin(wpt(1 + 6 X2+ .02 for ¢ —x,

where X = za/wot? and j3(z,t) is a damping rate. Analytical expression ‘or
fA(x,t) is not known.

Analyzing Figs.6 and 7, we note that for X = 0 and fixed 7,, = 307, 5,
1007, 2007 and 3007, the amplitudes behave according to the asymptotic relaton
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F1G. 6. Maxwellian plasma resolvent kernels R(X, T) vs X for T' = 1007, 200x, and 300~.

(4.2), that is R, ~ el sin(7}, + = /4) where (' is a constant. We conclude that

for T,, > 307 and X small enough, the Maxwellian resolvent behaves qualitatively
in accordance with the formula (4.9).

The characteristic feature of the curves in Figs. 68 is a distribution of resol-
vent zeros (nodes) for fixed time 7" and = > 0 according to (4.9). First of all we
can not find such values of T' that R(z,T) is zero for all z, 2 € (—o0,o0), as in
the case of diffusive transitions of oscillations (see Eq.(3.14) and (3.15)), where
R(z,wot = mr) = 0 for z € (-0, 0).
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FiG. 7. Maxwellian plasma resolvent kernels R(X, 7") vs X for 7" = 20w, 30x, and 50x.

Also, a wave front is not marked contrary to the case of square equilibrum,
see Fig.9. The rate of spatial damping of the signal versus X is high for shater
times, i.e. T, = 7, 67, 9 1/67 and 20, Figs. 7, 8. For T,, = 507, 1007, 2007 and
300 the rate of damping is nearly linear.

In the case of a dispersive wave, Eq. (3.10), the wave front propagates witl ve-
locity o but zeros are subject to dispersion and travel with the following velociies:
vm = dz/dt = a(l — k2, Jwit?)~V/2, where Jo(k,,) = 0 and for (k. /wot)? > 1,
R(z,t)=0. In the case of Maxwellian plasmas, v,, =~ (mr /a)(6(1-w3t?/m?x?)) /2

http://rcin.org.pl
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F1G. 8. Maxwellian plasma resolvent kernels R(X, 7)) vs X for T' = x, 6x, and 9 1/6x.

according to Eq. (4.9), which is an asymptotic relation for wyt/m7r > 1, hence
vy, are purely imaginary.
By use of Eq. (4.9), we may write
wol(1 + 622a2 JwdtY/? ~ wot + 322a? Juwgt®.
If 62%a?/w}t* < 1 and denoting X? = 62%a%/1?, T = wyt, the equation

sin(7 + (1/2)X%/T) =0

http://rcin.org.pl
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FiG. 9. Resolvent kernel for “square” velocity equilibrium; R(X, T) = —0.5J,((T? — X)"?)
vs X for T'= 107 and 15x.

must be satisfied. According to computer calculations, at least in the rang: 7}, =
1007 =+ 3007, we have

o . = 2 d,, ~ 7+ 3mr, e =0,1; 2

“Am,r

hence, we may write

r2 2
A myn+1l ‘\‘m.n
7 T & 2y, ,
Fn+1 - In

(4.10)
'\—31,11/'\'vznm+1 = Trl/,rn-#] .

We conclude, that the m-th zero (node) of the resolvent is moving aling the
X -axis in accordance with the law of diffusive transition. We note that th: m-th
zero is related to the m-th diffusive constant, d,, = m + 3mr.

Finally, we emphasize the fundamental difference between a diffusive transi-
tion of oscillations and wave propagation, both being based on our conwlution
equations, which uniquely transform the kernel K(x.t) into the respective resol-
vent R(z, ().

If we assume the solution in the form

R(z,t) = —wpo(x, )sin(wot),
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where
o0

/g(.r,l)r[.r =1,

-0

then Eq. (3.2) takes the form

t

@11)  Fola,0) - to(z,1) = ug]dil(t — 1) sin(woly)
0

7 Folz — 21,0 — t
X [/g(:rl,tl) o : l)dxl—g(az,t) ,

t— 1

— 00

where K(z,t) = —wiFo(z, 1),
t
sin(wot) = wot — wﬁ/(: — 1) sin(wolr) dt .
0

If o(z,t) = (1/t)Fo(x, 1), then the resolvent equation implies the following Chap-
man - Kolmogoroff equation

o0

(4.12) / o(x — xy,t — t))o(xy, ) dxy = o(a,t)
and
(4.13) /.1'20(.1'.1)(1.1‘ = 2Dt.

The equation (4.12) possesses a unique solution (see Eq.(3.15)). When the in-
tegral (4.13) does not exist (e.g. unlimited energy), then Eq.(4.12) can possess
different solutions, (see Eq.(3.13) and (3.14)). The wave propagation can be de-
rived by reduction of Eq.(3.2) to a wave equation, (see Eq.(3.11)). The case
of Maxwellian equilibrium cannot be reduced neither to Chapman - Kolmogoroff
equation or the wave equation.

However, as numerical calculations indicate, there is a set of values (z,, ;)
for which the resolvent R(z, ) comes to nodes and they travel along the z-axis ac-
cording to the diffusive law, see Eq. (4.10). Moreover, on the basis of the Eq. (3.2),
an approximate dispersion relation can be derived and an approximate wave equa-
tion can be regained, (see Eq.(3.11)).

http://rcin.org.pl
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5. Discussion and conclusions

In this article we have studied space-time responses of linearized Vlasw plas-
mas on the basis of multiple integral convolution equations. An initial-valu: prob-
lem for Vlasov - Poisson/Ampere equations can be reduced to the integra equa-
tion and the solution to the problem is expressed in terms of a forcing finction
G(z,t) and its convolution with a resolvent kernel R(z,t) (see Eq.(3.1). The
forcing function is responsible for the initial disturbance and the resolven is re-
sponsible for an equilibrium velocity distribution, see Eq. (3.2). Resolventkernel
equations (3.2) are eligible for computer calculations.

We have presented three types of exact analytical solutions of the spac-time
resolvent equations. The solutions can be classified following the space-tine be-
haviour. The first one is a dispersive wave solution (Riemann function) in tie case
of the simplified electron plasma equilibrium, called “square equilibrium”™ Then
the resolvent equation (3.2) can be reduced to dispersion wave equation axd the
Bohm - Gross dispersion relation is satisfied. The second one is calculated or the
Lorentz equilibrium of electron plasmas. We call this type of space-time betaviour
“diffusive transition of oscillations” since the space-time amplitude of oscilations
satisfies the Chapman - Kolmogoroff equation and there is no wave spe:d and
no dispersion relation. On the ground of the two types of resolvent kernds, the
solution to an initial-value problem of Vlasov - Poisson/Ampere equations :an be
determined if the respective forcing function is known. The last type of th: exact
solution of Eq. (3.2) is also a diffusive transition of oscillations with the amnlitude
being a Gaussian function (3.15). This example is not exactly applicable to lin-
earized plasma equations since it has not been derived from any equilibriun, but
it turns out that the resolvent approximates the Maxwellian plasma behavieur for
fixed z and long time ¢ according to (3.15) and due to the computer calalated
results, Figs.3 and 4. By use of the resolvent equation (3.2) one can easily prove
the time-reversibility as well as the space-reflexivity for a given plasma kenel.

The main results of this paper concern the Maxwellian plasmas havig the
properties which can be summarized as follows. The nature of the plasna re-
sponse is a compound of a diffusive transition, being essentially a plasm: oscil-
lation mode with the wy - plasma frequency and the Gaussian type of amjlitude
profiles, and a damped dispersive wave mode. Differentiation of these twc prop-
erties is not an easy task and we have not a ready conclusion but it seens that
the Maxwellian plasma response exhibits mainly diffusive transition in spice for
fixed values of time in a long time range, and damped wave behaviour fo' fixed
values of z with respect to time /. We note that the plasma response apears
immediately in the whole space of z, and the zeros (nodes) travel accordng to
(4.10) at least for long times. The step-density disturbance of electron Maxvellian
plasmas appears to be the electric current forcing function, which is propotional
to Maxwellian plasma kernel, hence the resolvent kernel is a plasma reponse
to the step-density disturbance. It is noteworthy that the solitary plasma waves

http://rcin.org.pl
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can be excited experimentally by strong step-density disturbances in ion-electron
plasmas.

By inspecting the series representing the resolvent and its Fourier transform,

Egs.(4.4) and (4.6), we found the symmetry property with respect to Fourier
transforms. It can be used for constructing approximate formulae of R(z, t) if the
approximate expressions of their Fourier transforms are known, and vice versa.
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On double waves and wave-wave interaction in gasdynamics

Z. PERADZYNSKI (WARSZAWA)

SPECIAL CLASSES of potential isentropic nonstationary flows in two space dimensions are considered.
We demonstrate that locally these solutions can be understood as resulting from what we call elastic
interaction (since no other waves are produced) of two Riemann waves (simple waves). It appears
that this is a generic property of interactions of sound modes in gasdynamics. That is, two nonlinear
(localised) sound waves propagating at any angle can cross each other without producing new waves
— similarly as it happens in one space dimension.

1. Introduction

In THIS PAPER we deal with certain classes of isentropic nonstationary flows of an
ideal compressible fluid. Each of these classes depends on two arbitrary functions
of one variable and may be obtained as a solution of a certain specialized system
of two hyperbolic equations with two dependent and two independent variables.
We call them hyperbolic double waves or, for short, double waves. It appears that
they can be understood as resulting from the special type of interaction of two
simple waves. This interaction can be called elastic since collision of two waves
leads also to two waves, in contrast to the case of nonelastic interaction [18,
19]. This idea can be clearly explained in the case of one space dimension. One
can take two localised perturbations in the form of two simple waves which are
approaching each other. Then they begin to interact. Depending on the nature
of the waves, different scenarios are possible:

1. In spite of nonlinear interaction, the waves can cross the region of interac-
tion, the state of rest being there restored.

2. Due to nonlinear interaction, certain new disturbances are produced. This
happens, for instance, when a sound wave is interacting with an entropy wave
[18, 20].

In the Case 1 one can speak of elastic interaction. In a similar way, one can
speak of elastic interaction in the case of waves crossing each other at a certain
angle in many spatial dimensions. In this case one should restrict the considera-
tions to the domain of determinacy of the solution. This will be explained later
in Sec. 6.

Although this subject has a long history starting from Riemann (1858) [22,
5,9, 23, 3, 4, 21, 12, 19, 20, 24, 6, 10, 11], it is still far from being exhausted.
Like solitons, it contributes to the understanding of nonlinear phenomena. The
most complete analysis of mathematical properties of such solutions, as well as
the general theory of k-waves, is contained in [19]. A considerable part of this
results can be found also in [20]. In this paper we present a simplified version of
the theory, with application to nonstationary gasdynamics.



1070 Z. PERADIYNSKI

In Sec. 2 we define the Riemann (simple) waves and then the hyperbolic ouble
waves for a general quasilinear system of the first order and derive the conditions
of their existence. Section 3 contains the application of theory of Sec.2 o the
equations of nonstationary two-dimensional flows in gas-dynamics. We coifined
ourselves to the case of nonstationary two-dimensional flows, although, as t may
be proved, a similar analysis can be made for three-dimensional flows. Hiving,
however, a three-dimensional hodograph space (as there is for two-dimeniional
nonstationary or three-dimensional stationary flows) makes it possible to ¢btain
a single equation i.e. Eq. (3.8) describing hodographs of double waves. In {ecs. 4
and 5 specific classes of such hodographs and the corresponding double vaves
are considered. Then in Sec. 6 we discuss, in general, the interaction problen for
sound modes in gasdynamics. We demonstrate there that for sufficiently small
amplitudes (in order not to enter the elliptic region of Eq. (3.8) or Eq.(6.1), the
waves are subjected to an elastic interaction described by double waves.

Similar considerations can be performed for stationary supersonic flows Also
by using imaginary characteristic elements, one can generalize this procdure
[19, 20] to the elliptic (or mixed) case of stationary supersonic (transonic) flows.
Then one can prove that these generalized double waves can represent flows
past three-dimensional profiles which are developable surfaces. This miy be
useful in searching for 3-D-developable airfoils, similarly as it was done n the
two-dimensional case [1, 2, 8].

2. Simple and double waves
Let us consider a nonlinear system of PDE’s

(2.1) aj"(u)uf:r,/=0. vl g F=1,..l, sl .m

A solution u(+) : 2 — R', 2 € R", of system (2.1) is of the simple wav:-type
if and only if the Jacobi matrix du = (u/,.+ ) is of rank 1 in £2.

Let us note that any / x n matrix of rank 1 can be represented as Y@ A = (-7),),
j=1,...,L,v=1,....,n If y® A satisfies

(2.2) a?’(u)y’ A, =0,

then one speaks of the polarization vector v € R' and the wave vector (or char-
acteristic covector) A € R". The matrix v ® A satisfying (2.2) will be calld the
characteristic element at u. There are solutions of (2.1) associated with ciarac-
teristic elements. These solutions, called simple waves (or Riemann waves), can
be constructed by taking any parameterized C'' curve u = f(R), R € (¢b) in

R' and such that for every Ry € (a.b), the tangent vector v := d(_Rf“{:"' is a
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polarization vector at ug = f(Rg). Let A(R) be the field of the corresponding
wave vectors defined over this curve, i.e.

(SR YV (RM(R) =0,  Re (a,b).
Then one implicitly defines a class of local simple wave-type solutions
(2.3) uv=f(R), R=g¢M\a"),

where ¢ : R' — (a,b) is an arbitrary C'! function. One can also easily verify that
the equations

(2.4) A(R)( =y (R)) =0,  u= f(R)

define a simple wave solution in some neighbourhood of the curve z = y(R),
which takes values f(R) at this curve, provided )‘"% #0.If AA Mg # 0, then
the limiting case v = f(R) and A, (R)(z" — :g”) = 0 also defines a simple wave.

Similarly, any solution u(+) : 2 — R’ is of a hyperbolic double wave-type if
for every = € (2, du(z) is a sum of two characteristic elements

1 2
(2.5) du=7@A+7®A
1 2

1 2
with linearly independent v, v and A, A. Thus rank du = 2, and the range u(12)
1 2

of u(+) is a two-dimensional surface in R'. The plane tangent to u(f2) at u(z) is
spanned by v, 7. As is known from differential geometry, given a two-dimensional

1 2
surface with two independent vector fields v, 7 defined on it, there exists a local
1 2
system of coordinates on the surface, whose lines are tangent to v, 7. In other
1 2

words, there exists a local parameterization u = f(R!, R?) of the surface, such

that
of af
26) R~ e~V

Therefore the double wave solution can be sought in the form u= f(R!(z), R*(z)).
Inserting u = f(R', R?) into Eq.(2.5) one comes to the conclusion that the func-
tions R' = R!(z), R? = R?(z) satisfy

i 2
(2.7) dR' = E'()MR', RY),  dR® = 2 (2)A(R', R?)
for some functions £ (z) and ¢2(z). Here /{ A are the wave vectors corresponding

to the polarization vectors v, v, respectively.
1 2

http://rcin.org.pl
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The construction of double wave solutions is, however, much more involved
than the one for simple waves. Since, in general, system (2.7) is overdetermined
(2n equations for four unknown functions R', k2, ¢!, €?), it can have no solu-
tions of rank 2. For this reason, not every two-dimensional surface parameterized
according to (2.6) is in the range of a double wave solution. Additional restric-
tions which follow from the compatibility conditions of Egs.(2.7) must be im-
posed. They require [15, 16, 20] the existence of functions al(R!, R?), a}(R!, R?),
BI(RY, R?), B}(R', R*) such that

1

1 2 1 1 2 2 1 2 2
(2.8) g2 = A+ B, A =01 + 1A

The above conditions are equivalent to

(r) s

(2.9) A= XAMAA, =0, rs=1,2,

where A denotes an exterior product [7] and no summation over r is performed.
If (2.8) is satisfied, then Egs. (2.7) are compatible (involutive) and their general
solution depends on two arbitrary functions of one variable [15, 16, 20]. In order to
obtain a solution of Egs. (2.7) several approaches may be applied. From the form
of Egs. (2.7) we see that the solution is constant over certain linear manifolds M,

0

of dimension (n — 2) (n is the dimension of the configuration space of z!,..., z"
variables). M, is given by the following equations for z
0

,{L,(f(u'(.ﬁ), 1{2(.(1'-)))(.,-“ ~z") =0,
iu(f(n‘(ﬁ). 1{2(.:;))) (" -z")=0, =z= (z!,...,: ™).

0 0 0
Therefore, at the beginning of the solution we may confine our attention to
a two-dimensional plane in the configuration space, which has the property of
intersecting each M, at only one point. Suppose that the plane z!, 2 has this
0

property. In such a case system (2.7) may be restricted to the plane z!, 22, to
obtain

1 2
(2.10) B o=, B, =Pk, =132

Eliminating the variables ¢!, ¢ we reduce Eq.(2.10) to the following hyperbolic
system

(2.11) (R BB, =0, CHR. BHR L, =0, s=12

2 2 1 1
where ('} = (A2, —Ay), C2 = (A2, —Ay) are “tangent characteristic vectors” for
system (2.11). This system can be treated by the method of characteristics.
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Another possibility is to apply the hodograph transformation which converts
Eq.(2.11) into a linear system. Indeed, multiplying Egs. (2.10) by dz*/dR? and
by da*/OR' respectively, we obtain a linear homogeneous system in ', R?

AR, 1‘.’2 — = NU(R, R =
which is equivalent to the previous one for nondegenerate solutions (rank
1RS| = 2).

Another approach can be also applied in which system (2.7) is also reduced
to a linear hyperbolic system. This approach may sometimes be useful. Assummg
that (R, R?), o«3(RY, R?), BA(R', R?), 33(R', R?) are the coefficients appearing
in conditions (2.8), we have

THEOREM 1. If ¥, ¥ is a solution of the linear equations

(2.12) Pl =adp? 4+ 81y, WP =afe! + B2y

'R2 'R1

then the implicit formulae

1 2
(2.13) VR, R?) = A (R RP2Y,  A(RY, R?) = A\, (R!, R})z",
define a solution of Eqs. (2.1) in some neighbourhood of (.r . lf b R %) provided that

(l/l-A,,J Y), a0 # 0 and (47 Y x¥),0 #0at (. lf‘ 1?2)sunsfymg (2.13).

Indeed, by differentiating the implicit formulae (2.13) we see that the gradient

of R', R? is proportional to /{(R‘. R%), A(R', R?), respectively.

Formulae (2.13) constitute an interesting generalization of a similar formula
(Eq.(2.3)) for simple waves. Let us note that Egs. (2.13) have always the trivial
solution ¢; = ¥»» = 0 which by Eqgs. (2.13) defines a certain double wave (gener-
alization of formula (2.4)). Theorem 1 can be generalized in an obvious way for
k-waves by replacing indices 1 and 2 with o, 4 = 1,...,k, a # 3. Then the gen-
eral solution depends on A-functions of one variable, e.g. defining the problem
of waves entering the interaction (the formulation of the theorem in [10, 11] is
erroneous).

In principle one can start from two independent characteristic elements in
Eq.(2.5) expressed as some functions of . Then the Frobenius theorem tells us
that for any given point ug, there exists a two-dimensional surface passing through

ug and tangent at each of its points to the vector fields v, v if and only if
1 2

[?‘Z} € Lin{*l,'.ﬁz'},

http://rcin.org.pl
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where [X,Y] = .X'ii)" - Y";X is the commutator of the vector fields X, Y
u' ut

and Lin{X,Y} denotes the linear combination of X, Y. In such a case differen-
tiation with respect to R', R? in Egs.(2.8) must be replaced by differentiation
1 1

d i
along 17 €8 8R2/\ s A
Now we will demonstrate that the solution of Eq.(2.5) can be interpreted locally
as resulting from the interaction of two localised Riemann waves, in the sense that
one wave is propagating across the other. By “localised” we mean here that the first
derivative of ¢ in (2.3) is localised.

The level sets R!(z) = const and R? = const can be thought of as constant
phase surfaces of the first and second wave, respectively. Since they are solutions

Z
of the Pfaff forms )I\,,dzv” = 0 and A,dz¥ = 0 respectively, they are orthogonal

to their wave vectors, )1« or j For an unperturbed Riemann wave such a surface
is a hyperplane. In general, however, the mutual interaction expressed in the
nonlinearity of system (2.5) leads to local changes of the wave vectors. For brevity,
in the following we confine our attention to the two-dimensional case, when the
level sets of R! and R? define two families of curves which are characteristic
curves of Eq.(2.5). In case of three dimensions ¢, !, z? one can think of the

picture at any constant ¢.
\\\\ ”’,// "// //

\ \.\. ‘\\C i /// / //

3 /
\ \ /< / // f
\ N / /
\ INCo s N / /
N X X A/
B X N\ NS YD
- = \\\ X X IR
} PN /
- \ 7R ~
<1 i g > } ™~ \\‘
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e P \\\
. / A N
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/ "\
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Now, suppose a solution of Eq. (2.5) of rank 2 is given in a region {2 containing
a point zg. Consider a neighbourhood of the point x5 bounded by a curvilinear
quadrangle A, B, C, D (Fig. 1), the sides of which are characteristic curves (i.e.

these curves are perpendicular to /{ and )2\, respectively). By what we call the
circumvention procedure, we construct a new solution which takes the same values
as the former one in the quadrangle (including its sides). Outside it we extend
the solution in the following way: first we prolong any characteristics contained in
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ABCD by a straight half-line keeping the direction of the characteristic (Fig. 2).
On this line we define the solution u to be a constant equal to the value it takes
at the point where the line crosses the side of the quadrangle.

In the remaining domains which are the interiors of the four angles with the
vertices A, B,C, D we put u equal to u(A), u(B), u(C), u(D), respectively. This
procedure defines, in a certain neighbourhood of the quadrangle, a Lipschitz
continuous mapping which is also differentiable in this neighbourhood, perhaps
with the exception of characteristic curves passing through any of the points
A, B,C, D.In this way weak discontinuity of a solution may occur. This mapping is
the new solution of Eq. (2.5) which represents two interacting localized Riemann
waves. The interior of the quadrangle is a domain of interaction, and outside
it, by construction, the mapping is either a constant or is constant on the lines
orthogonal to the respective wave vector A, thus assuring that it is a Riemann
wave-type solution.

3. The hodograph problem

We will consider equations of plane nonstationary isentropic flows [5, 13]

i~ 1
(0 +u-V)a+ =

adivu = 0,
(3.1)
(h +u-Viu+

K_laVa=0,

http://rcin.org.pl
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where u = (u!',4?), V = (0,,9,), a is the sound speed, a®> = dp/dp and & is
the isentropy exponent, 1 < £ < 3. The number of equations is equal to three,
as is the number of unknown functions «a, u', u? or the number of independent
variables ¢, 2!, z2.

According to Eq. (2.2), the characteristic directions are

1) = (N;l’ el 62) — A= ((u]y)), e, —e?),

2) v = (0, 6’1, 6’2) — A= (utl 2 uzel, —ez, el),

=2
|

(32)

where (u|y) = [2/(k —1)]ay? + uly! + u?4? and e = (¢!, ¢?) is a two-dimensional
unit vector [17]. Similarly to three-dimensional flows [17], the first type of simple
elements generates potential flows (sound modes) and this case will be considered
here. Note that the characteristic vector A for the potential elements can be
represented as a linear function of v

A =Py,
where B
1 wl,  u?
H—
P=\"9 _1. 0
0 0, -1

i
Let us denote [, := v )—f for snmpllcny The exterior product of three vectors

in three-dimensional space ¢, 2!, 2? may be identified with the determinant, so that
A= AAAAR, = [)\‘|)’§])E\_W] S []P’7 | Py |IF’,77J,

where [a | 5| 7] = det||a, 5,7]|.
By a well-known transformation property of determinants [Pa | P3| Py] =
det P[«, 3, 7], we can write the conditions of involutions (2.9) Af = 0 as follows

2
A:=<z|z>'h':Hff]+m“[z'lzlzw}“" A

4

or

(3.3) Ap=(y x7)(aly |7)+

an = 0,
=1 &

g

where the dot denotes the scalar product.
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Suppose that the hodograph surface which will be denoted by G2 is described
by a Cl-function F(a,u',u*) = 0, with a nonvanishing gradient. The gradient
V.F = (F,, F,F,) is orthogonal to the surface (;* and therefore it must be

proportional to the vector product 7 x v of vectors 7,y which are tangent to
2

1 1 2
G2. Using this fact, we substitute V,, /' for ¥ x 5 in Eq.(3.3) to obtain
1 2

/ 2 ,
G4) A= ()Pt —50Fn () ) =0, sEn a=dl j=0,1.2

r

On the other hand, differentiation of a self-evident relation F v’ = 0 with
respect to u' and multiplication by ¢ yields

EiLJ(‘Zj ) = _F.u‘ul ‘Z [sz!

=2

which allows us to transform Eq. (3.4) to the following symmetric form
's : 2 ioyd
.'_‘.’. = (‘z ‘7)},1 - ﬁ”F,U'UJI ’,) &
Therefore, the set of conditions (3.4) is reduced to the following one
2

(35) (7 |Af )F,u =S a ['7‘.“11,-7 ]'}1 = 0.
12 k—1 1 2

In accordance with 1) of (3.2) we can assume
7 = (N = cos sin )
i - 2 3 ‘193, S—’s .

Then we have (7 |7) = (k — 1)/2 + cos 26, where § = ¢ — ¢ and the vectors 7,
1 2 1

v can be obtained from the relations
2

(3.6) F'+ Fay' + Fay?=0.

Further on, cos2é may be expressed by the derivatives of /' to obtain

I? k—1)\2
2 ¢ a
3.7) cof'b = g ( . )

from which it follows that in order to have a real 4, we must satisfy the following

inequality
2 2
2 2 4 2
e (H_ 1) (FZ + FZ).
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Introducing @ = [2/(k — 1)]a in Eq.(3.5) and expressing F,.,,7'y’ in terms of
derivatives of /', we arrive at the following, rather complicated, equation whch
must be satisfied on surface G2

k-3 2F? 2F;
8) (2 +F3+F3)n—1

. ]
—a (F,m + 2(Fuu -

F? . Fiy
Mm+m+ﬂfz7ﬁ
1 Fuu + Fyy s 5 2
2 2+ 12 (272 - FI- E})

2F;
+ i Pt FiF)) =0

where u, v denote u!, u?

By specialization F' = ¢(a) — f(u,v) we may remove the terms involving
the derivatives F;, and Fj,. This form of F' can be assumed without much
loss of generality. As follows from the Sard theorem [14], such a representa-
tion of F' can cease to hold only on a set of measure zero. A particular cise

1
F = y(a) - i(u2 + %), leads to rotational hodograph surfaces, described by or-
dinary differential equations

k=3 ¢\ 2o . w'z
| — —aly"'——+1]=0.
(3.9) ( > 3 7 ) — (l, ” 0

Here “'” denotes differentiation with respect to a. The solution of Egs.(2.9)
depends on two arbitrary constants both of which have a physical meaning, i.e.
they cannot be retransformed by Galilean transformation. Therefore both con-
stants determine the shape of the rotational surface. It may be checked that the
functions

i o

a) w(a)z%a‘?, and  b) y»(a)z_";hz

are the particular solutions of Egs. (3.9). Both solutions lead to hodographs wtich
are the quadratic surfaces:

1 . . i s ;
a. =a*—u*—1v?>=0- the hodograph is a cone; its equation in variatles

2
a\/i)2 ,

a, u, v takes the form ( — u? = v?* = 0. From relation (3.7) we have

'.\‘ _—
cos?§ = 1/2; we can put 6 = /4 since other cases provide nothing new.
b.

H —
expresses Bernoulli’s law. Therefore, solutions associated with such hodogranhs
are the well known two-dimensional stationary hypersonic flows (if u? + v? > :2).

a? + u® + v* = ¢ — describes a family of ellipsoids and physically

http://rcin.org.pl
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4. Flows with constant Mach number

We direct our attention to the conical hodograph surface (Case a). The curves
tangent to v and v are spirals and their projections on the (u,v)-plane are

1 2
logarithmic spirals. In the parametrical form with parameters ¢, o, the cone may
be represented by the following expressions

Kk—1
75 o

The mentioned spirals on the cone are given by Egs. (4.1) with an additional
relation between p and ¢

(4.1) a= U= pCosy, v = psin .

(4.2) 0= (:cot5(¢+2R2),
with constant R? on the curves of the first family; or
(43) 0= P COtﬁ(np—ZHl)
with constant R! on the spirals of the second family.
By eliminating o and ¢ from relations (4.2) and (4.3) we may take R', R?
as the coordinates. Thus, remembering that cot § = 1, p, ¢ become functions

of R', R?

(4.4) o= R+RY = pl_p?

] . ;
Since v ~ a—R—s(a, u, v) then, utilizing Eqgs. (4.1), (4.4) and (3.2), we arrive at the
characteristic elements (y corresponds to — and 7 to +)
1 2

- (5 wnw) sn2).
(0 -on(o73). - (o)

1 2
and the vector o ~ A x A. As we know from Sec. 1, the solution is constant along

7>
1

S 2

1
A

?

1 2 1 2
the directions o orthogonal to A, A. Thus ¢ = A x A = (1,kpcosp, kosing) =
(1, ku, xv). By using this property, the Pfaff equations (3.8) which in this case
take the form

f oo o1 5 - _ 1 o % 2
dR £ (\/igdt cos (tp 4)(11 sin (cp 4)(13),

dR? = £2 (\%g dt — cos (ap + %) dz' — sin (cp + %) dzz)

(4.5)
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can be restricted to the plane ¢ = const. Then their solution R}(z!, 2?), R3(z', 2?)
may be extended to a certain neighborhood of the plane ¢ = const in such a way
that this extended solution is constant along the straight lines defined in each
point (0,z!,2%) by the vector o(R' (2!, 2?), R*(2!, z?)). Let us note that o is
never parallel to the (z!,z?)-plane. Putting ¢t = 0 and eliminating ¢!, £? from
Eqgs. (4.5) we arrive at an equivalent hyperbolic system

m T

(4.6) R(l,‘rl = Ré,.rl cot (Rg, - Rg’; - Z)’ R%J, = ]{5_1_2 cot (]g(lj _ ]g% 4 Z)’

which is treatable by the method of characteristics. In the case of nondegenerate
solutions of Egs. (4.6) one can also apply the hodograph transformation which,
by exchanging the role of dependent and independent variables, leads to the
following linear system

2'p2 cos (R‘ - R? - %) + 2%, sin (1?‘ —R® - %) =0,
(4.7)
1‘,2H1 cos (11’,1 = B7 4 %) + .1'_2”1 sin (!B‘ - R*+ %) = ().

Equations (4.5) may be also reduced to the telegraphic equation by introducing
new variables !, 1»? according to Theorem 1. Then from (2.12) one obtains an
equivalent form of Eqgs. (4.5)

(4.8) Plo— P =0, ¢l -v'=0

Elimination of one of the unknown functions, say 2, reduces Egs. (4.7) to the
telegraphic equation
!;/"IHIHZ - ’#‘"l = ().

The solution is then determined by

“9) ('L/«’]) _ cos (l{.l R %) in (m _ Pt %) (H‘])

2
v oS (R‘ —R* % %) . sin (R‘ — R*+ %)

and by Eq.(4.4) in a parametric form, R', R? are the parameters. Let us note
that the considered solutions describe nonstationary flows with the constant Maca
number M = (u? + v¥)2/a = V2/(k - 1).
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The matrix in (4.9), call it S(¢— 7/4), is an orthogonal matrix of the clockwise
rotation by the angle R! — k? — 7/4 = » — n/4. The coordinates (z', z?) can be
easily expressed as

o . m g ) ” K ;
(T =5 (o= F) @ 6T + Sars()1,0),

where T' denotes the matrix transposition. In the trivial case ¢! = ¢»? = 0 which
obviously satisfies (4.8), we arrive at

AN
~1

(4.10) u

Then according to (4.1) @ = (k—1)/x[x/t|. In Fig. 1 the projection on u', u? plane
of the curves k! = const and R* = const, respectively, defined by Eq.(4.4) are
shown. By Eq.(4.10), up to the scaling factor v/2/x, they are also characteristic
curves on x/!-plane.

As it was pointed out in Sec. 1, every double wave can be locally interpreted as
resulting from the interaction of two localised simple waves. In this way, a some-
what trivial solution defined by Eq. (4.4) may give rise to interesting interactions
of simple waves. Inside the quadrangle ABC' D (Fig.2) on the («!/t,z2/t) plane,
the solution is defined by (4.10). Outside it we have simple waves (or constant
states in the corners A, B, ', D). The sides of the quadrangle are lines defined by

? = —\"5(-”'”*2 {cos(R' — R?). sin(R - R’}

where R! (respectively k?) take appropriate constant values. The straight lines
emanating from the quadrangle are the lines of constant phase of the correspond-
ing simple waves. In accordance with Sec. 1 these waves are defined analytically
by Eq. (2.4).

5. Cylindrical hodograph

Now we may ask whether the hodographs which are cylindrical surfaces exist.
The case F' = [F'(u,v) is an immediate generalization of one-dimensional non-
stationary flows for which the hodograph is » = 0. Of course, by adjusting the
system of coordinates we may at least locally restrict our attention to functions
I of the following form F'(u,v) = u — ¢»(v) (a consequence of implicit function
theorem) which, substituted into equation (3.8) yields

1 u]_"'f"z 1 "
— =1 =+ =" = 0.
ki 1+ 2 ZL
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This may be split into two alternative conditions

1- 972
1+ ¢

" =0, or =1.

In both cases we obtain nothing more than linear functions (hence defined glob-
ally) which by an appropriate Galilean transformation can be transformed into a
one-dimensional case v = (.

Thus, in addition to the planes described by the above linear functions, there are
no hodographs of the form F(u,v) = 0.

We shall see, however, that there are other hodographs generated by a curve
moving along the constant direction in the space of a,u,v — each cylindrical
surface is generated by an appropriate curve moving in a constant direction.
As an example, consider the hodograph given by the relation u — v(a) = 0.
Substituting it to Eq. (3.8) we obtain the following ordinary differential equation

(5.1) 2 (52 2ty w-av =0

with separable variables. Hence we have

dy’ 2 da

(52) = = - — 3
(h, ; 3 + 21[_!2) l;'/" k—1 a

which may be integrated to yield for 1 < x < 3

(5.3) ) st 32 i / (1 - ca2-0r==0) "G 4 ¢y,
where (', C'y are arbitrary constants. This solution depends on two arbitrary con-
stants but one of them, (', may be retransformed by the Galilean transformation.

As follows from a closer analysis, constant ' can also be retransformed to
obtain one of the three values C' = —1, 0, 1. This can be achieved by using the
following transformation (a, u) — (pa, juu), (t,2) — (5t, ufz) which transforms
solutions of Egs. (3.1) into other solutions, ;2 and /3 are arbitrary nonzero con-
stants. The case C' = 0 leads to the plane hodograph of noninteracting waves
which were found in [17]. These represent a certain interesting feature of the
gasdynamic system: nonlinear waves can be subjected to a linear interference.
Therefore we may restrict ourselves to the cases C' = +1. Equation (3.4), Case 1,
leads to the following expressions

7= (1, ¥'(@), \/1- 1/,#2(71)) . B (1, V@), —y1- w’z(ﬁ))

for the polarization vectors in the hodograph space of (a, u, v) variables.
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1 2
Calculating the characteristic vectors A, A corresponding to v,v respectively,
1 2

we have (+ for A and — for i)
12 gl o —— . -
AA = (h 74 + '@ (a) + vy/1 - ¢2(a), —¢'(@), £(-=1)/1 - w’(a)) "

1 2
and the direction o = A x A on which the solution must be constant

cr"(l u~+ )
= ; Zdv’a u, vj.

In the case x = 2 integration in formula (5.3) may be done explicitly and we
obtain

1 - ;
1 di iarsha if C =1,

i) = = | —— =+
v 2/ V1i+cCa?

—iarsin?i if C=-1.

The hodograph surfaces may be given by relations

(5.4) 1) @—sinh2u =0, 2) a—sin2u=0.
Taking advantage of the fact that the operator
d d d d k—1_0
0 1 2 : _
—+ol— + = — . —_——
i TR T ( itV m® a.ﬂ)

vanishes on the solutions considered, one can replace d, + u+V in Egs. (3.1) by
—(k—=1)(2¢'(@))"'ad/dx". Expressing then @ in terms of u according to Eq. (5.3)
(e.g. a = sinh 2u or a = sin 2u, for & = 2), one immediately obtains two equations
defining double waves in terms of the original variables u, v

(Fifzu — 1) U, — v =0,

v — a2 = 0.

Their solutions define double waves taken at some constant ¢, therefore they
must be extended over the space t, ', 22 in such a way that they are constant
along the directions of o(u,v). This illustrates another procedure of obtaining
the equations defining double waves, probably the fastest since no additional
variables R!, It? are required. In the Case 1 of (5.4) this system is hyperbolic for
any value of u, whereas in the Case 2 it changes its type on lines u = +7/6, (i.e.
cos4u = —1/2). For cos4u < —1/2 it becomes elliptic. One can demonstrate,
however, that its solutions are still solutions of the basic system (3.1) [19, 20]. To
conclude, let us also note that the most general cylindrical surface can be locally
represented by u — (@ — av) = 0, o is a constant. This leads, however, to a more
complicated equation than Eq. (5.1).

http://rcin.org.pl
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6. A general remark on the problem of wave-wave interaction

By substitution F' = @ — v(u, v), Eq. (3.8) may be transformed to the following
form
60 5[5 () + 2| - ef(v2-1)
: K — u v ] ‘uu

1 2
* (wg a l) Yyy — Zd’ud‘uww} =0.

This specialization excludes the case when F' = [F'(u,v) but, as we know
from previous consideration, only one-dimensional nonstationary flows are of
this form. Equation (6.1) is of the second order and its characteristics (u(s), v(s))
are given by

(6.2) (W2 = Du?+ W= D2 + 290, 0" v = 0.

However, as follows from Eq. (3.2), any C'! curve (a(s). u(s), v(s)) is a range of
an irrotational simple wave if its tangent vector (a, «’. v') is a polarization vector,
i.e. if it satisfies

'

(6.3) @P-u?-vt=0.

Suppose that this curve lies on the surface @ — ¢'(u. v) = 0. Differentiating this
relation with respect to s we have o' = v, u’ + ¢,v’. When applied to Eq. (6.3) it
converts it into Eq. (6.2). Thus, characteristic lines of Eq. (6.1) are also projections
of characteristics of Eq.(3.8) on the (u,v) plane. However, according to our
considerations in Sec. 2, the characteristics of Eq. (3.8) are the images of simple
waves. As can be seen from (6.2), Eq. (6.1) becomes elliptic if v? + ¢? < 1.

Let us now consider the initial condition for the flow equations (3.1) which
is defined in a circle on the (z,y) plane for ¢ = 0, and which represents two
localized simple waves approaching each other, separated by a constant state
Up = (ag,up,v9) (Fig.3). If the amplitudes and their derivatives are not too
large, then, in the “conical” region of ¢,z!,z%, where the solution is uniquely
determined, the solution exists and it represents two simple waves crossing each
other for some larger ¢ (similarly as in Fig. 2).

In order to demonstrate this, let us notice that the image (the set of values) of
the initial conditions consists of two pieces of characteristic curves /', /3 in the
hodograph space passing through point l/y (Fig.4). Let us now take I, I as the
Darboux problem for Eq. (6.1). The value of ¢" is then given on two intersecting
characteristics of Eq.(6.1). Let Iy, I'’; be given in a parametrical form

IA

n= (E = ap(s), u=a(s), v = (rz(s)), by < s < by,

I = (a=po(r), u=pi(r). v=5ar)), a<r<a.
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Then the projection I = (a;(s), ax(s)). I3 = (51(r), B2(r)) are the character-

istics of Eq. (6.1) and we may set

Y = aols), YR = Bo(7).
1 2

Let us also assume that ag(s), Fp(7) > 0, otherwise we would have a singularity

in Eq. (6.1). Indeed, a* = dp/do, a = 0 corresponds to the vacuum.

In conclusion, we state the following theorem

THEOREM 2. Let I, Iy be two characteristic curves of class C? in the hodograph

space passing through the point Uy = (ag, ug. vo). If ag > 0, then

1) there exists a unique solution of the above Darboux problem provided that

I'y, I’y are of sufficiently small length and have a curvature small enough;
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1086 7. PERADZYNSKT

2) the surface a = (u,v) representing the solution is covered by two families of
characteristic curves in the hodograph space, and its boundary consists of pieces of
characteristic curves passing through the end points of I'y and Iy, thus forming a
curvilinear quadrangle (Fig.3).

The proof can be obtained by representing the solution of the linearized prob-
lem in the form of a double integral along the characteristics. Then, using suc-
cessive approximations and the Banach contraction principle one can prove the
convergence. Let us note, that we work in the region of hyperbolicity of Eq. (6.1),
since there are two characteristics I, /> at Uy and this must be true in some
neighborhood of the Darboux data.

We do not present the details of the proof since the proof for a general case
of interacting waves can be found in [20].

Suppose now, that the considered solution a« = (u,v) of Eq.(6.1), repre-
senting the surface as shown in Fig.3, is given. At this moment one can assume
a new system of coordinates on the surface, whose lines are the two families
of characteristic curves from which the surface is “weaved”. Vectors tangent to
these lines are the polarization vector-fields and thus A!, A? can be determined
according to (3.1) and expressed in terms of &', k2. Having A!, A%, the equations
for R'(t,z,y), R%(t,z,y) can be solved by assuming for R'(0,z,y), R*(0,z,y)
the profiles of the waves specified by the initial conditions.

If the amplitudes of the waves are large, the solutien of Eq. (6.1) can enter the
ellipticity region (e.g. Case 2 in Sec.5). Similarly, if the profiles of initial waves
are too steep, the solution can develop the singularities (gradient catastrophe)
before the interaction is fully developed.

The form of Eq.(6.1) suggests the possibility of a geometric interpretation.
The term

(@';2; - ])f«“’u“ + (U‘z - ])‘k“l’l' = ZC'U L"“"1,'14/-!u1.'

in Eq.(6.1) is proportional to the mean curvature of the surface a = (u,v)
when the surface is considered as embedded in the hodograph space endowed
with the Minkowskian metric (1, -1, —1). But this is the form (6.3) defining the
polarization vectors. One can also verify that the first term in Eq. (6.1) vanishes
when computed for the surface representing the range of two noninteracting
waves [7]. This also suggests that the first term in Eq. (6.1) measures in some way
the strength of interaction. This line of reasoning which appears to be also useful
in the proof of existence, was developed in [19, 20].

Equation (6.1) was obtained also in [21], where the authors were searching
for solutions with degenerate hodograph. They did not relate these solutions to
interacting waves. It seems that Yanenko was also aware (private conversation)
of the connection between Eq. (6.1) and the curvature of the hodograph surface.
This justifies to call Eq.(6.1) the Yanenko equation.

In conclusion, we should emphasize, however, that the property of elastic inter-
action that irrotational modes exhibit when subjected to a nonlinear interaction,
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is rather exceptional. If one of these two interacting waves were the shear wave
or the entropic wave [18], then the picture would be more complicated due to the
production of new waves (e.g. reflected waves) in the process of interaction. For
this reason, in such cases as represented by the two potential modes considered
here, we propose to speak of an elastic interaction.

The first (unpublished) version of this paper, which constituted a part of the
authors’ Ph. D. Thesis, was submitted for publication in 1972 under the title: “Some
problems of double waves in gas dynamics”. The present version contains several
improvements.

The paper was supported by grant KBN No. PB 20480-90-1.
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An approach to gauge potentials in the non-Abelian
ISO(3)-gauge model of defects in solids

C. MALYSHEV (ST.-PETERSBURG)

A METHOD is proposed to reduce the Cartan structure equations and the Bianchi identities of the
non-Abelian /50O(3)-gauge model of defects in solids to the appropriate relations of the theory of
disclinations considered as the Abelian i80(3)-gauge model. As the result, the possibility arises to
identify the ISO(3)-gauge potentials in terms of the defect loop densities.

1. Introduction

INn THE REFs. [1, 2] it has been shown that both the field equations and the
continuity equations of the theory of disclinations [3] can be rewritten in the form
inherent to Abelian gauge models. The Lie algebra i80(3) of the group I1SO(3) =
T(3)® SO(3) (» — semi-direct product of groups) of 3D rigid body motions can
be considered as additive Abelian group (as a vector space R®, in fact) and it plays
the role of non-compact gauge group in the picture revealed in [1, 2]. In Refs.
[1, 2] the possibility is suggested to apply a special exterior calculus where the
role of exterior differential is played by the ScHAEFER's differential [4]. Once the
additive action of i80(3) is non-homogeneous (i.e. coordinate-dependent) under
the Schaefer’s differential, both the disclination and dislocation densities appear
as components of the ise(3)-valued gauge field strength. Eventually, the field
equations of the defect theory [3] acquire the form of Cartan structure equation,
while the continuity equations — of Bianchi identity of a certain Abelian gauge
model.

On the other hand, the idea is widely known (cf. [5, 6]) to use ISO(3) to
formulate a geometrically nonlinear dynamical theory of defects in solids as a
classical model of Yang-Mills type (that is /SO(3) is attempted to be gauged as
internal symmetry in [5, 6]). The algebra igo(3) plays an important role in [S, 6]
thus rising the question: is it possible to reduce certain relations of this general
model so that the corresponding ones of the theory [3] will appear just in the
iso(3)-representation found in [1, 2]? Such reduction would deserve consider-
ation because, linear as it is, the approach [3] (R. deWit emphasizes that the
linear assumption promotes complete analytical computations) provides a reli-
able scheme for a number of calculations concerning both the isolated defects
and their distributions (see [7, 8] and numerous refs. therein).

The question proposed has been asked at the end of [1], and the present
paper will point out a possible strategy to answer it. That is, a way to map the
geometric relations of the ISO(3)-gauge model to the appropriate relations of [3]
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is presented below. Namely, it is proposed to reduce by linearization the /1SO(3)
Cartan equations to the “Cartan equation” (i.e. to the field equations written
in the i80(3)-representation) of the theory [3]. The same is true for the Bianchi
identities. Provided a correspondence between the gauge transformation groups
is accounted for, a special restriction arises for the i80(3)-gauge parameters. It is
demonstrated that this restriction is fulfilled by a finite loop defect. As the result,
the correspondence established allows for a “mechanical” interpretation for the
ISO(3)-fields. Though a different one has been proposed in [5, 6], we hope to
argue the naturalness of that suggested here.

The paper is organized as follows. Section 2 reminds briefly [1, 2] to specify the
meaning of the i80(3)-gauge fields. Section 3 contains both the Cartan structure
equations and the Bianchi identities of the /SO(3)-gauge model and the truncation
prescription for them. Section 4 concerns the mapping between the two sets of
relations. Discussion in the Sec.5 completes the paper.

We establish the following conventions. Our consideration is time-independent
and all indices run from 1 to 3, the repeated ones imply summation. The Lie
algebra 80(3) consists of real skew matrices of third order and the matrix elements
of its three generators [, coincide with the permutation symbol components.
Therefore we shall represent A = \,/, € 80(3) as 3-vectors X and matrix action
of A as vector multiplication. For elements of i30(3) two notations are equivalent:

(2‘]) (by R. voN Mises [9]) and B X (semi-direct sum), where m € t(3) and
X € 80(3). For shortness G = ISO(3) and q = i80(3).

2. The theory of disclinations as the Abelian i80(3)-gauge model

In this section we sketch some basic relations obtained in [1, 2]. Let M be a
flat three-dimensional manifold and 7*A be a cotangent bundle over M. The
objects we need here are sections

(2.1) w™ e QM) = C®(M, g @ A"(T*M))

of sheaves [10] of smooth differential n-forms taking their values in g. In (2.1)
A™(T*M) means exterior product of n copies of 7*M (n does not exceed 3,
clearly). According to the “6-vector” structure of g, we shall put w( (2.1) as

ny ()
('r]) N\, where both the vectors are referred to a frame {e,} in a covering U.

That is to say that as the frame {e,} is transformed, the vectors m and X are
transformed too.

Apart from the standard exterior differential , there exists a homeomorphism
d®" on 2™(M) such that n is increased by one:

(2.2) dSt : Q" (M) — Q"*Y(M).
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The corresponding operator is known as the Schaefer’s differential [4] and with
respect to {e,} it takes the form:

(n)
(23) dSh (n)= d X

< |,

d (4?1) +dx AN

where A implies that the differential forms are multiplied externally while their co-
efficients as 3-vectors. It can be verified that 45" (2.3) is nilpotent, i.e. d¥"0d5" =0
[4, 1]. The definition (2.3) gives us the corresponding partial differentiation op-
erator P, = 07" which is one of the two generators of g. The second one
M, = (x x 8)3" has been found in [1, 2] so that P, and M, fulfil together
the fundamental brackets which display g as a semi-direct sum of t(3) and 80(3).

Using the definitions (2.1) - (2.3) one gets the following relations in the theory
of disclinations [3]. Let us consider .45 € Q1(M)

(2.4) ASh =~ p (,

and F5" € N%(M) in the form

(2.5) Fh = Foud Fy = d5P A,
that is

F, =d(,
(2.6)

Fon =dy+( A dx .
Defining duals to the coefficients of F, and F,, by

1

a 1 @
(2.7) By = ie" CF s Qgp = icq *(Fm s

one has (2.6) written in components:

(2 8) gqp Cgub{?u(bp ]

Qgp = (qab(aa7bp + €bchac) .

The formulas (2.8) are nothing but the fundamental relationships between
disclination and dislocation densities 6,,, a,, and disclination and dislocation
loop densities (pp, 73, just in the sense of [3]. In other words, the coefficients of
ASh (2.4) can be viewed as the defect loop densities, once the L.H.S. of (2.5) is
considered as the motor of the defect densities. Note that we call Egs. (2.8) the
field equations to distinguish them from the Egs. (2.10) below.
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Let us also introduce the vector-valued 1-form ¢ by the equation

(2.9) C=¢- %d(ec X )

where =, are the coefficients of vy (2.4) and {e.} is the frame. Then (2.8) reads:

8 c"“b(?ag,obp ,
(210) — qabgn bpe
agp = " (DaY(pp) T €7 Pac) s

where () implies symmetrization (1/2)(7s, + 7ps)- It seems that the reasons
to write (2.9) are independent from the matter considered here, i.e. they have
nothing to do with the algebra and gauging at hands below and therefore [3] con-
tains more information about them. Once we introduce —e{; instead of v(;,, and
—»c{,; instead of ¢y,, (2.10) express the defect densities through the basic plastic
fields of strain (¢f) and bend-twist (xf) [3]. Recall that in order to extend the
theory of dislocations so that both translations and rotations would be no longer
integrable, R. deWit has proposed to postulate basic plastic fields of strain and
bend-twist instead of plastic distortion (which does not exist with disclinations)
to describe static distributions of defects.

By nilpotency of d°" it is seen that integrability for the Eq.(2.5) is expressed
by

(2.11) g =g,
or

dF, =0,
(2.12)

dF,, —F, A dx = 0.

It is straightforward to verify that the Eqgs.(2.12) imply the standard continuity
equations for ay,, 6,, provided (2.7) holds [1, 2]. Though (2.4)-(2.6), (2.11),
(2.12) has already appeared in [1, 2], their interpretation is more transparent
here. The Egs. (2.9), (2.10) are useful connecting [1] and [3].

To conclude the section, the 2-form F5" (2.5) (gauge field strength) is invariant
under the shift

(2']3) AS’I =g Ash v 6ASh . bA,\'h s (]Shw((‘l)

for any w(©® ¢ 20(A1). Therefore it is seen that the Eqs. (2.5) (“Cartan structure
equation”), (2.11) (“Bianchi identity”) and (2.13) (gauge transformation group)
display us the theory of disclinations [3] as the Abelian gauge model with the

additive gauge group g = R® [1, 2].
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3. Cartan structure equations and Bianchi identities of the /SO(3)-gauge model

Now let us have a look at the geometric relations in affine gauge models,
i.e. in the models using principal fiber bundles of affine frames as geometric
background. To this end we shall follow [11] (see also [12]) but more rigorous
details on bundles of affine and linear frames can be found in [13, 14].

Let us start with the bundles A(M) of affine frames and L(M) of linear
frames over an arbitrary manifold M. Our gauge group is G. We shall denote by
¢ the homeomorphism of (M) to A(M) induced by the injection L(M) — O
L(M) c A(M) (O is a “zero” vector). Let A be a generalized affine connection
1-form on A(M). The conjugated homeomorphism (pullback) ¢* maps it in a
g-valued 1-form on L(M) which is split as follows:

(3.1) cCA=0¢ DA,

where A and ¢ are R*-valued differential 1-forms on [L(M). The corresponding

affine curvature 2-form on A(M) is F and it also is split into the translation and
linear parts @ and F:

(3.2) cF=®BF.

The 1-form A can be referred to as a linear connection on M, while F as its cur-
vature 2-form (both are 80(3)-valued, in fact). The couple of structure equations
holds for the objects in the R.H.S. of (3.1), (3.2):

dA+ (1/2)AAA =F,

(3.3) y
dp+ANd =D,
where A is defined in the Sec. 2. N
It is well known that the translation part ® of the affine curvature F is trans-
formed non-homogeneously under the infinitesimal affine gauge transformation

A— A-AxX-—dx,
d—d+Axd-Axm-dn,

where & X\ € 20 are the group parameters, and therefore it is impossible to
consider it as the torsion of the linear connection A (3.1) though the Eq.(3.3);
looks properly [14]. In order to “extract” from @ the contribution which is trans-
formed under (3.4) appropriately, let us define the vector-valued zero-form x
(“affine Higgs” field, following [11]) which is a local cross-section of an associ-
ated vector bundle and its gauge transformation is

(34)

X — X+ANXX+TM.
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Then
(3.5) V=P +Fxx
is transformed as required:

Y — 9+Ax9.

Namely 9 (3.5) can be referred to as the torsion 2-form of the linear connec-
tion A, while F is its curvature [11, 14]. Now the Eq.(3.5) may be rewritten as
the corresponding Cartan structure equation

(3.6) iB+AAB=19,

where B = ¢ + dx + A x X can be thought as a canonical (“soldering”) 1-form
[11, 12, 14-16]. Therefore (3.3); and (3.6) give us the couple of Cartan structure
equations where all the ingredients are transformed appropriately. The corre-
sponding Bianchi identities appear straightforwardly:

dF = F A A,
(3.7)

d9 = F?\B—AR@.

As to the matter at hands, the picture suggested in [5, 6] seems to be geometri-
cally very close to affine gauge models with the group (i because the fundamental
Egs. (3.3), (3.6), (3.7) have been extensively used there. The basic “fields” A, ¢,
x have been supplied in [5, 6] with space and time dependence (i.e. dim M
is four) to be considered as dynamical variables describing media with continu-
ously distributed defects. As it might be understood from [12] (the Chapter 3),
whenever affine gauge models are concerned, the “affine Higgs” field (% in our
context) gets an appropriate problem-motivated interpretation. In the monograph
[6] considerable attention has been paid to motivate  in the framework of the
dynamical model of defects. Loosely speaking one can say that ¢ has been put
there as a field of current configurations x = x + u(x. ), so that u(x, #) implies a
displacement corresponding to point x in a reference configuration at time ¢.

The truncated version of (3.3), (3.6), (3.7) we are interested in relies drasti-
cally on the decomposition X = x + u, and can easily be obtained. To this end
let us consider u, functions parametrizing the differential forms A, ¢, and their
derivatives to be small so that all their products can be neglected. It means, for
instance, that (3.4) are simply shifts by exact 1-forms ¢\ and dm. Linearizing the
L.H.S. of Egs. (3.3) one obtains for F (3.3), and 9 (3.5):

dA = F,

3.8
(38) dp + dA xx = 0.
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Further, simplifying analogously the R.H.S. of (3.7) one can see that the resulting
equations

dF = 0,
(3.9)

d9 = F/x\d.x,

are the integrability conditions for (3.8). It has to be noticed that the prescription
alleged to drop out the products would imply in fact not spacially global but rather
local (being valid, say, only for certain regions) weakness of some concrete field
configurations which display a chosen geometry by means of the set of Egs. (3.3),
(3.6), (3.7).

4. The mapping

At last let us establish the correspondence between the Egs. (2.6), (2.12) of
the i80(3)-model and the Eqgs. (3.3);, (3.6), (3.7) of the ISO(3)-gauge model of
defects in solids. For as it has already been stressed, we shall do it by comparing
the first group of equations with the truncated ones (3.8), (3.9).

It is indeed seen that (2.6) and (3.8) being written as

& (g axn) = ()

look similar and lead us to the following basic identification: the connection
1-form A would be the 1-form of disclination loop densities { while the 1-form A x
x+ ¢ would be the 1-form of dislocation loop densities ~. Once this interpretation
is accepted, it becomes natural to say that the curvature and the torsion 2-forms F
and 9 in the R.H.S. of (3.8) acquire the sense of F, and F,,, accordingly, i.e. of
the disclination and dislocation densities 2-forms. It has to be reminded that the
idea to identify dislocation density as a differential geometric torsion is not new
at all [17]. Finally, the continuity equations (2.12) and (3.9) are fairly identical
upon the identifications proposed. However, the correspondence of the gauge
transformations requires some attention. Besides, the fact that the continuity
equations for a,,, 6,, result from the linearized Bianchi identities, has been
discussed also in [18] but in the framework of a metric-torsion gauge approach
to the continuum defects.
In view of (3.4) the gauge variation of ¢ + A x x$ A reads:

A dX
tiZ) 6(¢+Axx)-(dn+d)\xx)’
where the R.H.S. is not a d°"-differential as in (2.13):
Sh — gSh (W) _ dw
(43) AT =d (u) (du-wxdx)'
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However, in both the cases 96 F (4.1) and F°" (2.5) are ¢”*-differentials in-
variant under the variations (4.2) and (4.3), respectively. The case here is simple:
the relation

(4.4) d(dv x x) = —dv A dx = d(—v x dx)

holds for any 3-vector v and it is why " and 9 F are both invariant.

The transformation parameters X and m are small independent 3-vector func-
tions in the /SO(3) approach. Let us put the R.H.S. of (4.2) as a complete
d*"-differential:

dX\
(4.5) (([('n +AxXX)— XX dx)'

After this it is suggestive to state that A (4.5) would correspond to w (4.3) and
N+ A x x (4.5) to u (4.3). This observation means that the gauge parameters in
(4.3) have not to be considered as independent to get one-to-one correspondence
(at the linearized level) with the /SO(3)-gauge geometry. Precisely, w as rotation

. 1 .
becomes related to the displacement u by 58 X u at constant X, 7). In this way, the

Egs. (3.3)1, (3.6) and (3.7) supplied with the gauge transformation rules indeed
result in the iso(3)-represented relations of the theory of disclinations under the
truncation prescribed.

In order to argue the correspondence presented, it is worth to find concrete
non-trivial gauge transformation in the theory [3] which fulfils the restriction
found, thus confirming its meaning. Fortunately, such example is given by an
isolated defect loop

C“ = bk—(.S’)Q.

i = 0:(5) (b + £2 x x),

where €2 and b are the Frank and the Burgers vectors, and é;(.5) is the singular

function concentrated on the surface S [19, 3]. Here S is an open surface (so-cal-

led jump surface) which is bounded by closed defect line L =05. It is easily seen

that (4.6) respects our basic identification if we put Ay = 6,(5)§2 and ¢ = 6, (5)b.
Let us define another open surface S which is also bounded by . but oriented

with respect to L oppositely to S so that SUS is a closed smooth surface enclosing

the volume V. Further, the variation (4.3) with the parameters

w = §(V)Q,
u=41)(b+ 2 xx)

(4.6)

(4.7)

acts on (4.6) as follows:
G — G+ 2 (6(V) Q.
(4.8) N = Ve F H[E(V) (b + Q2 xx)] - 6(V) x e
=vp + G (6(V)) (b + 2 xx).

http://rcin.org.pl



AN APPROACH TO GAUGE POTENTIALS 1097

Taking into account N
O (8(V)) = —6(SUS)

and the formal equation
6:(8) = 6x(S U S) = —8,(8) = 8 (-9)

(-5 and S are of opposite orientation), again one obtains from (4.8) the loop
(4.6) with the jump surface —S. Therefore, the transformation given by (4.3),
(4.7) is nothing but an orientation-preserving change of non-physical jump sur-
face of the defect loop. Besides, the R.H.S. of (4.8) looks like the R.H.S. of (4.2)
thus confirming the coincidence of the two sets of relations. For (4.6) the conti-
nuity equations (2.12) are satisfied too and so, the solution found indeed behaves
properly. The defect loop (4.6) serves in [3] as the source which allows to obtain,
for instance, the complete set of relations characterizing straight dislocation and
disclination in an isotropic infinite body.

Before concluding the section let us try to make the correspondence found
more transparent. Indeed, the defect loop definition (4.6) turns out to be a com-
plete d%"-differential if one admits the surface 5 to be closed:

C) = dy ’ - Sh v
S (1 “_<f1u+(1v“) === (u+va)‘

where V = 6(W)Q, U = 6(1V)b, and W is volume inside 5. This is because the
components J;.S become the derivatives —d; (6(11")) for closed 5. One simply
has to replace dV and JdU by certain 1-forms A and ¢ which are not exact, to
break the d°"-exactness of 4B ( (4.9) and to obtain (4.6). It is just the way
how the definition (4.6) appears for unclosed surface bounded by defect line.
From a more general point of view, the Egs. (4.6), (4.7) and (4.9) are particular
manifestations of the sequence of homeomorphisms (2.2) being considered for
elements P € 27(M) of the following form:

v dSh dy
p(n) = R
(4.19) = (U+V><x) (rlLl+r1Vxx>'

where V and U imply now vector-valued n-forms. This special choice of P
ensures that they are motors under coordinate shift x — x + y. Now it is seen
that (4.9) gives the action of ¢°" on P being a rigid body displacement of
inclusion W in motor representation. The coefficients (4.6) correspond to the
defect loop 1-form P which is not ¢"-exact. Differentiating P! (4.6) one
obtains the defect densities 2-form P (compare with (2.5), (2.6)) where the
density components Vi = ¢4 6, (L) 2, Uy = €41m 8,,(L) b are singular on the
line L (see [19, 3] about é,,(L)). Moreover, one can see that gauge variations
6P preserving any d%"-exact defect density P are not of the general form
(2.13), (4.3) but rather of the form (4.2).
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Realizing the differential complex (4.10) to contain all the relevant gauge-
geometric information concerning [3], it is straightforward to try to relate it to
the 1SO(3) geometric relations which would generalize the Abelian ones. As it
has been stressed, the underlying algebra i80(3) is of importance here. From (3.8)
and (4.10) at » = 1 it is especially easy to understand the above key identification:
after truncation in the structure equations (3.3);, (3.5), the gauge potentials A and
& coincide with the corresponding elements of the defect loop densities 1-form
P() and the R.H.S. of (3.8) acquires the sense of motor of the defect densities.
The Bianchi identities do not impose extra restrictions and are fairly identical.
Therefore the reduction proposed both points out natural interpretation for the
ISO(3)-gauge fields and shows definitely that the reduced gauge transformation
can be combined as that corresponding to (4.10).

§. Discussion

We have described the reduction of the Cartan structure equations and the
Bianchi identities of the /150(3)-gauge model of defects in solids to the field equa-
tions and the continuity equations of the theory of disclinations being considered
as the Abelian i80(3)-gauge model. It is the basis for both the cases underlying
Lie algebra i80(3) which prompts the idea to do this reduction by linearizing the
non-Abelian geometric relations. Requiring additionally that the gauge param-
eters (rotations and translations) of the i80(3)-model are not independent, it is
possible to display a certain correspondence between the two sets of relations.

Special example in the Sec.4 fulfils the restriction found for the gauge par-
ameters thus seemingly testifying on behalf of the chosen strategy. Besides, it
is known that point-like sources are forbidden for non-compact Abelian gauge
group, i.e. only sourceless strings might appear as solutions to the corresponding
equations. So it is attractive to encounter the densities of the defect loops (closed
strings) in our investigation. It is hopeful that such loop solutions should find
generalization in non-Abelian situation.

The way proposed to identify the /SO(3)-gauge fields differs from that in [3,
6], and it is worth to pay some more attention to this fact. It is crucial that the
pair of equations analogous to the Egs. (2.12) has been written in [5, 6] as

a2 = 0,

5.1
1) dD - Q = 0,

(time is fixed) so that D and € (5.1); are the vector-valued differential forms

corresponding to F,, and F, A dx (2.12),, accordingly. Because the disclination
density €2 has been referred to as a 3-form in [5, 6], the Eq.(5.1); holds ident-
ically for the three-dimensionality of d, though it looks like integrability condition
for (5.1);.
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After this the following key identification has been made in [5, 6] to pass to
the non-Abelian case: the kinematic equation

dB+K=D

(it is reminiscent of (2.6); in our notation, see also (2.10); and the comment after
that), where B is distortion 1-form and K is bend-twist 2-form, would correspond
to the Cartan equation (3.6) itself (not to its linearization (3.8), as we do) so that

B, A A B, and @ would be B, K, and D, respectively. It is for these reasons that
the Bianchi equation (3.7); has been considered as the generalization of (5.1);

so that just the 3-form F AB-—AAD acquires the sense of the source € in
the nonlinear situation. Obviously, such generalized “disclinations” will be also
sourceless.

Conversely, in our approach both the disclination and dislocation densities
are the vector and moment parts of the i8o(3)-valued 2-form F5* which appears
owing to the use of d°". Therefore both the couples of the 1SO(3) Cartan structure
equations and Bianchi identities after linearization are also considered as vector
and moment parts of certain i8o(3)-valued equations. Further, the 1-form Axx+¢
(up to exact contribution it is just the reduced “soldering” 1-form) is identified
here as the dislocation loop densities 1-form while in [5, 6] it is a distortion
1-form. The linear connection 1-form A corresponds here to the disclination loop
densities 1-form.

The distinctive suggestion of the given approach is that that the curvature
2-form F (3.3); should be treated as a generalization of the disclination density

e N x . . x
F,. For the truncated case it is “almost” as dA A dx which arises from £ = F A

B-AAD [5, 6] (see [1]), but the general situation is different because dF is
not zero by (3.7); and therefore nonlinearity of the /SO(3) model can result in
sources for “disclinations”. Besides, the way how the group of the 150(3)-gauge
transformations includes that of the disclination theory is also different in [5, 6],
i.e. it is not in the sense of one-to-one correspondence as in the Sec. 4.

To conclude, the given approach seems to show that the way adopted in [5, 6]
to connect the affine gauge model with the classical defect model is not the only
one possible. The main disagreement between the two viewpoints is clear. The
present treatment proposes that only after reduction (e.g. asymptotically), the
non-Abelian ISO(3) relations could be identified in the framework of the theory
of disclinations [3], whereas in [5, 6] the idea is that the form of the appropriate
equations of the defect theory remains externally unchanged but their ingredients
become complicated for /SO(3). But surely the decisive conclusion would be
drawn only by explicit 7SO(3) stringy solutions which allow simple loops, like that
found above as a limiting case. Besides, having in mind a successive descent from
affine frames to orthogonal ones [11, 13], it would be interesting to make contact
with [17, 18, 20] where similar problems have been treated in a metric approach.
Anyway, further considerations seem to be needed.
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Necking in steady-state drawing of polymer fibres

S. ZAHORSKI (WARSZAWA)

THE CONCEPT of non-uniform extensional motions of materially non-uniform simple locally isotropic
solids is used to discuss some general properties of fibre drawing processes. In the approach
presented, axial and radial temperature and structure variations can be taken into account as
some kind of non-uniformity. For steady cold-drawing processes various necking conditions are
considered in general and particular cases. The effects of particular force components, i.e. inertial
and rheological, are discussed in greater detail for S-shaped velocity profiles.

1. Introduction

DRAWING IS THE OPERATION which changes the textile characteristics of man-made
fibres, improving, in particular, initially low tenacity, high irreversible deforma-
tion, low moduli, etc. It consists of irreversible elongation in the solid state from
20 to 20000 % of the original length. Such a process with coexistent undrawn and
drawn parts, exhibiting the necking phenomenon, is often called the “cold draw-
ing” although it may be realized at pretty high temperatures of baths or heaters.
The most exhaustive information on drawing of polymer fibres can be found in
the monograph by Ziasicki [1].

From the rheological point of view, drawing of a long filament can be consid-
ered as a non-uniform and frequently non-isothermal quasi-elongational motion.
As compared to melt-spinning processes, a relevant analysis is much more diffi-
cult since usually for deformed solids the dissipation energy cannot be neglected,
leading to an additional increase of temperature. Also the nonlinear viscoelastic
behaviour of solid polymers is an essential factor of the process considered, and
neither Newtonian nor linearly elastic approximations can be applied at all.

In the present paper we use our previous concept of non-uniform extensional
motions (NUEM) of materially non-uniform simple locally isotropic solids [2] to
discuss some general properties of fibre-drawing processes without applying any
particular models. This approach enables taking into account temperature and
structure variations along and across the filament, replaced by some kind of spatial
non-uniformity. The corresponding constitutive equations used for description of
steady quasi-elongational motions involve the stretch ratios (axial velocities) as
well as their derivatives in the direction of the axis (axial velocity gradients). An
explicit dependence of material properties on the radial and axial coordinates
can also be introduced. To satisfy the boundry conditions in stresses at the free
surface of a filament, the assumptions very similar to those made in the case of
flows with dominating extension (FDE) may be used like in [3, 4].
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1102 S. ZAHORSK1

In Sec. 2 we discuss the drawing process as a steady non-uniform quasi-elonga-
tional motion, using the constitutive equations of a materially non-uniform simple
locally isotropic solid. Next Sec. 3 is entirely devoted to various necking conditions
expressed either in velocities or stresses. In Sec. 4 the effect of rheological force
on the conventional stresses along the filament is discussed in greater detail. Last
Sec. 5 summarizes our previous results in the form of several conclusions.

2. Drawing as a steady non-uniform motion of materially non-uniform solids

In the paper [2] it was proved that a steady non-uniform drawing process can
be described by the following stress-components difference, resulting from the
more general constitutive equations of materially non-uniform simple solids:

(2.1) y i, P o(V,V';r,2) = o1(\, N, 2) = aa(e, €, 1, 2),

where V(2) is the axial velocity under a quasi-elongational approximation and the
primes denote the corresponding derivatives with respect to the axial coordinate
z (Fig.1). The stretch ratio A, the strain ¢ and their derivatives are defined as
follows:

V(z) AV

Vo 7 A

(22) A

(2.3) £ = In), £ =

where the dot denotes the corresponding time-rate and Vj — the feeding velocity
(at the first pair of godets, Fig.1). Denoting by 1} the take-up velocity, we can

@ Viz)
g § B R e | R el —— e

R(z)

L

FiG. 1. Scheme of drawing process.
define the draw ratio ® (see Ref. [1]) as
2.4) R =V./ W,
and the conventional or normal stress (related to the original cross-section) as

(2.5) &’ = o/,
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if the process is steady-state, the mass flow rate remains constant, i.e.
(2.6) W = on R*V = pr R}V, = or R} V}, = const.

We should emphasize that Egs. (2.1) or (2.5) can describe many types of non-
linear visco-elastic behaviour, in particular, that shown for the polystyrene [5]
in Fig. 2. The rate- and temperature-dependent stress-strain characteristics with
stress overshoot before yielding usually lead to the necking phenomenon (see
Ref. [1]).

. ] |
§

10 i5 20

E'luongation (%)

Fi1G. 2. Deformation characteristics for polystyrene samples after [5]. Temperatures and
deformation rates indicated.

The balance of forces acting in a drawn filament can be written as follows (see
Refs. [1] and [6]):

2.7) F(2) = Fext(2) = Fin(2) + Fip(2) + Faa(2) + Fu(z) — Fye(2),
where the subscripts rh, in, ad, st and gr denote rheological, inertial, air-drag,

surface-tension and gravitational components, respectively.
Moreover, introducing a simplifying model assumption that (see Ref. [4])

(2.8) a¥ = y(V, V'; 2)e(r),
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1104 S. ZAHORSKI

where the function ¢(r) describes the radial dependence on r, the same for all
z, we arrive at

R

(2.9 F(z) = ','/\/ 2rre(r)dr = YA,
0
where
R
(2.10) &= ] 2ro(r)dr, &=R? for o(r)=1.
0

If, in particular, we apply the parabolic approximation according to the first term
in KAsE's [7] expansion:

(2.11) e(ry=1+ar’, a>0,
we obtain

1
(2.12) ¢ = R? (1 + Eal?z) .

Differentiating with respect to = the relation for A resulting from Eq.(2.9),
and taking into account Egs. (2.2), (2.3), and that

F F'

7] Al li)l
— | —'s —_= — —_= =2

(2.13) 5 =

1'. )
we can calculate the first and second derivatives of the radius F with respect to
z in the following forms:

1 _a*
_07.'14"123 (1 + EHR )

2w (1 +aR?)

(2.14) R =

and

1 .42
1+ =-akk
_Qﬂ'Ra ( 2“ ) V"

3V
" o_ oy e
(215 R =-%5 (1 + ak?) 2V (1+aR?)
14+ Sag? 2 14 Lep2
Jarv (1Y s ap2v2 \1+ 3¢
V (1 + aR?)? V (1+aRk?) |’
respectively.
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3. Necking conditions expressed in velocities or stresses

If we assume that the necessary condition of necking, characteristic for cold-
drawing processes, is connected with a change of sign of the corresponding cur-
vature (see Refs. [8] and [9]), we may use the following condition:

(3.1) R" <0,

where negative values describe convex parts of the filament profile, and the equal-
ity defines an inflexion point. The above condition, after taking into account
Eq.(2.15), leads to

(3.2) V'V > %V’ZD,
where
(1 o)
1+ -aR ) 242
1
6y P m [
(I +alt?) (1+ aRR?) (1 + EaRZ)

denotes the function which is identically equal to 1, if there is no radial variation
of properties. In this particular case the necessary condition of necking simplifies
to the form:

(3.4) ViV > Zv7?

N

[ SO JRLN)

which is exclusively of kinematic character, independently of the form of the
constitutive equations considered! (')

It is noteworthy that for fluids Ziasick [10] attempted to establish a “necking
intensity” of the kinematic character, but the introduced quantity was not related
to any necking condition (see Refs. [8] and [11]).

The solution of the differential equation resulting from Eq. (3.4):

(o8]

e —12

(3.5) f=V"V-2v?=y,

38 ]

with the following boundary conditions: V' (0) = Vj and V(L) = V,, amounts to

1

(3.6) V= Yy

(*) It can be shown that the above inequality is also valid for fluids.
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where the overbars in Eq.(3.5) emphasize the solution corresponding to the
equality in Eq.(3.4), and
Vo 1

=1-—.

Vi VR

The above solution is schematically shown by a solid line in Fig.3. For such a
velocity distribution the curvature of the filament profile is always equal to zero.
This means that the dependence of the radius £(z) on z is linear.

1

(3.7) cL=1-

V/V,

Velocity,

s

Distance, z/L

Fia. 3. Velocity profile along the filament. Solid-line — the profile for vanishing curvature;
broken-line - the S-shaped profile characteristic for necking; dotted lines — the profiles
for vanishing curvatures in the case of radial variations of material properties.

__In more general cases, when D # 1, introducing the notion of mean value
D of the function D along the length L (the parameter a is a constant and the
radius R does not vary so much), we obtain the simplified differential equation:

(3.8) =TT = %V’zﬁ =1,
the solution of which amounts to
— 1
3.9 V=Vyy——-—,
(.9) g
where
_ vo) Ljs 1 2
. g, s ] e e = ] - — = — .
.10 “ (VL ™7 "T35-2
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The corresponding curves for D = 1.33 and D = 2 are also shown by dotted lines
in Fig.3. Thus, we may conclude that any radial variation of the conventional
stresses lowers the graphs describing solutions for zerc curvatures.

3.1. S-shaped velocity profiles required for the existence of necking

It is commonly accepted that the existence of necking during cold-drawing
processes is connected with the type of stress-strain curves shown in Fig. 3, leading
to the well-known instability conditions (see Ref. [1]). A similar result can be
inferred on the basis of our further considerations.

Since the differential expression f described by Eq.(3.5) is continuous at the
profile (3.6) in the sense of proximity of the 2-nd order, we can prove that the
variation:

(3.11) 6f =VeV" —3V'sv' 4+ V"sv,

where the quantities V', V' and V" are defined in the Appendix, changes its sign
depending on the values of the small parameter m (see the Appendix) viz.

of >0 if m < 0,
(3.12) of =0 if m =0,
6f <0 if m > 0.

Thus, any S-shaped velocity profile starting at =z = 0 slightly below the curve
described by Eq. (3.6) leads to negative values of the curvature R”. The inflexion
point V" = 0 on the velocity profile may be situated either below or above the
curve (3.6). In the case of D # 1, the region in which negative values of R” can
be expected is seriously diminished and the curves corresponding to R” = 0 for
D # 1 always lie below the curve (3.6).

It should be noted, however, that S-shaped velocity profiles leading to two
inflexion points on the filament profile are possible either below or above the
curve described by Eq. (3.6). Then the filament curvatures take positive, negative
and again positive values corresponding to the “bottle-like” shape of the drawn
fibre.

As an illustration, consider the following velocity profile (S-shaped for partic-

ular g(z))

f z)dz
v ({g()

0

(3.13) V =Vexp<In T
Ofg(z)dz
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satisfying automatically the relevant boundary conditions. The condition (3.4)
leads to

Vi 1

Vo L g*

In 1
FOYE
0

PO —

(3.14) g2

In the case of exponential viscosity function, used for the description of Newto-
nian behaviour (see Ref. [9]), i.e. for ¢ = exp(—Az), we obtain e.g. A = —0.64
if Vi,/Vp = 4, and the velocity profile corresponding to Eq.(3.13) at = = 0 is
tangent to the curve (3.6).

In a more general case of D # 1, negative curvatures R” are possible only for

(3.15) z< —% In 7 ;_ [exp(—AL) - 1] ;,
P (—1) = 1)
Vo \2

i.e. for negative values the parameter A or positive viscosity gradients.
3.2. Purely inertial and isothermal cases

If only rheological and inertial terms occurring in the force balance (2.7) are

retained and Fj denotes the rheological force F, at = = 0, we obtain
(3.16) F(z) = Fyp + W(V(2) = W), W = grr]t’%l'o
or
. [Fo ) .
(317) *,(:)=g‘() W—-\O-i-l- (‘) .

On the basis of the inequality (3.4), we arrive at
F 3
(3.18) v - o (G2 - vo)] 2 302

The solution of the differential equation resulting from the equality in Eq. (3.18)
amounts to

. 1 . o (I .
3.19 =6V + — Kh==|—-V),
where
1 1 1
(3.20) ¢ el =

" (o — 6V (o — 6VoR)'/2 (71 — 6VpL)1/?”

70 and 57, denote the conventional stresses at the exit and take-up end, respect-
ively.
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The graphs illustrating the functions (3.19) are very similar to those shown in
Fig.3. Our previous remarks concerning S-shaped velocity profiles remain valid
in the case considered.

In a purely inertial case, if also @ = 0, Eq. (2.15) can be replaced by

Vo . ] 3»-'0{(7' R’)
" Radadt - £ 30
(:21) R |1- (KR M) Rl %5

- 2 v’ . 552 R’
X |(NR°+ M)— +2(KNR" + 2M)W
v
" 2

o 2 i i 7 2 R?
—2KRR — - (KR*+ M)| — - —= | —4K'R ‘R® + 2M)—
\ = (KR )(7 72) KR+ 2(KR ZI)R},

where M = W/6r.

If we assume, moreover, that in an isothermal case the appropriate constitutive
equations can be approximated by the following power-law equations:

(3.22) ¥ = A", n >0,

where g does not depend on z, Eq.(3.21) takes the simplified form:

72

. | ol _ 12V s il R"?
(3.23) R |:/\‘7_ 71] =R (n—1DNR*+ (n—1)(n-2)M " ("

An inspection of the above equality shows that the necking condition’ (3.1)
can be satisfied only for n belonging to the open domain (0, 1). This is the case,
in particular, for

3 ?
n=2/5 if ivl' < T].i- - Vo <41y,
. F
(3.24) n=1/2 if Vi, < ﬁ — Yy £ 3V,
. 2., Ry 7
p— = < k.| . 75 < =T
n 3/5 if 31]J_ T ‘,gu?"g

If n = 1, we have R” = 0, what means that for a linear dependence of the
conventional stress ¥ on A, the radius of filament varies also linearly.

It is noteworthy that the conditions (3.24) can be satisfied for small inertia
region defined as follows (see Ref. [7]):

K R? F
‘M"zm‘, of 2>WV+Vi.
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4. Temperature-dependent rheological force

If we assume that the only force acting in the filament is the rheological force
Fih = Fext, we conclude that such a force has to be constant with respect to =.
On the other hand, if only thermal effects are considered, the dependence (1)
may be an increasing or decreasing function of V' like in Fig.4. In particular, for
the processes close to adiabatic ones, the plot of the conventional stress v versus
the velocity V' (or the draw-ratio ®) may be a decreasing function because of
dissipative effects (see Ref. [1]).

A

=
o
T

(G/den)

o
~
L]
L ]
N

g 06t
& /—/_"0
2 [e]
o 0.5}
g @
z (¢}
«
5 0.4} \
E
= 0.3
=1
o
0.2 1 1 L | - }_
300 400 500 600 700

Drawing velocity  (m/min)

F1G. 4. Reduced drawing tension vs. drawing velocity from [1]. 1, nylon-6, temperature 80° C;
2, nylon-6, temperature 20° C; 3, polyethylene tetraphtalate, temperature 80° C.

Since a priori we know very little on how the function (V') as well as the
profile V(z) look like, we assume, for simplicity, that the conventional stress can
formally be described by

[ 9(z)d=
(4.1) v =70(V"/Vg") = exp |nIn(Vy/Vo)T—— |,
{g(:) dz

with g = exp(—Az), in particular. Such an approach enables taking into account
any increasing (n > 0) or decreasing (n < 0) functions y(V') as well as an
S-shaped character of the velocity profile V'(z). A linear dependence v(V), like
that shown in Fig. 4, corresponds to n = 1.
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The velocity profile in the form of Eq.(3.13), introduced into the condition
(3.4) or the more general Eq. (3.2), proves that the necking phenomenon is pos-
sible for

1. |1 1
(4.2) d< -~ —p—m— lexp(-4L) - 1] 5,
ln—(—D—l)
Vo \2

where D denotes the mean value of the parameter defined in Eq. (3.3).

It results from Eq.(4.2) that for n > 0 positive values of z can be obtained
for any A > 0 and some A < 0. In other words, the above result means that
necking is possible in the concave and for the S-shaped velocity profiles only for
increasing functions y(V).

5. Final conclusions

On the basis of our previous considerations we may formulate the following
conclusions:

1. The concept of non-uniform extensional motions (NUEM) of materially
non-uniform simple locally isotropic solids is useful to discuss effectively the case
of steady drawing of polymer fibres and to investigate some properties of general
character, without assuming any particular constitutive equations.

2. The necessary condition of necking, characteristic for cold-drawing pro-
cesses, can be formulated in terms of purely kinematic quantities: the velocities
and their first and second derivatives with respect to the axial coordinate.

3. The necking phenomenon for an S-shaped velocity profile is possible, in
principle, if its initial part is situated slightly below the concave velocity profiles
obtained for the case of zero curvatures of the filament profile.

4. The existence of radial variation (Kase’s type) of the conventional stress
changes the regions in which negative curvatures of the filament profiles are
possible for S-shaped velocity profiles.

5. The previous remarks do not exclude the cases in which two inflexion points
on the filament profile are possible leading to the “bottle-like” shape of the drawn
fibre.

6. In the cases of purely inertial and isothermal effects, necking is possible for
small inertia regions.

7. In the case in which the only force is the temperature-dependent rheological
force, the necking phenomenon can be observed for increasing as well as decreas-
ing (caused by energy dissipation effects) dependence of the conventional stress
on the velocity of drawing. For S-shaped velocity profiles necking may appear
only if the conventional stresses increase with the velocity.
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Appendix

A differential expression f = f(V/(z)), involving derivatives of V' at most of
the k-th order, is continuous at the function V' = V/(z) in the sense of proximity
of the k-th order, if for any small positive ¢ there exists such a positive ¢ that

(A1) IF(V) = f(V)] <,
at
V() - V) < 6,
(A2) V() - V'(2)| < &,
VW) - TP () < 6.
To prove that the differential expression f in Eq.(3.5) is continuous at V'

defined by Egs. (3.6), (3.7) in the sense of proximity of the 2-nd order, it is
sufficient to take the following functions:

1 c(2+ m)
VeV Pl 22T
0(1 . 63)2+m ‘0(1 _ CZ)3+m
(A.3) 5
. ces(2+ m)(3 + m)
V" = "0

(] _ (.:)4+m

where m is a small parameter (positive or negative) and

‘,' 1/2 ‘ 2 —11!./4
(A.4) el =1- (—“) (—0) .
Vi vz

and pass to the corresponding limits for m tending to zero.
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