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FIFTY YEARS OF THE ARCHIVES OF MECHANICS

The dependence of dynamic phase transitions
on parameters

K. PIECHOR (WARSZAWA)

WE consibeRr phase changes deseribed by a second order ordinary differential equ-
ation. The equation depends parametrically on the states of rest and the speed of the
wave. We prove that, under some additional conditions, the solution is differentia-
ble with respect to any of these parameters. As an application of the general theory
we discuss the case when the data are close to the Maxwell line and obtain results
generalising those of the previous authors.

1. Introduction

WE TREAT the phase boundary as a one-dimensional travelling wave connecting
two different states of rest. The speed of the wave cannot be arbitrary but it is
an unknown, determined totally by the value of just one of the states of rest. In
other words, the question of existence of phase boundaries is a sort of nonlinear
eigenvalue problem. For a very limited number of cases we know exactly the
structure of the phase boundary and its speed [1, 2]. In the general case, it is only
proved that once one state of rest is given, there is a unique value of speed and
uniquely determined other state of rest such that the travelling wave connecting
them exists and moves at this speed [3 — 8].

The aim of this paper is to formulate sufficient conditions ensuring differen-
tiability of the phase boundary structure, the speed of the wave and the other
state of rest as functions of one of the two states of rest.

The paper is organised as follows. In the next section we present the equation
of the phase boundary deduced from the capillarity equations which we have
derived from a model kinetic theory of van der Waals fluids [9]. In Sec. 3 we
generalise this problem and prove a theorem on the differentiability of its solution
with respect to a group of parameters treated as “independent”. In the final Sec. 4,
we apply this theory to our model equation of phase boundaries as well as to the
case of isothermal phase transitions. We confine our interest to the case when
the data are close to the so-called Maxwell line, in order to avoid complicated
formulae. In the latter case our results not only agree with the previous authors’
results but also generalise them. Moreover, we show that our model theory agrees
qualitatively with the isothermal one.
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812 K. Pizciior

2. The model equations of capillarity and the travelling wave
problem

The model equations of capillarity we are going to consider consist of the
following system of two partial differential equations [9]:

d d
(21) 5;1“ = ;,)—l'_‘u — (),
o 9 RN
(22) au + EEP(IL-,U) — .‘,zﬂ (,u(,hu)

+ ag? = i (rf)—’w):2 - iﬁu'
Or |wb \ Oz wd Oz |

In Egs. (2.1), (2.2), the variable ¢ > 0 is the time, 2 € R! is the Lagrangian
coordinate, u is the velocity, w is the specific volume, p is the pressure, and s
is the coefficient of viscosity.

The pressure formula reads

1 —u? a

(2.3) p=plw,u) = Nw—b  w?

where a and b are positive constants; a is the ratio of the mean value of the
potential of the attractive intermolecular forces to the mean kinetic energy of
molecules, and b characterises close packing. In the adopted dimensionless units
b is equal to unity.

Next, € > 0 characterises the order of magnitude of the viscosity effect, and
pt = p(w,u) is given by [ 9]

w?(1 — u?) + 26%p%(w) w

2.4 - , Ny
(2.4) p(w, u) 8 pl) ) p(w)

w—0b

Finally, ae?, with a = const > 0, characterises the intensity of the capillarity
effects which are represented by the space derivative of the term in the square
brackets [ |.

We consider Eqgs. (2.1), (2.2) in the domain D defined by [10]

; a a

2.5 D= {(w,u):w>b P~ e 1}.
et {(wu) v vesitg @~
For (w,u) € D, the mass density 1/w does not exceed the close-packing density
1/b, and the pressure p and the viscosity ;. are positive.

A travelling wave solution to (2.1), (2.2) is a solution of the form

(2.6) (0,0, 1) = (wu)(©), €= "= St eR!,
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T1E DEPENDENCE OF DYNAMIC PHASE TRANSITIONS ON PARAMETERS 813

such that

(2.7) €liln (w,u)(€&) = (wy,w),
(2.8) lim (w,u)(§) = (wr,ur),
g—too

. PN
(2.9) El{Tw(w ) = (0;0);

. "Ny
(2.10) E_l_{l;loo(w ') = (0,0);

. ’ d

where s = const is the wave speed, and ()" = @ (-

The following procedure is routine. We substitute (2.6) into Egs. (2.1), (2.2),
perform one integration with respect to &, and use the limit conditions (2.7)-
(2.10). Having done that, we find that the left and right limit states are related
by

(2.11) Sk U = 18] =1 Ui
—8uy + p(wr, uy) = —swu + p(wr, up).

These relations are called the Rankine-Hugoniot conditions and were in detail
analysed in [10].
Next, we find the velocity u. It is given by

(2.12) u=wu — s(w—wy),

where w = w(&) is a solution of the following limit value problem:

(2.13) o [;l%w” - %w’g} + sp(w, s, wy)w’ + f(w,s,w;) =0,
where

(2.14) w(w, s,wy) = plw,uy — s (w —w;)) > 0,

(2.15) flw, 8,w;) = pw,u — s(w—wy)) — plw,w) + s2(w —wy),

subject to the conditions

(2.16) giim w(€) = w,
(2.17) Eii;p w(€) = wy,
2, im w'(€) = imw"(€) = 0.
(2.18) Jm w(© =0, lm w'(e) -0
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814 K. Piecnonr

These conditions must be supplemented by Eqs.(2.11) which we write in the form

(2.19) flwy, s,wy) =0, f(wr, s,wy) = 0.

In this paper we assume that

(2.20) fh (wy, s, wy) <0, fi(wy, 8,w;) <O0.

Our problem contains a number of parameters like w,, s, w;, u;, etc. These
parameters are not independent, since some of them are related by the Rankine-
Hugoniot conditions (2.11). However, our problem, under assumptions (2.19),
(2.20), has a solution if and only if the parameters satisfy an additional relation,
unknown in advance. The total number of relations, including the implicit one, is
less than the total number of parameters. Therefore, we can split them into two
groups: dependent and independent ones. Of course, this splitting is not dictated
by the limit value problem itself, it is rather a result of our current interest. Also,
it is not obligatory to consider the dependence of solutions on all parameters;
simply, we can treat some of them as fixed.

Altogether, there is a great variety of specific problems we can be interested
in. Therefore, in order to avoid repeating similar arguments, each time we ask
a question concerning the character of dependence of the solution on certain
parameters we choose, we formulate an “abstract” problem of dependence of the
solution on the parameters and prove its solvability. In Sec. 4 we show how to
reduce our specific problem to the “abstract” one.

Let us explain that we cannot answer the posed question basing on the well
known theorem on continuous dependence of solutions of ordinary differential
equations on the parameters, because it is not clear in advance whether the
implicit, unknown relation between the parameters is a differentiable function or
not.

3. The abstract problem

The problem we consider consists in determining a function and a set of
functions y(&,A) : R!' x A — Y C R!, and a set of functions x(\) =
(k1(A), K2(A), ..y k(X)) © A — K, where A is an open subset of R!, K is an
open subset of R | and the range Y of (£, A) contains the closed interval [0,1].
The functions y(&, \) and x(\) are such that:

1) y(&, \) satisfies the differential equation

(3'1) y” :g(yaylaﬁ‘a/\),

and the limit conditions: for any A € A

3.2 I ,A) =0, li JA) =1,
(3.2) (i (£ A) . y(&,A)

http://rcin.org.pl



THE DEPENDENCE OF DYNAMIC PHASE TRANSITIONS ON PARAMETERS 815

(33) “lﬂ (!/1(5)\)1!}'”(57/\)) = (U,U),
(3.4) Egm W& ),y (&) = (0,0),

where the dash denotes differentiation with respect to &.
ii) The functions k;(A), i = 1,2,...,k — 1, satisfy a system of k& — 1 algebraic
equations of the form

(3.5) 3k, N =0, i=12.,k—1

We take the following assumptions concerning the functions ¢ and G(k,\) =
(G](H’a )\)a CIQ(“’? /\): ey Gk—] (K'a /\))
H1l.  g(y,z,k,A) € C™P7(Y x R x K x A) for some integer m > 0,7 > 0.
H2.  For any (k,A) € K x A

(3.6) g(0,0,5,\) = 0,

(3.7) g(1,0,K,A) = 0,

(3.8) 9,(0,0,%,X) > 0,

(3.9) 9y(1,0,5,X) > 0.
H3. Gils,A) € O™ (K % A), i=1,2,...,k = 1.
COMMENTS

i) Conditions (3.6), (3.7) make Eq. (3.1) and the limit values (3.2)-(3.4) com-
patible.

ii) Conditions (3.8), (3.9) are crucial for our considerations. They mean that
the rest points (0,0) and (1,0) in the (3,7/) — plane are saddle points.

Equation (3.1) is autonomous, i.e. if y(¢) is its solution so is y(& + ¢), for any
constant c. To get rid of this ambiguity we impose an additional condition:

(3.10) Y0, = 5 [y(~00,X) + y(+o0,X)] = 5.
Our aim is to prove that, roughly speaking, if 110(), 50 € R¥, \g € R is a solution
to (3.1)-(3.5) then, under some additional conditions to be specified, the problem
has also a solution in a vicinity of A\g. The Implicit Function Theorem seems to be
the proper tool to perform this task, but some difficulty arises from the fact that
the number of unknowns is greater than that of the equations. Elimination of this
difficulty is possible owing to the fact that we are looking for special solutions,
namely those which satisfy (3.2), (3.3) for any \. It means that we have to be
cautious and choose suitable functional spaces.

Since our course of action follows the Implicit Function Theorem we start, for
the reader’s convenience, from its presentation (cf. [12])

http://rcin.org.pl



816 K. Piecuor

IMPLICIT FUNCTION THEOREM [12]. Let

(i) X, Y, Z be normed affine spaces and X, Y, % the corresponding vector
spaces;

(ii) D(Y,2) be the set of linear continuous mappings of the space Y onto %,

(iii) W be an open subset of X x Y, and (x9,y0) € W 29 € X, 50 € Y}

(iv) F': W — Z be a continuous mapping of W onto Z and I'(zo,%0) — =20,
20 € 4.
If

i) for every fired v € X and (z,y) € W, the mapping I’ has the Fréchet
derivative I, € L(Y,%);

i) Fy, : W — £(Y,2) is a linear continuous mapping of W onto L(,%);

ii) the linear mapping Fy(xo,y0) : Y — % has continuous inverse linear
mapping.

Then there are subsets U C X, V CY openin X, Y, respectively, xqg € U,
yo € V, such that for every x € U there is a unique element y € V', denoted by
y = f(x), satisfying f(z) € V, F(x, f(z)) = 20, f(x0) = yo; f(2) is a continuous
mapping of U onto V.

If additionally, the Fréchet derivative I'x(xq,y0) exists and is a linear continu-
ous mapping of X onto %, then the mapping f is differentiable at the point zy and
its Fréchet derivative is given by the formula

['(x0) = —F; (20, 90) © Fz(20,30),
or implicitly

Fy(xo,y0) + (0, y0) © f'(20) = 0.
=]
Now we define the spaces suitable for our problem.

DEFINITION 1. The space X is defined as the Euclidean space R' with elements
denoted by \ € A C R, the affine space X = A(R'), where A(R™) denotes the
affine space associated with R™. W
The definitions of the other spaces are more complicated.

DEFINITION 2. The set of functions y(¢) € CY(R"), for i — 0,1,2, vanishing
ezponentially together with their first i derivatives as €| — oo we denote by B;;
the norms are taken in the form

lylls = sup (Iy(&)] + .. + lyD(©)1)
¢eR’
The subspace of ‘B; consisting of functions such that
y(0) = 5 [y(—00) + y(+00)] = 0
is denoted by BY. m
Of course, B, and ‘B! are Banach spaces.

http://rcin.org.pl



THE DEPENDENCE OF DYNAMIC PHASE TRANSITIONS ON PARAMETERS 817

DEFINITION 3. The affine space BS associated with the normed vector space
‘BY is defined as the set of functions y(§) € C?(R') satisfying exponentially (3.2)
and such that |£]]im y(‘)(é) =0,1=1,2, also ezponentially. ®

—00

DEFINITION 4. The normed vector space Y is defined by the equality Y —
BY % R* with the usual product norm; the affine space Y associated with Y is
defined by Y = BY x A(RF). m

DEFINITION 5. The normed vector space % is defined by the equality 2% =
By x R*1 with the usual product norm; the affine space Z associated with % is
defined by Z = By x A(RF™!). m

As to the mapping F' mentioned in the Implicit Function Theorem, we take
the pair I' = (A(y, &, \),G(k,A)) : X XY — Z, where A(y) is defined by

A(yi Ky /\) = :U” s g(ya ylvﬁ'v’)‘)-

Let (yo(€),ka, o) be a solution to (3.1)-(3.5) with yo(¢) € BY. The Fréchet
derivative of I with respect to (1, k) evaluated at this solution is equal to

D(y',{)p(yo, KQ, /\Q)UL, Ali) = (Llyg, K, /\Ol(h, A.‘ﬁ), VkG(K,(), /\0) . Afi) ’

where h € BY, Ak € R¥, and the operator L[y, ko, \o] is the Fréchet derivative
of A(y, k, \). Explicitly,

L[yg,ﬁﬂ,/\o](h,AK) = /LH o g; (y(),y(g,fi(],)\o)h,l

— 9, (Y0, Y0, K0, Xo)h — Vg(y0, Y0, Ko, Ao) - Ak 1 ' — Z.
Let Lyom|¥0, ko, AoJh denote the “homogeneous part” of L|yg, £q, o], i.e.
(311) Lhom [?/0, KQ, A(]]h = h'H - glz (y(h y(,), KO, )‘())‘h‘l
‘g;(ymyz)vnm /\O)h : 'B(Q) = BU-
The adjoint operator L} [yo, 50, Ao] : BS — By is defined by:

+o0

+o0
| 96 Laamlyos 0, XalENE = [ (L [v0: Ko, dolg) )A€

—00

for any two functions g and h from B or, explicitly,

(3'12) Liom [yﬂ, Ko, )‘O]h = b’ + 9; (y01 y(,)a K0, /\O)h’

d
ol [9;(?/0:?/6750’)\0) - Eg;(y07y(,]1n0a)\0) h.

http://rcin.org.pl



818 K. Piecuonr

We have

ProprosITION 1. [11] The equation
(3.13) Lyom|Y0, K0, Aglh = 0
has two linearly independent solutions of the class C?:
(3.14) h(€) =yp(§) € By and  ha(€) = 9(6),
where

£

(3.15) b€ / q(C
with

S
(316)  a©) —al&mN) = exp [~ [ ohwo(0),16(C), w,N(C)
0

PROPOSITION 2. In the class C?, the equation L [yo]h = 0 has two linearly
independent solutions which are

(3.17) hi(§) = hi(€)a(€),  i=1,2,

where h;(§) are given by (3.14), with h; € Bj.
P roof. This result can be verified by a direct check.

PrROPOSITION 3. The range of Lyom([y0, Ko, o] as an operator from BY into
BQ is

_'.m
B = {h € By [ Uh(©a(QR(C)d¢ = 0}.

—00
P roof. The result follows immediately from the definition of the adjoint
operator Ly |y, Ko, Ao] and Proposition 2. The proof is complete.
ProrosiTioN 4. The equation

(318) Lhom[y()ah_'ﬂa)‘()“z = f

has a solution in BY if and only if f € Bi. The solution is unique and given by

oo
(3.19) Mo = [ K&,

where

K(€,¢) = q<<>{w(—c) —~ H(E - QICUE)

+5UH(E = ¢) - HC - 910 |

http://rcin.org.pl



THE DEPENDENCE OF DYNAMIC PHASE TRANSITIONS ON PARAMETERS 819

I1(x) is the Heaviside step function

1 for x>0,
H(z) '{ 0 for z<0.

P roof. The first part of the statement follows from Proposition 3, whereas
the second one is the result of the theory of linear differential equations [11].

TuroreMm 1. Let the functions g(y, z, £, \) and G(k, ) satisfy Hypotheses H1-
H3, and let yo(€) € Bo, kg € R¥ \g € R! be a solution to (3.1)~(3.5). If the
determinant of the matriz

VGi(K,N)
ViGal(k, A)

(3.20) D s, X)) = ,
vh:(.:k—.l(ﬁ'a /\)
@k, A)
where |
Qulk,A) = f y' (¢ Na(C R A Vig(y(G N, 4 (6 N), £y A)dC,

evaluated at y(&,\) = yo(§), k = Ko, A = No, is different from zero, then

1. Problem (3.1)-(3.5) has a unique solution y = y(&,\),k K(A) for
¢ € R! and A contained in a vicinity of Ao, such that for any fired value of \
y(€,\) € ‘BS.

2. These functions satisfy the equalities

y(&, o) = yol&), k(Xo) = Ko.

3. These functions are continuously differentiable m times with respect to A,
and the gradients V y(&, A), Vak(A) are given by (3.22) and (3.23), (3.24), respec-
tively.

Outline of the proof

According to the Inverse Function Theorem it is sufficient to prove that
the Fréchet derivative Dy .)F'(yo,k0,A0) has an inverse. Indeed, let us ta-
ke (f,0) € By x RF1. We are looking for (h,Ax) € BY x R such that
D, ) (yo, Ko, Ao)(h, Ak) = (f, ¢). Explicitly, this equation is equivalent to the
following system of linear equations:

Llyo, ko, Mo|(h, Ak) = [,
= o

V,;C:‘(I{(),z\()) < A =

(3.21)
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820 K. Pizcunor

The first equation is equivalent to

Lhom |0, K0, Aolh = Vg(yo, Ko, Ao) - Ak + [.

According to Proposition 4, this equation has a unique solution in Bj if and
only if

/ Y0(Q)a(¢, Ko, 20) Vg (W0(C), %o (€), Ko, Aa)d¢ - Ak

o0
= [ Wb 0, M) ()
-0
This equation together with (3.21); constitute a system of k linear algebraic equ-
ations for & unknowns Ax. It has a unique solution if and only if the determinant
of the matrix (3.20) is different from zero.
From the Implicit Function Theoremn we obtain the following expressions for
the derivatives V y(&, A) and Vyk(A):

,F:)O
(322) V,\?/(E:)\) - f h’(éag)vhg(y(C$)‘)!y’(gvA)a"‘"(A)i’\)dc ' V)\h"(/\)

+o0

b KEQTagE N 1 (G N, ), NG,
and
(3.23) VG, ) - Vak(A) = —=VaG(k(A), A),
(3.24) Qu(K(\),A) - Vas(A) = —@a(k(A), A).

The proof is complete. &

4. Applications to phase change problems

We consider the following limit value problem:
find a function w = w(¢), ¢ € R, satisfying the differential equation

1
(4.1) A(w)w” + EAL)(’U))U,"Q + sp(w, s, w)w' + f(w, s,w;) =0

and the conditions (2.16)-(2.18).

Here, A(w) is assumed to be a strictly positive and continuously differentiable
function defined for all w > b, and p(w,s,w;), f(w,s,w;) are defined by (2.14),
(2.15), respectively. Also s, w,, wy, etc. are the same as in Sec. 2.
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THE DEPENDENCE OF DYNAMIC PHASE TRANSITIONS ON PARAMETERS 821

We introduce the transformation

w

[V

wy

(4.2) w — y(w, wy,w;) =

Wy

A(Q)d¢

wy

Since A(¢) > 0, then y.,(w,w,, w;) > 0 for w; < w < wy, or Y, (w, w,,w;) < 0 for
w, < w < w;. Hence, this transformation has the inverse y — W (y, w,,w;) such
that

(4.3) W (0, wy, wy) = wy, W, wr,w;) = wy.

By applying transformation (4.2) to Eq. (4.1) we obtain for y an equation of the
type (3.1) with

sp(W iy, wr,uy), s,wy)
1

4.4 8 wryw) = —
(4.4) 9, Y, 8, wr, wy) AW ((y, wr, wr))

fW (y, we, wy), w, wy)

Wy

AW (g, wryD) f A

wy

We check easily that ¢(y,y/, s,w,, w;) as defined by (4.4) satisfies Hypotheses H1,
H2 formulated in the previous section. Let us also notice that (4.2) transforms
the limit conditions (2.16)—(2.18) into (3.2)-(3.4), and (3.10) is a counterpart of

‘ —

(4.5) w(€ =0) = =(wr + wy).

~

3

We take wuy as the independent parameter A\ of Sec. 3, and as the dependent
parameters £ we take (s,w;); the function (7(x, A) is assumed in the form:

(4.6) G(8, wrywi) = plwr, g — s(wy —wy)) — plwr, w) + 2 (wy — wy).

Then the equation G(s,w,, w;) = 0 expresses the Rankine-Hugoniot condition
(2.19). The other parameters such as u;, a, b are assumed to be fixed.

We can apply now the theory developed in the previous section to the present
case of g given by (4.4), G defined by (4.6), and k = 2, | = 1, assuming of
course that we know a solution wg(€), sg, wy, wf of (4.1) and (2.16)-(2.19),
or equivalently, yo(€), so, %, w) of (3.1)~(3.5). Having done that we have to
retransform the condition D, # 0 back to w = W (y, w,,w;). However, we resign
of doing that because we would obtain very complicated formulae. That is why
we limit ourselves to the simpler but physically the most important case when
the parameters s,w,,w; are near the Maxwell line. This is a particular phase

http://rcin.org.pl



820 K. PiEctor

The first equation is equivalent to
Lyom[Y0, Ko, Nolh = Vig(yo, Ko, Ao) - Ak + [.

According to Proposition 4, this equation has a unique solution in BY if and
only if

] 10(€)q(¢, Ko, Aa) Vg (0(C), 16(C), Ko, Ma)dC - Ak

—00

[e.0]

== [ 56 o M)
—20
This equation together with (3.21), constitute a system of A linear algebraic equ-
ations for & unknowns Ax. It has a unique solution if and only if the determinant
of the matrix (3.20) is different from zero.
From the Implicit Function Theorem we obtain the following expressions for
the derivatives Vy(&, ) and Vyk(A):

+00
(3.22) Vay(€,A) = /K(&C)ng(y(é,,\),y'(C,A),H(A),/\)dC~V,\f€()~)
+o0
+ f K (&,¢)Vag(y(C, N), 5/ (¢, A), £(N), N,
and
(3.23) ViGN, N) - Vak(A) = =VaG(K(A), ),
(3.24) Qu(K(A),A) - Var(A) = =Qa(k(A), A).

The proof is complete. ®

4. Applications to phase change problems

We consider the following limit value problem:
find a function w = w(&), & € R', satisfying the differential equation

(4.1) A(w)w” + %A:‘U(w)w'2 + sp(w, s, w)w’ + f(w,s,wy) =0

and the conditions (2.16)—(2.18).

Here, A(w) is assumed to be a strictly positive and continuously differentiable
function defined for all w > b, and p(w, s,wy), f(w,s,w;) are defined by (2.14),
(2.15), respectively. Also s, w,, wy, etc. are the same as in Sec. 2.
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We introduce the transformation

[ Vs

wy

(42) W= ’U(w, Wy, “«'i) = W

Wr-

JREGLS

wy

Since A(¢) > 0, then y., (w, wy, w;) > 0 for wy < w < wy, or Y., (w, w,, wy) < 0 for
w, < w < w;. Hence, this transformation has the inverse y — W (y, w,, w;) such
that
(4.3) W0, wy, wy) = wy, Wl wr, wp) = we-
By applying transformation (4.2) to Eq. (4.1) we obtain for y an equation of the
type (3.1) with

su(W (y, wr, wy), s, W) ./

AW (g, wr,w)
f(W (y, wy, uy),w, wy)

We

VAT G wrwl) [ /A

wy

(4'4) 9y, y,vs’wr’u"l) =

We check easily that g(y,v’, s, w,, w;) as defined by (4.4) satisfies Hypotheses H1,
H2 formulated in the previous section. Let us also notice that (4.2) transforms
the limit conditions (2.16)—(2.18) into (3.2)-(3.4), and (3.10) is a counterpart of

(4.5) w(¢ =0)= %('u'r + wy).

We take w; as the independent parameter \ of Sec. 3, and as the dependent
parameters x we take (s,w,); the function (G(x, \) is assumed in the form:

(4.6) G(8, Wy, wy) = plwy, uy — s(wy — wy)) — plwy, wy) + 8*(wr — wy).

Then the equation G(s,w,,w;) = 0 expresses the Rankine-Hugoniot condition
(2.19). The other parameters such as u;, a, b are assumed to be fixed.

We can apply now the theory developed in the previous section to the present
case of g given by (4.4), G defined by (4.6), and & = 2, [ = 1, assuming of
course that we know a solution wg(€), so, w?, wf of (4.1) and (2.16)—(2.19),
or equivalently, y0(€), so, w2, w) of (3.1)~(3.5). Having done that we have to
retransform the condition D, # 0 back to w = W (y, w,, w;). However, we resign
of doing that because we would obtain very complicated formulae. That is why
we limit ourselves to the simpler but physically the most important case when

the parameters s,w,,w; are near the Maxwell line. This is a particular phase
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824 K. Piecnonr

It is reasonable due to the physical reasons to introduce the characteristic
speeds c4(w,u) being an extension of the notion of the sound speed to general
hyperbolic systems. In our case they are defined as the real solutions (if they do
exist) of the quadratic equation [10]

¢ — epl,(w,u) + pl,(w,u) = 0.

We have
(4.20) Pl (w,u) = e (w,u)ey (w, u).

Using (4.17) and (4.20) in (4.15), (4.16) we obtain
i) if W = W -«

WAy c
2
(421)1 w\{ [,L(C,IL{ —I(—C——w"/ & O,UJ-,,,)dgdc

{w

[ ¢~ wm)pu(q,m)dc] -

Wm Wy =UWm

= (War — Wrn)C— (Win, W)y (Wo, Wy ),

(Wi, wg) ey (Weny )

(4.22), = :
wi=wm  C=(War, w)Cy (War, uy)

Wap C
2
4.21 / ,U —__/ )O;WTTL d d
R TS A
WA "
ds
_ /(wM— )Pu(C’“l)dC} wy
Wm o
= —(wnm — wm)e_(war, w)ey (war, w),
i, c—(wpr, ) e (war, uy) ( 1 1 )
4.22 N +
o, 201 oy = o (o)1 (e8] c—(war,w) ey (war,w)
ds
(U)j\[ . u”') —(TU[ Wy=wm
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Let us notice that, in general, the coefficient of ds/dw; in (4.21) can vanish for
some value u} of w;. Unfortunately it is difficult to determine all such critical
values of this parameter due to the complexity of the equation resulting from
equating this coefficient to zero. That is why we limit ourselves to two particular,
but important, cases for which we can explain this problem.

ExAMPLE 1. In many papers (|1 - 4, 6]), so-called isothermal phase transitions
were discussed. In this case

(4.23) pl(w,u) = 0.

Due to that the problem of the critical values of u; does not exist and we obtain
from (4.21)

(4.24) i!'s_ — (war — “'m)cz(wm)
PR (I{U‘[ W =Wwm n war ¢ £
/ — [ 16,0, wn)dea
(Cou) |~ [ F(&,0,wm)ded
; (¢, ur) Q) I
(125 du, ()
yas) e
dwl Wy =Wm e ( Wpt )
or
(/1 2 1)) ._qs__ = (“'I\] = T"rlr)cz(TUA_j)
) du"l wy=wpg was ’
/M(Ca“l 4(g /f(§ 0, Wy, )dEAE
Wm wpr
(4.25)9 s = —C‘z(u‘M)
dwy wy=w g e (’U) m)

Here, we made use of the fact that in the isothermal case

eilwyu) = e(w) = —e_(w,u);

c(w) = 4/ —piy(w).

Formulae (4.24), (4.25) generalise the corresponding expressions obtained by
TRUSKINOVSKY [2], who assumed additionally that A(w) = const and ju(w,u) =
const.

where
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ExXAMPLE 2. The model equations of hydrodynamics [10, 11]. In this case
p(w,u) is given by Eq. (2.3). We have

WAf Wwars
— Win
= ](g - u‘”l)[):l(c’lll)(jg = W / <C B d'Ca
W wt\fu’ g
— [ (wns = g s = w [ TR

We see that in both cases the coeflicient of ds/dw; is positive for u; > 0. Hen-
ce, it remains positive for negative (but sufficiently close to zero) values of this
parameter. Unfortunately, we are unable to say whether the discussed coefficient
can vanish for some negative u;. Consequently, we can claim only that, at least
for small values of |w| and for w; close to wy, = wy,(w) or war(w) (we re-
mind that the solutions of (4.7), (4.8) depend on w;), the solution to the problem
(2.13)—(2.19) exzists, 1s unique and is differentiable with respect to wy.

Of course, we can take the right state of equilibrium w, or the speed s as
the independent parameter and (s, w;) or, respectively, (w;, w,) as the dependent
ones and obtain a similar theorem. But from our theory we can deduce more.

ds ds
Namely, we have — >0and —

wl W) =Wy du‘l w—=wWAr "
examples. Also we can use the Taylor formula, as we have proved the existence

of all the necessary derivatives, to obtain

< 0, at least in the considered

, ds g
(Ul B u."t) d’!l-’[ wp=wWm ! O ((’Ull “"1”) ) ’
(4.26) s(wy) =
ds ;
(wy —war) 5— F O ((w —war)?).
du,l W —=WHAr (( )

This is the so-called “normal growth” approximation [2] introduced intuitively on
physical grounds.

In this way we obtain the following conclusions:

The speed of the phase boundary is positive if either w; < w,, and w; is close
to wy, (condensation), or w; > war and wy 1s close to wys (evaporation).

The speed of the phase boundary is negative if either w; > w,, and w; is close
to wy, (evaporation), or w; < wyy and w; is close to wyy (condensation).
The above results constitute an extension of a theorem proved by SHEARER |6].
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On efficiency of identification of a stochastic crack
propagation model based on Virkler experimental data

Z.A. KOTULSKI (WARSZAWA)

IN THE PAPER we concentrate on one aspect of the experimental design: how the in-
formation coming from an experiment can be utilised for identification of a specific
mathematical model. To express the consistency of the data and the model we need
some quality measure, allowing to transform our intuition to numbers. As the mathe-
matical tool we propose a version of the statistical procedure of cross-validation of
the data. Then we verify the efficiency of the suggested method on the example of the
Virkler experimental data of stochastic crack growth and the mathematical model of
Paris-Erdogan of the fatigue crack growth.

1. Introduction

EXPERIMENTAL DATA constitute a basis of the mathematical modelling of phy-
sical phenomena. Trying to identify the model’s parameters we always ask the
question if the data are sufficiently reliable for the applied mathematical proce-
dure. Development of mathematical statistics achieved in recent years made it
possible to perform methodologically consistent reasoning to decide whether the
obtained experimental results are useful for the proposed model and inversely —
whether the model is adequate for the experimental data.

The purpose of the paper is to propose a method of verification of the quality
of experimental data coming from some physical phenomenon for identification
of a certain mathematical model of this phenomenon. (The same purpose can be
written in an inverse way: what is the quality of a certain mathematical model for
description of a physical phenomenon generating the observed set of numerical
data). After general remarks on collecting the empirical data, we concentrate on
a particular model of stochastic crack growth. We make an attempt to verify if
the Virkler experimental curves of crack growth can be used for identification of
the Paris-Erdogan model of the stochastic crack propagation [10]. The method
applied for this purpose is the cross-validation method of verification of predic-
tability of the measured data, widely applied in mathematical statistics (see [1,
5, 11, 12]). At the beginning we present the general (non-linear) formulation of
the cross-validation technique. Next we formulate the problem in a linear case
and present the formulae for estimation of the linear model parameters when
some measurements are missing. Finally we apply the proposed procedure to ve-
rification of the Virkler data being the source of knowledge for the simplified
Paris-Erdogan model of the stochastic crack growth.
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2. Experiment’s design and reliability of experimental data

Researchers using experimental data for verification of the mathematical mo-
dels of physical phenomena have always a dilemma: to make their own experiment
or to apply experimental data available in the literature. In both cases they en-
counter several methodological and technical problems.

Constructing our own experiment, we can do this according to all the rules
known as the design of experiment in a way optimal for the specific mathematical
model considered [6]. To plan the experiment, one should:

e select the model variables that must be identified;

e select the set of treatments (different factors whose effects are being com-
pared) effecting on the measured quantities;

e specify the experimental material to which the treatments are to be applied;

e construct or select the rules according to which the measured data are
connected with the model parameters;

e manipulate the treatments (increase the number of samples, modify the
range of controlled experiment parameters, etc.) in such a way that finally, the
identified model is possibly complete.

We realise that, in spite of the fact that there is a temptation to manipu-
late the results of the experiment to improve the quality of identification and
validation of the mathematical model (interesting remarks on possible tricks and
methods of detecting such manipulations can be found in [9]), one can also really
modify the experiment to improve its results. However, sometimes the objecti-
ve reasons (high cost of experiment, difficulties in keeping constant experiment’s
conditions, unexpected noises during measurements, etc.) make that the collected
data are not satisfactory and one feels to be obliged to verify their validity.

Applying in the modelling procedure the experimental data taken from lite-
rature, researchers meet quite different problems. First of all, they never know all
the conditions of the experiment. However, even if the description of the expe-
riment itself and of the presented data is sufficient for the modelling purpose,
they reach a fundamental barrier: the number of data samples is fixed and can-
not be increased by continuation of the experiment. Then they should always
answer questions like: Is the set of the experimental data sufficiently large? What
would be the effect of estimation if we had more data from the experiment? In
other words, one must answer the question if the available experimental data
set is sufficiently representative for identification of the proposed mathematical
model.

The heuristic idea of verification of experimental data as the basis of iden-
tification of the selected mathematical model (the estimation of its parameters)
can be formulated in a mathematical way. An example of such a procedure is
presented in the following sections.
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3. Cross-validation method and estimation

The cross-validation is a method of verifying the consistency of experimental
data. In this method we choose two different subsamples from the data sample.
One subsample is applied for estimation of the system parameters, the other is
used as a reference set to control the quality of estimation. This procedure lets
us to test two facts: the integrity of the experimental data (the data sample is in
some sense homogeneous if both subsamples of it give similar estimation results),
and correctness of the estimation procedure (the algorithm gives similar results
for two different subsamples of data taken from the same population).

The standard cross-validation procedure can be modified for any particular
problem and any expected purpose of it. Now we present a version of this method
useful for verification of the measurements obtained from an experiment.

Counsider the following two-dimensional time series:

(31) (thi), 1= 1,2,...,!1,

where the elements of the sequence represent, respectively: x; — the observed data
points, 1; — the values of the process being estimated.

Assume that we know some number of the data pairs (y;, z;),i = 1,2, ...,n; we
call them the observation history S. Assume also that for the given observation
history we can construct the estimator y(x, &, S) of the random variable y based
on the observation x (the value of the process corresponding to the observation z).
In this estimator, the parameter @ € A (& is some scalar, vector or matrix
parameter taking its values from a certain set of parameters A) describes the
dependence of the values of the process y; on the data points z;, fori = 1,2, ...,n,
and it depends on the history S. Parameter & should be also estimated during (or
before) the estimation of 3. Using the constructed estimator we make an attempt
to verify the quality of experimental data using the following cross-validation
type procedure.

Consider n observation data points. Assume that a subsample of n — 1 data
points is used for the estimation of the parameter &. We estimate this parameter
n times, every time omitting another point. We are interested, how much the
omitted data points influence the quality of estimation of & and, consequently, of
the process y. To answer this question we define the following scheme of reasoning.

The cross-validation algorithm

I. Estimate the parameter using n-1 samples, minimising the following
functional:

(3.2) L(x) = ¥ L [y5, 9, 0, S5)]
n—1. =
7=1,2,...i=1i41;...n

http://rcin.org.pl
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where L[, | is some loss function and S/; is the observation history of n— 1 pairs,
where the pair (y;, ;) is omitted.

1I. Apply the procedure of point I n times for i = 1,2,...,n. For each step,
fix the estimated value of the parameter & as:

(3.3) a=a&l(5,), i=12.m

II1. Estimate the states of the observed process y according to the assumed
estimation formula, where the parameter is taken as & = &(S/;), that is calculate
the values 7j(z;, &(S/,-), S4i),t = 1,2,...,n, minimising the expression:

1 n X N ; .
(34) C(S) = ~ D" L [y 5as, &(Sp), Sy2)]
- =1

The value of C(S) calculated in (3.4) for the obtained values of the estimators
gives us the quality measure of the estimation procedure.

1V. Estimate the reference values of the process using all the history S. We
obtain them by minimising the following functional:

(35) Cre(S) = ~ 3" Ly Blas, &(8), 5)].
" =1

Let us remark that in some cases the procedure (3.5) using the complete history
S, can give the exact estimated values of the process y, that is §j(z;, x(.5),5) = ¥
and, consequently, C\.f(S) = 0. However, for some specific estimators this can
not be satisfied, and then we should compare the measures (3.4) and (3.5).

The cross-validation procedure enables us to verify the integrity of the expe-
rimental data. It detects, how much information about a single measurement is
contained in the rest of the measurements of the observation history. If in the
data population there are some outstanding results, they will contribute a signifi-
cant income to the quality measure (3.4). When the observation history contains
a lot of such data points, the value of C'(S) becomes much greater than C.(.5)
and we can expect that any increase of the number of data points in the identifi-
cation procedure can effect in a significant change of the model parameters being
estimated.

Let us remark that the procedure of cross-validation is performed for a finite
number of data points n. The number n growing to infinity in the validation
procedure does not guarantee the convergence of the quality measure C'(S).

In the above procedure we have assumed as a reference set, the one-point
subsamples. In general one can do this by estimating the model parameter @ € A
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and omitting several data points, and then in the verification step using the entire
experiment history S. In Sec. 8 we apply such a method at a practical example.
4. Linear estimation for non-complete set of experimental data

In this section we consider the known linear estimation procedure. It proves
to be very useful for the cross-validation technique in the case when the process
is linearly dependent on the model parameters.

Assume that we have the following set of observations:

(4.1) Tis 8 =1 Zevss 1
The process to estimate is denoted by:
(4.2) yi( &), 1 =12, woylls

where & is the (vector) parameter to be fixed during the estimation procedure.
Since the model is assumed to be linear, the process y can be represented as:

P
(43) Vi = ZAU’QJ’ 9 = 1,2, weny T
=1

The values of the observations x and the process y are connected by the following
observation equation:

(4.4) T =¥ + e, =il B
or
p
(4.5) g = ZA,-J-QJ- + e, B =12 w75
i=1

where A;;,1 = 1,2,...,n,j = 1,...,p are the elements of the system matrix, and
ei,t = 1,2,...,n are the elements of the random disturbance (noise) vector.
The formulation of the estimation problem

We assume that our observation process (set of n observations) can be written
down in the following matrix form [6]:

(4.6) x=Ax+e,
where
(4.7) X = (81, 0gy0s Br)
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is the observation vector,

An ... Ap
(4.8) A=

Anl An‘p
is the system matrix,
(4.9) o = (ayy ey ap)T

is the vector of parameters to estimate,
(4.10) e =(e1,...,en)

is the noise (random disturbance or error) vector.

For the efficiency of the model it is assumed that

e A;;, the elements of the system matrix, are some known constants

e 1;, the elements of the observation vector, are normally distributed;

e 1; are independent;

e all the variables z; have identical variance 2.

From the above conditions we can deduce that the elements ¢; of the no-
ise vector are Gaussian, independent random variables (we assume: with a zero
mean) and with identical variance o?.

To complete the vector formulation of the problem we rewrite equation (4.3)
in the form
(4.11) y = Aa.

Then the estimated value the process is
(4.12) y = AQ,

where & is the estimated value of the control parameter .
If the rank of the coefficient (system) matrix A is p, then the matrix AT A is
non-singular and the mean-square linear estimator & can be expressed as:

(4.13) &= (ATA) 1Ak,

Having introduced the basic definitions and facts, we are ready to present the
linear version of the scheme of cross-validation analogous to the one presented
in the previous section. However, in the linear case we assume the reference
subsample as a certain k-element subset of the observation history.

Consider the observations 1,29, ...,2,. Assume that the observations z,
29, ...,Tn— are used for the estimation of the model parameter &, and that
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Ty_ki1,., Ty are omitted in this procedure. Then the matrices and vectors in
the state equation (4.6) can be reduced to the following form:

(4.14) x—{};;} A;{ié}, e:[zﬂ

where
(4.15) X] = (1‘1,--~,-'1.'u—k),r,
(416) X2 = ('rn.—ki-l""wlln)rr'

The other matrices and vectors are uniquely defined by this division of the obse-
rvation vector.

By assumption (last k observations are missing) we find the mean-square
estimator of the parameter from the following state equation:

(4.17) x; = A1+ ey,

that is o is the solution of the following normal equation:
(4.18) ATA &= ATx,.

If & is the calculated value of the estimator, then we assume
(4.19) X2 = Ao,

as a substitute for the missing observations. Since the normal equation for the
complete system is

(4.20) ATA o+ ATA o = ATx; + ATx,,

we assuine the observed process in the formn

Y1
4.21 -,

and now & is also the solution of the normal equation.
Let us remark that the quality measure used in calculation of & is:

n—k
(4.22) a(8) = - - £ (@i A o~ Agay)®
M=

It is seen that the above formulae (after the appropriate permutation of the
variables) can be used for calculations in the cross-validation method presented
in Sec. 3 in the linear case.
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Let us remark that the procedure of linear estimation of parameters is (under
quite general assumptions) asymptotically convergent, that is, if in (4.13) we
take into account a sufficiently great number of observations, we obtain as a
result the almost exact value of the expectation of the parameter . However, in
our considerations we deal with a finite number of observations and, moreover,
apply this estimator at the algorithm of cross-validation which is not convergent
itself (see previous Sec. 3). Therefore the cross-validation procedure gives us only
qualitative information about the experimental data.

5. Mathematical model of crack growth

In the literature, various models of stochastic crack growth are used [10]. For
the purpose of presentation of the cross-validation method we adopt one of the
classical models. Consider the following randomised Paris-Erdogan equation for
the fatigue crack growth under homogeneous cyclic stressing [2, 3|

(5.1) Aa = XC(AK)™,

(5.2) AK = AcF (%) N

(5.3) F (9) N for % <07,
)

) a’
COS T —
b

where: a is the crack length, b is the specimen width, Aa is the increment of crack
length caused by a single stress cycle, AK is the range of the stress intensity at
the crack tip, C,m are constants depending on the specimen material, Ao is
the stress range, X is a random variable changing independently from one crack
increment to another, and satisfying the following conditions:

(5.4) E{X}=1 E {(X - 1)2} = §.

The process of the stochastic crack growth modelled by the discrete randomised
Paris-Erdogan equation (5.1)—(5.3) can be equivalently described by the following
continuous stochastic differential equation (2, 3|:

da

(5.5) = C(AG)™(1 + £(t))dt.

()

Equation (5.5) has been obtained from (5.1) under the following essential as-
sumption on the random variable X:

(5.6) X =1+£(1),
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where (1) is a white noise with a zero mean and the intensity 0. The time
parameter ( is considered to be the number of cycles of the external excitation of
the material sample.

Equation (5.5) can be integrated at time intervals [N;, N;;1] and the cor-
responding crack length intervals [a;,a;y1] for the whole specimen life-time
{i=1,2...,m):

(5.7) {71 [F (i) \/ﬁ] e = C(Ao)™ N]Hn +&(t)]dt.
an, N;

Then we can write down the above equation in the following form:
(58) [(p(a'N,'}l + a'Ni )] g (aNi+1 i (I[\,"i) = C‘(Ag)in(Nl 1 — Ni)"ii,i Fly
where 1; ;41 is a Gaussian random variable with

0

(59) 10 {T]i‘i.i.]} — 1, Var {f}i‘i | 1} = m,

and

(510) (b(aNi+1 + aN,i) = (a"\'i t ]2;" (Ll\'.‘) \/W‘

Calculating the natural logarithin (logarithm to base e) of the integrated crack
growth equation (5.8), we obtain the following:

(511) 11’[((1[\,’iJrl = G.Ni) = IH(N“ = N’i)

= In[®(an;,, +an)Ac]m +InC + (i

Now, using the experimental measurements (ay,, N;),i = 1,2,...,n, we want
to estimate the model parameters m and InC'. Since the model is linear with
respect to these parameters, we must adopt the method of linear estimation
presented in Sec. 4 for equation (5.11). We identify the terms in equation (5.11) as:

(5.12) zi = In (an,,, — an;) —In(Niy1 — Ni),
(5.13) Aa =In[® (an,,, +an,) Ad],
(5.14) )

(5.15) ap = m,

(5.16) az = InC.
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In the above we have assumed that random fluctuations of the crack length
increments are small in comparison with the crack length, and the coefficients
A can be considered as deterministic constants. Moreover, for simplicity, we
assume that the random variables representing the growth disturbance (noise)

(5.17) Ci = Gijit+1,

are Gaussian with a zero mean and with equal variances o2, In the formulation
of the model, in formula (5.9), we have assumed that the variances of the noises
are of the form:

4
=4 /. ¥ 1o ~
(5.18) Var {n; i1} = Ne =i’
We know that, under realistic values of the numbers of cycles N;, these variances
are small and the denominators N;;—N;, in (5.18) do not differ too much for all 7.
Therefore we can assume that the variances of random variables ; ;11 = Inn; 41

are for all 7 (approximately) equal:
(5.19) Var {Giij1} = ¢

and, moreover, the distribution of ¢; ;11 can be approximately considered to be
Gaussian.

6. Experimental data and estimation of the model parameters

As it is seen from the previous section, the parameters to be estimated in
our simplified stochastic crack propagation model are m and In C'. Now we must
construct the numerical procedure of the parameter identification. We know that
m and In C' are random variables and the algorithin must take this fact into acco-
unt. Therefore we apply the statistical method of conditioning |7] for this model.
This means that our procedure of identification of the statistical distribution of
the pair (m,In ') will be performed in the following two steps.

STEP 1. We consider the trajectory of the stochastic crack growth for the fi-
xed elementary event «’ € 2. We assume, that this trajectory is governed by the
Paris-Erdogan randomised equation (5.1) with the parameters (m(«’), In C'(«”)).
Using the crack growth model defined in Sec. b and the parameters estima-
tion schedule from Sec. 4, we calculate the numerical values of the parameters
(m(«'), In C(u")).

STEP 2. We repeat the procedure of Step 1 for all the trajectories collected
at the experiment (observed elementary events «; € (2)) obtaining the set of
pairs (m(w;),In C(«;)), for w; € 2. Using the estimated values of the parameters
(m(w;),In C(w;)), we identify the probabilistic distribution of the two-dimensional
random variable (m, In ().
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REMARK. Let us remark that if the above procedure is applied for estimation
of the value of the parameter C'(w) (or its mean value), then the proposed
algorithm introduces some additional error of estimation. It is connected with
this fact that

(5.20) E(In C(w)|measurements) # In I(C(w)|measurements),

what means that the distributions (and, what it follows, the moments) of two
random variables: the estimated value of In C'(«w) and the random variable being
the logarithm of the estimated value of C'(w) — are not equal. The difference of the
above distributions is quite small if the variance of the estimated parameter C'(w)
of the model is small. Finally let us remark that in our method of validation of the
experimental data we use only one of the parameters (In C'(«w), not C'(w)), so we
avoid a danger of inaccuracy caused by non-linear transformation of distributions.

7. Modelling stochastic crack growth using experimental data

The experiment of measurement of the stochastic crack growth is very com-
plicated. It requires rigorous preparation of the material samples, exact repetition
of excitations, environmental conditions, etc. Therefore in the literature one can
find only a few papers where such data is presented. The examples of such results
can be found in [4] and [13].

In our paper, as a material for the practical illustration of the above the-
oretical considerations, we use the Virkler experimental data of stochastic crack
growth under periodic loading [13]. The results of this experiment are shown in
Fig. 1. The authors performed the experiment for 68 samples of material, obta-
ining the trajectories of crack growtl, each containing 164 measurement points.
The experiment has been performed for the 2024-T3 aluminium alloy. The dimen-
sions of all the samples were: length a,, — 558.8 (mm), width b = 152.4 (mun)
and thickness d = 2.54 (mm). The length of the fatigue crack was observed in
the interval 9.00 < a < 49.8 (mnm); the stress intensity during the experiment
was Ao = 48.28, and the sinusoidal excitation frequency was 20 Hz.

The experimental trajectories are the fundamental basis for identification of
the model parameters. To perform the procedure, we apply the algorithm pro-
posed in Sec. 6, performed in two steps. In the first step we identify parameters
(m,In ') for each of the 68 trajectories of the stochastic crack growth. The esti-
mated values of the parameter pairs are presented in Fig. 2.

It is seen that the parameters m; and In C; are, with high accuracy, linearly
dependent on each other. This means that in the second step of identification of
the model, it is sufficient to consider only one parameter of the pair. Following
the literature (3], we assume the normal distribution of the random variables
m(w) and InC(w). This means that, in order to know the distributions, it is
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enough to calculate their mean values and variances. In the second step of the
conditioning procedure we estimate the moments of the parameter m according
to the maximum likelihood estimators:

"
(7.1) E{m} = %V; m(ws),
f\f
(7.2) Var{m} = % Z(m(wi) — E{m})2.
i=1

Since we have observed the linear dependence of the parameters m and In C:
(7.3) InC = Am + B,

to complete the identification of the model we should calculate the coefficients
A, I3, using the formula (4.13) for the linear estimator, and the experimental data
presented in Fig. 2. The obtained moments of the random variables m(w) and
In C'(«) and the values of the parameters A and B are:

(7.4) E{m} = 2.874,

(7.5) Var{m} = 0.02736,

(7.6) A = —5.847,

(7.7) B = —9.35,

(7.8) E{lnC} = AE{m} + B = —26.155,
(7.9) Var{lnC} = A?Var{mn} = 0.939.

8. Reliability of the experimental data and cross-validation

The procedure used for the identification of the model parameters needs the
experimental data to obtain concrete numerical results. In our procedure we
applied the data in two steps. In every step we performed the identification under
an implicit assumption that the collected data are appropriate for our purpose.
However, there is always a danger that this assumption cannot be justified. The
general ideas concerning this fact have been presented in Sec. 1. Now we will show
how the concrete example of estimation of the Paris-Erdogan model parameters
on the basis of Virkler data, demonstrates the general idea of the cross-validation.

Let us discuss the results obtained in two steps of our conditioning procedure.

STEP 1. In this step we identify the sample parameters (m;,In C;) for all 68
trajectories obtained in the experiment. For every trajectory we obtain a certain
value of the parameters (m,In ). To verify the validity of the estimated values,
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we try to reconstruct the Paris-Erdogan (deterministic or averaged) trajectories.
The result of the calculation is presented in Fig. 3. During reconstruction of
the trajectories we failed at 9 cases of 68 (9 times the sample paths with the
identified parameters exploded before reaching the considered number of cycles).
To explain this fact let us remark that (as it is visible in Fig. 1) some experimental
trajectories of stochastic cracks are of the shape which is non-similar to the
exponential Paris-Erdogan curve. Moreover, the length in time (number of cycles)
is different for each experimental curve. Therefore the life-time of the modelled
crack growing in the sample cannot be precisely determined. The discussion of
analogous problems can be found in [§].

50

40

30

Crack length

20

10

: | | l

0 100000 200000 300000
Number of cycles

F1G. 3. Deterministic trajectories with parameters (m;, In C;) estimated from the Virkler
experimental data.

To study the effect of the trajectory length on the success of the procedure
of the model parameters identification, we make the following calculations. We
omit some number of the measurement points at the end of every curve in the
procedure of Step 1. The resuits of such numerical experiment (the number of
the identified pairs of the parameters for which the reconstruction of the Paris-
Erdogan trajectory was impossible) are presented in the following table (the
length of the trajectory is 164).

STEP 2. We estimate the model parameters (identify their distributions) ba-
sing on the data partially identified in Step 1. Now we try to verify the validity
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of the data for the complete identification procedure. We examine the reliability
of the experimental data using the linear interdependence of two parameters in
the Paris-Erdogan model of the stochastic crack growth. To do this, we compare
the results of model identification obtained by two different methods.

Number of omitted data | Number of unsuccessful
points on trajectory identifications

0 9
10 10
20 12
30 16
40 20
50 25
60 37
70 43
80 51

Assume that the value of the parameter m; for fixed i is known (it is identified
in the procedure of Step 1). Now we can calculate the values of the parameters
A and I3 in the linear dependence (7.3).

MreTrop 1. In this method the coefficients A and B are identified according
to the formulae of Sec. 4 with the use of all the pairs of the estimated values
(m;, nC%).

METHOD 2. In this method the coefficients A and B are identified with the
use of all the pairs of (mj,InC';) except for the i-th pair.

Now, having the values of A and 73 estimated, we are able to calculate (accor-
ding to (7.3)) the approximate value of the model parameter In C; for every m;.

The first performed test shows, what is the influence of the i-th measured
trajectory on the approximation quality of InC;. Figure 4 shows the result of
classical (one-point) cross-validation of the experimental data. The points on
the plot marked with crosses represent the value of mean-square error of the
approximation of the value of InC; estimated from the trajectory by InC; =
Am; + I3, where the parameters A and B were calculated by the Method 1.
Points marked with circles represent the analogous error but for parameters A
and B calculated according to the Method 2. It is seen that the differences in
the approximation errors are significant for 9 measurements. This means that 9
measurements are not appropriate for the identification of the parameters of the
Paris-Erdogan model. They contain a lot of information specific for themselves
but useless for approximation of the general properties of the model.
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F1G. 4. The mean square error for approximation of the parameter In C;.

The following identification method treats the cross-validation problem more
generally.

MeTHOD 3. In this method, the coefficients A and B are identified with the
use of all the pairs of the estimated values (mj,InC}) except the & randomly
selected pairs.

The results of the Method 3 are presented in Fig. 5. There are 3 lines in the
plot. The dashed line shows the value of the mean square error of the approxi-
mation of the parameter In C;, with the value m; and formula (7.3), where the
constants A and B were calculated according to the Method 2 (this is the sum of
the errors for all 68 experimental trajectories). The solid lines show the analogous
error but when the coefficients A and I are calculated according to the Method
3. The functions depend on k, the number of the omitted points (for two different
random selections).

It is seen that, in general, omission in the approximation procedure of In (;, at
a given point just the measurement made at this point, gives the effect comparable
to neglecting more than 30 randomly selected points (that is about 50% of the
points considered in the estimation procedure). This means that each curve of
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the Virkler data is strongly informative for the estimation of the value of the
parameters calculated for this curve.

0.85 T T
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0.75 —
0.70 —

065 —

0.60 —

Mean square error

0.55 —

- 1 | | 1 | |
0 10 20 30 40 50 60 70
Number of omitted points

F1G. 5. The averaged mean square error of estimation of the parameter In Cj.
9. Closing remarks

One of the most important tasks of the experiment’s design is the verification
of the consistency of the measured experimental data. To analyse the data, we ha-
ve applied the method analogous to the statistical procedure of cross-validation.
Since the results of measurement had to be applied for identification of the para-
meters of a certain mathematical model, we applied this model (or, more precisely
its parameters) as the quality measure of the set of experimental data. Such a
methodology is very intuitive: the collected data can be more appropriate for one
model, less appropriate or useless for another. The reasons for this fact can be ve-
ry different. It can happen that some model is not adequate for description of the
observed physical phenomenon and this fact must be always taken into account
in the identification process. However, this is not the only reason of failure of the
procedure. Sometimes the algorithms of the model parameters estimation require
a specific structure of data. Therefore one must carefully design the experiment
planning its duration, sampling in time, location of sensors over the sample, etc.,
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taking into account the final destination of the obtained data. Summming up, vali-
dation of the experimental data must be always connected with the model where
the data are utilised.

In this paper we have considered the following practical problem: for a given
set of experimental data (Virkler data on the fatigue-crack length) and the ma-
thematical model of a physical phenomenon (Paris-Erdogan randomised model
of fatigue-crack growth), verify the validation of the data for identification of
the model parameters. The conclusions regarding possibility of application of the
Virkler data in the Paris-Erdogan model are the following:

e Virkler data applied in identification of the Paris-Erdogan randomised mo-
del are sensitive to the length in time (duration) of the sample trajectories. They
are also very sensitive to omitting the results of certain sample measurements in
the identification procedure.

o After the cross-validation procedure applied to the Paris-Erdogan equation,
we must say that while the model gives a good qualitative description of the
stochastic crack growth, there is a small possibility of prediction of the behaviour
of the crack in a certain sample of a material. To estimate the parameters of
certain trajectory with good accuracy, we should include into our calculations
the experimental results obtained just for this trajectory.

e In the experiments of a kind analogous to the Virkler one, the number of the
measured samples and the length of the observed trajectory is essential for the
quality of identification of any mathematical model of the tested phenomenon.

To conclude our considerations we must say that while every experiment, be-
fore it is made, must be carefully designed, then the following cross-validation
procedure can strongly confirm the applicability of the obtained data for mathe-
matical modelling. This procedure indicates in particular the coherence of the
obtained experimental data and the applied theoretical model of the phenome-
non.
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On elastic energy of structures under proportional
loading

A. GAWECKI (POZNAN)

THE PAPER CONCERNS the proportional loading of structures made of time-
independent materials. It has been shown that the elastic energy can be a decre-
asing function of the load multiplier if unilateral constraints are introduced into an
elastic-plastic structure. Results obtained in the work seem to be of importance for
the theory of structures and may have some theoretical implications. An exhaustive
example illustrates the theory.

1. Introduction

THE PRESENT PAPER CONCERNS the problems of energy in structural systems. The
energy, being a scalar quantity, is a diagnostic measure of the current mechanical
state of the system and is of importance for theoretical considerations.

The elastic energy of structures made of the elastic-perfectly plastic materials
will be evaluated. The load is assumed to be proportional and the problem is to
establish whether the elastic energy is a monotone function of the load multiplier
or not. It seems that the answer is “yes”, but there is no theorem concerning
this question known to the author. However, the problem is not trivial in general
cases of time-independent systems. A case will be shown when the elastic energy
can decrease while the proportional load increases.

The distortion approach has been applied in our considerations. The essence
of this approach consists in the observation that all deformations due to nonli-
nearity of the material and/or boundary conditions are caused by the presence
of distortions imposed on the linear elastic structure. Distortions are defined as
enforced deformations which are not kinematically admissible, in general. The
concept of distortions was introduced in the last years of the 19th century and,
among others, was used in the papers of V. VOLTERRA [1] and G. COLONNETTI [2].
The distortion approach allowed us to obtain many valuable results, particularly
in the thermoelasticity and shakedown theory of elastic-plastic structures. Some
information concerning this topic can be found in the monographs of W. Nowacki
[3] and J. A. Konic [4].

All considerations presented herein are carried out in the framework of the
kinematically linear theory. The FEM-oriented matrix description, worked out
by G. MAIER [5] and his co-workers, is used.

The elastic energy will be estimated for elastic (F), elastic-perfectly pla-
stic (IZpP), slackened-elastic (SF) and slackened-elastic-perfectly plastic (SEpP)
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structures. “Slackening” is a structural property, consisting in the presence of gaps
(clearances) at structural joints. Thus, on the macro scale, the slackened structure
behaviour exhibits the locking effects. Deformations of slackened systems are due
to elastic e, plastic ep and also concentrated clearance strains €, (i.e. relative
displacements of members and connection elements). The plastic and clearance
strains can be treated as distortions imposed on the linear elastic structure. It
should be pointed out however that clearance strains are “load-dependent” di-
stortions, because they can vary during the deformation processes. More details
concerning the slackened systems can be found in [7, 8].

2. Mathematical description of elastic systems with distortions

Consider an linear elastic systemn subjected to external loads p and distortions
er. The elasticity coefficients are assumed to be constant and independent of
distortions. A current mechanical state, independently of the deformation history,
can then be described by the following system of matrix relations:

Cu=¢=¢g+¢€p,
(2.1) Clg = p,
o = E¢g.

In Eqs. (2.1) p, u, 0 and € denote the vectors of loads (or generalized loads),
displacements (or generalized displacements), stresses (or generalized stresses)
and strains (or generalized strains), respectively. All these state variables are
consistent in the sense of the virtual work equation:

(2.2) pTu=o0cTg,

where 1" denotes the transpose. C is the geometric compatibility matrix, which
depends only on the geometry and boundary conditions of the system. 2 denotes
the strictly positive definite, square and symmetric matrix of elasticity. Since the
kinematically linear approach is used, the strain vector € can be split into elastic
€ and distortion € parts.

From (2.1) the following matrix relations can be derived, [8]:

p = Ku—CTEsR, . |22 K‘]p, O = K_ICTEER,
(2'3) u = Ut U, O = ECK_lp, o, = Zep,
o = 0.+ 0y, K = CTEC, Z =ECK'C'E-E.

where K is the square, symmetric and strictly positive definite stiffness matrix.
In Eqgs. (2.3) subscript e relates to the linear elastic structure without distor-
tions, subjected to load p, and subscript r indicates all the quantities due to the
presence of distortions.
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The distortion influence matrix Z is square and symmetric. It is well-known
that the same stress state can be induced by various distortions, but any difference
between these distortions is kinematically admissible. Thus, the matrix Z has to
be singular. It is easy to show that

(2.4) ZC =0 and CTZ=0.

Irom (2.4) we can formulate the following properties of distortions, namely:

e any kinematically admissible distortion field (i.e. eg = Cu,) does not induce
self-stresses 0,
(2.5) 0, =Zep = 2ZCu, =0,

e the self-stresses due to the presence of distortions (0, = Zgg) are in equ-
ilibrium with zero-valued external loads:

(26) Pr = C’I‘O’r — CTZER = 0.

Compute now the total elastic energy IV of a load-free (p = 0) elastic stru-
cture subjected to steady distortions € p:

1 . 1 » 1 4 1 1
(2.7) Wg= §0P£E = 501(Cu — €g) = Ep]u - EO'TER =—-0"¢ep.

The elastic energy is positive definite unless the distortions € p are kinematically
admissible. Hence

(2.7) olep = eRZeg <0.

From (2.7)" it is clearly seen that matrix Z is negative semi-definite.

In order to avoid a possible confusion, it should be mentioned that the di-
stortion description used herein corresponds to the standard approach which is
slightly different from the Colonnetti’s one where the total strain vector is divided
into three parts (for details see [9]), namely

(2.8) e =P 4 (el® 1 gp).

In Eq. (2.8) £ denotes the compatible strain vector due to the load vector p
in bvarepe pure elastic structure, while ng) is the elastic strain vector induced
by the distortions € in the absence of the load p. Thus, the sum sé” ) 4 £p is
kinematically admissible. Consequently, the relations between the standard and
Colonnetti’s descriptions take the form:

ep = e® 4 glP),
(2.9) 0. = Ee? = ECu, = E¢j; — o,
o, = Eel® = E(Cu, — ¢p) = Eep — 0. = Zep.
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3. Bounds on the elastic energy

Assume that an elastic structure is subjected to two load and distortion sys-
tems p;, €r; and p,, €po, respectively. The difference of the elastic energies of
both the systems can be expressed as

) L o i m
(3.1) AWE = Wgo — Wiy = §o{em - 50{ €51

Turning now to the general case of deformable systems we use the positive
definiteness of the elasticity matrix E in order to formulate the following inequ-
ality:

(3.2) (€p2 — €81) E(ep2 — €51) = (02 — 1) (€52 — €11) 20,

where the equality sign occurs if both the elastic strain vectors are equal to each
other. Inequality (3.2), using Eqgs. (2.1), can be rewritten in the form

(3.2) (P2 —P1) (U2 — wy) — (02 — 01) T (ep2 — €R1) > 0.
On the other hand, inequality (3.2) leads to
(3.2)" (02— 01)Tep < (03— 01) e

It can be easily shown that if @ < b then a < (a + b)/2 < b. Using this result in
inequality (3.2)"” we obtain

, 1 ] ,
33) (02—01)Tep < (02— 01) (epa + €p1) < (02 — 01) T Epo.

Since UTE:EQ = 04'ep1, we can conclude that the intermediate term of (3.3)
represents the difference between the elastic energies of two systemns of loads and
distortions, namely:

(3.4) %(02 — o)) (em + €m) = %03852 —~ ,lzchsm
= Wga — Wg1 = AW
Thus, Ineq. (3.3) takes the form
(3.4) (02— 01)Tep < AWg < (02 — 01) T e .
The left-hand side of (3.4)" can be modified as follows:
(02— 01) ep1 = (02— 01)"(Cus — £r1) = (Pp — p1) w1 + (01 — 02) ey,

or, using the reciprocal principle (cf. [8])

(02 — 01)Tep = (ug — uy)Tp; + o7 (er1 — £r2).
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Similar transformations of the right-hand side of (3.4)" allow us to construct
the following inequalities, [8]:

Ly < AWg < Ry,
(3.5)
Ly < AWpg < Ry,
where
L1 = (po—p1) wi + (01— 02) ep,
Ri = (p2 —py)Tuz + 02)" epa,
(3.6) .

(
(o

Ly = (uz —u))'p; + (em1 — £r2)T 0y,
(

Ry = (ug —u))Tpy + (er1 — €r2)T 00

AWpg = (L) + 1{1)/2; AWE = (Ly ]1?2)/2; Li=1Ly and R; = Rs.

The equality signs relate to the particular cases of kinematically admissible di-
stortions which do not induce any additional stresses.

[t should be pointed out that inequalities (3.5) hold true for any unspecified
loading paths. These inequalities will be used to evaluate the elastic energy for
various types of structures under proportional loads.

4. Elastic energy changes during proportional loading

4.1. Definitions and assumptions

The proportional loading can be defined as follows:

(4-1) P = [wPo,

where /iy is a positive definite scalar multiplier, and p, denotes a reference load
vector. Consider two levels of proportional loads p; and p,, which are associated
with two load multipliers p; and ps, respectively. If p; = pipg and py = popg
then for o > p1 > 0 we obtain:

(4.2) P2 = [!Py,

where pt = pa/py > 1.

Since the problem is considered in the frame of kinematically linear theory,
the total strain in general cases of S[SpP structures is a sum of individual par-
tial strains. In particular, the distortion vector consists of clearance and plastic
strains:

(4.3) Ep =€+ Ep.

http://rcin.org.pl



854 A. GAWECKI

Usually, during proportional loading of structures no local plastic unloading
occurs. Such a behaviour corresponds to the path-independent (holonomic) mo-
del. Further considerations are restricted to this model.

If a SEpP structure is subjected to proportional load p, which induces cle-
arance and plastic distortions, then the following inequality holds:

(4.4) plu=ocle=0T(e,+eg+ep)=0Te,+0 ez +0Tep >0.

The inequality sign results from the following. The product of stress and
elastic strains 07 ¢y is positive due to the definition of elasticity matrix. The
clearance work o7 ¢, in slackened structures is always positive semi-definite (cf.
[6]). The product of stresses and plastic strains ¢/ €p represents the positive
semi-definite plastic dissipation in [“p/° sysytems. Relation (4.4) is also valid for
the remaining kinds of structures (i.e. I+, SE, EpP) because they are particular
cases of the SEpP structure.

The yield condition and contact condition are assumed to be couvex. For the
holonomic model, these assumptions can be expressed in the following mathema-
tical form:

(01— 02)Tep; >0,
(4.5) ,
(€11 —€12) 0y > 0.

In (4.5) 0}, €p; and €7 denote true vectors of stress and strains, whereas o7y
and €y are arbitrary statically adinissible stress and kinematically admissible
clearance strain vectors, respectively. Moreover, using inequalities (4.5) and assu-
ming that 0, €ps and €, represent true associated stress and distortion states,
we obtain

(01— 02)(ep1 — €p2) > 0,
(1.6) |
(01— 02) (e —€12) 2 0,
hence
(4.7) (01— 02)"[(€1 + €p1 + €p) — (€2 + €p2 + Ep)| 2 0,

where € denotes a steady distortion vector. All the possible distortions which
can occur in the class of time-independent structural systems considered herein
can be presented as

(4.8) &8s+ Eps HER = ERiy i=1,2.
Substituting (4.7) to inequality (3.2)" yields

(4.9) (P2 — p1) " (ug —uy) > 0.
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Using (4.2) in Ineq. (4.9) we obtain

(= 1)p](uz —uy) >0,

(1 - Hpd(ug —uy) > 0.
For proportional loading (jz—1) > 0 and (1 — ') > 0. Thus, we can state that

pl(ug —ug) > 0,
(4.10) ,
Py (uz —uy) > 0.

Relations (4.10) will be used in further considerations.

4.2. Linear elastic systems
In elastic structures ¢; = €g; and ep; =0 (i = 1,2). From (3.5)2 we have
pl(ug —uy) < AWg < pg‘(ug —uy) for pu>1.

According to (4.10); pT(uz — u;) > 0, hence AWg = Wgy — Wgp > 0. It
corresponds to the obvious conclusion that the elastic energy in linear elastic
systems is an increasing function of the load multiplier.

It will be shown that the same conclusion is also valid for elastic systems
with any initial, load-independent distortions. Consider an elastic structure that
exhibits steady distortions €p. Denote by subscripts 1 and 2 the elastic ener-
gies of the self-stresses and load p, acting on the structure without distortions,
respectively. Then

l: pp =0, €rp =¢€p, Cu =¢€pi+¢ep, 0 =FEer =2Zep;

2:po=p, €tm=20, Cu; = £pp, 0y = Egp.

The total elastic energy Wg including the distortion and load effects reads

1 1 .. 1 ..
Wg = 5(01 +02) (em + epe) = 5(7{ Ep1 §Ui’ €12

| l = :
+ 5(?(8152 + 50"5' ep1 = We1 + Wi + 01 €2
The last term in the above expression vanishes due to the virtual work principle
(P = 0): . i »

GTE—EQ = O'{CUQ = CI O1ug = p‘1, up = 0.
So, the elastic energy can be decomposed into the energy of steady distortions
and the energy of external loads; the mutual, load-distortion energy is equal

http://rcin.org.pl



856 A. GAWECKI

to zero. The same result has been obtained in [10]. However, this interesting
observation is valid only for linear elastic systems. Since the external load energy
is distortion-independent, the elastic energy is an increasing function of the load
multiplier.

Finally, let us determine the explicit form of expression for the elastic energy
of self-stresss:

1 » L r | 1 o
(4.11) Wg1 = 50"1] £pi = EELZE/;] = §££Z(Cu1 —€p) = —§£IIT)Z£D
1 p 1 o,
= —§£bZ(Cu1 —Eg1) = Eaf)ZE‘]m = EEE(ZE_lZ)ED-
From (4.11) we conclude that ZE™!'Z = —Z. Indeed, using the definition of

matrix Z and taking into account that ZC = 0, we find

(4.12) ZE'Z=ZE YECK'CTE-E)=Z(CKC'E-I)=-Z.

4.3. Elastic-perfectly plastic systems

For both levels of loads p, and p,, the total strains consist of elastic and
plastic (distortion) parts:

(a) & = €pi + Epis €ri = Epy; i=1,2,
so, from (3.5); and (a) we obtain
AWg > Ly = (py — p1) w1 + (01 — 02) ep = (= D)p{ws + (01 — 03) " €p1.

Since (1« — 1) > 0, and according to (4.4), pJu; > 0, the first right-hand side
term is positive. If the yield condition is convex, the second right-hand side term
is non-negative (cf. (4.5)). Thus, AW > 0 and the elastic energy is an increasing
monotone function of load multiplier .

4.4. Slackened-elastic systems

In slackened systems the strain vector can be divided into elastic and clearance
parts

(a) & =&+ Eni; Eh: = £ i=1;2

The elastic energy is an increasing function of the load multiplier if Ly is positive
definite. Using inequality (3.5)2 we obtain:

(b) Ly = pi(uz—u1) + 0] (Eg1 — Ega) = Pi (U —uy) + O] (€11 — £12) > O.
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The positive definiteness of Ly results from (4.10) and from the convexity of
the contact condition (cf. (4.5)2). In view of (b) we can state that this conclusion
holds also true in the case where steady distortions e are additionally imposed
on the slackened-elastic structure.

4.5. Slackened-elastic-perfectly plastic systems

Similarly to the previous case, the strain vector is the sum of elastic and
distortion parts. However, distortion strains in slackened-elastic-plastic systems
consist of clearance and plastic strains:

(a) €& =€mit+€ri; Em=¢€Li+Epy i=12

Such systems demonstrate a lot of interesting effects and their behaviour is very
complicated, particularly when plastic and clearance strains are simultaneously
present. A complexity of this problem comes from the fact that clearance distor-
tions, contrary to plastic ones, are always load-dependent. Therefore the signs of
Ly, Lo, Ry and Ry in Inegs. (3.5) cannot be evaluated. It is interesting to notice
that even positive definiteness of right-hand sides of (3.5) does not have to be
always pguaranteed.
Let us consider, for example, the expression for Ry:

(b) Ry = (ug —uy) 'py + (€11 — €12) 0 + (ep1 — £p2) T 0.

According to (4.10)9, the first term in (b) is positive. On the other hand, the
remaining terms consists of the non-positive definite part (£7,; — €12)7 02 (cf.
(4.5)2) and the part due to plastic strains (€p; — £pg)7 0y, its sign being un-
determinate, in general; however, for proportional loading the negative sign can
be expected. Similar results can be obtained for L;, Ly and K. A numerical
example of Sec. 5 will explain this problem.

5. Numerical Example

Consider a simple beam shown in Fig. 1.

P

Jy + Jy +
% / wcpz / D
1 5 — >4 3
A 2 /I
p 15m | 3.0m L
7 7 7

F1G. 1. Slackened beam with clearance hinges.
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The beam is composed of two elements of ideal I-cross-sections. The moments
of inertia and depths for both the elements are equal to J; = 4500 cm?, Jy =
10000 ecm® and h; = 30 cm, hy = 40 cimn, respectively. Two kinds of the material of
the beamn are assumed: the linear elastic of infinite strength, and the linear elastic-
perfectly plastic with the yield stress oy = 300 MPa. The correspouding full
plastic bending moments of the cross-section for the beam-elements are My, =
90 kNm and My, = 150 kNm. The Young’s modulus for both the materials is
assumed to be the same: [ = 200 GPa. In addition, at points 2 and 3 the so-
called clearance hinges are introduced. In other words, the angle of free relative
rotations of adjacent beam-elements ¢;(i = 2,3) at these points can vary between
the limits: —¢; < ¢; < (bf. Angles ¢; play here the role of clearance strains. The
cases where clearance hinges are introduced correspond to the systems which are
slackened. If the clearance moduli (i.e. limit free rotations at clearance hinges)
are equal to zero ¢; = qﬁf’ = 0, the beam becomes a common structure with
bilateral constraints. Then the beam is fully fixed at both the supports (point 1
and point 3). So, we can consider the following four kinds of the system:

o elastic (F) (oy — 00,¢; = ¢F =0),
e clastic-perfectly plastic (/p/’) (oy = 300 MPa, ¢; = 0,¢} = 0),
e slackened-elastic (S17) (oy — 00,97 # ¢, 6] #0),

o slackened-elastic-perfectly plastic (SIZpP) (oy = 300 MPa, ¢; # gb,q')i' # 0).

Further considerations will be carried out for identical and symmetrically distri-
buted rotation gaps, i.e. ¢; = ¢ = ¢35 = ¢4 = ¢o. Variations of these gaps
within the limits < 0,0.009 rad > allow us to analyse the elastic energy as a fun-
ction of slackening intensity, including also the beam with bilateral constraints.

The beam is subjected to concentrated load P acting at point 2. The load
increases proportionally up to Py = 200 kN (i.e. to the limit load for the elastic-
perfectly plastic beam) and then the beam is proportionally unloaded.

Particular cases of the types specified above of the structure can be examined
with respect to the elastic energy at given levels of the proportional loading.
Additionally, the energy variations during unloading will be also presented.

The beam with rotation clearances belongs to a particular class of skeletal
SEpP structures where distortions are concentrated at the clearance, plastic
or clearance-plastic hinges. The loading and unloading of the structure induce
opening or closing of these hinges. As a consequence, the boundary conditions of
elements (i.e. structure types) are changeable.

The current elastic energy Wy for particular kinds of the beam is calculated
as a function of “deflection length” Sa or “load length” Sp. The current deflec-
tion of the beam A, deflection length Sa and load length Sp are defined as
follows:
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T

A=3 AW, SA:ZIAU}i? SP:Z’}D(J')',
i=1 i=1 i=1
where Al and PU) denote the deflection rate of point 2 and the external load
rate in the j-th step of the calculations, respectively. Symbol m denotes a current
calculation step.

P — A diagrams for IV, KpP, SIZ and SI5pP beams for ¢ = 0.009 rad are
presented in Fig. 2a, while in Fig. 2b the elastic energy W versus the deflection

PIkN] & W, (kNm] 2
2007 1A 1.0
§56 0.8
E-beam ]
100 A
044 fi
s 1
0.2 \
Jlo=8 Alm] oo VOB ,Salm]
0.000 0.025 0.050 0.000 0.025 0.050
P[kN] Wi [kNm]
200, + A 1.0 4
b i
ol ]
A
i E, P- beam 0.6 d
100 H b i
! 0.4 4
i a |
50 i 4
| 0.2 ‘Z g
Jo_is _ A[m] oo MO S4m]
0.000 0.025 0.050 0.000 0.025 0.050
P[kN W, [kNm
200 [ ]A 'IOE[ ]
A
- 08 .:
SE- beam 0.6
1001
0.4
50 c=¢
0.2 c i\
/o8 . A[m] 00 WO B S,[m]
0.000 0.025 0.050 0.000 0.025 0.050
P [kN] W [kNm]
200 - A 1.0
!
i 0.8
150 x "; A
{ 0.6 (
100 i SEpP- beam fg
i 0.4
so] Jd i e i
{ 021g i
hi hwB
’
o) 8/ . A[m] - - S,[m]
0.000 0.025 0.050 0.000 0.025 0.050

F1G. 2. FElastic energy for proportional loading of the beam; a) P — A diagrams,
b) Elastic energy Wy versus deflection length Sa.
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length Sx is plotted. Segments O A and segments A3 correspond to proportional
loading (solid lines) and unloading (dashed lines) of the beam, respectively. All
the intermediate points indicate the structure type changes.

P — A relations for the [J-beam and [KpP-beam take a well-known form of
concave functions. On the other hand, the presence of clearances induces locking
effects which lead to convexity of I’(A) functions. It is clearly seen for the SI/—
beam. The behaviour of S/ p/P-beam is much more complex; both the convexity
(e.g. segment O — d — e) and concavity of P(A) function are noted. The P(A)
convexity concerns also the unloading curve (segment A—/h— [3). Moreover, there
exists the horizontal segment which corresponds to a “clearance-plastic mecha-
nism” (cf. segment f — g). Obviously, the rates of elastic energy on this segment
are equal to zero.

In the range of proportional loading, the elastic energy appears to be a mo-
notone increasing function with respect to the beam deflection, except the case
of the SEpP-beam (cf. Fig. 2b). It confirms the theoretical results of Sec. 4.
Indeed, we can state that the elastic energy in the SIEpP-beam can be a par-
tially decreasing function of the load multiplier. Note that the energy of residual
stresses does not have to coincide with that of the F'pFP-beam.

From Fig. 2 it follows that the elastic energy variations during the deformation
processes must depend on the values of clearance moduli. In order to examine
this problem we calculate 1Vj; as a function of Sp during proportional loading
for increasing values of rotation gaps, ¢g. Figure 3 shows Wpg(Sp) diagrams for
particular kinds of the bean.

According to the results of Sec. 4, the elastic energy in the [/-beam and
SE-beam is an increasing function of the load multiplier (see Fig. 3a). From
Fig. 3b it follows that for a sufficiently large values of ¢, the elastic energy in
the SIKpP-beam can decrease while the load multiplier increases.

a)
W [kNm] W [kNm]
1.0 1.0 1
@,=0.009 rad @,=0.009 d

0.8 { —— #,=0.006 rad 0.8 { ——— ©,=0.006 rad

------ @,=0.003 rad / -===-= ©,=0.003 rad
0.6 - 06 { 777 %=0 rad
0.4 4 0.4 A
0.2 1 0.2 -
0.0 A : . 0 - = . Se .[kN]

0 50 100 150 200 0 50 100 150 200

Fic. 3. Elastic energy variations for increasing gaps; a) Slackened-elastic beam,
b) Slackened-elastic-perfectly plastic beam.
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Now, the question arises: what is the physical and structural interpretation
of the decreasing energy function?

Analysing the problem from the physical point of view we conclude that a
part of the elastic energy can be converted into the plastic dissipation. Then the
decrease in current elastic energy is observed. Obviously, such a phenomenon can
occur only for structures whose material exhibits both the elastic and plastic
deformations. To make the problem more clear, the current elastic energy Wg
and the current total dissipation D in the SI‘pP-beam (¢g = 0.009 rad) versus
deflection length Sa are plotted in Fig. 4. It is seen that the elastic energy starts
to drop down just as the plastic dissipation begins (cf. points ¢ and g in Fig. 4).

6.0 1We,D [kNm]
5.0 1 ~
404 — We
---------- D
3.0 A
2.0 4 (
- &
- /E_’_/‘—i_g__,—/"A S [m]
0,0 =l e
0.000 0.025 0.050

Fi1G. 4. Elastic energy Wg and total plastic dissipation D in SI¥pP-beam during
proportional loading.

Next additional question is: “why can it occur ounly for the SIYpP-beamn?” An
explanation of this problem can be found in Fig. 5 where changes of the structu-
re type and the corresponding generalized stress (bending moment) distributions
are presented. Figure ba relates to P = I = G5 kN (point ¢ in Fig. 4) and
Poan = P+ AP = 65+5 =70 kN. For P = P, the beam is fully fixed at the left-
hand support and pin-ended at the right-hand support. The load increasing up to
I, a induces the structure type change; the beam becomes pin-ended at both the
supports. Similar situation arises for > = I, = 150 kN (point ¢ in Fig. 4) and
Pya = Py + AP = 150 + 5 = 155 kN. For PP = P, at point 2 the new plastic
hinge forms whereas at point 3 the clearance hinge closes and the beam becomes
statically determinate. The structure-type changes give modifications of bending
moment distributions. It can be easily checked that the elastic energy rates star-
ting from P = 65 kN and P = 150 kN are negative. So, we can conclude that
the elastic energy decrease is induced by deformation-dependent boundary condi-
tion changes. Such untypical changes can appear only for slackened-elastic-plastic
structures where clearance and plastic strains simultaneously appear.
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a) b)

Ps= 65 kN Pg= 150 kN

1 sl . e .

Ay 2 3 1 2 3%
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| Pea=T70KN | Pos= 155 kN
L+ { ’ 7
1 2 i 1 2 3"

-90 m o [KNm] -390 o [KNm] _;5
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F1G. 5. Structure type and bending moment changes during proportional loading of
SEpP-beam; a) load level e (17 = 65 kN), b) load level g (P = 150 kN).

6. Final remarks

The present paper concerns the proportional loading of structures made of
time-independent materials. It appears that this particular and simplest case of
loading is not yet sufficiently recognized. It has been shown that the elastic energy
can be a decreasing function of the load multiplier if unilateral constraints (i.e.
gaps at structural connections) are introduced into an elastic-plastic structure.
The results obtained in the paper seem to be of importance for the theory of
structures and may have many theoretical implications. We have in mind, for
instance, the damage mechanics where the elastic energy is usually assumed as
an increasing function of the load multiplier. The problem appears to be much
more significant due to the fact that damaged bodies contain internal gaps and
therefore, this assumption seems to be not quite justified.

In spite the fact that the present work concerns discretized systems, the author
believes that the results obtained herein can be generalized to continuous bodies
made of time-independent materials.
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On two motions of a particle driven by equivalent
ergodic and chaotic reflection laws

J. SZCZEPANSKI, Z.A. KOTULSKI (WARSZAWA)

In THE PAPER we analyse dynamical systems describing the motion of a free particle
in a domain on a plane (a square). We show that topologically equivalent reflection
laws (each of them ergodic and chaotic) governing particle’s motion at the moment
of reflection can lead to two dynamical systems with entirely different qualitative
properties. We also indicate a general problem of transferring such properties like
chaos and ergodicity from a subsystem to the extended one.

1. Introduction

THE MOTION OF A FREE PARTICLE in a bounded domain is inherently determined by
the shape of the boundary and the reflection law at this boundary. The reflection
law is responsible for the global behaviour of the velocity of the particle during
its contact with the boundary of the domain. In such dynamical systems (in the
idealised theoretical model), the fundamental physical laws like the conservation
of linear momentum and the conservation of energy are assumed to be satisfied
what leads to extensively studied classical billiards. This means that the incidence
angle is equal to the reflection one. In general, analysing the transformation of
the angles of the moving particle at the moment of reflection one can observe that
the reflection law itself is a dynamical system. This has created a temptation to
consider the reflection law as an independent dynamical system.

The theory of the non-classical reflection laws found its place in the literature
[1-5]. Up to now there are only hypotheses on what happens when the partic-
le reaches the boundary, more or less confirmed by experiment. Reflection law
models are an intermediate case between the deterministic systems first conside-
red by SCINUTE and SHINBROT [2] and systems with random reflection laws [6].
Namely, we admit a system with a strictly deterministic reflection laws that are
not one-to-one maps. Thus, in this case it can happen that two different initial
configurations in the phase space lead to the same final configuration what is im-
possible in the Schnute and Shinbrot model. There is a number of maps playing
the role of the reflection law. The authors investigate the properties of the reflec-
tion laws finding that they can lead to such phenomena like: non-slip reflection
on the boundary, non-increasing entropy, chaos, ergodicity (mixing property) of
systems describing behaviour of the particle.

The reflection laws describe the global behaviour of the velocity of a freely
moving particle during its contact with the boundary of the domain. From this
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point of view, non-classical reflection laws do not satisfy such a fundamental
physical law as the conservation of linear momentum. However, one can find some
situations where such laws can describe realistic physical phenomena. Consider
for example the container, the wall of which has some microstructure (Fig. 1).
We assume that the mass of the reflected particle is negligible in comparison to
the mass of the container. Then the reflection process, observed as non-classical,
can in fact be the effect of few classical elastic reflections where, for every micro-
reflection, the conservation of linear momentum is satisfied. In this model, due
to the small scale of the microreflection, we identify the outgoing positions with
the incoming point.

\ 4

) .

§

GRS < =)
Pt

Fi1c. 1. Effect of the boundary microstructure on the reflection law.

L
K

\\J

After the reflection law was extracted from the extended dynamical system
describing the motion of freely moving particle and then independently conside-
red, one can ask the following questions: What are the properties of the extended
system if we use non-classical reflection law? What is the effect of the specific
properties of the reflection law (like chaos or ergodicity) on the behaviour of the
particle? Is the particle motion chaotic or ergodic? Let us remark that this is a
different problem than the chaotic or ergodic motion of the particle observed in
classical billiard systems (connected with a specific shape of the domain’s bo-
undary). In this paper we just try to answer the question of transferring the
specific properties from a non-classical reflection law to the dynamical system
of a moving particle. We perform our considerations in two dimensions, where
qualitative results we are interested in can be observed. Extensions of the results
to more-dimensional spaces lead to some technical problems, what can be also
observed in the case of the widely studied classical billiards theory. However, the
results in two dimensions can give some suggestions concerning the behaviour of
more-dimensional systems.

Problems of transferring of imposed properties from a dynamical system to
its extension appear in various situations [4, 5, 7, 8] and seem to be interesting
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both from the theoretical and practical point of view. They naturally arise from
the problems of physics, engineering dynamics, mathematical economy and many
others. In general, by an extended dynamical system we understand a system with
state space of dimension greater than the original one and functionally dependent
on it. Such a system can be a simple extension of the given dynamical system
obtained by adding more co-ordinates without changing the form of the primary
ones, or it can be some higher-dimensional dynamical system driven by the lower-
dimensional one. In this paper we consider the transfer problems in the case of
a free particle motion inside a bounded plane domain. We assume the reflection
law as a primary dynamical system and the motion of the reflecting particle as
an extended system.

To establish a reflection law model one must select a domain with a certain
shape of the boundary and define the reflection law. Usually, the boundary is
assumed to be a closed, sufficiently smooth curve. The reflection law can be quite
general; in our considerations we assume that the particle moves with a constant
velocity, changing the direction at the moment of reflection. In the particular
case of the reflection law conserving the angle of incidence (the angle of incidence
is equal to the angle of reflection), one obtains the class of dynamical systemns
called billiards. This conservative reflection law (as a map) is neither ergodic
nor chaotic (see formula (*) in the next Section). However, it is well known that
in appropriate domains it can lead to ergodic or chaotic motion of a particle.
Thus, to obtain ergodic [9] and chaotic properties [8, 10-11] of a reflection law,
one must assume another map relating the incident and outcoming angles. Such
models have been studied in [1-5].

Applying various reflection laws, we face some natural questions when descri-
bing the motion of particles:

¢ ['ix a reflection law. Do the ergodic and chaotic properties of the law transfer
to the same properties of particles’ motion for some typically used shapes of the
domain?

¢ ['ix a shape of the domain. Do topologically conjugate ergodic and chaotic
reflection laws generate equivalent motion of the particle?

Some insight into the first problem was given in [5]. It was shown that for
two simple domains, the ergodic and chaotic properties of the same reflection law
can transfer in a quite different manner. In this paper we deal with the second
question.

2. Formulation

Now we specify the model. We assume that the domain of a moving particle
is a square. In the domain, the particle moves along straight lines with a constant
velocity; when it encounters a wall it “reflects”, that is, its velocity instantaneously
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changes (according to some reflection law) to another “reflected” value to make
the particle remain inside the domain. The motion of the particle is described by
two co-ordinates (Fig. 2):

F1G. 2. The co-ordinate system used to describe the motion of a particle in a square.

e the position z,, at the square’s boundary at the moment of the n-th reflection
(measured counterclockwise from the fixed vertex of the square);

e the angle v, measured from the tangent to the boundary to the velocity
vector of the point after reflection (clockwise).

To complete the definition of the system we assume some reflection law 7" :
(0,7) — (0,7), T'(Vinc) = Vier (Fig. 3). For example, in this formalism, the
conservative reflection law is given by the map

Vief = T(Vinc) = T — Vine-

X
F1G. 3. The reflection law in local co-ordinates.
Thus, the motion is described by the two-dimensional map
FIT: [O,L) X (Oyﬂ.) = [O)L) X (U!Tr),

(2.1)
Fr(zn,Vn) = (Tn41, Vi),
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where the subscript in I’ denotes the dependence of the function on the reflection
law 7', and L is the length of the boundary of the square.
We consider the following two reflection laws:

Ty : (0,7) — (0,7),

(2.2) 4
Veef = rl‘l (Vin(;) = —l/inc(ﬂ— . Uinc):
7T
and
T3 (Ovﬂ-) =2 (Oaﬂ')a
(2.3)

2Vine for Vi € (0,7/2),

Bhag = T Vinc) =
- 2(Vinc) {2(7.'—14,,@) for vy € [7/2,7).

T} is a unimodal map which is ergodic and chaotic [12]. T3 is the so-called tent
map, also ergodic and chaotic [13].

These maps are topologically conjugate [14]; the equivalence is given by the
homeomorphism

(2.4) g(v) = 2arcsin \ﬁ,
T

i.e. the following diagram is commutative:

0,7 11 (0,7
(2.5) lg lg
o7 T2 (0,

This diagram yields the following implications:

L If vy, — 7 (so T1(v;) — T1()) then the g-corresponding sequences satisfy:
9(ve) — g(#) and Ta(g(w)) — g(11(P)).

II. If the orbit {77 (v),n = 0,1,2,..} has some properties like periodi-
city, asymptotic periodicity or density, then the g-corresponding {77 (g(v0)),
n =0,1,2,...} orbit has the same properties.

3. Results

Consider the motion of the particle in a square. In the models presented, the
velocity of the particle inside the square is constant and the reflection law at the
boundary is given by either T} or 75. It was proved in [5] that if the reflection law
is defined by 7' then the motion I, of the particle is asymptotically periodic,
i.e. for almost all initial points (xg, 1), after sufficiently many reflections, the
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particle moves closer and closer to the edges of the square. More precisely, the
angle v, tends to 7 and so the motion of the particle converges to the periodic
changes of the positions ,, from vertex to vertex.

Now assume that the reflection law is defined by 75. We show that the motion
P, differs qualitatively from F7,. To study the behaviour of the system we
observe the second co-ordinate v of motion of the particle. First notice that due
to the geometry of the square (see Fig. 4), the velocity v, changes in the following
way:

F1a. 4. Types of reflections in a square.

2v, for v, € (n/4,7/2)

8) Vpp1 = To(vn) = " (m/4,/ if the particle mo-
2r —vy) for v, €[m/2,37/4)

ves from one side to the opposite one. Notice that this is possible only when

7/4 < vy, < 3mw/4, which restricts the domain of the velocity in (2.3).

b) vy = 2 (g — un> if the particle goes from one side to the clockwise

adjacent side; this is possible only when 0 < v, < 7/2.
6} Ypyy = 2 (un — g) if the particle goes from one side to the countercloc-

kwise adjacent side; this is possible only when /2 < v,, < 7.

From the above we see that our two-dimensional system [, is not a simple
extension of the one-dimensional law 75: due to the geometry of the square,
the second co-ordinate is modified in comparison to the simple reflection law.
Moreover, as we shall see below, the function describing the evolution of the
second co-ordinate is multi-valued over the interval (7/4, 37/4) - see Fig. 5 (the
choice of the value from two possibilities depends of the first co-ordinate, i.e. the
position of the particle).
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Fia. 5. The plot of the multi-valued map governed by the reflection law 77.

Let us introduce a new function, based on the properties b) and ¢) of the
reflection law:

. ) 2m/2-v) for O<v<@/2,
Bd) Tonlv) = { 2w —m/2) for w/2<v <.
This function will be used for the study of the evolution of the second co-ordinate
of I’p,.
Observe that
(3:23 Ty, =Tz0h,

where /1 is a universal function, inherently connected with the shape of the square:

(3.3) h(u):{ v4r/2 for 0<v<n/2,

v—7/2 for w/2<v<m.

One can see that after n reflections, the velocity of the particle, in the system of
co-ordinates, is of the following form:

(3.4) Up =T4, 0Ty, 0...0 Ty, (),

where the subscripts are o;; = 2 or 2h for i = 1,2, ..., n. The sequence (a;)?; is
determined by the initial point (zg, ).
Notice that the reflection law 75 has the following property:

(3.5) Ty(v) = To(m - v).
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Moreover, the function T, satisfies the condition:
(3.6) Ton(v) = 7 — Ta(v).

Both the above properties are satisfied for every v € (0, 7).
From (3.5) and (3.6) we have

(3.7)  Ta(vo) = Ton(Ton(ro)) = Ton(w — Ta(vo)) = © — Ta(m — To(wp))

=7 - T5(w),
and generally, by induction,
(3.8) vp =15 () or v, =7 —T15 ().

We come to the conclusion that after the n-th reflection, the second co-ordinate
of I, (z0,v0) is either T3'(1y) or the point symmetrical to T3'(vg) with respect
to m/2. Now, because 7, is ergodic (with an invariant measure equivalent to the
Lebesgue measure), [13], we conclude that for almost all initial points 14 the set
{Py = T3 (w),n = 0,1,2,...} is dense in (0,7) [9]. Thus, for almost all initial
points (zg, ), the set of velocities {1,,n = 1,2,...} corresponding to each of
them is dense in a set of Lebesgue measure of at least m/2. We see that the
motion [, is completely different from the motion [7, where the sequence
of velocities 14, converged to the constant value 7, independently of the initial
position zg and the starting velocity 1.

Observe that an analogous result can be obtained for rectangles.

To end this section, we point out an interesting property of the relation (3.2).
Consider the following chaotic and mixing reflection law:

(3.9) T3(v) = 2v (mod 7).

For this law applied to the motion of the particle in the square, the formula (3.2)
becomes
(310) Tgh = ,[3 o= Tg.

This is an example of a law invariant with respect to the function /. This class
of reflection laws has an unusual property that the evolution of the second co-
ordinate v of particle’s motion /7p, is independent of the position z (the first
co-ordinate of Fr,).

4. Final remarks and conclusions

The problems studied in this paper were inspired by previous investigations
connected with description of a single particle motion. The particle’s motion with
a non-classical reflection law arises in a number of practical physical phenomena.
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The models of this kind can be observed in very rarefied gases, the so-called
Knudsen gases |1, 4]. The investigation of the reflection law models allows us to
predict, under some additional mathematical assumptions, the qualitative pro-
perties of the one-particle distribution function of the gas (e.g. the analyticity).

Another problem, directly related to the reflection law models, is the motion of
a particle in accelerators [15]. Moreover, in this case the particle’s motion can be
described by the so-called “standard maps” which turned out to be the Poincaré
maps generated by the moving particle [11, 16-17]. These maps are topologically
conjugate to some dynamical systems obtained in the study of reflection law
models |5].

The transfer of properties from smaller to extended dynamical systems can
also be analysed in the motion of the particle in a viscous medium under the
influence of a kick force. This phenomenon was modelled and investigated in [18].

Among many applications of chaos one can find also the recent utilisation of
chaotic dynamical systems to construct secure communication (see e.g. [19-20]).
In [21-22] we proposed the method of extending dynarmical systems to construct
safe cryptosystems. The results obtained in the above give some suggestions how
such extensions can be performed. In the case of the block cryptosystems, the
encryption and decryption is based on multiple inverse iterations and forward
iterations. The secret key is introduced into the reflection law (the velocity of the
particle) and the message is considered as the position of the particle [23]. Under
the appropriate way of transferring the properties of the reflection law, the initial
position of the particle cannot be reconstructed from the final position without
the knowledge of the initial particle velocity (our secret key).

The cousiderations of this paper point out the interesting problem of con-
structing a chaotic and ergodic reflection law which would guarantee the transfer
of these properties to certain extended dynamical systems, like the motion of a
particle in a wide class of typical containers or some secure cryptosystems.

Our models show that there are no simple relations between the properties
of a reflection law and the properties of the motion of the particle. Even for the
same class of the reflection laws (in topological sense) with very strong properties
like ergodicity and chaos, the qualitative properties of the motion of the particle
(in commonly used containers) can be essentially different. It is an interesting
open problem to find additional assumptions on the reflection law which would
ensure the transfer of the above properties. It seems that such type of reflections
could be interesting from the physical point of view.
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On the cyclic yield surface of some engineering materials
under complex stress conditions

L. DIETRICH and 7Z.L. KOWALEWSKI (WARSZAWA)

THE pAPER PRESENTS a new method of mechanical parameters analysis. It deals with
determination of a “cyclic yield surface” for selected engineering materials on the
basis of cyclic curves experimentally obtained under a complex stress state. Location
of the cyclic yield surface with respect to that of the initial yield locus may constitute
the basis for evaluation of the material sensitivity to the cyclic deformation. Tests
have been carried out with the use of PAG aluminium alloy and 18G2A low-alloy
steel, both in the as-received state. The experimental programme was the same for
both considered materials. Firstly, an initial yield surface was determined using a
number of specimens which were loaded up to the plastic range along different loading
paths. Secondly, cyclic predeformations due to various loading paths in the plane
stress state were induced by cyclic loading at ambient temperature under constant
(Ae = %0.65%) and gradually decreasing strain amplitude (from Ae = +0.65%
to 0%). Finally, subsequent yield surfaces were determined using the single specimen
method. It is shown that depending on the material, a cyclic loading induces softening
(low-alloy steel) or hardening (aluminium alloy) effect in the strain range considered.
All differences in material responses to cyclic prestraining for the tested materials are
discussed in detail.

1. Introduction

SOLVING THE PROBLEMS associated with a variation of material properties due to
cyclic loading inducing permanent deformation of the construction is regarded as
one of the most important tasks of the plasticity theory [1-19]. A rapid progress
observed nowadays in this area deals directly with the qualitative changes in
the experimental technique, i.e. with development of both the computer systemns
enabling us to control the multiaxial testing machines working in the closed loop
of feedback, and digital registration of experimental results together with their
further conversion, using more powerful computers and novel software.

The steady-state cyclic deformation resistance of a material is usually descri-
bed on the basis of the cyclic stress-strain curve [2|. According to the definition of
the cyclic stress-strain curve, it is the locus of tips of the stable hysteresis loops
from several companion tests at different, completely reversed constant strain
amplitudes. Such a steady-state “stress amplitude — strain amplitude” curve is
often compared with the monotonic stress-strain curve, Fig. 1. Depending on the
mutual location of these curves, the cyclically induced changes in deformation
resistance can be identified, i.e. softening if the cyclic curve is below the mono-
tonic curve, and hardening if the cyclic curve lies above the monotonic curve.
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Some materials are insensitive to the cyclic deformation and, as a consequence,
in these cases the cyclic curve does not differ from the monotonic one.

/ strain
/‘ / ] _— —
/1) //

/1)

Vi .
7/ 1) eyclic curve

2) monotonic curve

F1G. 1. Comparison of a typical cyclic and monotonic curves.

According to the definition given above, the cyclic stress-strain curve is ob-
tained by connecting the tips of the stable hysteresis loops from several separate
tests carried out at different, completely reversed strain ranges. Each test is per-
formed at a constant strain amplitude. The loop can be achieved for some mate-
rials after several cycles. For the others, however, approximately half their fatigue
life is required. Since this method requires a number of testpieces and relatively
long testing time, it is rarely used in practice. To overcome these inconveniences,
alternative procedures for determining the cyclic curves using only a single speci-
men are applied. The most known tests, described in detail by Morrow |[1], are
as follows:

(A) Multiple step tests,

(B) Incremental step tests,

(C) Monotonic tension after cyclic straining,

(D) Individual hysteresis loop,

(E) Decremental test.

The last method is regarded as the fastest and the most effective. It requires
to load a specimen to a stable hysteresis loop under cycling loads at selected
constant strain amplitudes, followed by cycling with a gradually decreasing strain
amplitude up to the zero level. A number of cycles with a gradually decreasing
strain amplitude should be sufficient to determine the cyclic curve with desired
accuracy. Such a method was successfully used by LAMBA and SIDEBOTTOM [8] to
obtain cyclic curves under nonproportional loading. The method was also applied
to determine cyclic curves for different proportional cyclic loading paths in the
strain space considered.

The main aims of the experimental project, the results of which are presented
in the paper, were threefold. Firstly, it had to give an answer to the question: how
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a plastic prestrain induced in metals during manufacturing processes of semifini-
shed elements may change their mechanical properties. Secondly, the programme
of tests had to determine up to what degree the known deformation history under
cyclic loading may change the original anisotropy of the tested materials, and the
third aim of the project was to determine a “cyclic yield surface” for the selected
ranges of plastic deformation, on the basis of cyclic curves experimentally obta-
ined under a complex stress state. The cyclic yield surface reflects the material
ability to hardening or softening due to cyclic loading in different directions of
the (0, Try) stress plane. Although the cyclic yield surface does not describe the
mechanical properties of a material subject to cyclic straining in an arbitrarily
chosen direction, it may be treated as an envelope of the yield surfaces for a ma-
terial subject to prior cyclic deformation in various directions. Its location with
respect to that of the initial yield locus may constitute the basis for evaluation
of the material sensitivity to the cyclic deformation.

2. Experimental details

Tests have been carried out with the use of low-alloy steel and aluminium
alloy, both in the as-received state. Notations of these materials according to
Polish Standards as well as their chemical composition are given in Table 1 and
Table 2. According to ISO Standards 4950/2-1981, the chemical composition of
the steel in question corresponds to that of the high yield strength steel with
grade E355.

Table 1. Chemical composition of the 18G2A low-alloy
steel manufactured according to Polish Standards.

C Mn Si P[nnx Sumx
(%] %] (%] (% | (%]

18G2A max 0.2 | 1.0 - 1.5 | max 0.55 | 0.04 | 0.04

Table 2. Chemical composition of the PA6 aluminium
alloy manufactured according to Polish Standards.

Cu Mg Mn
(%] (%] (%]
PA6 aluminium alloy 38-48104-11]04-1.0

All tests were carried out on tubular thin-walled specimens, manufactured
from rods of 45 [mm] diameter. In the case of steel, the rods were manufactured
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by rolling, whereas those for aluminium alloy — by extrusion. An engineering
drawing of the specimen is shown in Fig. 2.

—{——10.02
1/45° |
/}/ ¢40 300%\\\- ¢) 25
7 ///,%/ //] A \ / / /
oo bo23H6 .
ral 1
i R 7
77.24 15.26 60
=

- - 245 L

Fic. 2. Dimension of the specimen.

All experiments reported in this paper were carried out with the use of the
INSTRON electrohydraulic, closed-loop, servo-controlled, biaxial testing machine
enabling combined loading in tension — compression — torsion — reverse torsion.

The strains were measured by means of strain gauge rosettes bonded to the
outer surface of the specimen on its gauge length. More details concerning the
experimental procedure are given in [17].

3. Experimental programme

The experimental programme for both materials comprised three steps.

Firstly, an initial yield surface was determined for each material. In order to
determine the initial yield surface, eight specimens were selected, each of them
was loaded with different ratios of stress components in the two-dimensional stress
space (0yz, Tzy). In the next step of the experimental programme, prior deforma-
tion of specimens by means of proportional cyclic loading in selected directions
of the (044, 74y) stress plane was carried out. The prestraining programme com-
prised two stages:

(1) cyclic loading for constant amplitude of total effective strain Aes =
+0.65%,

(2) cyclic loading with gradually decreasing total effective strain amplitude
from Ae = £0.65% to Ae = +0.0%.

The programme of constant strain amplitude cycles included 81 quarter-
cycles. It was used to achieve the saturation cycle.
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The programme of cyclic loading with decreasing strain amplitude comprised
30 full cycles. It followed just after the constant amplitude cycles were carried
out, and was applied in order to determine cyclic curves.

For both materials eight different strain paths were considered, Fig. 3. These

j"_'l
\ w7 1
@ -®
S 7D
N /;"/ Zi= Q
®. N#Z~ \
T === _{.;.*: ==,
/‘//1 \\\ © i
/, \\
©7
@)
Ae= ¥ 0.65 %

F1G. 3. Proportional cyclic loading paths for prestraining the materials.

paths were obtained by cyclic loading under strain control mode. Denotation of
the vertical axis in Fig. 3 contains Poisson’s ratio v which for both materials was
not equal to 0.5 in the strain range considered in the programme. The experimen-
tally determined Poisson’s ratios for the steel and aluminium alloy were equal to
0.34 and 0.30, respectively.

When the cyclic prestraining process of each specimen was completed, deter-
mination of the subsequent yield surface was performed on the INSTRON testing
machine with the use of the single-specimen method, Fig. 4. In this technique a

F1G. 4. Loading sequence for yield locus determination using single-specimen method.
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specimen was loaded along various loading paths, each time until some measu-
rable and limited plastic strain was observed (in our case the offset strain equal
to Eof = 5 X 1075 was selected as the yield point). At each yield point the spe-
cimen was unloaded and again loaded in another direction until the entire yield
locus was obtained. These directions varied from each other by a chosen angular
increment assumed to be 22.5°. The experimental procedure comprised 16 points
determined from the selected proportional loading paths. In Fig. 4 the increasing
numbers at the yield points indicate the loading sequence.

4. Yield condition

SzczEPINSKI [21] has proposed, on the basis of the Mises anisotropic yield
condition [20], more general form of the yield condition for materials displaying
the Bauschinger effect and rotation of the yield locus axes with respect to the co-
ordinate system. That yield condition has been adopted in numerical calculations
presented in the paper.

Generally, the Mises anisotropic yield condition in the form derived by Szcze-
piriski can be expressed by the following relationship [21]:

(41) f(Ulj) == I“]Z(O-IL':E = Uyy)2 i k?(ﬂ(gyy — 022)2 il kfi](o—zz = U.’r.'.zr)2

+2T2y [K16(022 — 022) + kos(022 — 0yy)]

+27yz [k24(0zz — Oyy) + k34(022 — 022)]

+2Tg [kas(Oyy — 022) + ki5(0yy — 022)]

=24 ¢ Tyga * Taw — K58 * Tow * Ty — SKGA * Taw * Tz
+kaq - T2, + kos - T2, + kes - T2,

—b12(0zr — Oyy) — bas(oyy — 022) — b31(022 — O2z)
By Tze + Ugg < Tom 4055~ Ty = L.

In our experimental project, the tests have been performed under plane stress
conditions for which only o,, and 7,, were not equal to zero. When this is
substituted into the relation (4.1), the yield condition simplifies as follows:

(4.2) f(oij) = (k12 + k31)o2, — 2+ kg Tay - Ous + kee * T2,

+(b31 — b12)0az +bes - Tey = 1,

where coefficients £;;, b;; are functions of the yield limits determined from expe-
riments at tension, compression, torsion, and reverse torsion tests.
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Expression (4.2) represents the equation of a curve of second order, usually
written in the form:

(4.3) A0, + 2B022Toy + C12) + 2D02g + 2F 75y = 1,

where coefficients A and D denote functions of the yield limits at tension and
compression. The coefficients €' and I are related to the shear yield limits obta-
ined from the tests under torsion and reverse torsion.

The B coefficient, which is proportional to the rotation of a yield surface with
respect to (0pz, Try) co-ordinate system, has no such simple physical interpreta-
tion as the coefficients described above, and it cannot be deduced from uniaxial
tests. In order to find its value it is necessary to carry out at least one test in a
complex stress state.

The yield condition in form (4.3) is determined by five material parameters
which can be identified with such ellipse parameters as lengths of its axes, co-
ordinates of ellipse centre, and rotation angle with respect to the co-ordinate
system.

5. Experimental results

5.1. Results for the materials in the as-received state

Initial yield surfaces for aluminium alloy and low-alloy steel, both in the as-
received state, obtained for the offset £,¢ = 5 x 107°, are shown in Fig. 5 and

Ty i i ] i
[MPa] 400 + Experimental data
Approximation
il --—- Huber-Mises ellipse
200— - | : |
] Ll I i T i
-400 -200 0 200 400

O [MPa]

F1G. 5. Experimental points and fitted yield surface, Eq. (4.3), for the as-received
aluminium alloy.
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Fig. 6, respectively. Points in these figures represent experimental results while
ellipses are determined by the least squares evaluation of the A, B, ', D, I
coefficients in equation (4.3).

Ty Upper yield point  Offset strain = 0.005%
[MPa] 400 e  Experimental data o
——— Approximation

------ Huber-Mises ellipse

-400 -200 0 200 400
O[MPa]

Fi1G. 6. Experimental points and fitted yield surfaces, Eq. (4.3), for the as-received
low-alloy steel.

It is seen that the materials in the as-received state exhibit certain initial
anisotropy which can be clearly identified by comparison of the experimental
results with predictions obtained using the isotropic Huber-Mises yield condition.
In both figures the Huber-Mises ellipses are plotted by broken lines.

In the case of aluminium alloy, an initial anisotropy is reflected by flattening
of the theoretical yield surface calculated using the isotropic Huber-Mises yield
condition.

Similarly to the aluminium alloy, also the low-alloy steel tested exhibits ani-
sotropic behaviour in the as-received state. In this case, however, the effect ma-
nifests itself by the shift of the yield surface in the direction of tension.

The steel tested indicated upper and lower yield limits. The observations of
the upper and lower yield points did not confirm an anisotropy of the mechanical
properties of the steel observed for the assumed yield offset. In Fig. 6, besides
the yield locus for the assumed offset strain, also the yield surface corresponding
to the upper yield limit is presented. That surface was built on the basis of the
“effective stress — effective strain” diagrams representing eight different directions
in the two-dimensional stress space (0,4, 74y ). As it is clearly shown, the upper
yield point surface does not exhibit anisotropic effects. Hence, it can be descri-
bed accurately by the isotropic Huber-Mises yield condition (ellipse plotted by
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broken line in Fig. 6). However, it has to be noted that for each direction un-
der consideration, the upper yield point corresponds to a different strain level.
In other words, the ellipse reflecting the upper yield points obtained for various
loading combinations does not represent any yield definition. Mutual location of
the yield surfaces presented in this figure reveals a certain form of the anisotropy
of the steel.

Summing up all of these remarks, it can be stated that both materials exhibit
anisotropic properties in the as-received state coming from the industrial forming
processes. In the case of steel however, we can observe isotropic properties in the
sense of the upper yield limit, but the courses of the stress-strain characteristics
up to the upper yield point for various loading paths tested in the programme are
not coincident, identifying in this manner anisotropic character of the material
in the strain range under consideration.

5.2. Results for the materials prestrained due to cyclic loading

The second step of the experimental procedure comprised the cyclic defor-
mation carried out under constant strain amplitude with the objective to attain
a saturated cyclic state, and cyclic deformation with gradually decreasing strain
amplitude in order to obtain cyclic curves. An example of this process in case
of torsion - reverse torsion cycles of aluminium alloy is presented in the Fig. 7a.
The stress response onto the deformation programme given in Fig. 7a is shown
in Fig. 7h.

In Fig. 7c the results for the cyclic loading with constant strain amplitude
are illustrated in the form of the stress-strain diagram. As it is clearly seen, the
saturation cycle was not achieved for the assumed programme of constant cyclic
loading. The same effect was also observed for the remaining tests carried out for
other directions of cyclic loadings.

Just after the constant strain amplitude cycles were carried out, the program-
me of cyclic loading with decreasing strain amplitude followed. An example of
a typically observed stress response due to this part of programme is shown in
Fig. 7d. The results in the form of a stress-strain diagram for the cyclic loading
with decreasing strain amplitude illustrate the method for determination of the
cyclic curve as a set of tips of the loops for cycles with decreasing strain amplitu-
de. The results shown in this figure are plotted in the stress - total strain diagram.
Using the DADISP software, they can be automatically converted to a diagram
of stress against plastic strain. Such transformation is presented in Fig. 7e.

In order to show how the initial anisotropy influences the response of the ma-
terial to cyclic loading, the results for another loading path (tension - compression
cycles) are presented in Figs. 8a, b, ¢, d. The sequence of figures is similar to that
in the Figs. 7b, ¢, d, e, i.e. in Fig. 8a a stress response to the programme shown in
Fig. Ta is presented, the stress response for constant strain amplitude cycling is
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shown in Fig. 8b. Figure 8c presents the stress response to the cyclic programme
with gradually decreasing strain amplitude, and I'ig. 8d shows the same results
after subtraction of the elastic strain. It has to be noted that the width of the lo-
ops obtained during tension-compression cycles are significantly smaller than the
loops achieved during cycling in torsion-reverse torsion (compare Figs. 7e and 8d).

The results for the steel in the case of cycling in tension-compression are
demonstrated in Figs. 9 a, b, ¢, d, e. Again the stress response to the deformation
programime given in Fig. 9a is shown in Fig. 9b. In the next figure (Fig. 9¢), the
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FiG. 8. Stress responses to cyclic loading of aluminium alloy (cycling in tension-

compression). a) Stress response to the strain-controlled cyclic loading shown in Fig. 7a.

b) Stress response to the strain-controlled cyclic loading with constant strain ampli-

tude. ¢) Stress response to the strain-controlled cyclic loading with decreasing strain

amplitude. d) Stress - plastic strain diagram of the stress response to the programme of
cyclic loading with decreasing strain amplitude.
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results for the cyclic loading with constant total strain amplitude are illustrated
in the form of the stress-strain diagram. As it is clearly seen, the saturation cycle
was achieved for the assumed programme of constant strain amplitude cycling
relatively quickly, since it required only five full cycles. The same effect was also
achieved for the remaining tests carried out for other directions of cyclic loadings.
An example of a typically observed stress response due to the programme of cyclic
loading with decreasing strain amplitude is shown in the next two diagrams. In
Fig. 9d, the stress versus total strain is presented, whereas in Fig. 9e a diagram
of stress versus plastic strain is shown.

In the case of the steel, independently of the cyclic loading paths considered,
no essential differences in the width of the loops were observed, what distinguishes
the results from those obtained for aluminium alloy.

The cyclic curves for aluminium alloy determined for all directions of cyclic
deformation are compared in Fig. 10. All these curves exhibit different courses
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F1G. 10. Stress-strain curves of aluminium alloy for various directions of proportional
cyclic loading.

and shapes. On the basis of cyclic curves, the cyclic yield locus has been deter-
mined, Fig. 11. Such a surface represents the ability of the material to variation
of mechanical parameters due to cyclic deformation for different orientations in
the plane stress state. It has been determined for the same yield offset as that
used to obtain the initial yield surface (s, — 5 x 1075) in order to enable the-
ir comparison. Comparative studies of the shapes and dimensions of the initial
and cyclic yield surfaces, Fig. 11, show that the history of cyclic deformation in
the plastic range induces hardening of the material. It is interesting to note that
the greatest hardening was achieved in the directions of tension and compression
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while the smallest hardening was observed in the direction coincident with that
of the initial anisotropy resulting from the forming processes (this direction cor-
responds to torsion-reverse torsion). It is clear that the initial anisotropy was not
forgotten due to the cyclic process.

The cyclic curves for the steel determined for all directions of cyclic defor-
mation are compared in Fig. 12. Contrary to the results for aluminium alloy, all
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Fi1G. 12. Stress-strain curves of low-alloy steel for various directions of proportional
cyclic loading.
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these curves show a similar course and shape, especially at low level of the plastic
strain (up to 0.01%). Here again, on the basis of cyclic curves, the cyclic yield lo-
cus has been determined, Fig. 13. Since the cyclic yield surface has been obtained
for the same yield offset as that used to obtain the initial yield surface, it is easy
to compare them and formulate the concluding remarks. Analysis of the shapes
and dimensions of the initial and cyclic yield surfaces proves that the history of
cyclic deformation in the plastic range for all directions induced softening of the
material. It is interesting to note that, independently of the anisotropy observed
in the as-received material, the centre of the cyclic yvield locus is located in the
origin of the co-ordinate system. Hence, it can be concluded that in steel, an ini-
tial anisotropy was forgotten due to the cyclic process, and the material exhibits
a memory for the prestress induced during cyclic deformation.

n: L 400 = R
a
e 18G2A low-alloy steel
Offsetstraln =5 x 10 5
200 —
200 i L TN
[ initial yleld surface | i i [ cyclic yleld surface
@00} — ;
-500 -400 -300 -200 -106 0 100 200 300 400 500

O o {MPa)

F1G. 13. Comparison of the cyclic yield surface with the initial yield locus for low-alloy
steel.

After cyclic predeformation, yield surfaces for selected offset strain were de-
termined by the technique of sequential probes of the single specimen. All yield
surfaces determined for aluminium alloy after cyclic loading along selected pro-
portional paths are shown in Fig. 14 for the offset strain equal to 5 x 10~°. They
are compared with the initial yield surface, plotted in the middle of Fig. 14, for
the same offset strain. Numbers from 1 to 8 denote the data obtained for the ma-
terial after different proportional cyclic loading paths, the orientation of which
was described by ¢ = 0°; 45°; 90°; 135°; 180°; 225°; 270°; 315°, respectively (cf.
with Fig. 3). Points in Fig. 14 denote experimental results, while ellipses represent
the best fit obtained by using equation (4.3). Yield surfaces, of the same offset,
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for the aluminium alloy prestrained due to cyclic loading have significantly gre-
ater dimensions in comparison to those for the initial yield surface. This means
that the aluminium alloy tested after cold work exhibits hardening effect in the
strain range considered. Since the evolution and mutual location of the yield loci
are not clearly reflected in Fig. 14, they are compared together in Fig. 15a, b. In
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F1G. 14. Experimental points and fitted yield surfaces for aluminium alloy prestrained
due to cyclic loading along various proportional paths, offset strain 5 x 10 7.

order to keep clear view, the data points in Fig. 15a, b are omitted. Numbers in
both figures denote orientations of the proportional cyclic loading paths. Shown
in Fig. 15a are yield surfaces for the material prestrained due to cyclic loading
in directions described by ¢ = 0°; ¢ = 90° ¢ = 180°; ¢ = 270°, whereas in
Fig. 15b are shown subsequent yield surfaces for the remaining cyclic loading
paths considered in the experimental programme. The shape analysis of these
yield surfaces leads to the conclusion that the dimensions of yield locus are de-
pendent on the direction of cyclic preloading. The greatest hardening effect was
achieved in the tension and compression directions. It is shown that the sense of
the loading direction in the first cycle for the chosen direction changes solely the
location of the yield locus centre without any other visible differences, especially
in the shape and dimensions of the surface. It was confirmed for all the directions
examined.
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In the next two figures are shown the results for steel. In Fig. 16 are presented
experimental points together with ellipses reflecting the shapes and dimensions
of the subsequent yield surfaces which have been determined using the yield
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F1G. 16. Experimental points and fitted yield surfaces for the steel prestrained due to
cyclic loading along various proportional paths, offset strain 5 x 1077,

condition in the form of equation (4.3). As it is clearly seen, a good agreement
is achieved between the experimental data and the results following from the
approximation. Similarly to the data analysis of aluminium alloy, in order to
enable accurate assessment of the steel yield loci variations, in Fig. 17 a, b are
shown subsequent yield surfaces at one co-ordinate system without experimental
points. They are compared with the initial yield surface (bold line) for the same
offset strain (g, = 5x 1077). Again numbers in both figures denote orientation of
the proportional cyclic loading paths. Yield surfaces, of the same offset strain, for
the steel prestrained due to cyclic loading have significantly smaller dimensions
in comparison to those for the initial yield surface, so they are located within it.
This means that the low-alloy steel tested after cyclic cold work exhibits softening
effect in the strain range considered. The shape analysis of these yield surfaces
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leads to the conclusion that the dimensions of yield locus are dependent on the
direction of cyclic preloading. The greatest softening effect was always achieved
in the direction which was coincident with that used in the preliminary cyclic
deformation. The effect of the cyclic loading sense in the first cycle is clearly
illustrated in Fig. 17a for example for ¢ = 90° and ¢ = 270°. It is shown that the
sense of the loading direction in the first cycle for the chosen direction changes
solely the location of the yield locus centre without any other visible differences.
It was observed for all the directions examined.

More accurate analysis concerning the degree of the prestraining effect can
be attained on the basis of graphical illustrations of the variation of yield surface
dimensions as a function of the predeformation direction. The variation of the
major and minor semi-axes of the subsequent yield surfaces for the steel due to
cyclic prestraining is shown in Fig. 18 as a function of cyclic loading direction.

18G2A low-alloy steel
) 300
Magnitude .
of yield surface X .
semi-axes v 'g/' | .
[MPa] ' i ' . i
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W
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F1a. 18. Variations of the major and minor semi-axes of subsequent yield surfaces for
the steel.

The same diagram for the aluminium alloy is presented in Fig. 19. From these
diagrams it can be observed how the cyclic deformation changes basic dimensions
of the yield surface.

The major semi-axis of the initial yield surface for steel was equal to 326
MPa, while the minor one was equal to 204 MPa. The same dimensions for the
aluminium alloy were 341 MPa and 150 MPa, respectively.

The effect of softening is clearly demonstrated for the steel in Fig. 18. The
maximum softening observed for this material was achieved for those directions
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which were coincident with the cyclic ones. Moreover, a confirmation of the conc-
lusion that for the selected proportional loading path, the degree of softening was
not sensitive to the sense of loading, can be easily found. For example, the de-
gree of softening for the “positive torsion-negative torsion” direction was almost
the same, independently of the sense of cyclic process initiation, i.e. the positive
torsion (90°) or the negative torsion (270°). The smallest softening effect was
observed for the direction perpendicular to that at the cyclic loading used.

PAG aluminium alloy
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Fia. 19. Variations of the major and minor semi-axes of subsequent yield surfaces for
the aluminium alloy.

Completely opposite effects were observed for the aluminium alloy, Fig. 19.
The material generally exhibits a hardening effect. Although for the directions
coincident with cyclic loading the maximum hardening was observed, the degree
of this effect was not the same for all the directions considered. It is interesting to
note that for the aluminium alloy there were no clear differences in the magnitude
of minor axes of the subsequent yield surfaces. The reason of such behaviour
results from the manufacturing processes used to produce rods of aluminium
alloy. These processes induced anisotropy which could not be changed by the
cyclic loading applied in the experimental programme.

In Fig. 19 it is also easy to find a confirmation of the conclusion that for the
selected proportional cyclic loading path the degree of hardening was almost not
sensitive to the sense of loading. For example, the degree of hardening for the
tension-compression direction was almost the same (the difference was less than
5%), independently of the sense of the cyclic process initiation, i.e. the tension
(0°) or the compression (180°).
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It is interesting to study how cyclic deformation influences the rotation of yield
surfaces. In the case of steel tested, the rotation depends on the cyclic loading
path. Experimental data illustrating the rotation of the initial yield locus due
to cyclic loading path orientation are shown in Fig. 20 in form of circles for the
steel, and crosses for the aluminium alloy. Lines in this figure correspond to the
approximations carried out using the least squares method. A significant rotation
of the yield surface is observed for the steel. It depends on the orientation of the
cyclic loading path. However, as it is shown in Fig. 20, the angle of rotation of
the yield surface almost does not depend on the sense of loading. It means that
there are no significant differences in rotation for cyclic loading determined by
those ¢ which describe the same direction, that is 0° and 180°, 45° and 225°, 90°
and 270°, 135° and 315°.

20
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F1G. 20. Comparison of the yield surfaces rotation due to cyclic prestraining,.

In the case of aluminium alloy the results show an opposite effect, that
is there was not observed any significant rotation of the subsequent yield surfa-
ces due to the same programme of cyclic loading as that applied during the
steel tests.

In order to complete the analysis of both materials, in Figs. 21 and 22 are
presented the variations of yield limits due to cyclic prestraining for the low-alloy
steel and aluminium alloy, respectively. Initial values of the yield limits obtained
for the same offset strain equal to 5 x 10~ are shown in Table 3 for the low-alloy
steel and in Table 4 for the aluminium alloy.
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Table 3. Yield limits for the as-received low-alloy steel
(offset strain 5 x 107°).

Tension yield | Compression yield | Torsion yield | Reverse torsion
limit limit limit yield limit
372 MPa 280 MPa 198 MPa 210 MPa

Table 4. Yield limits for the as-received aluminium alloy
(offset strain 5 x 107°).

Tension yield | Compression yield | Torsion yield | Reverse torsion
limit limit limit yield limit
341 MPa 341 MPa 150 MPa 150 MPa

All yield limits considered for the steel decreased after cyclic prestraining.
Maximum decreasing of the corresponding yield limits was obtained for the di-
rections coincident with cyclic loading. As shown in Fig. 21, the tension and

18G2A low-alloy steel

o B0 - e
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yield limits - + tension yield limit (2)
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F1G. 21. Variations of yield limits due to cyclic prestraining of the steel.

compression yield limits do not differ considerably after prestraining. Since these
parameters before cyclic loading differ by more than 20%, it can be concluded
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that the process of cyclic prestraining caused forgetting of the initial anisotro-
py resulting from the manufacturing processes of rods used as the blanks for
specimens.

In the case of the aluminium alloy, almost all yield limits increased (except
the tension yield limits for the directions of cyclic loading described by the value
of ¢ equal to 45°, 90° and 135°) after cyclic loading in comparison to those
determined for the material in the as-received state. Contrary to the steel, the
torsion and reverse torsion yield limits for the aluminium alloy after prestraining
do not depend on the cyclic loading direction. For all directions the same values
of these limits were obtained and they can be approximated with a good accuracy
by straight lines, Fig. 22. Such a result suggests that the range of strain realised
during cyclic loading was not sufficient to change the initial anisotropy of the
aluminium alloy, and the material still exhibits a memory for the maximum
prestress induced during the manufacturing processes.

PA6 aluminium alloy
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F1G. 22. Variations of yield limits due to cyclic prestraining of the aluminium alloy.

6. Applicability assessment of the cyclic yield surface concept

Having cyclic curves and the results from monotonic loading tests used to
obtain subsequent yield surfaces for the materials tested after prestraining, the
directions of maximum softening/or hardening due to cyclic loading can be iden-
tified in the strain range considered. It can be done using two methods. Using
the first method, the cyclic yield surface shown earlier, can be constructed on the
basis of cyclic curves.
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In the second method, a surface being an envelope of all yield loci determined
for the cyclically prestrained material can be constructed. Such a surface can
be obtained on the basis of stress-strain diagrams coming from the first probes
of the single-specimen method used to determine the subsequent yield surfaces.
To construct this surface, the results obtained from eight first probes were used.
Since each time the first probe was taken to be coincident with the direction of
the first cyclic loading, the experimental programme for both materials enables us
to determine eight points creating the envelope mentioned above. Assuming the
vield offset to be .6 = 5 x 1075, the surfaces being envelopes of all subsequent
yield loci presented in Fig. 14 for the aluminium alloy and in Fig. 16 for the steel,
can be constructed. In the case of steel, the surface obtained in this way represents
the maximum softening of the material. In Fig. 23 it is compared with the cyclic
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Fic. 23. Comparison of the envelope of subsequent yield surfaces, reflecting directions
of maximum material softening due to cyclic loading, with the cyclic yield surface, offset
strain 5 x 107° (results for the steel).

yield surface determined on the basis of cyclic curves, Fig. 12, and with the initial
yield locus. As it is clearly shown, a close agreement was achieved in locations
and sizes between the cyclic yield surface and the envelope. Thus, it confirms the
equivalence and applicability of both methods of mechanical properties analysis
for the steel subject to prior cyclic deformation in the plane stress state.
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In the case of aluminium alloy, the surface being an envelope of all subsequent
yield loci is shown in Fig. 24.

T

[M Px;] B points of the subsequent yield surfaces
400 — reflecting directions of cyclic loading 1

A points of the initial yield surface
® points of the cyclic yield surface

200 —--1

:
|
-400 -200 0 200 400
G, [MPa]
F1a. 24. Comparison of the envelope of subsequent yield surfaces, reflecting directions of

maximum material hardening due to cyclic loading, with the cyclic yield surface, offset
strain 5 x 10 (results for the aluminium alloy).

It is compared with the cyclic yield locus as well as with the initial yield
surface. Contrary to the steel specimens, significant differences can be observed
between the cyclic yield surface and the envelope. In view of this, the question
arises why for one material a close agreement can be achieved between the cyclic
yield surface and the envelope, but for the others considerable discrepancies are
observed? In order to explain this problem, we must return to the results concer-
ning cyclic loading. It has been shown for the aluminium alloy that the saturation
cycle was not achieved during cyclic loading with the constant strain amplitude.
The results for steel indicate that in order to obtain the saturation cycle, only a
few full cycles with constant strain amplitude were necessary. It seems that the
lack of stable behaviour of the aluminium alloy during cyclic loading applied is
the main reason for the differences between the cyclic yield surface and the enve-
lope. Therefore, it can be stated that the applicability of the cyclic yield surface
concept to the mechanical properties analysis is limited to those cases in which
the material tested reaches the stable hysteresis loop during proportional cyclic
loading.
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7. Final remarks

Determination of the true constitutive equations for cyclic plasticity provides
many difficulties since, up to now, the majority of experimental investigations ha-
ve been carried out at uniaxial stress states. Therefore, the available experimental
data for multiaxial stress conditions are limited and, as a consequence, they do
not fully reflect all aspects of the material behaviour under cyclic loadings. Since
the paper presents the results of tests carried out under complex stress state, it
completes somehow the lack of data in this area and my be useful in modelling
the material behaviour. The data obtained allow us to formulate a few important
concluding remarks.

It was observed that the shape and location of the initial yield surfaces de-
termined for both the aluminium alloy and steel, for clearly defined yield offset,
identify the anisotropy of the materials coming from the manufacturing proce-
sses.

A cyclic loading programme induces softening of the steel in the considered
strain range accompanied by a remarkable reduction of the yield loci dimensions.
In the case of aluminium alloy, the samme programme induces the hardening effect
reflected by the increase of yield loci dimensions.

The amount of softening in the case of steel, and hardening in the case of
aluminium alloy depends on the direction with respect to cyclic prestraining.
The greatest effects were always observed in the same direction as that used
during predeformation process whereas the smallest ones were observed in the
direction perpendicular to that in the cyclic loading applied.

If the number of cycles is sufficient to achieve the state of saturation, the
concept of the cyclic yield surface reflects well the ability of a material to change
mechanical properties due to cyclic deformation in different orientations of the
plane stress state.

The analysis of the dimensions of the cyclic yield surface for the 18G2A
steel proves that the material exhibits the same softening level for all directions
examined, and moreover, it forgets the initial anisotropy induced during strain
history coming from the manufacturing processes. The same analysis for the
aluminium alloy proves that the material exhibits various amounts of hardening,
depending on the initial anisotropy.
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Boundary conditions for a capillary fluid
in contact with a wall

H. GOUIN (MARSEILLE) and W.KOSINSKI (WARSZAWA)

Conract oF A FLUD with a solid or an elastic wall is investigated. The wall exerts
“molecular forces” on the fluid which is locally strongly non-homogeneous. The pro-
blem is approached with a fluid energy of the second gradient form and a wall surface
energy depending on the value of the fluid density in the contact. From the virtual
work principle and taking into account the fluid density, its derivative normal to the
wall and the curvature of the surface, limit conditions are obtained.

1. Introduction

THE PHENOMENON OF SURFACE wetting is a subject of many experiments [1]. Such
experiments have been used to determine many important properties of the wet-
ting behaviour for liquid on low energy surface [2]. In fact the wetting transition
of fluids in contact with solid surfaces is an important field of research both for
mechanics and physical chemistry. In the recent paper [3], the first author using
statistical methods has proposed an explicit form for the energy of interaction
between solid surfaces and liquids. This energy yields a bridge connecting sta-
tistical mechanics and continuum mechanics. To obtain the boundary conditions
between fluid and solid, it is also necessary to know the behaviour of the fluid as
well as the solid.

We propose a mechanical model similar to that used in the mean-field theory
of capillarity that leads to the second gradient theory of continuous media in
fluid mechanics [4]. The theory is conceptually more straightforward than the
Laplace one to build a model of capillarity 5, 6]. That theory takes into account
systems in which fluid interfaces are present [7]. The internal capillarity is one of
the simplest cases since we are able to calculate the surface tension in the case of
thin interfaces as well as in thick ones [8]. It is possible to obtain the nucleation
of drops and bubbles [9].

It seems that the approximation of the mean-field theory is too simple to
be quantitatively accurate. However, it does provide a qualitative understanding.
Moreover, the point of view, that the fluid in interfacial region may be treated as a
bulk phase with a local free energy density and an additional contribution arising
from the nonuniformity which may be approximated by a gradient expansion
truncated at the second order terms, is most likely to be successful and perhaps
even quantitatively accurate near the critical point [10].
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In this paper we connect both the interaction of a solid surface and a fluid
phase by means of the virtual work principle. The distribution of fluid energy in
the volume and the surface density energy on the solid surface yield the boundary
conditions. The conditions are different from those obtained for a classical fluid
within the theory of gas dynamics. We obtain an embedding effect for the density
of the fluid; moreover, the conditions take into account the curvature of the
surface. The result is extended to the case of an elastic wall. A discussion is
obtained depending on the value of the density of the fluid at the surface.

Let us use asterisk * to denote conjugale (or transpose) mappings or covec-
tors (line vectors). For any vectors a,b we shall use the notation a*b for their
scalar product (the line vector is multiplied by the column vector), a - b and
ab* for their tensor product (the column vector is multiplied by the line vector)
a @ b. The product of a mapping A by a vector a is denoted by A a. Notation
b*A means covector c¢* defined by the rule ¢* = (A*b )*. The divergence of
a linear transformation A is the covector divA such that, for any constant
vector a,

div(A) a = div (A a).

If f(x) is a scalar function of the vector x associated with the Euler variables
in the physical space, df/dx is the linear form associated with the gradient of f

() *
and consequently, (af) = grad f.

2. Continuous mechanical model of capillary layers

We consider a fluid in contact with a solid. The fluid occupies the domain [
and its boundary 5. which is common with the solid wall. Physical experiments
prove that the fluid is nonhomogeneous in the neighbourhood of 2 [10]. It is also
possible to consider the fluid as a continuous medium by taking into account a
“capillary layer” existing in the vicinity of X and a form of its stress tensor [11].
One way to present the behaviour of such a fluid is to consider the specific internal
energy € as a function of the density p as well as grad p. Such an expression
is known in continuum mechanics as internal capillary energy, see [4, 5]. It is
related to molecular models of strongly nonhomogeneous fluids in the frame of
the mean field theory and is equivalent to the van der Waals model of capillarity
(see the review by RowLiNsoN and WinoM [10]). The energy ¢ is also a function
of the specific entropy. In the case of isothermal media at a given temperature, the
specific internal energy is replaced by the specific free energy. In the mechanical
case, the entropy or the temperature are not concerned by the virtual variations
of the medium. Consequently, for an isotropic fluid, it is assumed that

e = [(p.B),
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where 3 = grad p - grad p. The fluid is subjected to external forces represented
by a force potential (2 per unit mass as a function of Eulerian variables x.

We denote by ) 3 x — B(x) € I? the surface density of energy of the solid
wall. The total energy [ of the fluid in D and its boundary ' is the sum of
the three terms expressing: internal energy [Yy, potential energy [, and surface
energy Iis: I© = Ef+ E, + Es, with

By = fpg(p,ﬁ) dv , Ey= /p 2(x) dv, Eg = /B ds.
D D $5)

Let us denote by ¢ a variation of the position of the fluid as in [12]. The
variation is associated with the virtual displacement

D>z — dx = ¢((x).

We have the following results presented in the Appendix,

dn

. . i
(2.1) 0E; = [ (—diva) ¢ dv+ {—A(—"
/ /

2A
+(R n+grad,, A + o n) -C} ds

with 9o\t O
oc=—-PI-Cgradp®@gradp=-PI1-C (—’0> —p,
ox/ Ox
where C' = 2pejg and P = pz.s;,—p div (C grad p), €/, denotes the partial derivative
of £ with respect to p, (, :an*c where n is the external unit normal to 3 and
L dp dp P

A=Cp — = = e i
P dn R dn  ox

The scalar Ry, is the mean curvature of 3 and grad,, is the tangential part
of grad relatively to X.

Moreover,

, ] an
(2.2) OEp:/ paCdv :f pgrad 2 ¢ dv,
D D

and using the results presented in the Appendix,

(2.3) dEg = / ((53 - ( ;{in 4 gl’acngB> -C) ds.
X

One assumes that the volumetric mass in the fluid has a limit, interfacial
value p, at the wall 2 (which is not the surface density of the wall but the mass
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density per unit volume as in the shock wave analysis). One assumes also that
B is a function of pg only. These hypotheses are confirmed by results presented
in [3]. Then,

0B = B’([)s)(’)‘f)g - _paBI(ps) div €.

Let us denote G = —p,B), . Consequently,

/db’ ds = /G div ¢ ds = / (G & _ 2Gn-C—gradtgG -C) ds
b5 5y ¥

tn R

(see Appendix).
Now, I = B(ps) — ps B:),(ﬂs) is the Legendre transformation of 3 with
respect to py. Then,

(2.4) 0Es = / (G L _ (21/ Rn 4 gradlgll) -C) ds.

dn

The d’Alembert-Lagrange principle of virtual works is expressed in the form
[12]:

(2.5) VD3 x - ((x), OE =0.

Consequently, from the fundamental leinma of variation calculus, we obtain the
balance equation in the fluid [ and the boundary conditions on the solid wall .

Equilibrium equations

From any arbitrary variation D 3 x — {(x) such that ¢ = 0 on Y, we take

first 90
ol 2 —
f(ﬂ (,)—x—dlv a') ¢ dv=0.
D
Consequently,
002
(2.06) div o — p(,)— = 0.
Jx

This equation is the well known equilibrium equations [5, 7, 9]

Boundary conditions
a) Case of a rigid (undeformed) wall.

We consider a rigid wall. Consequently, the virtual displacements satisfy on 3
the condition n* ¢ = 0. Then,

f{(G—AJ %+ ( wnwraﬂmm—uHm) e }(zs-o
4

at the rigid wall.
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Hence, we deduce the boundary conditions at the rigid wall:
(2:F) forx e X G—-A=0
and moreover, there exists a Lagrange multiplier > 3 x — A(x) € R such that

2(A-H)
1{1'71

b) Case of an elastic (non-rigid) solid wall.

(2.8) n+ grad,,(A—H)+on=An.

In such a case the equilibrium equation (2.6) is unchanged. On 2}/, moreover,
the condition (2.7) is also unchanged. The only different condition comes from
the fact that we do not have anymore the slipping condition for the virtual
displacement ( n*¢ = 0).

Due to the possible deformation of the wall, the virtual work of mechanical
stresses on 2 is,

§E,; = /t*( ds
&
with t = T n representing the stress (loading) vector, where T is the value of

the Cauchy stress tensor of the elastic wall on the boundary Y. Relation (2.8) is
replaced by:

(2.9) 2 (A[——H)n + grad,, (A — H) + on = —t.

3. Analysis of the boundary conditions

Relation (2.7) yields:

_ dp 5
3.1 —+ B =
L £ dn + B, =0
and we obtain

H—~A=B.

Consequently, from the definition of o,
dp
= Pn — C'— gradp.
o n n 7, Bradp

Then the tangential part of equation (2.8) is always verified and equation (2.8)
yields the value of the Lagrange multiplier \.

For an elastic (non-rigid) solid wall we obtain
2B (wie

(3.2) # = and bn = - +P =B,
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where {;, and ¢, are the tangential and the normal components of t, respectively.
2B
B
the value of the stresses in the elastic (nonrigid) medium. The only new condition
comes from (3.1).

We have the next consequences. In [3] it is proposed the surface energy in the

1 ; .
Taking into account (3.1), {, = P f a(ljf,a)z and equations (3.2) yield

form B(ps) = —mps + Epf, with =1, and 79 as two positive constants. We
obtain the condition for the fluid density on the wall

dp
(3.3) o g Y1 = V2Ps)

f =
1
and hence % is positive (or negative) in the vicinity of the wall if ps < p; (or
ps > pi) with p; =m /72 which is the bifurcation fluid density at the wall.
If ps < pi, we have a lack of fluid density at the wall. If py > p;, we have an
excess of fluid density at the wall.

4. Conclusion

For a conservative mediumn, the first gradient theory corresponds to the case
of compressibility. To take into account the superficial effects acting between
solids and fluids, we propose to use the model of fluids endowed with capillarity.
The theory interpretes the capillarity in a continuous way and contains Laplace’s
theory. The model corresponds for solids to “elastic materials with couple stresses”
indicated by TouPIN in [13].

We notice that the extension to the dynamic case is straightforward: by the
virtual work principle, equation (2.6) takes the form:

9 _
Ix

where <y denotes the acceleration of the fluid. Equations (3.1)-(3.3) and consequ-
ences in Sec. 3 are unchanged.

py—dive +p 0,

Appendix

First of all, we recall the following fact from the differential geometry: Let )
be a surface in the 3-dimensional space and n its external normal.

For any vector field ¢,
+ OC

n*¢ —n* — n.

n* rot(n x ¢) = div ¢ + o

Ry,
Then, for any scalar field A, we obtain :
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an 2A N "
dn BT (gradj,A) ¢ + n* rot (An x ()

B 0A 24 L
=tr K (m* —1) — o )C] + A 5 T rot(An x ).

Let us calculate 0Fj : since D is a material volume,

(A1) Adivg=A

Iif:/pedv =><51;'f:/p155dv
D
de 0= ()p _(Z(l/z_c’)_pf)g

ith de = — B ] :
with ¢ B ap+ a5 0. From %~ Bx  Bx B

dp\ Op* adp
p%m._zpsﬂo(ax) I C((

we deduce:

0 K e
ox gx dx x
with 2pej = C.

In the mean-field molecular theory, the quantity C'is assumed to be constant
[10], but it is not necessary. One can suppose that the scalar C' is a general
function of p and even . Then

pely 03 = div(C grad p dp) — div(C grad p)dp — tr (C gradp grad*pd&c) .

Due to the fact that dp = —p div ¢ (see [12]),
poe = div(C grad p dp) — ( ‘e, — p div(C grad p )) div ¢
—div(C gradp grad®p ¢) +div(C grad p grad*p) ¢

pde = div (C gradp dp — (C' grad p grad*p)¢ — PC)

+d—c +div(C grad p grad® p) €.

Then

0 = / ( %xl‘j‘ +div(C grad p grad*p) ) € dv
D

+ fdiv(—Cp grad p div { — C grad p grad*p ¢ — P¢)dv
D

/ (dive)¢ dv +/( —A div¢ + n*o ¢)ds.
D
Taking into account (A.1l), we deduce immediately
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~i = s i = Cn g - )
Ly oF; ,_‘/‘ (dive)¢ du |/( in s (Rmn +51d(!,1 A+ n'e C) ds

D P
-%]n*roL(A n x ¢) ds.
p.3
But, /n*rol.(A 0% ¢) ds = f At - (n x ¢)de = /.4(t,n,() de |
= il I

where I" is the line boundary of ) and t its tangent unit vector. If n’ =t x n,
we obtain the relation

(A.2) OEf = /( —dive)C dv + f( dC" - (RA n® + grad;, A

i n*a)C) ds+f/1n”(ord€.
A

In the following, we assumne that ) has no boundary and consequently, the terin
associated with I vanishes.
Let us calculate dFg
Fg = / B ds.
z

Then

. ) 2B %
(A.3) 0Es = j {()B - (n' 7 + grad*B(1 — nn*)) C} ds f/hl’ ¢ dé.
2 s ]‘

We notice that grad*B(1 —nn*) belongs to the tangent plane to ).
Let us prove Eq. (A.3). If we write IJs — /b‘ det (n,dyx,dyx) where d)x
x
and dox are the coordinate lines of ), we may write
By = / B det F det (F~ln,diX, dX),
Zo
where X is the image of ) in a reference space in Lagrangian coordinates X,

and [ is the deformation gradient tensor dx/dX.
Then,

g /53 det Fdet (I'"'n,d1 X, daX) —l—/B a‘(dm P det(zi'—‘n,dlx,de)).
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Moreover,

/13(5((1@ F det (F~'n, diX, dsX)) :/1} dive det (1, dyx, dox)
o 8y

+B det ( (;lc,dlx, a’.gx) — B det ( g—in,dlx,(lg)‘:)
Jx

, " . ¢
= / (dlv(BC) —grad®™B ¢ — Bn P n) ds.
5
From (A.1) we obtain
0B¢

X

div(B¢) — B (divn) n*¢ —n" n = n*rot (Bn x ().

Then,
f B3 (det. I det (F~'n,di X, d2X)) = / (B (div m)n®
2o Yo

+ grad* B(nn* — 1)) ¢ ds +]n*rot (Bn x ¢)ds
X

2
I{HZ )
We assume that ). has no boundary and consequently, the term associated with
I" is null.

and we obtain (A.3) with divn = —
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On waves due to a line source
in front of a vertical wall with a gap

SUDESHNA BANERJEA AND C.C. KAR (CALCUTTA)

IN THE PRESENT PAPER waves due to presence of a line source in front of a vertical
wall with a gap are studied. A simple expression for amplitude of radiated waves at
infinity is obtained by application of Green’s integral theorem.

1. Introduction

WATER WAVE PROPAGATION in presence of a vertical barrier form an important
class of problems within the framework of linearised theory. Among the various
types of problems in this class, the study of wave motion due to presence of line
source in front of an obstacle has been made by various researchers.

Evans (2], while studying the wave motion produced by small oscillations of
a partially immersed vertical plate, obtained as a special case the amplitude of
radiated waves due to presence of a line source in front of a vertical plate partially
immersed in deep water by simple application of Green's integral theorem. Later
BAsu and MANDAL (3] and MANDAL [4] used the same technique to find the
amplitude of radiated waves when the vertical barrier is completely submerged
and extends infinitely downwards, or is submerged up to a finite depth below the
mean free surface.

In the present paper, the wave motion due to a line source present in front
of a vertical wall with a gap in deep water is studied. These problems have
relevance in manoeuvring of a ship near a wall (cf. [7]). In general, a study of
wave motion in presence of a vertical wall with a gap has practical application in
construction of breakwaters. Here the amplitude of radiated waves at infinity is
obtained by applying Green'’s integral theorem in the fluid region to two suitably
chosen functions. One of the functions represents the velocity potential which
is the solution of the corresponding problem of scattering of a normally incident
wave train by a vertical wall with a gap. This solution is given in [6]. However, we
have obtained it here by a different method using an integral equation formulation
based on Havelock’s expansion of the water wave potential. The other function is
chosen in appropriate form, the unknown velocity potential describing the motion
in the given problem. From the results thus obtained, it is observed that, when
the source is situated within the gap in the wall, then the wall has no effect on
the source.
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918 SupEsHNA BANERJEA AND C. C. Kar

2. Statement and formulation of the problem

We comnsider a vertical wall extending from above the mean free surface and
having a gap given by z = 0and y € L = (0,a)U (b, o0) in deep water occupying
the region y > 0 with y = 0 as the mean free surface (cf. Fig. 1). The motion is
generated in water due to a harmonically oscillating line source of unit strength
and circular frequency o, acting at the point (§,7), (¢ > 0,7 > 0) in front of the
wall.

A2 il Y s &z
K i.\;/ 7 -v_k\//’_: "-‘ ‘\‘—/- o
B_exp(-Ky +iKz) Byexp(—Ky + iKx)
(0,a)
(0,0)
Y A
Fig. 1.

Assuming the linearised theory, the motion is described by the velocity po-
tential Re{®(x,y) exp(—iot)} where © satisfies the following boundary value pro-
blem:

(2.1) V2¢ = 0 in the fluid region except at (&),
(2.2) Ké+®, =0 on y=0,

where K = 0?/g, g being acceleration of gravity,

(2.3) =0, o=0 ¢ el

(24)  ®~Inp asp—0 where p={(z—£&)>+ (y—n?}7?
25)  r/?V® is bounded asr — 0, r={(2)%+(y -2}
c=a or b

(2.6) V& -0 asy — o0,
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By exp(—Ky+iKz) aszxz — oo,
(2.7) ¢ {B- exp(—Ky—iKz) asx — —oo,

where B4 (unknown) are (complex) amplitudes of radiated waves at infinity on
either side of the wall. Let G(xz,y;&,n) denote the potential due to a line source
of unit strength at (&, ), (n > 0) in the absence of the barrier which is given by
(cf. [1]),

M(k,n)M(k
(2.8)  G(z,y:&n) = 2] (k)M (K, y)
0

A

¢ |)dk

—2miexp(—K(y+n) +iK |z —¢&),

where M (k,n) = kcoskn — K sin k.
We express the potential function ¢ as

(2.9) =G+ ¢,

where ¢ is the correction of (7 due to the presence of the barrier. Then ¢ satisfies
the equations:

(2.10) V3¢ =0, y >0,
(2.11) Ko+¢,=0 on 1=,
(2.12)  ¢:(0,y) = f(y) = —Gz(0,5:§,m), 2=0, ye€L=(0,a)U(b o),
(2.13) r1/2V¢) is bounded as r — 0,
(2.14) V¢ — 0, as Yy — 00,
B exp(-Ky+iKz), = — o

5 ~

VL ¢ { _B exp(-Ky—iKz), z — —oo

where [3 (unknown) is the complex amplitude of scattered field. It may be noted
here that because of (2.12), ¢ is odd in z.

3. Method of solution

Let 1(x,y) denote the potential describing the motion due to normal incidence
of a progressive wave exp(—Ky + i/{z) from negative infinity upon the vertical
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wall z = 0,y € L =(0,a)U (b,o0) present in deep water. The explicit form for
Y (x,y) can be obtained as (see Appendix and also [6]):

((exp(—Ky+iKz)+ R exp(—Ky —iKzx)
+ ] D(k)M(k,y)exp(hkz)dk, x <0
0

Texp(—Ky+ iKz)

+ /C(A‘) M(k,y) exp(—kz)dk, z >0,
\ 0

where M (k,y) is given by (2.8)

Ii
R= =
T= 1 —B=—idfiy = —
a B YUt ny
i
Y P
o T
(3.2) J = e__.___"p(l“(]‘a) 1 das(K) = —ﬁmz(‘:’ Al

l'_)
I = o (K) —az(K)} — '—r{al(K’ ) - a3(K, 1)},

2
{K~! exp(Ka) + ;ag(—]{, )}

. a(—K) |
- . ul (a'a ba u)
o;(K) = a(K,1), oK, F)= | —————exp(—Ku)du,
; Ro(u)

where Ro(u) =| u? — a? |V/2 | u? —b%|/?
(—a,a), g = ],

t={ @b, =2
(b?m)i 1= 31
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Therefore,

~Olf)= D=2t { sin ka + A]

7 k(A2 + K2)

R{) I cos A'udu}

s(u) = [()— —I1(a,b, u)}

Applying Green’s integral theorem to the harmonic functions ¢, within the
region bounded by the lines

y=0, 0<z<X; z=0V, D0<Lp<a; z=0", O0Zpy<a;

y =0, - X<L2r<l; gzg=-X, 0Ly<gY; y=Y, - X<z<0
r=0", b<y<o; =07, b<y<on; =Y, 0La<X;

z=X, 0<Ly<Y;

for X, Y — oo we obtain

(3.3) B = /g(J y)dy lf W) f(y)dy

b
where
9(y) = (0", (0", y),y) — (07, y).

Using the expression for g(y) from (B.9), the following simplifications can be
made.

[ 1wy = — [ 2EPED s gy,
0 0

Ro(y)
(3.4)
f fWgly)dy = / ?ES%;()CXD(KM&,
1 4 o\y
where

ha(y AI/f(L exp(—Kt)dt
ha(y) = Ay / £ () exp(~Kt)dt
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s(y) is given by (3.2) and f(y) can be obtained from (2.12) and (2.8) as

M (k,y)M (k,7)
k% + K2

[(y) = =G (0,y; &) =2 [ exp(—k€)dk

27 IC exp(—(y +n) + iK¢E).
Thus, using (3.4) and (B.9) in (3.3), we get B in the form

(3:5) B = —2ni {R exp(—Kn+iK¢) — / C(k)YM(k,n)exp(—k&)dk
0

where It and C'(k) are given by Egs. (3.2).

Now By can be obtained by assuming | z |— oo in (2.9) after using (2.7),
(2.8), (2.15).
Thus as © — o0, we have

(3.6) By = =2mi exp(—Kn —iK&) + B = —2wip(—&, 7).
Alsoas x — —o0

(3.7) B_=-B-2mi exp(—Kn+iK¢) = —2niyp(&,n).
It is obvious that

(3.8) By + B_ = —4wi exp(—Kn) cos K&.

This shows that if K¢ is an odd multiple of 7/2 and I{n is arbitrary, then
the wave amplitudes at either infinity are the same, the surface elevation being
exactly 180° out of phase with each other. Similar conclusion were also drawn by
EvVANs [2] and BAsu and MANDAL [3].

Again,

Y(0,n) =T exp(—Kn) F/C’ YM (k,n)dk.
0
Using (B.4); we have for 1 € (a,b)

P(o,n) = (T + R) exp(—Kn)

and immediately it follows from (B.3) that

(3.9) Y(0,n) = exp(—Kn).
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Therefore,
(3.10) By(0,n) = B_(0,n) = = 2xi exp(—Kn).

This shows that the wall has no effect on the source if the source is situated
within the gap in the wall.

4. Appendix

Let us consider a wall x = 0,y € L, L = (0,a) U (b,00) iminersed in deep
water with y = 0 as a mean free surface. A train of surface waves exp(— Ky +ilKx)
of frequency o is incident on the wall fromn negative infinity, then it is partially
reflected and partially transmitted. If Re{v(x,y) exp(—iot)} denotes the velocity
potential, then 1 satisfies the following boundary value problem:

(i) Vi =0, y=0,

(ii) K¢Yy+v9,=0 on y=0,

(iii) s ==l y € L=(0,a)U(b,ox),

(iv) r'/2Vy is bounded as 7 — 0,

r being the distance from the sharp edges of the plate,
(v) V=0 as y-— oo,
(vi) = { (P»‘(p(—h'y + il\'{z‘)'--f Rexp(—Ky —iKz), as 1z — —oo,
T exp(—Ky +iKz), x— oo,

where [t and T are reflection and transmision co-efficients, respectively, to be
determined. Using Havelock's expansion of water wave potential, 1)(z,y) can be
expressed by

[ exp(—Ky +iKz)+ Rexp(—Ky —iKz)

o0
& / D(k)M(k,y) exp(kz)dk, <0
0

(B.l)  Y(z,y) =1 Texp(-Ky +iKz)

[ ¢]
¥ / C(k)M(k,y) exp(—kz)dk, z >0
0

\

where M (k,y) is given by (2.8), and C'(k) and D(k) are unknown.
Let

’ . 0, y & IJ
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where by (iv)

oy ] O(ly—al|™V?) y — a,
(y) { O(ly—=b|"12) as y—b.

Then by Havelock’s inversion theorem,

T'=1=R= —2i/1’(y)cxp(—1\’y)cli "

2

=Gl = Uik = T-W

/F(y Mk, y)dy,

Now an integral equation for ['(y) can be obtained from the fact that v (z, )
is continuous across the gap in the wall. Thus,

d’(ﬂ), U) - Ujg(—U: y)! y € (a, b).

Using (B.1) and noting (B.3) we have,

o]
(B.4), R exp(-Ky) = ] Mk, y)CKk) dk, 3y € (a,b).
0
Substituting C(k) from (B.3) we get
(B.4),
T B M(k,y)
2 R exp(~Ky) = Wf[ (OM(k,t)dt dk, y € (a,b).

Applying the operator (i

0 + K) to (B.3) we have the following integral equation:
Y

(B.5) jF(t) {K In ”"'l R

Y+t

1
i = ' , 0).
y—t+y+t}d 0, y € (a,b)

The solution of integral equation (B.5) is given by (cf. [5])

(B.6) F(z) = d‘i (K1) / exp(Ku)A(u)du
b
where
U.Al _ 2 .
Au) = Ro(u) [() - 7—Tf'1(a,b, u)} .
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Ro(u), £1(a,b,u), & and A; are given in (3.2). One relation connecting A; and
I? can be obtained by substituting /7(x) in (B.4),. After some simplification we
obtain

LW,

(B.7) R = 04 [a1(K) — as(K)] — Z2 e (K, 1) — ag(K, )],

s
"

where o;(K) and o;(K, F) are given by (3.2).
Also substituting [(t) in the first equation of (B.3), we get another relation
connecting I, Ay which is given by

g
(B.8) L= R = |8 aa(K) + ~ az(K, Iy exp(—Ka)| (i.A,).

1
)~ %
Thus from (B.7) and (B.8), R and A; can be obtained. Again, C(F) is obtained
by substituting F'(t) in the second equation of (B.3). After simplifications, C'(k)
can be obtained as given in (3.2).

Let g(y) = ¥(+0,y) —¢¥(—0,y). Using (B.1) we get

(g} = —2Rexp(—Ky) + 2 f C(k)M(k, y)dk.
0
Therefore,
o0
Kg+g,(y) = -2 ] C(k)(IC? + k?)sin ky dk.
0

Substituting C'(k) from (B.3) and making simplification we have,

f

0, a< y< b,
2y Ay S(y)
Kg)+9,) =3 ~ Ro(y) 0 <y<a,
2y A1 S(y)
—‘—!—’ b < YL OO,
\ By (y) ¥
which gives after integration
| % a < y<b,
F 2t S(1) exp(Kt)
LS (L) exp(Kt
Spl=i) / d, 0 <y<a,
(B.9) afg) = 4 FEEER J N y
u
2t S(t) exp(Kt
—exp(—Ky)/ (])? ?z()p( )dt, b < y< oo,
0
b

\
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where the constant of integration can be chosen to be zero, and s(y), A; is given
by (3.4).
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