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Inequalities for the effective transport coeflicients

of two-component composite materials

S. TOKARZEWSKI (WARSZAWA)

WE DERIVE the inequalities satisficd by the convergents of a continued fraction of type S, con-
structed for the effective physical properties of two-component composite materials. These in-
equalitics represent the upper and lower bounds for the principal values of second-rank tensors
representing the effective transport coefficients. The correspondence between continued fractions
bounds and the bounds obtained by means of variational methods has been shown. As an example
of application, we calculate the sequence of lower and upper bounds for the effective conductivity
of isotropic composite, consisting of inclusions, regularly spaced in the matrix material.

1. Introduction

THE MATHEMATICAL properties of Padé approximants for Stieltjes functions have
been extensively investigated in recent years [1-3, 12, 17]. One of the most
important results presented in mathematical literature states that the sequence
of Padé approximants represented by the convergents of a continued fraction
of type S form the upper and lower bounds uniformly approaching the Stieltjes
function. Moreover, these bounds are the best in respect to the given number of
power series coefficients [1, theorem 15.2].

In 1978 BerGMAN proved [4], that the effective transport coefficients of a
two-phase composite materials represented by eigenvalues of a second-rank ten-
sor have Stieltjes-function representation. Hence all theoretical results for Padé
approximants to Stieltjes functions [1-3, 9, 12, 17] can be directly applied to
the theory of inhomogeneous media on order to determine the lower and upper
bounds for the effective transport coeflicients of composite materials.

The main aim of this paper is to derive, on the basis of the results reported
in the literature [1, theorem 15.2] and in BERGMAN'S paper [4], the general in-
equalities determining, in terms of the convergents of .S-continued fractions, the
upper and lower bounds for the effective transport coefficients of two-component
inhomogeneous media.

The problem we are investigating has been extensively studied, for instance
in the references quoted below; of these, BERGMAN [4-8], FELDERHOF [10],
MCPHEDRAN et al. [14] and MILTON [15] are particularly relevant to the present
work.

To illustrate the S-continued fraction method presented in this paper, the
bounds for the effective conductivity coefficients for both the square and hexago-
nal array of cylinders have been calculated in the form of the convergents of the
S-continued fraction.
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2. Basic assumptions, definitions and notations

We will consider the composite consisting of inclusions of conductivity A,
embedded in a matrix material of conductivity A;. The bulk effective conductivity
constant A. is defined by the linear relationship between the volume-averaged
temperature gradient < VT > and the volume-averaged heat flux <J>.

(2.1) <J>= A <VT>.

The matrix and the inclusion volume fractions will be denoted by p; and p,. In
general A, will be a second-rank symmetric tensor, even when A\, and \, are both
scalars, and will depend not only on the precise microstructure, but also on the
macroscopic shape of the sample and on the boundary conditions fulfilled by the
fields < VT > and < J>. However, the only physical situations where A, is really
interesting are those where the microstructure, as well as the boundary conditions,
are sufficiently uniform so that A, is an intensive quantity, i.e., independent of the
total size and shape of the sample and of the precise value < VT >. Even in that
case, A.(A1, A2) will still be a tensor function in general, the precise form of which
depends on the precise microgeometry. Consider the four power expansions of
the effective conductivity A, [4]

o0
(2.2) Fi(zj) = > eni(z)", 7=1,2,3,4,
n=1
a)for j =1
= Ac 1 s1=h-1
1 = A] ) 1 =N y
b) for j =2
Izzi—j—l, 2p=h-1,
c)for =3
F: —ﬁ‘l =[-1
X = )\2 ] ~3 = ]
d) for j =4
A
iy = — —. 1] - =[—1,
Fy b 4
where
(23) h = AZ/’\ls |l = ]/h = /\1/)\2.

It has been proved in the literature [1, theorem 15.2], that for real, nonnegative
zj, 7 =1,2,3,4, the following convergents

%, J@2n)s=i + 9M +1);%] .

2.4) [M+1/M](z) = 1 1 1




[INEQUALITIES FOR THE EFFECTIVE TRANSPORT COEFFICIENTS 613

and

ganM-iZi | I@M)%
1 1

(2.5) [M/M](z;) = q% .

of the S-continued fraction for Stieltjes series (2.2) form the sequences of upper
bounds (2.4)

(2.6) (M +1/M](z) 2 Fiz),  7=12,3,4
and lower bounds (2.5)
(2.7) [M/M])(z)) < Fi(z), 7 =1,2.34,

uniformly converging to the function Fj(z;), j = 1,2,3,4. Due to (2.2),_q, the
inequalities (2.6) and (2.7) can be rewritten as follows: for i > 1

(2.8) MR+ 1/R)(z1) > Ae = M {[R+1/R)(z2)}",
(2.9) MIR/RI(z1) < A < M A[R/RI(=2)} "5
for0 < h <1

(2.10) MR+ 1/R)(z3) > Ae = M A{[R+1/R)(z4)} ",
2.11) MIR/RI(z3) < Ae < A {[R/R)Ga))

where for convenience the substitutions
(2.12) [R+1/R]=1+[M + 1/M], [R/R] =1+ [M/M]

have been made. It is necessary to notice that rational functions [R + 1/R] and
[R/ R] are Padé approximants to the series representing A./A; and A /A, kb = 1,2
(2.2),_4, respectively.

3. General lower and upper bounds

In this section we will prove two important theorems establishing general
inequalities satisfied by convergents of S-continued fraction to Stieltjes series.
These inequalities represent general upper and lower bounds for the effective
physical properties of two-phase composites.

THEOREM 1. The convergents of S-continued fractions [M + 1/M](z) and
[M +1/M](22) to power expansions of Stieltjes series (2.2), and (2.2)y, respectively,
obey the following inequalities valid for h > 0,

G1)  M{1+[M+ /M) 2 Ae = A {1+ [M + 1/M](z2)} ",

http://rcin.org.pl



614 S. TOKARZEWSK1

where the effective conductivity . stands for the limit as M goes to infinity of
M{+[M+1/M(z1))} o M{l+[M+1/M](=2)}"".

These inequalities form the best upper and lower bounds which can be obtained by
means of a given, odd number of cocfficients of series of (2.2), and (2.2)y, and that
the use of additional coefficients (higher M) improves the bounds.

P roof. On the basis of (2.2),, (2.2). and (2.2) we can write

(3.2) [ (1 + icnl (i - 1)) =1+ icn3(z — 1)~

n=1 n=1

By differentiating both sides of (3.2) n times with respect to [, we obtain for / = 1

1 = - i
(3.3) TT@T{I (1+§]g1 (7 =1) )}! =

=1
It is necessary to notice that

l (’)'H,
n! ol

because the rational function [ + 1/?](z1), 2y = h — 1 is a Padé approximant
to the series 1 + 307, ¢,1(h — 1)". Additionally we have

I 011

(34) {l'[R+]/R](31)}l=l = Cn3, £ =1 1,

(19) 130 {[R+ 1/R](23)},—; = cu3. =it =1,
Due to (3.4) and (3.5) we can write
(3.6) MR+ 1/R)(z1) = MR + 1/R](z3).

Using identical argumentations one can prove that

(3.7) A {[R+1/R)(z2)) " = M AR + 1/ R)(za)}

Equalities (3.6)—(3.7), inequalities (2.8)—(2.11), relation (2.12) and inequalities
(2.6)—(2.7) lead directly to the Theorem 1.

THEOREM 2. The S-fractions convergents [M /M ](z1) and [ M /M ](z2) for power
expansions of the Stieltjes series (2.2), and (2.2)y, satisfy the following inequalities

(3.8) A {1+ [M/M](z1)) < Ae < A {1+ [M/M](z)} 7",
and for0 < h <1
(3.9) A {1+ [M/M](z1)} > Ae > A {1+ [M/M](z2)} ",

http://rcin.org.pl
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where the effective conductivity \. stands for the limit as M goes to infinity of
M A1+ [M/M](21)} or A {1+ [M/M](z2)}~". These inequalities form the best
upper and lower bounds which can be obtained by means of a given, even number of
coefficients of series of (2.2), and (2.2), and that the use of additional coefficients
(higher M) improves the bounds.

Proof On the basis of (2.2), and (2.2)4 we can write

o0

0o -1
(3.10) {Zc”] (1-‘ il 1)} =3 call - )™
n=1

n=1

By differentiating both sides of (3.10) n times with respect to /, we obtain for [ = 1

J

-1
187 | , g
(311) ”—‘ag {chl(sl)J} = Cp4, 21 = ) 1—1.
. 1

Due to the definition of Padé approximants to power series and on the basis of
(3.10)-(3.11) we have

(3.12) L {tr/r) (7" - 1)}:l =< {[R/R)U = D)}yey = nera.

i ol
Hence we can write
(3.13) [R/R)(:1) = {[R/RIGa)} "
Using identical arguments the following equality can be proved
(3.14) {[R/R)(z2)} " = [R] R)(=3).

Equalities (3.13) - (3.14), inequalities (2.8) - (2.11), relation (2.12) and inequal-
ities (2.6)—(2.7) lead directly to the Theorem 2. The Theorems 1, 2 determine, by
means of convergents of 5-continued fraction, the best upper and lower bounds
for the effective transport coefficients of two-phase composite materials with re-
spect to the given odd (Theorem 1) and even (Theorem 2) number of coefficients
of power series (2.2), and (2.2),. The coefficients of (2.2), are uniquely deter-
mined by the coefficients of (2.2), by means of the following recurrence formula

N

(315) co2 = 1, Ci12 = 1- C11, CN2 = — Z Cr1 C(N k)2 -
k=1

Due to relation (3.15), only power series (2.2), is needed in the S-continued frac-
tion approach to the study of upper and lower bounds for the effective transport
constants.
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4. Examples of applications

For macroscopically isotropic, two-component composite materials the first
two coefficients of power series (2.2), are as follows [4]:

A 1
(4.1) 2 l=ph—-1) - =pipah =1 + ...,

/\1 )
where p; and p, denote the volume fractions of inclusions and of the matrix,
respectively. Parameter d takes the value d = 2 for a two-dimensional case, and
d = 3 for three-dimensional case. By using the recurrence formula (3.15), one
can calculate the series (2.2)y,.

A (-1

(4.2) /\-2 “1=py(h-1) - (——(T—plpz(h | ST
The S-continued fractions corresponding to the series (4.1) and (4.2) are as fol-
lows:

(4.3) ® | :
and
(4.4) A _yona [@-1)dpa

X 1 1

The first term of S-continued fraction in (4.3), and the first term in (4.4), lead to
the upper and lower bounds (Theorem 1)

(4.5) (P1/M + p2/A)7h <A < pid +

known as WIENER'S bounds [18]. By taking into account the two terms on the
right-hand side of (4.3) and of (4.4), we obtain (Theorem 2) the following bounds:
for h = Ay/A; > 1

P2 P1

4.6 A+ <A< A+
( ) 1 l/(/\z—/\l)'f'])l/(({-/\l)_ . 1/(/\1—/\2)+])2/((1-/\2)
and for h = M\ /A < 1

»” P1
47) A + > A > A+ .
@7 M oo +sd@ a0 2 2 2 2 0 ) + pd )

Inequalities (4.6)—(4.7) are HASHIN - SHTRIKMAN bounds [11]. If more than two
terms of S-fractions (4.3)-(4.4) are available, the bounds are improved. To il-
lustrate this fact we investigate a square and hexagonal array of cylinders. We
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assume the unit distance between the centers of neighbouring of cylinders. The
conductivities of the cylinders and of the surrounding matrix are specified by their
ratio h. The ratio A./A; of the effective conductivity to that of the matrix has
been evaluated with the aid of the algorithm reported in paper [13]. The numeri-
cal calculations have been carried out for both square (p, = 0.75) and hexagonal
(p2 = 0.88) arrays of cylinders. For a square array we have obtained:

1) the power series (2.2)a

(4.8) ’A\— —1=0.75z — 0.0937:% + 0.03012] — 0.01532 + 0.009227 + .. _;

1
2) the power series (2.2)y

A
22 1 =0.252 - 0.093723 + 0.063623 — 0.048825 + 0.040023 + .. .;

(4.9) N
3) the S-continued fraction (2.4) corresponding to (4.8)
(4.10) Ae 1 = 0.750z % 0.125z 2 0.1362,0.304z b
A\ 1 1 1 1

4) the S-continued fraction (2.5) corresponding to (4.9)

Ay 02502, » 0.375z, " 0.304z, o 0.1962, %,
X T 1 1 1

(4.11)

For a hexagonal array we have:
1) the power series (2.2),

A
(412) 35 -1=088: - 0.0528:% + 0.0109=7 — 0.0050=7 + 0.00307 + .. .;
1
2) the power series (2.2)y,
A
(4.13) A—z —1 = 0.122; — 0.05282% + 0.0419z3 — 0.0360z5 + 0.0321z5 + .. .;

e

3) the S-continued fractions (2.4) to series (4.12)

Ae 0.880z;  0.060z; 0.146z;  0.354z
14 2 1= Ssnsiiy
(4.14) - i L T
4) the S-continued fractions (2.5) to series (4.13)
A 120z 440z 354~ 1462
(4.15) /\2—1=0]]02+0102+0512+0162+

The hierarchy of upper and lower bounds for the effective conductivity of square
and hexagonal arrays of cylinders are depicted in Fig.1 and Fig. 2, respectively.
Our numerical results presented in Figs. 1, 2 coincide with the result obtained by
means of a variational approach reported in paper [14] in Figs.2, 4.

http://rcin.org.pl
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the effective conductivity (theorem 1, h>1)
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the effective conductivity (theorem 2, h>1)
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A a)
/
=088 /
/
——==1+M+1/M](z,) M=123 /
0201 '
' h(1+{M+1/M]) (22),M:J_2,..,,7/
(1)
on
005
0
Ae
251
20
151
01
5 -
———— 1+[M+1/MI(z,), M=12, .7
h(1+(M+1/M1)(2,), M=12,.,5
[ =
Lol N EENT] Lol .
10° 10’ 10° 0° A
[Fig.2]
[620]

http://rcin.org.pl



c)

9=-088

——

— === 1+{M/M](z,), M=123

h(1 MM (z,) M=12,...7 |
/

0201

Q15

o

005

the effective conductivity ( theorem 2, h<1)

11004l Lol I | TRt

1077 107 0’ h

A d)

¢=088
251

201

5

10

the effective conductivity ( thearem 2, h>1)

h(1+tM/MI) (2,), M=12,.,7

0 ———— 1+[M/MI(z,), M=1234

Lol L taul Lol T

10° 10’ 10° 10° h

I'1G. 2. The hierarchy of upper and lower bounds for the effective conductivity of hexagonal
array of cylinders represented by a sequence of convergents of S-continued fractions (A, = 1,
@-volume fraction of cylinders).

[621]

http://rcin.org.pl



622 S. TOKARZEWSKI

5. Discussion

The macroscopic behaviour of inhomogeneous two-component media has been
extensively studied by BERGMAN [4 8], FELDERHOF [10], MCPHEDRAN et al. [14]
and MictoN [15]. They investigated the problem concerning the bounds for the
complex, effective transport coefficients of two-component composite materials.
The bounds obtained by them take the form of a nested sequence of lens-shaped
regions in the complex plane. For the case of real, effective constants these
lens-shaped regions become transformed to finite intervals occupying the pos-
itive part of a real axis. The beginning and the end of those intervals indicate
lower and upper bounds, respectively. It implies, that the bounds reported in
[4-8, 10, 14] are recognizable as lower and upper bounds only after numerical
calculations (no general inequalities determining upper or lower bounds).

On the contrary, the Theorems 1, 2 derived in this paper, specify the upper
or lower bounds for the effective modulus A. depending on A = A{/A, and
on the order of Padé approximants [M/M], [M + 1/M] to the given, odd or
even, number of power series coefficients. This fact distinguishes the results of
our work from the results presented in the literature [4-8, 10, 14] and makes
Theorems 1, 2, together with the recurrence formula (3.15), a convenient method
for investigation of the macroscopic behaviour of two-component composites.

6. Final remarks

The general inequalities obeyed in real domain by one-point Padé approxi-
mants to Stieltjes functions reported in the literature [4, Theorem 15.2] have been
extended, on account of constraints (2.2),_g, to Padé approximants corresponding
to the effective transport coefficients (Theorem 1.2).

On the basis of a given number of power series coefficients (2.2),, the in-
equalities (3.1), (3.8)—(3.9) and recurrence formula (3.15) provide, in terms of
the convergents of an S-continued fraction, the best upper and lower bounds on
the effective transport coefficients such as thermal conductivity, electric permit-
tivity, magnetic permeability, elastic constants and many others.
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Unsteady compressible boundary layer flow
over a rotating sphere

A. CHANDRASEKAR (KHARAGPUR) and G. NATH (BANGALORE)

THE UNSTEADY compressible boundary layer around a rotating sphere in forced flow is investigated.
The sphere rotates with an angular velocity which is time-dependent and the free strcam flow is
assumed to be nonhomentropic. The resulting partial differential equations are solved numerically
by the method of finite differences combined with quasi-linearization method. The effect of rotation
is an advance of the point of vanishing of longitudinal shear stress further upstream. The skin
friction coefficients in the longitudinal and tangential directions are zero at the forward stagnation
point, but the heat transfer coefficient is finite. The skin friction parameters in the longitudinal
and tangential directions increase with the wall temperature.

1. Introduction

STUDIES RELATING to flow past bodies rotating with uniform angular velocity, other
than their inherent interest, have many interesting applications in the fields of
turbomachinery, meteorology and astrophysics. Not surprisingly this problem has
attracted the attention of many investigators. References to research conducted
prior to 1958 can be found in DorFmAN [1], while KrEITH [2] has reviewed the
work done before 1968.

The problem of a sphere rotating sufficiently fast in a fluid being at rest was
first considered by HOWARTH [3]. According to Howarth, the boundary layers on
the two hemispheres originate near the vicinity of the poles wherein the flow is
similar in nature to the flow generated by an infinite rotating disk. Howarth em-
ployed a power series in #, where 6 is the angle measured from the axis of rotation
and obtained an approximate solution for the above problem. From considera-
tions of the fluid flux, Howarth stated that fluid would be thrown outwards in
the form of a radial jet near the equatorial region. Ni1GaMm [4] suggested a slightly
different form of series expansion (in sin #) which indicated an outflow near the
equator, which exactly balanced the inflow at the poles. Nigam believed that his
solution was valid over the whole flow field and the boundary layer equations
were sufficient to describe the flow up to the equator. Subsequent theoretical
[5-8] and experimental studies [9—-11] have not fully cleared the nature of the
interaction at the equator.

Hoskin [12] obtained a solution for the problem of a sphere rotating about an
axis aligned with the uniform stream and found that an increase in the angular
velocity of the sphere relative to the free stream caused the point of separation
to be moved upstream towards the equator. SIEKMANN [13] calculated the heat
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transfer by investigating the thermal boundary layer on a rotating sphere in a
uniform stream.

DEennis and INGHAM [14] considered the problem of a rotating sphere (in a
fluid at rest) for large values of the Reynolds number. The sphere is started
impulsively from rest to rotate with constant angular velocity about a diameter.
Their results showed that the steady state profiles were reached earlier (f = 3)
for the rotational component of velocity (being the primary flow), while for the
meridional and radial components the steady state profiles were yet to be reached
at t = 3.7. For short times, the magnitudes of the radial inflow and outflow vel-
ocity components at the edge of the boundary layer are comparable. As time
increases, the region of inflow increases whereas the region of outflow decreases.
Also there is a moderate increase in the magnitude of the radial inflow velocity
as time progresses. However, this can be balanced only by a large increase in
the radial outflow near the equator. This rapid increase of the radial velocity at
equator, along with narrowing of the region of outflow, is a sufficient evidence
of the development of an equatorial jet. Subsequently, DEnNIS and INGHAM [15]
studied the problem of a sphere which rotates initially with the same angular
velocity as the fluid over it, and then is impulsively brought to rest. Near the
equator the approach to the steady solution was very rapid, while near the poles
the approach was slow. Hussaint and SASTRy [16] considered the laminar com-
pressible boundary layer on a rotating sphere and calculated the heat transfer.
References [17-18] give information on some of the recent works in rotating
sphere problems.

In this paper we have studied the unsteady compressible nonhomentropic
boundary layer flow about a rotating sphere of radius / in a forced flow. The
flow is assumed to be axisymmetric and subsonic. Both the cases of acceleration
and deceleration of the sphere have been considered. The parameters which ap-
pear in this study are a rotation parameter A, Mach number M., Prandtl number
Pr, Eckert number E and the Reynolds numbers Re and Re. A, E, Re and Re are
defined as A = (2R /us)?, E = (v=1)M2 , Re = u, Rp./pic and Re = o pT/ .
Subscripts oo and e refer to conditions at the free stream and the edge of the
boundary layer. v = ¢,/¢, is the ratio of specific heats at constant pressure to
that at constant volume. 2 is the angular velocity of the sphere while p. and
y. refer to density and viscosity, respectively, 7 = &/ where « is the coordi-
nate measured from the lower stagnation point (cf. Fig.1) and R is the sphere
radius.

For a rotating sphere [19] we have

z/ B r(T) = RsinT,

T

Ues(T) = ueo(B) SINT + By sin’ T),
(1.1) () (1 )
By = 1.5 - (139/660)M?_,
B, = (243/352)M2..
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F16. 1. Physical model and coordinate system.

The assumption of homentropic flow leads to vanishing of the p, term in the
energy equation. Since we are considering nonhomentropic flow, we retain p; in
the energy equation. Since the velocity and pressure are related at the edge of
the boundary layer, we have allowed the velocity at the edge of the boundary
layer u. to vary with time. For simplicity we have assumed u. (7, ) = uc,(T)¢(t)
and that ¢(f) has the same form as that of the sphere unsteadiness. Since a
nonhomentropic flow is considered, enthalpy /. is given by [20]

(1.2) he = hoo [T+ 271 (y = DME (1 — 2, /ud.)]

2. Governing equations

We consider the problem of an unsteady compressible boundary layer flow
over a rotating sphere in forced flow (Fig. 1). The sphere rotates with an angular
velocity which is time-dependent. The flow is assumed to be axisymmetric and
subsonic, while the freestream flow is taken to be nonhomentropic. All quantities
are independent of y due to axisymmetry. The aim of the present investigation
is to understand as to what extent the rotation affects the heat transfer and skin
friction.

The governing boundary layer equations are [13, 20, 21, 22]

(2.1) (pr)e + (pru), + (prw), =0,

(2:2) p(y + wuy + wus — v~ 10%r,) = —pp + (uus)-,

(2.3) p(ve + vy + wo, + wvr~lry) = (uos).,

(2.4) p(hy + uhy + wh.) = (p, + upy) + (UPr10.). + p [(u,:)2 + (r*:)z] g
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(2:5) P 56 T,
(2.6) 6 B,

subject to initial and boundary conditions

u(z, z,0) = u;(z, 2), v(z, 2,0) = vi(z, 2),
w(z, z,0) = w;(z, 2), h(z,z.0) = hi(z, 2),

(2.7) alz;0,t)=0, v(z,0.1) = 2r(z)p(t), w(z,0,t) =0,
h(z,0,1) = hy(2), u(z, o0, t) = u.(z,t) = ues(x)P(t),
v(z,00,t) = 0, h(z,oc. 1) = he(z),

where u, v and w are the components of velocity along the coordinates chosen
in the longitudinal, transverse and normal directions to the surface, with = be-
ing measured from the lower stagnation point and r(z) being the distance of
the body from the axis (see Fig.1). The enthalpy is denoted by h while 1 and v
are the coefficient of viscosity and kinematic viscosity. ¢(1) is a function of time
to introduce unsteadiness. w is a constant which occurs in the viscosity-enthalpy
relationship. The subscript ¢ and w denote conditions at the edge of the bound-
ary layer and at the wall, respectively. The subscripts z, z and ¢ denote partial
derivatives. Since we are concerned with subsonic flow in the present problem, the
fluid medium can be assumed as one which has constant gas properties. Hence
Pr = constant; p o« 2~ and from Chapman’s law g o & i.e. w = 1 and hence
N = up(ue.p.)~' = 1. We have solved the equations (A.7) to (A.9) (see the Ap-
pendix) subject to (A.13), with unity replacing N. We have taken ¢(1*) to be of
the form

(2.8) H(t*)=1xet*?, =01,

where plus sign implies that the angular velocity of the sphere is increasing with
time t*, and minus sign implies that it is decreasing. However, as mentioned
earlier, we have assumed u,(z,1%) = u.(2)(1 + ct*?), ¢ = 0.1, to allow for the
variation of u. with time. The steady state equations with N = 1, M = 0,
ag = a3 =0, a; = a and 20y = o reduce to those equations solved by KUMARI
and NATH [22] for the incompressible flow. Also equations (A.7) and (A.9) for
ap = A =5 = 0 reduce to those of VASANTHA and NATH [23] who studied the
flow over a stationary sphere. For stationary case, equation (A.8) is not required.
The initial conditions are given by steady state equations (A.7)-(A.9), by putting
¢=1and F} = 5; =g; = ¢7 = 0.
The skin friction coefficients and the Nusselt number are given by

(29)  (Re)/2C, = 2" 2sinz(1 + cosT) (B, + Bysin®z)? [(Bl /3)(2 + cos7)

-1/2
+(B2/15)(1 — cosT)(8 + 9cosT + 3 cos’ T)] / @24 .
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[(2'9)] (Re)/2C, = 2N)Y2(1 + cosT)(t*)(By sinT + By sin® 7)
cont.
x [(m /3)(2 + cosT) + (B2/15)(1 — cos F)
~1/2
x(8 + 9cosT + 3 cos? f)] (8 Jairs
(Re)/2Nu(Re)™ =271/2[1 + 27" (y - NME{1
~(BysinT + Bysin>7)? }|
x(1 + cosT)( By + Basin® T)(go — 1) [(B1/3)(2 + cosT)
L2
+(B2/15)(1 — cosT)(8 + 9cosT + 3 cos? f)] Y (gn)w
where

Co = 2p(u:)u(peud)™ s Cy = 20(0:)ulpeud) ™,
Nu = Z(hy — hoo) (B

3. Results and discussions

The method of finite differences in combination with the quasi-linearization
method [24] is employed for the numerical work. The aim of the numerical
method is to solve the system of partial differential equations (A.7) - (A.9) which
govern the unsteady compressible boundary layer flow over a rotating sphere, sub-
ject to boundary conditions (A.13). The governing equations were first linearized
using the method of quasi-linearization, and then an implicit finite difference
scheme was applied as described in [23]. The resulting system of linear algebraic
equations was solved using block elimination method [25]. Numerical computa-
tions were carried out for Mach number equal to 0.4 and Prandtl number equal
to 0.72, and for various values of rotation parameter A (0, 4, 10) and gq (0.5, 1.5).
The grid sizes were chosen, respectively, as 6z = 0.05, én = 0.05 and 6t = 0.1
1. Was taken equal to 4 and was found to be adequate. The above grid sizes were
found suitable, because similar results were obtained with reduced grid size. The
grid size in the 7 direction was progressively reduced and in the neighbourhood
of vanishing longitudinal shear stress (F},).,, §() was taken as 0.0005. Results of
LEE ef al. [21] and KuMARI and NATH [22] were recovered as the steady-state case
of our results, and the comparison is shown in Fig. 2. The unsteady-state results
for the stationary sphere (A = 0) have been compared with those of VASANTHA
and NATH [23] and they are found to be in excellent agreement. The comparison
is shown in Fig. 3.

Figure 4 illustrates the effect of rotation parameter A on skin friction ((F,])u,,
(5,).) and heat transfer ((g,).) for Mo, = 0.4, g9 = 0.5 (cold wall), =
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I'1G. 2. Comparison of steady state results for longitudinal shear stress (/,)w, tangential shear
stress —(S,)w and heat transfer parameter (g,)w-

0.2, ¢(t*) = 1+ et*2, ¢ = 0.1. It is seen from Fig.4 that an increase in the
rotation parameter A causes the point of zero skin friction in the longitudinal
direction ((F},).) to be moved upstream, due to centrifugal acceleration on the
boundary layer which tends to push the fluid towards the equator. However,
the tangential shear stress (—(S5,).,) does not vanish simultaneously with the
longitudinal shear stress. A similar trend has been observed by LEE et al. [21]
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Fia. 3. Comparison of unsteady state results for longitudinal shear stress (). and heat transfer
parameter (gy)w.

and Kumarr and NAaTH [22] for a steady-state case. It is also observed that the
rotation parameter A increases the skin friction ((£,)..), — (.5,)..) in the region of
favourable pressure gradient (z < 7/2) due to the acceleration of the fluid which
reduces the boundary layer thickness. In the region of adverse pressure gradient
(T > 7/2), A increases the boundary layer thickness which in turn reduces the skin
friction. For a given viscous dissipation parameter (E), the heat transfer (¢,).,
increases with A, and its effect is more pronounced for 7 > 0.4. The percentage
increase of heat transfer with A (as seen in Fig.4) is 7.7% at 7 = 0.2, 33% at
7 = 0.6 and 70% at T = 1.2, respectively.

It may be remarked that vanishing of wall shear stress in unsteady two-di-
mensional and axisymmetric flows on a fixed wall does not imply separation, in
contrast to the steady flow. Therefore there is a difference between the point of
separation and point of zero skin friction in unsteady flows. For high Reynolds
number, in the flow over bodies the effect of viscosity is generally limited to a
thin layer, the boundary layer, adjacent to the surface. Within the boundary layer,
where the momentum of the fluid has been reduced in overcoming viscous forces,
the remaining momentum may be insufficient to allow the flow to proceed into
the region of increasing pressure. At the point on the body where this condition
holds true, the boundary layer separates from the surface. Downstream of this

http://rcin.org.pl
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FiG. 4. Effect of the rotation paramcter A on the skin friction and heat transfer parameters

(Fu)'m _(5’1)(4!3 (9n)w-

point, the boundary layer fluid passes over a region of recirculating flow. The
point at which the boundary layer breaks away from the surface, and which di-
vides the region of downstream directed flow, where the viscous effect is quite
limited in extent from the region of recirculation flow, is known as the point of
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separation. For steady two-dimensional or axisymmetric flow over a fixed wall,
the point of vanishing shear (zero skin friction) coincides with the point of sep-
aration. For unsteady two-dimensional or axisymmetric flow over a fixed wall,
the point of zero skin friction at the wall does not coincide with the point of
separation. The physical symptom of separation in unsteady two-dimensional or
axisymmetric flow over a fixed wall is the simultaneous vanishing of velocity and
shear stress away from the wall in a coordinate system moving with separation.
The detailed discussion of the phenomenon of separation for unsteady flows is
given by SEars and TELIONIS [26], WiLLiams [27], VAN DOMMELAN and SHEN [28]
and SMITH [29].

24 ———_
_\l (9w
ﬂﬁ-
3
&:— '0_4
20
403
16
—H02
=4 M, =04 ; t*=2(acc)
Bt =1.6¢"2,€=01
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L 1 1 1 1 l 1 | =
0 04 08 12 6 x X

Fia. 5. Effect of the wall temperature go on the skin friction and heat transfer parameters
(-Fn)zu, ‘(Su)w; (f]v])u!-

Figure 5 depicts the effect of the wall temperature gy on the skin friction
parameters in = and y directions ((/},)w, —(5,)w) and heat transfer parameter
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(¢5)w for A = 4 and t* = 2 (accelerating case). The skin friction parameters
increase with the wall temperature. The reason for this behaviour is that the
temperature near the wall increases with gg, which reduces the density of the
fluid near the wall. Consequently, the less dense fluid is more accelerated than
the more dense fluid. This in turn increases the skin friction parameters. For cold
wall (go < 1) the heat is transferred from the fluid to the wall ((¢,)., > 0), but
for hot wall (go > 1) the direction of the transfer of heat changes ((g,). < 0).
For a given gy and ¢*, the skin friction parameters (F},),, and —(5,), decrease
with the longitudinal distance 7. The heat transfer parameter (g,),, for a cold
wall increases with 7 in the region of favourable pressure gradient and decreases
in the region of adverse pressure gradient, while for the hot wall the behaviour
is opposite.

The skin friction coefficients in 2 and y directions ((Re)'/?C,, —(Re)/%C,)
and heat transfer coefficient (—Re!/?Nu(Re)™!) for both accelerating and de-
celerating cases are shown in Fig.6 for A = 4 and g9 = 1.5. The skin friction
coefficients are zero at 7 = 0 and attain maximum values in the neighbourhood
of = 1 and then decrease. The maximum values of the skin friction coefficients
for accelerating flow are greater than those of decelerating flow. Unlike the skin
friction coefficients, the heat transfer coefficient is finite at ¥ = 0 and, in general,
decreases with z.

4. Conclusions

The effect of rotation consists in the advance of the point of vanishing longi-
tudinal shear stress further upstream. At the point where the longitudinal shear
stress vanishes, the tangential shear stress is non-zero. The skin friction coeffi-
cients in the longitudinal and tangential directions are zero at the forward stag-
nation point (z = 0), but the heat transfer coefficient is finite. Also, the skin
friction parameters in the longitudinal and tangential directions increase with the
wall temperature. The extension of this work to include rotating fluid will be a
subject of a later study. Also the non-symmetric flow above a rotating disk is
currently being investigated.

Appendix

At the edge of the boundary layer, velocity and enthalpy obey the following
relations:

(A.1) (o) + () = —pZ ' pos
(AZ) Pe’u'r;(hﬁ‘)r [(]’f) + e (P)J‘] d
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Making use of (A.1) and (A.2) in Egs.(2.2) and (2.4), we get the following mo-

mentum and energy equations:

(A.3) w + uuy + wu, — r Wty = pep ! [(ue): + uelu:):] + (;Lp"lu:)_ .

(A.4) hy + uhy + wh. = pep~ [ue(he)r + (e — ) {(e) + 1. (tie),}]
+(Pr= o), + p7 [(uz)2 + (vz)z] .

The following transformations as in [23] are employed

Fa

£ = /peues;terz dz,
0

n= ues(z‘f)_l/z h([)l') (12,
[
" = uxt/R,
(A5) FE 1) = 207 2p(2, 2, 1),

S, n,t7) = v(z, 2z, 0)/[2re(t7)),
9E, 0, 1) = h(w, 2, 0)/h.(2),

where the velocity components are related to stream function as

pur = s,

(A.6) ]
por = = [ + {n(26)Puc}]

Substituting (A.5) and (A.6) in Egs. (2.1), (2.3), (A.3) and (A.4), we obtain the
following set of partial differential equations:

(A7) (NE), — aF} — BF2 + fF, + 870" + [ado/dt* + 567 g
= 2(FFe = [ehy),
(A8)  (NS,), —aS; — ag~'Sd/dt" — 20,5 F + [, = 26(FS¢ — feSy),
(A9)  (NPrlg,), + N(F,)*u?,/he + ANas¢?(5,)? + az¢?(6 — F)g
+a(p — Fg(do/dt™ Y, /h, + as0g — ag; — aggF + fg,
= 26(Fge — fegn)
(A.10) plpe = he/h,
(A.11) plie = (h/he)”,
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where

a = 2luc(RuZ peprer?) ™,

B = 26u;} (tes)e » ay

(A12) g = 26(r3ucspeste) s,
ag = 26 (he)e

2592(1155-/%}11:7‘)_'1 i
th.;lu(,,,.(u”)g ,
u rt(h. R,

Il
Il

,\
Q
w
Il

2
w
I

7
A= 22R*u2, N = pupQepe)~!, f= /F dn.
0

The relevant boundary conditions are

F(,0,t%) = 0, 5,0, =1, 9(6,0,17) = gu

(A.13)
F(§,00,t") = ("),  S(§,00,t") =0,  g(§, 00,t%) =1,

where
Guw = hw(he)_l

and is given by

-
(A1d)  gu=go[1+27 ' - DML =2 /ud)] g0 = hufheo
One gets the following expressions for the sphere:

£ = polletio R3C%Cl , a = 2c3_zc4_2c1 ,
B = 2cosTey ey 2e(By + 3B, sin’7),

2

oy = 2) Cosfcgzc;%l . oy = 2¢08Tcy c;lcl ,

(A.15) a3 = fEcs(BysinT + Bysin® 7)*,

ag = —2cp(y — YME cosze; ey teser [Bf +3B%sin*z + 4B, By sin®z |,

as = Esin’Tes, £ 3/IE = sinTe3’e; e 9/07,
where

1 = (B1/3)2 + cosT) + (By/15)(1 — cosT)(8 + 9cosT + 3cos’T),
(A.16) ¢ = 1—cosT, c3=1+cosT, ca = (B + Bysin®7),

=1
es = [1427( - DML {1 - (Bysin + Bysin’ 77| .
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Numerical investigation of the two-dimensional

shock wave reflection

K. KANTIEM (WARSZAWA)

A SERIES OF NUMERICAL boundary conditions describing the shock wave reflection on an oblique
wall is considered. The cases of an adiabatic slip wall, adiabatic no-slip wall, isothermal no-slip and
a certain mixture between them are tested and the resulting density profiles for the test gas argon
are presented.

1. Introduction

THE MAIN OBJECTIVE of the present paper is the investigation of the numeri-
cal boundary conditions for the two-dimensional shock wave reflection from
an oblique wall. In order to take into consideration effects caused by viscos-
ity and heat-conductivity, we describe the motion of the test gas argon by the
Navier - Stokes equations. Depending on the concrete choice of conditions on
the wall, we should obtain phenomena like the Mach reflection or the formation
of a boundary layer [3, 7]. The equations are solved by a stable finite-difference
method.

The aim is to find numerical boundary conditions which applied to calculations
of the reflection of gas flow, lead to a good agreement with experimental results.
The next step is the analysis of the numerical stability of solutions including the
suggested boundary conditions [5].

Although there exist many results concerning the well-posedness of boundary-
value problems for hyperbolic systems with non-characteristic boundaries [§],
as well as with uniformly characteristic boundaries [10], and for incompletely
parabolic equations including Navier - Stokes equations with non-characteristic
boundaries [11], they are not applicable in the case of reflection of gas flow from
a wall, since we are dealing here with a characteristic but not uniformly character-
istic boundary. The same problem appears for the stability analysis of numerical
boundary conditions concerning the non-viscous flow, since the theory in [4] and
[12] assumes non-characteristic boundaries.

2. Formulation of the problem

In this section we present the Navier-Stokes equations and the numerical
problem including the initial and boundary conditions.
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2.1. Navier —Stokes equations

The two-dimensional Navier - Stokes equations are of the (dimensionless)

form
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with p denoting density, u and v — velocity components in = and y direction, re-
spectively, u — coefficient of viscosity, « — coefficient of heat-conductivity, 7" — tem-
perature, v = ¢,/c,, where ¢,, ¢, — specific heat at constant pressure and volume.
Assuming a linear dependence on temperature for viscosity y(7") and heat-con-

ductivity x(7"), we can substitute ;¢ and « by 7" in the dimensionless form of the
Navier - Stokes equations.

For convenience we introduce the following notation:

_ (@-l@)
™M= \% " 28y)°

3/0u v
T2 = T2 = =T ),

4 dy dr
_(0v 10u
™2 = (a_y . 58_’73) )
oT aT

n= BTy

2.2. Finite-difference scheme

The calculations have been carried out with the two-step second order MAC
Cormack difference scheme [9]
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and

(G - GO = GUY) - GPUE).

The derivatives in the dissipative parts /' and ;" are approximated by back-
ward differences in the first step and forward differences in the second step.

. . s €T,
The scheme is considered on a rectangular mesh in the (7, y)-plane, 7, = —/\—'
N v .A A : .

= i— = 147, ﬂi=%=JTy =jAy for i = 0,...,0max, J = 0,..., Mmax,

where A is the mean free path. The computational domain is bounded by the
wall on the z-axis

{(z.9): 0<T <Az, 7=0},
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where n A7 is a meshpoint on the z-axis, 0 < 7 < nnyu, and the artificial bound-
aries

{(T,T/) T=0, 0<7y< mmax_m}.
{@p:=
{(;z—-, D) 0<T < imwdT, T = M AT}

{(T, Y) i nAT < T < Nmax AT, J= 0}.

= max AT, 0< 7 < mmxmjy},

The position of the wall and the incident shock wave is as presented in Fig. 1.

Incident Shock Wave

y/A

2.3. Initial conditions

The initial shock moves toward the wall located on the z-axis. The angle
between the direction of motion and the z-axis is a.

For a given state of the gas (py, u, vy, 77) far before the shock we obtain the
state far behind the shock (pgz,uz.v7,7T;) by means of the Rankine - Hugoniot
conditions. The initial structure of the incident shock is assumed in the form
proposed by TAYLOR [2]. Although these formulas are valid only for weak shocks,
and a more appropriate structure could be obtained from the numerical solution
of the stationary one-dimensional Navier-Stokes equations, we follow the rea-
soning used in [14]. There, the authors observed that the shock profiles which
were initiated by the two mentioned procedures converged to each other after a
sufficiently long time.
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2.4. Boundary conditions on the artificial boundaries

On the artificial boundaries we assume that the gradient of all physical vari-
ables in the direction parallel to the incident shock front is zero. Therefore we
obtain the values of (p.u, 0, T") by shifting the corresponding (possibly interpo-
lated) values from inside the computational domain along a line parallel to the
incident shock front. Of course, this procedure introduces an error in the region
of the boundary near the point (7,%) = (nAZ,0), but that has no influence on
the stability behaviour of the conditions on the wall.

3. Conditions on the wall

Generally the numerical boundary conditions can be divided into two classes:

e The so-called physical boundary conditions imposed by the considered physi-
cal situation, independently of any numerical method used. Their number should
be equal to the number of conditions obtained by the analysis of well-posedness
of the problem [1, 16]. Since for the Navier - Stokes equations, the well-posedness
problem is still open, we assume that the physical boundary conditions for the
Navier - Stokes equations reduce to physical boundary conditions for the Euler
equations with vanishing viscous terms. Especially in the case of inflow/outflow
boundaries, this assumption prevents the development of non-physical bound-
ary layers. However, in the case of a solid wall, the boundary layers can be
expected [13].

o If not all variables are specified by the physical conditions, appropriate
artificial or soft boundary conditions have to be introduced in order to determine
the remaining variables on the boundary. These additional conditions should
correspond to the considered physical situation, and they must not provide any
additional constraints on the physical variables. The soft boundary conditions may
depend on the numerical method and on the equations considered.

Below we present a technique of specifying the boundary conditions proposed
in [15]. Then we discuss the application of this method to the considered boundary
conditions including such typical physical situations as the adiabatic slip, adiabatic
no-slip and the isothermal no-slip wall, as well as a class of boundary conditions
which represent a combination of the conditions for the adiabatic slip and the
isothermal no-slip wall.

Following [15] let us notice that

OGEY . o g OV OV o g B
T P 1?(,)!/ =PB o PT— AT 7

where A = diag (A, A\2. A3, A\g) and ), are the eigenvalues of the matrix B =

P~1R. The rows of 1" are the corresponding left eigenvectors /;. I’ is defined as
aU N

= P V =(p,u,v,TY.

a0 ! Y and (p,u,v,7T)
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L;, 1= 1,...,4 are the amplitudes of characteristic waves associated with the
characteristic velocity A, for the hyperbolic part of the equations. The technique
described in [15] is based on the estimation of unknown incoming wave ampli-
tudes (\; > 0) in terms of known outgoing wave amplitudes (A; < 0), using
the so-called local associated one-dimensional inviscid (LODI) relations. In or-
der to obtain the LODI relations, the flow is supposed to be locally inviscid
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and one-dimensional near the boundary, hence neglecting transverse and viscous
terms in the Navier - Stokes equations they are of the form:

p 1 . 5 .
— 4+ — ; —( L , =
) i (Lz (0 L4)) 0,
iﬁ + L3 =0,
dv 1 %
s S S, (i FFET =
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The method consists now of the following steps:

o For each physical boundary condition imposed for the Euler equations, elim-
inate the corresponding equation from (1)...(4) and use the corresponding LODI
relations (5)...(6);_3 in order to express the unknown values £; by known Z,.

e Use the remaining equations (1)...(4) combined with the values of £; ob-
tained in the previous step for the approximation of the normal first order deriva-
tives, and the remaining physical boundary conditions of the Navier - Stokes equa-
tions, for the approximation of the second order derivatives in order to calculate
the remaining variables.

Following the instruction we neglect (3) since vy, = 0 is a natural boundary
condition for the Euler equations. The eigenvalues are Ay = v— VT, Ay = A3 = v,
Ay = v+ VT, and for v, = 0 the only positive eigenvalue is Ay = VT. Then we
obtain from (6), the identity £4 = L£;. This should be the only Euler boundary
condition in order to get a well-posed Euler problem (see also [6]).

We consider now the following situations:

3.1. Adiabatic slip wall

The boundary conditions are v, = 0, (112)},, = 0, (q2)},, = 0, and from (1),
(2), (4) with L4 = £, we are able to calculate the values for (p,u, v,T) on the
boundary.

Let us also mention another idea of obtaining the boundary conditions for the
adiabatic slip wall, which has its origin in the fact that the interaction of two sym-
metric shock waves is equivalent to the reflection of a shock from a wall situated
in the plane of symmetry. Obviously, this is true only for inviscid, non-conducting
gases and can be applied if viscosity effects and heat-conductivity are negligibly
small. Indeed, the boundary conditions generated in this way are stable since
they appear to be a simple application of the stable MacCormack method with
extrapolated values p; -1 = pi 1, wi—1 = Ui1, Vi1 = Vi1, -1 = T 18]
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3.2. Adiabatic no-slip wall

Here the conditions are expressed by u,, = v, = 0, (q2)), = 0. Since
u;.., = 0, we should neglect (2) and equation (6), indicates the already known
lw . : g q )
relation £3 = 0, since A3 = v, = 0.

3.3. Isothermal no-slip wall

The conditions proposed in [15] are ), = v, =0, 7], = T}. As described
in the above mentioned procedure, we neglect (2) and (3) since uy, = v, =0
and from (6); 2 we get L3 = 0, L4 = L. Since T}, = T1 we should neglect (4),
and from (6)3 we get, with £, = 0 and L4 = £y, that L4 = £; = (.

Let us emphasize that for vanishing viscous terms the reduced boundary condi-
tions for the no-slip walls are not the boundary conditions for the Euler equations,
since u,, = 0 is a typical viscous assumption. Nevertheless, this condition does
not introduce any new restrictions on L3 since it is zero because of A3 = v, = 0.
The case of the isothermal wall is more problematic since the condition 7}, = T}
imposes a further restriction on the values of £; namely £, = £4 = 0.

Now we present an idea of the boundary conditions which arise in a series of
experiments on the reflection of shock waves from a wall in rarefied gases [18],
and they are given by

wy,, — % = B(Uisn — i),
7 ol -t s
(7 T\, — Ti = B(Tisn — T).

Here ujs, and T, are the boundary values of tangential velocity and temperature
on an isothermal no-slip wall, i.e. ujsy = 0, Tisn = 7. u; and T; are values inside
the flow near the wall. /3 is a number between 0 and 1.

Let us notice that these conditions are an intermediate state between the
adiabatic slip wall (5 = 0) and the isothermal no-slip wall (4 = 1). If 3 — 0
would correspond to vanishing viscous terms, the conditions (7) would reduce to
boundary conditions for the Euler equations and, therefore, they would satisfy the
assumption for the physical boundary conditions made above. However, we do
not know the dependence of 3 on the viscosity and heat-conductivity coefficients.

Density was obtained from Eq. (1) with £ = L4.

We are aware of the inaccuracy of this procedure determining the density.
The problem is that this type of boundary conditions for « and 7" does not allow
for the use of the method proposed in [15], since we do not know anything about
their first order normal or time derivatives, and therefore we can not exploit
the appropriate LODI equations. More useful boundary conditions should be
given for the expressions ¢; and 7;;, since their application in the second order
derivatives in Egs. (1), (2), (4) would guarantee the transition into the Euler
conditions for vanishing viscous terms.
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4, Numerical results and discussion

Now we present the numerical results systematically. The figures show the
density profiles of the reflected shock wave after a certain time interval.

First we have used the boundary conditions for the adiabatic slip wall. The
procedures give identical stable results. In Fig.2 we see the regular reflection of
the shock for Mach number before the shock 2.05 and « = 60°. Figures 3 and 4
show the single Mach reflection for Mach numbers 3.5 and 5.0 and o = 10° and
20°, respectively.

yﬁtj
200 -
150
100 +
50
— L. B e
0 100 200 300 400 500 600 x /A

I'1G. 2. Adiabatic slip wall. Data before the shock: M = 2.05, p = 20000Pa, 7' = 297K, o = 60°.
y /A J
160

120 A

100 4

60

20

T I I T T

0 50 100 150 200 250 300 x /A
['1G. 3. Adiabatic slip wall. Data before the shock: A = 3.5, p = 1000Pa, T' = 300K, o = 10°.
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F1G. 4. Adiabatic slip wall. Data before the shock: M = 5.0, p = 1000Pa, T" = 300K, o = 20°,

Using this type of boundary conditions we achieve a good agreement with
results of the shock tube experiments for dense gases (see [3]).

Although the conditions for the adiabatic no-slip wall used in Fig. 5 are stable,
we see that the decrease of density near the boundary questions the physical
significance of these conditions for the shock wave reflection. The Mach number
before the shock is here 2.8, the angle o = 25°.

y/l]
50

40
30
20

10

x /A
F1G. 5. Adiabatic no-slip wall. Data before the shock: M = 2.8, p = 7.33Pa, 7" = 297K, o = 25°.

Let us present the shock wave reflection using conditions (7) which are a
combination of the adiabatic slip and the isothermal no-slip boundary conditions.
For Mach number before the shock 2.8, a = 25° and 5 = 0.2 we obtain Fig. 6.
Figure 6 shows a considerable but smooth increase of density near the boundary
for small 3, in contrast to non-smooth jumps developing for 3 near 1.
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yll“

40
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20

0 20 40 60 80 100 x /A
FIG. 6. Proposal. Data before the shock: M = 2.8, p = 7.33Pa, T = 297K, o = 25°, § = 0.2.

Using the same boundary conditions (7) with Mach number 2.8, o« = 60° and
# = 0.3, we get the results presented in Fig. 7. Figure 7b shows an enlargement
of the reflection area of the shock wave near the boundary. The values describing
the levels are related to the quotient (p — p1)/(p2 — p1)-

a)
0 40 80 120 160 x /A
b)
y /A l
15
10 +
5 -

=]
v

x /A
F'1G. 7. Proposal. Data before the shock: M = 2.8, p = 7.33Pa, T = 297K, a = 60°, 8 = 0.3.
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Here we recognize the same structure of density profiles as that shown by
the results of the shock tube experiments for rarefied gases in Fig.8 [18]. Also
important is here the good agreement of the angles between the wall and the
reflected shock in the experimental and numerical results.

y/A
10+ 1,1/
////;;j
T LB T T
0 10 20 30 40 x /A
I'1G. 8. Experimental results [18]. Data before the shock: M = 2.8, p = 7.33Pa, T' = 297K,
a = 60°.
5. Summary

We see that the application of the procedure proposed in [15] for the classi-
cal physical situations of the adiabatic slip, adiabatic no-slip and the isothermal
no-slip wall gives different results. For the adiabatic slip wall we get stable bound-
ary conditions and a good agreement with shock tube experiments for dense gases
[3]. The conditions of the adiabatic no-slip wall are also stable, but the decrease
of density near the boundary makes the usefulness of these conditions for the
shock wave reflection questionable. Problems occur in the formulation of bound-
ary conditions for the isothermal no-slip wall, since the LODI relations introduce
an additional restriction on the equations. Numerical experiments show that sol-
utions including these conditions are unstable.

The crucial point is the investigation of a new class of boundary conditions (7)
which allow for the consideration of a decisive wider range of physical situations.
These boundary conditions represent a combination between the conditions for
the adiabatic slip and isothermal no-slip wall, depending on parameter /3. For an
appropriately small but nonzero § we get a good agreement of the numerical
and experimental results concerning the density levels, and the reflection angles
of the shock wave in the case of rarefied gases [18].
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Dynamic stress intensity factors at two collinear cracks
in two bonded dissimilar elastic half-planes

S. ITOU (YOKOHAMA) and Q. RENGEN (BEUING)

DYNAMIC STRESSES in two bonded dissimilar half-planes weakened by two equal and collinear cracks
are determined. The two cracks are placed in parallel with the interface of the two half-planes.
Internal pressure is applied suddenly to the surfaces of the cracks. Application of the Fourier and
Laplace transforms reduces the problem to the solution of dual integral equations in the Laplace
transform domain. To solve the equations, the differences in the crack surface displacements are
expanded in a scries of functions which are automatically zero outside the cracks. The unknown
coefficients in the series are solved using the Schmidt method. The stress intensity factors defined
in the Laplace transform domain are inverted numerically in the physical space. Numerical calcu-
lations are carried out for the bonded composite materials made of a ceramic half-plane and steel
half-plane.

1. Introduction

MANY STATIC PROBLEMS have been solved for a crack or cracks in two bonded elas-
tic dissimilar half-planes, as seen in a recent book dealing with the stress intensity
factors [1]. Especially, studies by Ishida and Noguchi are extremely helpful regard-
ing this question. To solve the problems, they have used the body force method
[2]. Quite recently, the stress intensity factors around an arbitrary array of cracks
in bonded dissimilar half-planes have been treated by Ismipa and NoGucHr [3].

Regarding the dynamic crack problem for the composite materials, research
has not been progressed as much as its statical counterpart because of the greater
complexities. StH and CHEN originally solved the dynamic problem for the com-
posite materials with a crack [4]. They determined the transient dynamic stress
field around a finite crack placed in the mid-surface in an infinite clastic layer
sandwiched between two elastic half-planes. They also treated the axisymmet-
ric dynamic crack problem concerning a penny-shaped crack in an infinite elastic
layer sandwiched between two elastic half-spaces [5]. The dynamic stress intensity
factor has been given for the case in which the material property of the cracked
layer and that of the half-planes obey the theory of elasticity of orthotropic bodies
[6]. Recently, the dynamic stress field around a rectangular crack in an infinite
elastic layer sandwiched between two elastic half-spaces has been solved [7].

All of these problems deal with a single crack in composite materials. If some
cracks exist in composite materials, we must reveal the mutual effect of the dy-
namic stress intensity factors. Focusing attention on that aspect of the subject,
the dynamic stress intensity factors around two coplanar cracks in an orthotropic
layer sandwiched between two isotropic half-planes have been worked out [8].
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In the study, two cracks are placed at the mid-surface of the layer so as to be
symmetrical with respect to the mid-surface.

Composite materials are occasionally weakened by cracks near the interface.
In the present paper, the dynamic stress intensity factors appearing at two equal
and collinear cracks in two bonded dissimilar half-planes are determined. Internal
pressure is applied suddenly to the surfaces of the cracks. The problem is non-
symmetric with respect to the plane, on which the cracks exist. Using the Fourier
and Laplace transforms, the boundary conditions are reduced to dual integral
equations in the Laplace transform domain. To solve the equations, the differ-
ences in the displacements at the interface are expanded in a series of functions
which are automatically zero outside the cracks. The unknown coefficients in the
series are determined using the Schmidt method [9].

Numerical calculations are carried out for the composite materials made of a
ceramic half-plane and steel half-plane.

2. Fundamental equations

The two cracks are placed on the z-axis from —6 to —a and from « to b with
reference to the rectangular coordinate system (z, y) as shown in Fig. 1. The two
y

I'1G. 1. Geometry and coordinate system.

half-planes are bonded at y = h. We consider the problem in a plane strain
condition. For convenience, we have called the layer which occupies 0 < y < A
Layer (1), the lower half-plane which occupies y < 0 Half-plane (), and the upper
half-plane which occupies h < y Half-plane (3).

http://rcin.org.pl



DYNAMIC STRESS INTENSITY FACTORS 655

The equations of motion are reduced to:

(0%/022 + 3*/oy* — 1/}, D*for) ¢ = 0,

(2.1)

(02/02% + 02/0y* — 1/ck; 0*/01) ¢ = 0,
with
(2.2) =201 — v /A - 2)pi}, k= wifps,

where ¢); and ¢y; are the dilatational and shear wave velocities, respectively, j;
the modulus of elasticity in shear, 1, the Poisson’s ratio, p; the density of the
material, and the subscript = 1 means that the corresponding values are those
for Layer (). The values of Half-plane (2) and those of Half-plane () are also
denoted by the subscript : = 2 and ¢ = 3, respectively.

Displacements w;, v; and stresses 7..;, Tyyi, Tzy: are expressed in terms of ¢;
and ¢ as follows:

(2.3) w; = difda — O [ Dy, v, = dy/0x + D¢ [0y,

Turi = —20:0%0; ]y + pi0*di [ 012 = 241,0%0; /2Dy,
(2.4) Tyyi = —20;0%0;/0x% + p;0%¢; /0% + 2u;0%0; /92y,
20:0%0; ) 020y + (0% ] 02% — 0% ] DyP).

Tryi

3. Boundary conditions

Consider an incident stress wave which propagates through upper half-plane
at right angle to the z-axis. It is expressed as:

(3.1) O = pll(y + c13t)

where p is the constant, //(¢) the Heaviside unit step function, time ¢ is zero
when the wave front reaches the cracks and the superscript “(i)” means that
the corresponding value is that of the incident stress field. The incident wave is
reflected and refracted in a complicated manner at the interface y = h. However,
it is likely that a stress wave which is similar to Eq. (3.1) passes across the cracks.
Therefore, the stress intensity factors can be obtained by solving the problem
with the following boundary conditions:

(3.2) Tyyl = Tyyds Taoyl = Tgyds U =1u3, vy =v3 at y=h, |z[<oo,

(3.3) TB,JI = Tgyz, rf_’yl =700 at y=0, |2]< oo,
(3.4) T_Syl = Tgyz = —pll(1), Tf_’yl = Tgyz =0 at y=0, a<]|z|<b,

(3.5 uwl=4ud, =0 at y=0, 0<|z|<a, b<|z|,

where superscript “0” denotes the values at y = 0.
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4. Analysis

To find the solution, the Laplace transforms were used

(4.1)

g*(s) = j g(t) exp(—st) dt,
0

9(t) = 1/(21ri)/g"(s)exp(s{)ds
Br.

and the Fourier transforms

(4.2)

[ = /f(£)exp(1 Ex)dz,

o0

f@) = 1/@n) [ T exp(~i €0 de.

Applying Eqgs.(4.1) and (4.2) to Eq.(2.1) we obtain

(@/dy? ~ €~ [ S)g; = 0,

(4.3) -
(d2/dy? — € — e} s*/c} )Py = 0,

with

(4.4) €2 =201 - )/ - 2i).

The solutions of Eq. (4.3) have the following forms for Layer (1), Half-plane (2)
and Half-plane (3), respectively,

45) ff = Ay sinh(y11y) + Ap; cosh(y11y),

Y1 = Brsinh(y21y) + Bz cosh(v21y),
(4.6) _53 = Crzexp(r12v)s E§_= D13 exp(v22v),
(4.7) ¢3 = Cizexp(=713y),  ¥3 = Dizexp(—y23y),
with
(4.8) 1i = (€ + P/ oy = (E 4 el e)

where Ay, Agq, ..

., Dq3 are the unknown coefficients,
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Applying Egs. (4.1) and (4.2) to Egs.(2.3) and (2.4), we obtain

(4.9) T = —ifg] — Ayt /dy, T = dg;/dy - i€,
7= —2ud2 6T dy? + juetst i + 2uuildy [ dy,
(4.10) To = 2EPT + picks?[chipi — 2pidfdi; [dy,
Toyi = —21?;5,-5(!@{/(13/ + ;J,-(~£2Q-:Z - (lzzﬁf/(lyz).

Substituting Eqs. (4.5), (4.6) and (4.7) into Eqgs. (4.9) and (4.10), we can express
the displacements and the stresses in the Laplace transform domain. With use
of Egs.(3.2) and (3.3), coefficients By, B2y, C12, D12, ('13, D13 are represented by
coefficients A;; and A,; as follows:

Ci3 h |2

1D13 f3 Ja

1By fs fe || An
411 D] ,
(4.11) iBu |~ | fr s || An

Clz fo fio

1D Su fiz

where f|, f2,..., f12 are given in Appendix A. Now, all of the stresses and dis-

placements can be only expressed by coefficients A;; and A,;. For example, Tg;l,
0

Ty, w{*, J* are written in the form
—()= -(1 4 -(1
(4.12) 70 /Qm) = AuK (" + An KD,
7o/ Qu) = iAnK§Y +idy KV,
(4 13) _I'IIO* —3 /111 [\“él) + if‘lz‘[]!-gl)v

ﬁ(l)’ = ;’111[\——?1) + 1Ay [x'él),

where functions 1\'{1), I\'gl), 528 95 [\‘él) are given in Appendix B.
For convenience, we represent coefficients Ay and Ay by Ta‘f" and 5?" with
use of Egs. (4.13). Then, stresses FS;I and FSLI are given by

T
(4.14) N
sl — U= 1 % 1
TS_;‘/‘ = ”(1) rg ) ¢ w? ‘rg ),

where T&”,Tél),r_g”, r,(,l) are given in Appendix C. Similarly, displacements ﬁg*

and ©9* are represented by u(* and {* as follows:

@5 7y = i(—ad)L? + LY,
7 = (—ad)LP + 7P LY,
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where functions L(12), ng), ],(32), ],5,2) are given in Appendix D.
Here, we expand the differences of the displacements at y = 0 in the Laplace
transform domain into the series

. 4+ b -2l ;
”(“?* - r2 = vaz Sll‘l{nsm_I [%?ll_{:l — 'n%}

n=1

for a < |x| < b,
=0 for 0% |z|<a, bx |z,

(4.16) <
" i - 1 . . 1 [a+b-=2z T
r(ud — uJ¥) = ;(lnﬁ sin {nsm . [_b——T—] - ni} sgn (z)
for a < |r] < b,
=0 for 0< |z|<a, b<]|z|,
with

sgn(z) = -1 for = <0,
(4.17) = 0 for =z =0,
= 1 for a > 0,
and ¢, d,, are the unknown coefficients. Differences in displacements (:*?" — vg*)
and (ud* - ug’) are written in the form of Eq. (4.16). Then, the boundary condition

(3.5) is satisfied automatically; the remaining boundary condition is only Eq. (3.4).
The Fourier transforms of Eq.(4.16) are

70 _ 7_)(2). _ Z ’nE sin { (a .;[,)E n.%} E {(b —2rl)f} ‘

n=1

i -ty = i‘: ln? o8 {(a 2 b)é “g}.,” {(b 2(1.)-5}_

n=1

(4.18)

where J,(z) are Bessel functions.

Substituting Eq. (4.18) into Eq. (4.15), 73" and @} can be eliminated and then
o{* and @l are represented by coefficients ¢, and d,,.

Therefore, all the stresses and displacements are expressed in terms of coef-
ficients ¢, and d,, only. For example, stresses TO" and rf;l are as follows:

@19) b = Z 1 f(zl(é) {(”Z[’)‘f ”%}Jn{(b—zn)e}m(&.),,f

N ZI a1 f @Q(9) {(ﬂ J;b)f B ,”_7_2[} J, { (b —2")5} cos(Ex) de,
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@19 . _ /Qa(E\ . {(a+b)e _} = {(b z)f}gm(&),,g

ryl — 2
[cont.] . ] 2

s 0

where Q;(€) (j = 1,2,3,4) are given in Appendix E. Functions @;(¢) behave for
a large value of £

(4.20) Q;(6)/€ — QF + Qj/&,
where QF and QY are constants given by
Q7 = {Q;(€r) — Qi €L — )} /=,
QY = Q,(€L) - QF¢r,

with £;, being a large value of £ and ¢ being an arbitrary small value.
Finally, the remaining boundary condition (3.4) can be reduced to

(4.21)

Z e Fak2) + Z d, G (x) = —p/s,
n=1 n=1

(4.22) for a<a<b,

o0

Z en Il (2) + Z d,I.(z) = 0,

n=1

where functions F,(z), G (), IT.(x), I.(x) are given in Appendix F. Here, the
following relationships have been used,

(423) [ Ju(a©){cos(se), sin(56)) de
0

e

= 1/(a® - §%)'/?[cos{nsin~'(8/a)}. sin{n sin"}(3/a)}] for a > p;
= {—a"sin(n7/2), a" cos(n7/2)}

[(8* — VB + (3 - a®)PY] o B>

(4.24) / €17, (ab){cos(BE), sin(3€)} de
0

= p~1 [COS{T? sin™!(3/a)}, sin{n Sin_l(ﬂ/a')}] for o> 3
= n~la"{cos(nm/2), sin(nr/2)}
[{B + (8% — AV} for B> .
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Now, Eq. (4.22) can be solved for coefficients ¢, and d,, using the Schmidt
method [9].

5. Stress intensity factors

Coefficients r,, and d,, are known so that the entire stress field can be deter-
mined. Regarding the crack problem, it is important to know the values of the
stress intensity factors determined from the stresses around the crack tips. With
the use of Egs. (4.19) and (4.23), the stress intensity factors can be expressed in
the Laplace transform domain by

Kiy = O {2n(a— ) 2| =Y e.Qf/{2n (- )
=1
K3, = 9 {2n(a - )} H._‘Z (- Q) 2r (b~ )2
(5.1) ’;:
Kjy =t {2n(@ - )| = Z (1 QF /27 (b — )}V2,
K3y = w9 {2n(a - )| = 3 da(-1)" Q4 /{27 (b - a)}'/2.

r—bt
T]:

The Laplace inverse transformations in Eq. (5.1) are carried out by the numerical
method provided by MiLLEr and Guy [10].

6. Numerical examples and results

We consider the composite materials made of the ceramic half-plane with
the material constants j; = 119.7GN/m2, p; = 3.15 x 10*kg/m?, v; = 0.27 and
the steel half-plane with the material constants y; = 79.2GN/m2, p; = 7.70 x
103 kg/m3, v; = 0.30. Numerical calculations are carried out for two cases. One
of them is the case in which the upper half-plane is steel and the lower cracked
half-plane is ceramic. We call this Case 1. Another is the case in which the upper
half-plane is ceramic and the lower cracked half-plane is steel. We call this Case 2.

The semi-infinite integrals which appear in F,(z), G, (z), H,(x), I,(z) in
Eq.(4.22) are easily evaluated using Filon’s method because the integrands decay
rapidly. By breaking off the infinite series in Eq.(4.22) at term of » = 10, the
Schmidt method is applied. It has been verified in each numerical calculation that
the values of the Lh.s. in Eq.(4.22) agree well with those of r.h.s.

In Figs.2 and 3, the results of A, and Ay, are shown for Case 1 versus
ent/{(b — a)/2}. The results of Ky, and Ky, for Case 2 are plotted in Figs. 4
and 5. In these, the straight lines are the corresponding static values which are
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o1
i or
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F1G. 2. Stress intensity factor K, for Case 1 (Upper half-plane of steel is bonded to the lower
cracked half-plane of ceramics). ‘

calculated by the authors separately. The values of A3, and Ky, are not shown
because they are very small.

The curves of Ky, and Ky, for a/{(b — a)/2} = 1.5 are close to those for
a/{(b - a)/2} = 1.0 regardless of the values of h/{(b — a)/2}. Therefore, the
results for a/{(b — a)/2} = 1.5 can be considered as the results of the stress
intensity factors around a single crack in two bonded dissimilar elastic half-planes.
In addition, it can be seen from the figures that the peak values of the dynamic
stress intensity factors are about 1.15 or 1.25 times larger than those of the
corresponding static values.
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a/((b-a)/2)

Ky /(pV/TT6-GI72)

h/ttb-a)/2)
=02

1

1 1
o 5 w10 15
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h/((b-a)/2)
=05

i

5 0 15 20
¢, t/M(b-a)/2)

[1G. 5. Stress intensity factor Ay, for Case 2 (Upper half-plane of ceramics is bonded to the
lower cracked half-plane of steel).

Appendix A

ay

a1

a3y
(A.1) fiv20-1y =

a4y

as1

g1
with
(AZ) A = Iai.jl

a1{-1
i1
aszi-1
41
(5i-1

(6i-1

for

by
bas
bk
ba

bk

(i,j=12,..

A1i+1
2i+1
3;+1
a4i+1
a5;+1

a6/ +1
for
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26
a
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ayn = —2113 {52 + 55‘92/(2('%3)} exp(—y13h),
ayy = —2p38723 exp(—723h),
a3 = —2u1€y21 cosh(y21h),
a4 = —2;515721 Sinh(’)’zlh), ais = 0, a1 = 0,
bi = ~2u {€ + e25%/(2c})) } sinh(311h),
b1z = -2y {52 + 5%52/(2C%1)} cosh(y11h),
az1 = 2p3€713 exp(—713h),
an = p3(€% + 73) exp(—y23h),
azs = —p3(EF + 43) sinh(ya1 h),
az = — (€% + 73;) cosh(y21 ), azs = 0, az =0,
b1 = —2uméyn cosh(y1h),
by = —2u1€y1rsinh(ynh),

(A3) azr = —€exp(-713h), azy = —v23 exp(—y23h),

. azz = —v21 cosh(y21h), azq = —7218inh(y21h),

azs =0, a3 =0, b3y = -E{sinh(y1h),
bz = —£cosh(y11h), az1 = 713 exp(—y13h),
agy = {exp(—vy23h), a3 = —Esinh(y21h),
44 = —fCOSh(”)‘zlh), 45 = 0, 46 = 0,
byy = —yncosh(ynh), by = —yysinh(y1h),
asy =0, a5y =0, as3 = —241&721,
ass = 0,  ass = —2p{& + 357 /(2c])),
ase = 24126722, bsy = 0,
bsy = =2 {€% + 357/ (2c1))}, agy =0,
a2 = 0, agy = 0, ags = —1 (€% + 7v4),
ags = —2pabvie,  aes = —p2(€7 + 7vh),
ber = =2y, be2 = 0.

Appendix B
KD = —tyufs, K = —fynfs + {62 + 122},
=l -1

B.1) 1\§ = ey + (€2 + ) /2, Y = (€2 +v3) fs/2,
KD =y, 05, K = —e+ 121/,
1\';1) =y —&fy, Kél) = —{fs.
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Appendix C
" = 2 (KK - K{PRD) 14y,
i = 2 (K PED + KPRD) /44,
(C.1) ri = 2 (1 PP - K{VRD) /4,
rgl) = 2 (—]\gi)lx'él) + I\'gl)lx'gl)) /Ay,
4y = KVED - kED.
Appendix D
1 = (K{PEP - KPED) 144,
Lg_z) = ( K 1)1\§2) + I\gl)l\ (2)) /A,
(D.1)
tP = (K{PEP - KPR 14,
LY = (-kEP + KPEP) 14,
with
M2 i
(D2) 1\§ Y= —£fs + 12fu1s K O = _¢fi0 + 12212,
. P
1\5 = yiafs — Efu1, 1‘3 = m2f10 — €S2
Appendix E
Q1€) = {22 + D - 1))/ 4,
1 2 1 2
0 Qa(6) = — {01 - L) + 157 LD) /25,
’ 2 2
Qa(6) = {19 + (1 - L))/ 2,
Qa(t) = —{r3001 - L) + 11}/ A,
(E.2) Ay =(1-IP)1 - L) - [P1LY.
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Appendix F

Fa@) = 1/ [{@u(©)/¢ - @1 - Q&1 {0 - w)e/2)
0

x {cos(nr/2)/2[sin{(a + b + 20)¢/2} + sin{(a + b~ 20)¢/2}]
—sin(nm/2)/2[cos{(a + b — 20)E/2} + cos{(a + b + 20)¢ /23] } de

+Q¥ /m{cos(nm /2)/2(g1 + 42) — sin(n7/2)/2(g3 + g4)}
+QY/m{cos(nm [2)/2(ys + g6) — sin(n7/2)/2(g7 + g5)}.

Gae) = 1/7 [1Qx(6)/€ - @} — QY€1 - w)/2)
0

x {cos(rm/Z)/Z[cos{(a +b - 20)6/2} + cos{(a + b+ 20)¢/2}]
3 sin(mr/Z)/Z[sin{(n +b+20)6/2) + sinf{(a + b - 20)/2} | } de
+Q£’/ﬂ'{COS(TI.TI’/2)/2(_(/3 + g4) + sin(nw/2)/2(91 + 92)}

+QY/m{cos(nm /2)/2(g7 + gg) + sin(n7/2)/2(ys + g6)},
(F.1)

() = 17 [1Qx(©)/€ - Qf ~ QY1 - w)/2)
0

x {cos(nm/2)/2[cos{(a + b — 22)¢/2} — cos{(a + b + 20)¢/2}]
= sin(nw/2)/2[sin{(a + b + 20)€/2} — sin{(a + b - 2.1-)5/2}} }de

+Q% /m{cos(nn /2)/2(gs — g3) — sin(n7/2)/2(g) — 92)}
+QY/m{cos(nt/2)/2(gs — g7) — sin(n7/2)/2(gs — gs)}

(@) = 17 [{Qu©)/ - 0k - Q{0 - 0E/2)
0

x {cos(nm/2)/2[sin{(a + b + 20)€/2) — sin{(a + b - 20)¢/2}]
+ Sin(nn’/Z)/z[COS{((l +b—22)6/2} — cos{(a + b + 2:[')5/2}} } dé

+Qf /n{cos(nm/2)/2(g1 — g2) + sin(nw/2)/2(g1 — 93)}
+Qg/?r{cos(mr/2)/2(y5 — g6) + sin(nw/2)/2(9s — 97)}

http://rcin.org.pl



DYNAMIC STRESS INTENSITY FACTORS 667

with
n 2 2 172
g = {(b - a)/2} cos(im/?_)/{[{(a +b+20)/2)% = {(b - 0)/2)?]
X [[(a +b+20)/2+ [{(a + b+ 20)/2)2 = {(b - @)/2)] ”T} ,
g2 = sin {n sin"!{(a + b + 22)/(b - a)}]
/(0= a2 - {(a+ b+ 20)/27)"7,
‘ n g 2 2112
g3 = —{{b - a)/2}"sin(n7/2)/ { [{(a + b+ 220)/2}2 = {(b - a)/2} ]
x [[((z +b420)/24 [{(a + b+ 20)/2)2 = {(b— 0)/2)?] ”2]] } ,
(F2) g4 = cos|nsin™{(a +b— 22)/(b - a)}]

/ [{(b - a)/2)% = {(a + b - 20)/2}] A
gs = {(b = a)/2}" sin(nw/2)

/{n (a+b+22)/2+ [{(a + b+ 22)/2)% - {(b - n)/2}2] 1/2]] "} ’
go = sin [nsin™!{(a + b 20)/(b — )] /n,
g1 = {( - a)/2}" cos(nr /2)

/{n (a+b+22)/2+ [{(u + b+ 22)/2}2 = {(b - “)/2}2]1/2]] "} ’

gy = cos [nsin~{(a +b—22)/(b - @)} /n.
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Objective frame derivatives for the hyperstress

and couple stress

B. SVENDSEN (DARMSTADT)

Tris WORK outlines a formulation of objective derivatives for tensors of arbitrary order in linear
spaces based on the notions of a frame connection and the associated induced frame derivative.
The general results are applied in particular to the formulation of such objective (frame) derivatives
for the hyperstress and its associated forms appearing in general models of structured continua,
as well as for the couple stress and its associated forms, appearing for example in the Cosserat
model.

1. Introduction

THE FORMULATION of rate-type constitutive relations for the various higher-order
tensors appearing in different structured media theories (e.g., Cosserat continua,
continua with affine structure, polar continua, and so on) requires the use of
some kind of “objective” derivative for these tensors in order to satisfy material
objectivity. The purpose of this work is to formulate one such type of derivative
for such tensors based on the notion of the connection and derivative induced
by a time-dependent frame, as discussed in detail in SVENDSEN [1]. In particular,
attention is focused in this work on applying this approach to the formulation of
objective frame derivatives for the hyperstress and couple stress (e.g., TRUESDELL
and Noct [2, §98 and 127], MurpocH [3], Capriz [4]), i.e., the third-order tensors.

After briefly defining of the basic mathematical concepts and notation used
in this work (Sec. 2), in particular those associated with frames (Sec. 3), the
notion of a time-dependent frame, the connection of such a frame, as well as
the induced frame derivative, as formulated in detail in SVENDSEN [1], are briefly
summarized (Sec. 4). These results are then applied to the formulation of objec-
tive frame derivatives for the hyperstress and couple stress (Sec. 5). To facilitate
understanding of these results, this frame-based approach is also used to de-
rive the more familiar objective (frame) derivatives for the Cauchy stress, which
can be directly compared to those for the hyperstress and couple stress. Finally,
well-known special objective derivatives (e.g., Oldroyd) are obtained and dis-
cussed in the current frame-based context for the Cauchy stress, hyperstress and
couple stress (Sec. 6).

2. Basic mathematical concepts and notation

Let V and W be finite-dimensional linear spaces, Bij(V, W) the set of all bi-
jections, Lin(V, W) the set of all linear mappings, and Lbj(V, W) := Lin(V, W)n
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Bij(V, W) the set of all linear bijections (sometimes denoted by Lis(V,W)),
between V and W (in this latter case, of course, dim(V) = dim(W)). Any
L € Lis(V, W) induces a dual (linear) mapping

(2.1) L*:W"—-V*| o—oL=:Lc

between the spaces V* := Lin(V,[R) and W* := Lin(W, R) dual to V and W,
respectively.

The linear bijection (v — 1) € Lbj(V,V**) defined by wv := vy for all
v € V= allows us to identify each v € V with an element 2, € V** of V**, and
vice-versa. Such a natural identification (i.e., independent of any additional struc-
ture on the sets involved, e.g., a metric) of elements of one set with those of
another one is signified by writing V** = V (i.e., 1y = v) in the case of V. Note
that such identifications will often be used implicitly in this work. In what follows, let
Sym*(V,V*) := {M € Lin(V, V") | M* = M & (Mv)v > 0 ¥v € V\{0}] represent
the set of all symmetric positive-definite linear mappings between V and V*.

Let I be a linear space. For any bilinear mapping p € Lina(if x V, W) or its
linear form L € Lin(V, Lin(l/, W)), we define associated mappings pu® € Liny(V x
U, W) and L° € Lin(i4, Lin(V, W)) via

(2.2) pi(v,u) := p(u,v) and (L*u)v := (Lv)u

for all w € ¢ and v € V. Note that (Lv)u = p(u,v), ie, we are using the
convention

(2.3) Lin(V,,...,Lin(V;,W)..) 2 Lin,(V; x Va x ... x Vo, W)

in this paper.
P : . ! :
Usually the tensors (i.e., p-contravariant, ¢g-covariant) on a linear space
q

V are defined as elements of the set Lin,;,(V*? x V7,[R) of all (p + ¢)-linear
mappings

2.4 }.LZV” x V! — R Vie...,V,,V,..., ¥V, )
P q
= ,U'(U]_.. . "VP‘ Vl ..... "q)

of VP x V? (AP denotes the p-fold Cartesian product of any set A with itself)
into R. Any linear bijection L € Lbj(V, W) induces one

(2.5) tL : Ling (V™ x V7 [R) — Lin, 4 OV x W R) | o — tppi= ty(pe)
of V tensors to W tensors, defined by

(2.6) () (N « £ 45 Ws Wip - 5o W) 8= L el L0 3 L Wy 0 )
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for all 4 € Lin,+,(V*? x V?,R), 7y, svay Tl (& W and wy, ..., w, € W. In par-
ticular, (2.6) implies tgrv = Lv Vv e V = V™ and tLv = L™"v W € V*, where
L~ := L-1* = L*=! € Lbj(V*, W~). Further, t{' = t; -1 € Lbj(Lin,+,(0V*” x
Wi, R), Lin, 4, (V*? x V?,[R)) for all L € Lbj(V,W). All of the above results
involving t, as well as those to follow, hold of course for th. special casc V = W,

If dim(V) = n, the non-zero elements of the one-dincnsional lincar space
Skw,, (V" [R) of all completely skew-symmetric n-multilinc.«r mappings f V into
R are called volume convectors . An equivalence class [«]:= [’ € Skw, (17" [R) |
Ja > 0 such that o’ = aw} of such volume covectors detcimines an orntation
of V. Since Skw,,(V", [R) is one-dimensional, there are two such orientations, ie.,
[v] and [~w]. By convention, the chosen orientation is calicd positive, and the
other negative. A linear space V endowed with a given ¢ ¢, fixed) orientation
is called oriented. If V is oriented with orientation |w], the determinant of any
L € Lin(V, V) is defined by

w(Lvy,...,Lv,)

(.u‘(Vl, e ..V“)

(2.7) det (L) :=

for all linearly independent vy,....v, € V and any w € [w]. Note that (2.6)
and (2.7) imply tiw = det (L~ !)w for all L € Lbj(V, V). For V and W oriented
with orientations [wy] and [wyy], respectively, and dim(V) = dim()V), any L €
Lbj(V, W) is called orientation-preserving if (tpw@) € [ww] for any @ € [wy]. Let
Lbj" (V, W) represent the set of all such orientation-preserving linear bijections
between two oriented linear spaces V and W.

An inner product space is a linear space V endowed with the additional struc-
ture of a symmetric, positive-definite bilinear mapping g € Symy (V2, R), referred
to as a metric (on V) in this work. On the basis of g € Sym™(V?, [R), one defines
in the usual way an inner product

(2.8) vi - v2 1= g(vy, v2) = (Gv2)vy = (Gvy)vz

of elements v, v, € V of V, where G € Sym™(V, V) represents the linear form
of g € Symj (V2 [R), and will also be referred to as a metric in this work. Any
linear mapping L € Lin(V. W) between two inner product spaces V and WV with
metrics gy € Sym* (V2 R) and gyy € Sym* (W2, [R), respectively, induces a linear
mapping

(2.9) L" := G;'L"Gy € Lin(W. V),

called the transpose of L € Lin(V, W). A linear mapping Q € Lin(V, V) between
two inner product spaces V and W is called orthogonal if

(2.10) Q*GwQ = Gy .

As usual, let Orth(V, W) denote the set of all such linear mappings. From the
definition (2.9) of the transpose, it follows that Q*GyQ = GvQ'Q = Gy for all

http://rcin.org.pl
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Q € Orth(V, W), implying Q7Q = 1y, and in particular Q7 = Q~! if dim(V) =
dim(W). As usual, let

sym(V,V) := {L € Lin(v,V) | LT = L}
Sym*(V,V) := {L € Sym(V, V) | (G 1) € Sym*(V,V")},

(2.11)

Skw(v,V) := {L € Lin(v,V) | L" = -1},

denote the sets of all symmetric, symmetric positive-definite, skew-symmetric, and
orientation-preserving orthogonal, linear mappings of V onto itself, respectively.
We will also make use of symmetrization

(2.12) sym: Lin(V,V) — Lin(V,V) | L~ %(L+ LT) =: sym(L)
and skew-symmetrization
(2.13) skw : Lin(V,V) — Lin(V,V) | L %(L — LT) =: skw(L)
operations in this paper.
Since dim(V*) = dim(V) for finite-dimensional V, the injective elements of

Lin(V, V*) are actually bijective; in particular, since the metric G € Lin(V, V*) is
injective by definition, G € Lbj(V, V*) holds. The resulting linear bijections

(2.14) G: V=V | v Gv:=CG(v)
and
(2.15) Gl:Vv=V | v=Glv:=Gl)

represent the basis of the operation of forming the associated tensors (e.g., ABRA-
HAM et al. [5, §5.1]), often called “lowering and raising indices”, respectively. By
linearity and duality, this operation can be extended to tensors of arbitrary order;
indeed, a (p + ¢) th-order tensor possesses (p + ¢)! + 1 associated forms. Being
a linear bijection, the metric G € Sym™(V, V*) induces alternatively the natural
identification V* = V (ie.,,v 2 G~ lv)or V 2 V* (i.e,, vZ Gv = v .). Perhaps the
most well-known case of this in the literature is the identification or association
G =1 of the metric G itself with the identity linear mapping I € Lin(V,V) on V,
induced via I = GG™! or G = GI. Unfortunately, this fact has been too often
interpreted in the literature to somehow mean that G and I are equal, something
that is simply wrong; indeed, G # I always holds. Rather than take advantage of
V* =V, as is usually done, we will deal explicitly with the associated forms of
various tensors that arise naturally in this work.
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In the text, we are of course particularly interested in the case when the inner
product space V represents three-dimensional Euclidean vector space. In this
case, the metric G € Sym™(V, V*) induces the compatible volume form

(2.16) wG(¥1,v2,¥3) 1= (v1 X v2) » v3 = (G(v1 X v2))v3

via (2.8) for all v, v,, v3 € V, with x denoting the Euclidean vector cross-product.
For all Q € Orth*(V, V), note that G = toG follows from (2.10), and tqwg =
det(Q ") wg = wg from (2.6), (2.7) and (2.11). In addition, from (2.16), we have
the expression

(2.17) vi X v = G (4y, 2y, wg)

for the Euclidean cross-product of any v;,v, € V, where 1,1 represents the in-
terior product of v € V with p € Lin,(V?, R), defined by (e,u)(vy,...,¥4—1) =
iV V0 o g ¥g=) TOT Al W, ¥, i Wyt € W

3. Frames

Let V be an n-dimensional linear space and FrmV the set of all frames of V,
i.e., ordered bases b := (by,...,b,) € FrmV of V. Of course, the case n = 3 is
relevant to this work. Each such frame b € FrmV induces a linear bijection.

(3.1) bp: V—R"| v [V]p = bpv,

assigning any v € V the [R"-vector [v], € [R" of its components relative to
b € FrmV. In this case, we have 6, € Lbj(V,[R") and kyp := 9;1 € Lbj(R"™, V),
such that k6, = 1y and 6pkp = 1R», for all b € FrmV. Clearly, any b € FrmV
can be represented uniquely by 6y or kp, constituting in essence the differential
geometric representation of a frame (e.g., Spivak [6, V.II, Ch. 8]; see also NoLL
[7, §15]), and the one used in this work. Note that any frame b € FrmV and any
linear bijection L € Lbj(V, W) induce a frame Lb := (Lby,...,Lb,) € FrmW of
W, as well as the transformations

(3.2) kip = Lkp, Oy = OL7T,

which we will also use in what follows.
By linearity and duality, (3.1) and its inverse induce the linear bijection

(33) @y : Lings,(V? x V9, R) — Lin,;,(R™Y x (R"Y',R) |
o [ulp := Opp,

defined by @y, := tg, via (2.5) with W = [R" for all b € FrmV, ie.,

(3.4) Ovp) (V1o vpy V1 vg) 1= (B, Opip, kpor, oo Kbey)
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for all 4 € Liny4,(V*? x VI,R), vy,...,v, € R" and vy,...,v, € [R". The
(p) R™ tensor [u]p € Lin,4 ((R")? x (IR™)?, [R) represents then the “compo-
nents” of p € Lin,,(V*? x V9, R) relative to b € FrmV. Note that the dual form
of the b-induced linear bijection kp € Lbj(IR", V), i.e.,

(3.5) by @ V' — R"™ [V [V]p = kv

assigns any v € V* the R""-vector [v], € R"™ (= [R") of its components relative
to b € FrmV. In addition, we have ky € Lbj(V*,[R™") and 6 € Lbj(R"". V*), such
that kgf#y = 1g-+ and 6gky = 1y« for all b € FrmV. Letting kp := t,, denote
the inverse of @y, via (2.5) with V = [R" and W = V for all b € FrmV, we have
kbOb = 1Lin,, (verxve,R) and Ovky = 11 (R < (R™)0 R)-

4. Time-dependent frame, frame connection and derivative

A time-dependent frame on an n-dimensional linear space V consists of n
time-dependent C” (r > 1) basis vectors r; € C"(I,V), 1 =1,..., n, with I C R
a time interval. Let r := (ry,...,r,) € C7(/,FrmV) denote the corresponding
frame. Similarly to its constant counterpart, each such frame r € C"(/,FrmV)
induces the mappings k, € C"(1,Lbj(IR",V)) and 6, € C"(I,Lbj(V,R"™)) such
that
(4.1) keBe = kel 0 T = Lbj(V,V) |t 1y = k(D)B:(1)
and

42)  Ocke= ke 1 T— LOi(R™,RY) | &= Ign = Be()ke(1)

are constant maps, i.e., (k:6.)[/] = {1y} and (#.k,)[/] = {1g~}. Taking the time
derivative of either of these two last relations, we obtain

(4.3) 0c(ke) = — (80, )kr.

Introducing the time-dependent curve

(4.4) T := (6ko)8r = (6k)ht € €771, Lin(V, V),
we have

(4.5) bke = I'tky,

as well as

(4.6) (66;) = —6,T,
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from (4.3). Since 6r; = é(kee;) = T'ir; follows from (4.5) for i = 1,...,n, I';
represents a linear connection for the time-dependent frame r € C7(/,FrmV).
To show how this connection transforms under a change of frame, let W be a
linear space and Z € C"(/,Lbj(V,W)) a C" curve in Lbj(V,W); then Zr :=
(Zry,...,Zr,) € C"(I,FrmWV) is a time-dependent frame on W for all r €
C7(I,FrmV). In this case,

(@.7) kze = Zhi
holds according to (3.2);. Taking the time derivative of (4.7) we obtain
(4.8) 6kze = (8Z2)ky + Z(6ky).

Substituting (4.5) for r and Zr into (4.8), and using (4.7), we have
(4.9) Iz = (2)Z7' + 227",

The result (4.9) represents the transformation of the r-connection to the Zr-
connection, and has the same form as that for the Cartan connection (e.g., SPIVAK
[6], V.2, Ch.7-8]) of a “moving” frame.

On the basis of the connection and induced “parallel-transport” of a time-de-
pendent frame, a type of covariant (time) derivative of any time-dependent tensor
relative to a frame can be defined; such a derivative will be called a frame deriva-
tive in this paper. Logically, this derivative represents the time-rate of change
of the quantity in question relative to the correspondent frame. A mathematical
formulation of this derivative can be found in SVENDSEN [1, §7]. In particular, the
frame derivative of a time-dependent (z)) tensor p € C*(I,Lin,+,(V™? x V4, R))
with respect to the time-dependent franlw r is given by

(4.10) (T () P T— {73 T SO, DR ORI

—,u(I‘:ul, RN ST TR .,Vq)
+u(vy,. .. s W Vilnssis 45 FrVq)
(SVENDSEN [1, (4.24)]), where
(4.11) depr := K[6(Op)] = (Ko doOr}p

represents the frame derivative operator with respect to r, such that

4.12 b =Kp0bdoO, : i I,Lin,;, (V" x V7, [R)) —
pTq
C}"_l([,Lin,ﬁq(V”‘” x V1, [R)),
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and
(4.13) Orod =600,

such that ©.(6;p1) = 6(O.p) for all u € C*(1,Lin,4,(V** x V9,[R)). Note that a
time-dependent tensor u € (fk(l,Lianr,,(V"” x V1,[R)) is parallel-transported in
time by r (i.e., constant in time with respect to r) iff é,p vanishes.

As shown in detail in SVENDSEN [1, §8], the frame derivative operator &,
transforms tensorially under the “action” of any Z € C"(/,Lbj(W,U)) on any

time-dependent (Z) tensor o € C*(I, Lin,+,(WP x W*9 [R)) as defined in (2.5),

ie.,

(4.14) dze(tzp) = tz(6:p0).

Last result takes the operator form

(4.15) bzrotz =tzodéy = dze =tzob. 0ty 4,

which holds on the basis of (4.9) for all time-dependent frames r and all Z ¢
CT(I,Lbj(W,i{)). It is because of this property that frame derivatives are “ob-
jective”, meaning that they transform tensorially under the action of any Z €
C"™(I,Lbj(W,l{)), in fact in the same fashion as the corresponding tensors them-
selves, as shown in (4.14).

5. Frame derivatives for the Cauchy stress and hyperstress

The main goal of this section is to derive the frame derivatives for the hyper-
stress and some of its associated forms using the general result (4.10) for the frame

derivative of a (p) time-dependent tensor. To motivate the frame derivatives of
q

the hyperstress so obtained, it is useful to derive in parallel the corresponding
expressions for the frame derivatives of the Cauchy stress, which correspond to
well-known “objective” derivatives of T found in the literature (e.g.,, MARSDEN
and HUGHEs [8, §1.6]).

Let F represent three-dimensional Euclidean point space, V the correspond-
ing Euclidean vector space with metric G € Sym™ (V, V*) and compatible volume
form wg € Skws(V3, R), and B C F a reference configuration of some material
body in E. Further, let F: I — Lbj*(V,V) be the deformation gradient at a
material point with reference location b € B associated with a motion of the
material body relative to B during the time interval / C R, T: I — Lin(V,V)
the corresponding Cauchy stress tensor, and H : / — Lin(V, Lin(V, V)) the corre-
sponding hyperstress tensor (see, e.g., TRUESDELL and NoLL [2, §98]), which are
defined as follows. For any two tangent vectors u,v € V (i.e., “line elements”)

http://rcin.org.pl
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in the reference configuration B at b € B, nda := (Fu) x (Fv) = G™' (tpruwG)
represents the deformed area element (see (3.7)) with unit normal n. In terms of
this area element, the standard spatial contact force element takes the form

(5.1) Tnda = T[(Fu) x (Ev)] = (TG~ (trviFuws),

in which apnears an associated form TG~! : T — Lin(V*,V) of T. Analogously,
the quantity

(5.2) Hnda = H[(Fu) x (Fv)] = (HG™)pvirews)

represents a spatial contact force moment element, where HG™! : [ — Lin(V*,
Lin(V, V)) represents an associated form of H. In total, T possesses three asso-
ciated forms (i.e., 2! + 1: TG™!, GT and GTG™'), and H - seven forms (i.e,
3! + 1). In this work, attention is confined to the two most common associated
forms of each tensor; frame derivatives for the other forms can easily be obtained
using the approach presented in this paper.

Analogously to the associated form TG™!' : I — Lin(V*,V) of the Cauchy
stress, we have the associated form Hg-1 : 1 — Lin(V*, Lin(V*, V)) of the gener-
alized moment of momentum flux, defined by

(5.3) (Hg-1vo)vy := (HG'w2)(G'vy)

for all vy,v, € V*. In a similar fashion, the associated form Hg : I — Lin(V,
Lin(V, V*)) of H, defined by

(5.4) (Hova)vi := G((Hv2)v1)

for all v;,v2 € V, is analogous to the associated form GT : [ — Lin(V, V")
of the Cauchy stress. The results to be obtained in what follows for the frame
derivative of H and its associated forms apply as well to the “symmetric” and
“skew-symmetric” parts of H, i.e., symH : I — Lin(V,Sym(V,V))and skwH : I —
Lin(V, Skw(V, V)), respectively, defined by (symH)v := sym(Hv) and (skwH)v :=
skw(Hv) for all v € V. Note that M := skwH is usually referred to as the
couple-stress (e.g., TRUESDELL and NoLL [2, §98]).

Now, since Lin(V", V) & Liny(V*2,R), TG™! can be naturally identified with

2
a (6) tensor og-1 : I — Lina(V*2, R) defined by
(5.5) og-1(V1,v2) 1= Yre-Yyw,V1 = VI(TG—1v2)

for all vy, v, € V*; likewise, the identification Lin(V*, Lin(V*,V)) = Liny(V"2,V)
= Linz(V*3, R) implies that Hg—1 can be identified with a (3

0) tensor hg-1: I —
Liny(V*3, R) via

(5.6) hg-1(V1,V2,V3) 1= g _payV1 += Vi((Hg-iV3)v2)

http://rcin.org.pl
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for all vi,vp,v3 € V*. In a similar fashion, Lin(V,V) = Liny(V* x V,[R) and
Lin(V,Lin(V,V)) = Liny(V2, V) = Lin3(V* x V2,[R) imply the existence of the
1

. 1 ;
) tensor o : I — Lina(V* x V, [R) and (2> tensor h : I — Ling(V* x V2 [R),

reipectively, defined by

(5.7) a(v,v) = iy = v(Ty)

and

(5-8) h(v,v1,v2) 1= yy,)v ¥ = V((Hv2)v1),

respectively, for all v € V= and vy, v, € V. Lastly, Lin(V, V*) = Lin,(V2, [R) and
Lin(V,Lin(V,V*)) = Liny(V2,V*) 2 Lin3(V?, [R) imply the existence of the (g)

tensor og : I — Liny(V?,[R) and (O) tensor hg : I — Lin3(V3, R), defined by

3
(5.9) ac(vi,v2) := ((GTHvy)vy = (Tva) - vy
and
(5.10) ha(vi,v2,v3) := ((Havs)va)vi = ((Hv3)va) - vy,

respectively, for all vy, vy, v3 € V.
Let r : I — FrmV be any differentiable time-dependent frame. From the
general result (4.10), we have then

(brog-1)(W1, V) = (bog1)(V1,v2) — g1 (TLvi,v2) — oG- (v1, Tivy),
(5.11) (bea)(v,v) = (bo)(v,v) — o(I'[v,v) + o(v,T'v),
(beoc)(Vi,v2) = (60G)(vi,v2) + 0G(Tvi.va) + ag(vy, T'evy),

for the frame derivatives of the Cauchy stress and its two associated forms, as
well as those

(Ochg-1)W1.v2,v3) = (bhg-1)(V1.V2.V3) = hg (TTvy,v,,1v3)
—hg-1(vy, Tiva,v3) = hgoi(vy, vy, Tivs),
(5.12) (80w, v1.v2) = (6R)(V.v1,v2) — ATV, vy, v2)
+h(w,Levy,va) + h(v, vy, Teva),
(6rhG)(v1,v2,v3) = (6hG)(v1, V2, v3) + hG(Lrvi, v, v3)
+ha(vi, Leva, v3) + hg(vi.vo, Trvy),

for the hyperstress and its associated forms. Using the relations (5.5), (5.7) and
(5.9) between o1 and (TG™!), ¢ and T, and o and (GT), respectively, the
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frame derivatives (5.11) can be written in terms of these latter tensors, ie.,

§(TG™!) = (TG 1) - T (TG ) — (TG~ HI'},
(5.13) 6T = 6T - ['.T + TT,,
8:(GT) = &(GT) + I';(GT) + (GT)I',.

Likewise, using the relations (5.6), (5.8) and (5.10) between -1 and Hg-1, h
and H, and h¢ and Hg, respectively, (5.12) yields

6|-HG—1 - 5HG—-I = FrHle = (Hz;——lI‘;)S = HG—II\:,

(5.14) §:H = 61 — T';H + (H°T,)* + HI',,
§:Hg = 6Hg + TiHg + (HETY)® + Hely,

where the operation S is defined in (2.2). To transform (5.13); 3 into their stan-
dard forms, i.e., their forms found commonly in the literature, we require the

v A
time-dependent tensors T,: / — Lin(V,V) and T,: T — Lin(V,V) defined by

. v . - i
(5.15) Te= 6(TG )G and Te:= G 6:(GT),

respectively, representing such associated forms of the tensors 6,(TG™') and
6:(GT), respectively. From (5.15); 2 and (5.13); 3, we obtain then

v o

, T, = 6T- ' T-TIT,
(5.16) .

Te = 6T+ 7T + TT,

using (2.9). The analogous forms of (5.14), 5 for the hyperstress are obtained by

A v
means of the time-dependent tensors H,: / — Lin(V,Lin(V,V)) and H,: [ —
Lin(V, Lin(V, V)), defined as the associated forms

(ar Vg)\'l : ((5,HG_|)(GVZ))(GVI),

(5.17) )
(He v2)vi := G '((6:HG)v2)vi,

for all vi,vo € V, of é:He-1 and 6. Hg, respectively. Substitution of (5.17); 2 into
(5.14), 3 yields the expressions

v T T
He = 6H — T H — (H°TTy — WY,
(5.18)

AN T
He = 6H + TTH + (H'T,)® + HI',,

http://rcin.org.pl
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for ﬁr and ﬁr, respectively, via (2.9), (5.3) and ( 5.4). Again, note that the above
results (5.14) and (5.18) for the frame derivatives of H and its associated forms
apply immediately to the couple stress M := skwH, as well as to symH.

As is clear from the above resuits, the frame derivative and the formation of
associated tensors do not in general commute, i.e., the form of the frame derivative
is dependent on the particular associated tensor in question (see also MARSDEN
and HucHes [8, Ch. 1, Box 1.6]). In fact, it turns out that these two operation
do commute iff the frame derivative of G with respect to the frame in question
vanishes. To show this, consider for example 6,.(GT); since ¢, obeys Leibniz’s rule,
we have

(5.19) 8:(GT) = (6:G)T + G(6,T),

where 6, T is given by (5.13),. Clearly, then, 6.(GT) = G(4,T) iff 4G vanishes.
Now, since G € Sym™ (V, V"), ;G has the same form as 6.(GT) given in (5.13)s,
ies

(5.20) 6G =T:G + GI'; = G(I'T + T',) = 2Gsym(T',).

Using (2.9), with éG vanishes since G is constant. The last result implies that §,G
vanishes iff the frame connection T', is skew-symmetric.

To obtain component forms of the above frame derivatives, we introduce an
arbitrary frame b € FrmV of V and its dual frame B € FrmV*, ie, B'b; = 6! for
1,7 =1,2,3. Then

[G]i] = (GbJ)b1 = b;‘ . b_]',

(5.21) ! o |
[G1]Y we-1)B = B(GT'R),

represent the (i, j)-components of G and its inverse G~! relative to b € FrmV
and 3 € FrmV~; likewise
[T]'; := o(®'b,) = m, B,
(5.22) [TGT']Y := 06-1(B8",B) = t16-15B" = [TT'w[G7']™,
[GT],'J’ = (T(;(b,‘, bj) = (GTbJ')bi = [G],‘,n[T]m_i.

represent the (¢, j)-component of the stress and its two associated forms, and

[HI'k 2= A3, by, bi) = 1hi,n,B',
(5-23) [HG*']”’C : h‘G-l(B1~BJ'Bk) = '(Hc—l,-f’}")ﬁlﬁl = [H]Imn[G_l]m][c_l]nka
[Hclijk := hg(bi,bj,bi) = (Hebi)b))b; = [G]in[H]™ jk.
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the (i, 7, k)-component of the hyperstress and its two associated forms, in each
case with respect to b € FrmV and @ € FrmV*. Note also that [H°]' ;. = [H]'s;.
Lastly,

(5.24) [Te]; := 1r,B' = PB'(T:b))

represent the (i, j)-component of the frame connection I'; relative to b € FrmV
and B € FrmV*, and

(5.25) [T77; =[G ™) mlGle; =[G [Telm *[Glks
those of I‘rT. With these, we obtain

[6:(TG™1]Y = [6(TG™H]Y — [T ) n[TCT')™ — [TGT'T™[Telm?,
(5.26) [6:TT; = [6T); — [Tel mlTI™; + [TFmTI™;,
[6:(GT)]i; = [6(GT)];; + [T )" [GT]m; + [GTLn[T'F]™ 5,

for the component forms of (5.13),

[6:Hg-1]7* = [§Hg-1]7* = [Te]' m[Hg-11™F = [Hg-1] ™ [Tl
—[Hg-1]"[Te)m",
(5.27) [6:H) 5k = [6H] 5 — [Tl m[HT™ ke + [H] ik [Te]™; + [HY jm [Tl ™,
[6:HGlijx = [6HG)ijk + [Teli" [HGlmsx + [Helimk[Te]™;
""[H(;]ijm[rr]mky

for the component forms of (5.14). Likewise,

k tj - [ rr zm mj _ lm I\Z mj‘
(5.28) [T:] [6T]'; = [I'e]'m[T] [TI'm[I¢ ]

[T)'; = [6T); + DT L lT)"; + [T (D™,

hold for the component forms of (5.16), and

B lj. = [éH IJ'.— r'.J..[H ™k — [H) mk I‘g mJ' — zim Frr i
(5.29) [Hel'jk = [6H] jk = [Lel'm[H]™ ik = [H] k[T ] [H] jm [T 1™

A : : . _
[Hel'je = [8H] 6 + D7 T [H] 55 + [H] k[T + [HY [ Te) ™
for those of (5.18). Of course, the component forms (5.27) and (5.29) for various

frame derivatives of H apply immediately to the couple stress M := skwH, as well
as to symH.
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6. Special frame derivatives for the Cauchy stress and hyperstress

To obtain familiar special cases of the above general objective frame deriva-
tives, let b € Frm) be any frame at b € 13 in the reference configuration B C I
of the material body. Now, since b € FrmV is time-independent, I'}, vanishes (see
(4.4)). In this case, (4.9) yields

(6]) FZb = AZ
for any differentiable Z : [ — Lbj(V, V), where
(6.2) Az:= (8Z)Z7': I — Lin(V,V)

represents the rate of change of Z: 1 — Lbj(V, V) relative to itself. Clearly, (6.1)
depends only on Z : [ — Lbj(V, V), and not on b € FrmV, a result due mainly
to the fact that the reference configuration B is time-independent. Consequently,
(6.1) holds for all b € FrmV. We have the following common special cases of Z
and associated connections:

Table 1. Particular connections.

A =0 : [ — {0} material

Agr = (R)R™! : [ — Skw(V,V) Green-Maclnnis - Dienes
Af = (6F)F-1 : [ —Lin(V,V) Oldroyd

Ap = (6P)P-1 : [ — Skw(V,V) Zaremba-Jaumann

where F = RU, Ag = L s, as usual, the velocity gradient, and Ap := W := skw(L)
— the vorticity.
Turning next to the frame derivative operator, (4.12) implies

(6.3) by =KpoboOyp=KpoOpob =20
for all b € FrmV; consequently, (4.15), takes the form
(6.4) bgp =tz obpoty 1 =tzodot, | =: iz,

a result that, like (6.1), is clearly independent of b € FrmV. As for the frame
derivatives of the Cauchy stress and hyperstress tensors in the standard forms
(5.16) and (5.18), respectively, we have

v T
Ty = 6T — AzT — TAZ §

A
Tzp

(6.5)
5T+ ALT + TAZ,
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and
Vv -~ . T T
Hzpb = 6H — AzH — (H°Az)’ — HAZ |
(6.6) .
Hzp = 6H + ALH + (H°AZz)® + HAZ,

for all b € FrmV from (5.16) and (5.18), respectively, using (6.2). Again, we
emphasize that the results (6.6) also hold for M := skwH and symH.

Lastly, note that the frame derivative (5.20) of the Euclidean metric G, to-
gether with Table 1 and (6.4), imply

(6.7) 6rG = 2Gsym(L) = 2GD
for the Oldroyd derivative G, as well as
(6.8) orG = 0 = 6pG

for the Green -Maclnnis-Dienes and Zaremba - Jaumann frame derivatives of
the Euclidean metric G. Consequently, as discussed in the last section in the
context of (5.19) and (5.20), é¢ does not commute with the formation of associ-

A v
ated tensors, while ég and ép do. In particular, this latter fact implies Trp =Trb,

A v A v A v
Teb=Tprb, Hrb=HRrp and Hpp,=Hpp for all b € FrmV.
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Two multispeed discrete Boltzmann models
including multiple collisions
I. Similarity solutions

H. CORNILLE (GIF-SUR-YVETTE) and
T. PEATKOWSKI (WARSZAWA)

WE PRESENT a formalism for the determination of exact similarity shock waves solutions for two
discrete Boltzmann models (DBMs), when, in addition to binary collisions, multiple collisions are
included. For the first time exact solutions corresponding to multiple collisions including quaternary
collisions are constructed. We consider the simplest multispeed models with two speeds 1,v/2 and
without spurious macroscopic conservation laws, for which exact solutions are known only for
binary collisions: (i) the square eight velocity (8v;) model on a plane, with the spatial coordinate
along a median of the square, (ii) a three-dimensional fourteen velocity (14v,) model. From the
numerical solutions we observe, in addition, overshoots for the microscopic densities.

1. Introduction

THE DISCRETE Boltzmann models [1] (DBMs) with the multiple collisions became
recently a popular domain of research [1-3]. Concerning the exact solutions, only
a few models with ternary collisions [4] have been studied. Multiple collisions for
DBMs can be introduced in order to eliminate spurious macroscopic conservation
laws present at the binary level. In this paper we choose models without spurious
macroscopic conservation laws, for which the equilibrium states for the models
without the multiple collisions are the same as the equilibrium states for the
models with the multiple collisions included. For these models we generalize
the construction of the exact solutions when higher than ternary collisions are
included, and compare the results with general numerical solutions.

We construct a class of similarity shock waves solutions of two multispeed [5-6]
DBMs which include binary, ternary and fourth order collisions, and compare
the respective shock profiles. Recently [6] hierarchies of multispeed DBMs with
binary collisions alone, have been classified following the (1 + 1)-dimensional
restriction of their multidimensional PDE satisfied by the microscopic densities.
For a hierarchy of models, the nonlinear evolution equations of the planar and
of the three-dimensional models are the same, except for a factor which depends
on the dimension of the space. Here we study such a hierarchy of models with two
speeds 1,+/2 and for which rest particles could be added, differing only by coefficients
which depend on the spatial d dimension, but with multiple collisions included. The
first model [5] is the square d = 2 (d-dimension of the space) 8v; model (cf.
Fig. 1a). The second model [6] is a three-dimensional (d = 3) 14v; model (cf.
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Fig. 1a) which can be interpreted as a superposition of two square models in
both the z; = 2,2, and 2; = z,z3 planes, with two common velocities along
the z-axis. For the = = 2 direction of the shock propagation for these models,
there remain five independent densities (cf. Sec. 1): Ny, My, R, M,, N,.

The evolution equations for these densities, with multiple collisions taken
into account, are discussed in Sec.1, where we also classify all the types of the
considered multiple collisions, and discuss different structures of the collision
operators.

In Sec.3, in order to construct exact shock waves solutions, we determine
the asymptotic states using the Rankine - Hugoniot (R-H) relations. It is impor-
tant that for multiple collision terms which contain the binary ones, multiplied
by density-dependent factors, the asymptotic states are the same as the binary
ones. We recall the general solutions and simple analytical solutions of the R-H
relations when only binary collisions occur [7].

In Sec. 4 we present a formalism for the determination of a class of exact similar-
ity shock wave solutions which are functions of the variable w = ", n =z — (L.

a o, R N, i
/ d=2 8y AN AL
- d
\ // >//\—- // // L 2
M, ki / i X=X, // \\\\ ,/// 1
i N i | -~ ; o=
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c) R

e A
o= Y= |,
(— 1= ==

A A

—N\ ¥Q%%Rﬁ
Jsy )

binary , ternary ,quaternary and fifth-order collisions

FI1G. 1. a) d = 2 and d = 3 modcls, b) binary, ternary and quaternary collisions, ¢) 8v,, r-axis
along the diagonal.

To explain the method let us note, that the nonlinear equations in (2.1)-(2.5) of
Sec.2 have the following general structure: they contain a first order linear dif-
ferential term, and nonlinear terms of the p-th order: p = 2 for binary collisions,
p = 3 if ternary collisions are included or p = 4,5,... with higher order terms.
We consider an ansatz of the type: N;, M;, R = const; +consty/ D7, D = 1+ e,
The possible values of ¢ are found from the balance between the linear term
and the highest nonlinearity, which means D~-*D) = D=1 or ¢ = 1/(p - 1):
q=1,1/2,1/3,1/4, ... for p = 2,3,4,5,.... In fact, the linear differential term
contains two terms: D~/ #=1_ p-r/(e=1) while the nonlinearities contain other
terms: D=7/(P=1) » =23 ...p—1, p> 2 giving p — 2 relations. For similarity

solutions (n = z — (t) we choose the ansatz:
N; =ng +n; D719, M; = mg; + m; D71, 1= 1,2,
R=rqg+rD™9, D=1+e",

(1.1)
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where the highest monomial nonlinear term is of order p and ng;, n;, mq;, 7 = 1,2,
ro, 7Y, ¢ are real parameters. Noticing that ng;, mo,. rg and ng, +n;, mo;+m;. rg+7r
are the two equilibrium states (when || = oo), their determination is known from
the Sec. 3 study. However, the nonlinear (2.2), (2.3) equations give new relations
which must be satisfied by v and the cross-sections, the parameters not present
in the R-H relations. These relations imply that some of the cross-sections are
not arbitrary parameters, however we construct classes of solutions where all the
cross-sections are positive. We construct different classes of solutions depending
on whether we assume that p = 2, 3, 4, or we require that for multiple colli-
sions cross-sections equal to zero, these solutions reduce to the binary ones. We
observe that the addition of multiple collisions decreuses the width of the shock.
The exact solutions (1.1) are not the most general similarity solutions of the
shock problem for (2.1)-(2.5). It is worthwhile to recall [7], that for exact sol-
utions of DBMs with only binary collisions, other solutions than (1.1), coming
from Riccati-coupled equations, exist. For DBMs with multiple collisions (i.e.
with higher than quadratic nonlinearities) it is not clear that other exact solutions
exist. At least for the simplest ternary case, up to now, no other exact similarity
solutions have been found. Consequently, for the known exact shock wave solutions
associated with multiple collisions, the microscopic densities are monotonic.

In Sec.5 we present numerical results for the shock problem and, in order
to see the possible differences, compare with the results obtained by applying
the Runge - Kutta’s IVth order procedure. Contrary to the exact solutions, all the
cross-sections are free parameters, and we obtain nonmonotonic profiles of M;, i =
1, 2 densities.

In Sec. 6 we discuss the results and some generalizations. We show that the
present results could be extended to other multispeed models — we give partial
results (in particular for the factors of the binary collision terms when multiple
collisions are included) for both the Cabannes [8] model and the plane 8v; model
with the z-axis along a diagonal of the square.

2. Description of the models and of the multiple collisions

The first model [5] is the square 8v; model (cf. Fig.1a). We look for one-
dimensional shock solutions with the direction of propagation along the z-axis,
which we choose along a median of the square. From the symmetry considerations
there remain five independent densities Ny, My, R, M, N5, associated with the the
following velocities in the plane (z; = z, z;):

Ny: (L, £1), Ny: (=1,41), M;: (1,0), My: (=1,0), R: (0,+1).

The second model [6] is a 14v; model, d = 3, which in the (z; = 2,27, 73)
three-dimensional space can be treated as a superposition of two square models
in the z1,z, and z;, x3 planes with two common velocities along the z;-axis (cf.
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Fig. 1a). For the © = x; one-dimensional projection of this modei we have the
same five independent densities associated with the following velocities in the

space:
My o(1,41,0), (1,0, 1), Noa: (=1,41,0),(=1,0,£1),
M;: (1,0,0), AM,: (-1,0,0), R: (0,%1,0),(0,0,%1),
with the same velocity projections of Ny, My, R, My, N, on the z-axis, as for the
first model, i.e 1,1,0,-1, —1.
For both models these five densities satisfy three linear relations equivalent to
the mass, momentum and energy conservation laws (py := d; £ 9., d. := 2(d—1))

p+ Ny +p_Np, =0, peM; +p_My+d. R, =0,

(2.1)
peMy —p_My+2d.py Ny =0,

and two non-linear equations (cf. Fig. 1b)

(22) p+Ni=Qup+Qup+ Qi+ Q1y, IR =Q2p+ Q2+ Q2 + Qay,

where the operators on the rhs of (2.2) correspond, respectively, to binary colli-
sions, (Fig. 1b A, B), pseudotriple collisions (i.e. the collisions in which one par-
ticle is in the same state before and after the collision), ternary (Fig 1b-C, D, E)
and quaternary (Fig. 1b F, G, H, |, J, K, L) collisions. We define N = N| + N,
M35 = My + M, and get for the binary collisions:

Ql,b = —UB)QI, Ql = Ny M, — NoM,,

(2.3)
Q25 = a9Q,, Q, = M;M, — R2.

For the pseudotriple: (), ,, = (7[, MQ], Q2 = ag)MQz. For the triple colli-
sions

Qi = —Q1(0cR +oppMy) + apeQaNp,
Q2 = 2ope + 0E)Q2Nh — 20ppQ1 M,

with epg = op + op, and the mass M = M, + M, + d.(R + Ny + N3). For the
quaternary collisions:

(2.4)

(2 5)Q1'q = _Ql [()‘_”s(;Ul."Vg + /Ule) + O’(;R.f\"f; + (T]‘.NlNz] + oKQng*szg,
Q2,q = (7 [(TH NNy + (71(]”1 M, + Rz) + 20’[\'(1’\"12)2] — 2(71\'01;’\7]5/‘[1_2.
In the above formulas a( )i = 1,2 are the cross-sections for binary collisions,
oc,0p, OF are proportlonal to the transition probabilities (for brevity they will
be also called cross-sections) for the ternary collisions C, D, E of Fig.1b, and
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or,.r correspond to the quaternary Fig. 1b collisions, oy = o, + op. In the
collision terms, each drawing of Fig. 1b corresponds to all collisions obtained by
applying the transformations of the square symmetry group. In these collisions,
called spectatorless collisions, the particles present in the loss term are missing
in the gain term.

Using the conservation laws, the nonlinear equations for 2, Ny can be replaced
by two equations for other pairs of densities. Below we discuss two important
structures of the nonlinear equations associated with the different pairs of the
densities.

1. Firstly, there can be only one binary collision term associated with each
of the nonlinear equation (@ for Ny and (), for /t in (2.2)). In each equation
two classes of multiple collision terms can occur. For the first class, each multiple
term is a product of the binary term present in the equation, and a positive factor,
depending on some of the microscopic densities. For the second class the multiple
collision terms have as a factor another binary term, not present for that density.
In the latter case the remaining factors are not necessarily positive.

To see the above properties for p. Ny, &, IR, we rewrite the (2.2)-(2.5) nonlin-
ear equations containing linearly the binary (-Q for p4+ Ny, Q3 for 9, R) collision
terms:

p+N1 = —-Q [”g) . -'lzz] + (242,
(2.6)
s — (1) _ :
IR =0 [(TB + ;l”] Q]:l]g.

with the coefficients defined in the table below.

2. Secondly, if we take as the nonlinear equations those which describe evol-
ution of M, M3, then both binary collision terms ), (), are present in each
equation. A natural question is whether for the multiple collision terms the two
corresponding factors (instead of one for py Ny or 9, ?) are also nonnegative?
To see this, we write, taking into account the linear (2.1) relations, the nonlinear
equations for py My, p_M:

piMijd, = —Q1 [a(ﬁ” + 213,+] /2+Q Hg) + RH] ,
2]311 = ’11] 3 2{121 )

—(22 [US) + 2”[,] /2 — Q] [(ng) + Bz_] s
Ay £ /112/2.

(2.7)

I

p-M,/d.
By

In the table we present for ternary and quaternary collisions the relevant terms
for both structures for the plane 8v; model. Omitting for brevity the multi-
plicative multipliers proportional to the transition probabilities, and defining
Qnym = MiN, + MpNy, we get from the collisions associated with Fig. 1b —
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C...L the following contributions to A;;, Bi¢:

Q An A A An Biy By
Qc 0 0 0 R 0 R
Qp 2N M, NG Mg 2N, 2B,
Qs ANG 2M; NG My 3N+ N, 2M,
QF 0 0 0 QnMm 0 QNM
Qa 0 0 0 RN 0 RN
Qu NN, 0 0 0 NN, 0
Qr MM, + R? 0 0 0 MM+ R* 0
Qs 0 0 0 Qnm 0 QNM
Qk 2N 2MGNG NLN, MENS  2NiNG  2MoNG
O 0 0 0 NN, 0 NN,

We verify A;; > 0, ¢+ = 1,2 while the terms A;; = 0 for Ny = Ny, My = M,
1 # j. Note that for the present collisions 3,4, ¢ = 1,2 are nonnegative, and
the transform N; «—— Ny, M; —— M, imply B,y —— B;_, so that B;_ are
also nonnegative. More precisely, for the collisions C', F, G, 1, 1,.J, L with B;4
terms invariant under this transform we find B;_ = B;,, while for D, I/, k" we
get with the above transform respectively: 2, = 2N,,3N, + Ny, 2NN and
By = 2M,,2M,, 2M, N . However, in the joint paper [11] we introduce fifth
order collision terms and we notice a difference with the present ones. We still
find Ay > 0, and A;; = 0 for Ny = Na, My = M. On the contrary, the B,y are
not always both nonnegative, however at least one of them is nonnegative. The above
factorization and nonnegativity properties will be crucial for the study of stability.

The study of stability, using the Whitham approach, of the asymptotic states
will be done in the joint paper [11]. Sufficient conditions for the decrease of the
shock thickness will be given in Sec.3 for the exact solutions. However for both
studies, an important tool will be provided mainly by the positivity of the A;;
and particular properties of the A;;, factors of the binary collision terms ;. It
sems worthwhile, at this stage, to give a brief account of these properties which
will be developed in the joint paper. Let us define (mg; > 0,ng; > 0,79 > 0) -
the asymptotic densities of an asymptotic state (M;, N;, ) and call ,T,-J-, Biy the
corresponding asymptotic values for the A;;, B;x. From the table we find:
Ay > 0, mo1 Ay = Apng /2, (no1 — ng2) Az > 0,
(2.8) N B N 1 .

moy B4+ + ngp BZi >0, Ay Ay — Ay Ap 2 0,

(29) /TZI = (7?01 — ‘nog)(n'[)b‘ + (7101 + 7102)()‘]\').
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We have found that the properties (2.8) are still valid when all fifth order collisions
are included, and for a partial study — of the six order collision terms. On the
contrary, (2.9) is peculiar to the ternary and quaternary collisions. For higher
order collisions we still find the term ng — ngy (or mgy — mgy = moy(ngy —
no2)/no1), but in the second positive factor we must add other fifth (or higher)
order cross-sections. Coming back to the nonlincar (2.6) equations, these .l-j
terms, factors of the binary collision terms not present at the binary level (i.e.
if only binary collisions occur), vanish for ng; = gy (which implies mg; = mgy
or uniform solutions at the asymptotic state) or are small if ocp ~ 0, o ~ 0.
In such cases the factors of the binary terms present at the binary level are
equal to ag) for the binary collisions and approximated by ag) + Ay > Uf.;) in
the multiple collision case. The comparison between binary and such multiple
collisions will provide sufficient conditions for the stability of the asymptotic state
and the decrease of the shock thickness.

We conjecture that the results (2.8) hold for any p-th order multiple collisions.

Below we prove for the planar d = 2 model that there exist no other ternary
and quaternary spectatorless collisions, satisfying microscopic conservation laws, than
those shown in Fig. 1b. More in details, we determine for the d = 2 model all
the collisions satisfying 1) spectatorlessness (i.e. all the particles change their
velocities in the collision), 2) microscopic energy conservation 3 v? = 3 v/2,
3) momentum conservation v = Y v; = v = 3 v/ where primes denote the
relevant values, e.g. after collision.

In the following we say that the collisions satisfying 1), 2), 3) are possible.

Let the symbols [1],[2] denote the particles associated with the speeds re-
spectively 1,v/2. We prove that for ternary collisions only [1] + [1] + [2] = idem
are possible, and for quaternary collisions only [1] + [1] + [1] + |2] = idem, are
possible.

Remark. ERnst [9] has recently emphasized the existence of spurious micro-
scopic conservation laws for the multispeed DBMs without rest particles. For the
present models it means the following. Let a;, ay and a}, a5 denote the number
of loss and gain particles associated with [1],[2]. From conservation of mass and
energy we get: a; + ap = aj + a3, a; + 2ax = a} + 2a5, deduce a; = a}, ay = a4
and the number of slow and fast particles is conserved separately.

LemMA 1. For ternary collisions only [1] + [1] + [2] — idem, is possible (i.e.
satisfies 1), 2), 3)). For quaternary collisions only [1] + [1] + [1] + [2] — idem, is
not possible.

P r o o f. For ternary collisions the four possible types of collisions are
[1]+[1]+[1] = idem, [1]+[1]+[2] = idem, [1]+[2] +[2] = idem, [2] +[2]+[2] =
idem. We also note that in the square 8v; model there are only four different
velocity vectors v; of the [1] type, and four of the [2] type.

Firstly, we prove that the first and the last type of ternary collisions is not
possible.
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o If vi # vy # v3 # vy, then it follows from 1) that all the postcollisional
particles have the same velocity v}, therefore 3) is violated.

¢ For v; = v, # vj3 there are two cases: either v; + v3 = 0, or v; L v3. In the
former case 1) implies that v = v; L v/, which contradicts 3). In the latter case 1)
implies that for each : either v\ = —v), or v, = —vs3, which again contradicts 3).

o Finally, if v{ = v5 = v3, then v = 3v; = v/, which contradicts 1).

Secondly, we prove that the third type with two particles [2], with pre- and
postcollisional velocities, respectively, v, v/, ¢ = 1,2, and one particle [1], with
the velocities v3, v5 is not possible. There are three cases.

Casel. vi+va =0

Then either v| + v, = 0, which implies v; = v4 in contradiction with 1), or
v = v5, which implies v = v3 # 2v{ + v = v/, which contradict 3).

Case Il. v; +v, # 0, and vy # v,

Then either v| + v, = 0 [excluded by the constraint 1)], or vj + v5 # 0. The
latter inequality implies v; + v, + v| + v, = 0, but then 3) would imply v = v/,
i.e. 1) would be violated.

Case IIl. v; =w;

In this case, from above only v| = v} is possible. Adding v3 and v} with speeds
1 we again find that v = v’ is not possible.

Thus, there remains only one type of ternary collisions: [1]+[1] +[2] — idem.
For the restriction along the = = z; axis, the three possible subtypes of ternary
[1] + [1] + [2] — idem collisions are presented in Fig. 1b-C-D-E, where each
diagram represents all the collisions obtained by applying all the symmetries of

the square d = 2 model. As illustration, we write down the collision terms for N,
and R:

(2.10) Ny : Q(jr = R(/Wz/\ﬁ = /\/.[1_N2),
Qp = (MINy = N R?) + (R?N, - M3Ny), Qg =Qp;

(211) R: Q¢ =0, Qp = 2(MZNy— R*Ny) + 2(N1 M} — R*Ny),
Qp = Qp + 2(N;M; M; — RXNy) + 2(No My My — R2N,).

ReMARK. We notice that the absence of the [2] + [2] + [1] = idem type of
collisions is peculiar to the square model. For the cubic CABANNES [8] model
discussed later on, with speeds 1, v/3, and the symbols respectively [1], [3], the
collisions [3] + [3] + [1] = idem are possible (i.e. satisfy 1), 2), 3)).

For the quaternary collisions we show that [1] + [1] + [1] + [2] — idem is not
possible. The collisions [2] + [2] + [2] + [2] = idem give zero contribution to the
collision operators when the z-axis is chosen along the median. All other types
of the quaternary collisions are presented in Fig. 1b.
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Let v;, vl i = 1,2, 3, be the [1] velocities.

e First if vi # vy # v3 # vy, then their sum is v;, while v/ has multiplicity
three and the sum is —3v;. Adding vy, v} gives v # V',

e Second v; = v, = —v3 with a sum v; while the sum of the three v/ is either v
or 3v; perpendicular to v; (we take into account spectatorless collisions). Adding
in both cases vy, v} associated with [2] we necessarily find v # v'.

e Third vi = v # —v;. For one of the two z;, 2 coordinates, the difference
between the values of 373 v;, 373 v/ has modulus 3. Adding va, v, belonging to [2],
the modulus of this difference is at least 1 and v # v'. ¢

REMARK. Other collisions can occur, for instance the pseudotriple, of»i),
¢ = 1,2, not shown in Fig. 1b, with one particle spectator in both loss and gain
terms. . . The multiple collisions can be divided in two other subclasses: one where
two (or more) particles with the same velocities can collide, cf. Fig. 1b-D-E-F-G-I-
J-K-L, and the other, Fig. 1b-C-H, with only one particle in each direction.

3. Rankine - Hugoniot relations, asymptotic states, shock inequalities

The R-H relations [1, 7] are the three conservation laws for asymptotic values
at Foo of the densities functions of a similarity variable 7. These asymptotic
values satisfy relations coming from vanishing of the collision terms at Foc.

We assume that the densities are functions of a similarity variable 5 = 2 — (t
and define for R, N;, M;, 1 = 1,2 two asymptotic states when || = oc:

opy O G
. (ii) : (s; = ng; + ny, pi = mo; + my, rog =1+ 1), i=1,2.

We get for n;, m;, r, from the linear (2.1) relations (= := 2(1 — ¢)/d.():
na/ny =y =(1-/(1+), ymy = ma + 2ry/z,
(3.2)
my + 2d.ny + my/y = 0.

The two collision terms (3, ()1 in (2.2) vanish for the (i) and (ii) states, therefore:
(3.3)1 no1moz = ngamor, moimez = 1§, s1p2 = $2p1, pip2 = 1.

Only n;, m;, r enter Eq.(3.2), so that in order to solve (3.2), (3.3); it is conveni-
ent to introduce new parameters ay;, by;,. These parameters are products of the
densities ng;, n;, mo;, m;, ro, r and we can rewrite the two last (3.3); relations
taking into account the two first:

ag; + bg; = 0, i=1,2,
(33)2 apy = ngymp + moany — N2y — mony, 1)01 = nymg — namy,
agp := mgoyma + mgamy — 27‘07‘, 602 =mypmsy — 7'2.



Two MULTISPEED DISCRETE BOLTZMANN MODELS... PART | 695

The multiple collision terms @;;, Q;, written down in (2.4)-(2.5), containing lin-
early 1, @2, vanish for the (i), (ii) states. We determine the general solution
of (3.2)-(3.3), (Appendix A), with the relations ay; + bg; = 0. Thus, the asymp-
totic (i), (ii) states are determined from one scaling parameter, two arbitrary
parameters of one asymptotic staie, and from the propagation speed (:

34) ng =1, mqp > 0 arbitrary, ng2 > U arbitrary, Il < 1.

In Appendix A we give the analytical proof of positivity of the asymptotic states with
well-defined conditions, for brevity only for two cases: either at the (ii) state only
p2 # 0 with one arbitrary parameter, or both s; # 0, po # 0 with two arbitrary
parameters.

In order to know whether the (i) or the (ii) state is the upstream or downstream

state, we apply the Lax [10] admissibility criterion: let gi’)\) be the characteristic

speeds associated with the state at 7 = +oo, then for some index j = 1,2,3
the following inequality holds: ¢¥) < ¢ < g(_’l The supersonic and subsonic
inequalities are independent of the values of the cross-sections of all collision terms
and depend only on the values of the equilibrium states. To the two states (i) and (ii)
we associate the characteristic velocities ((;y. ((;;). the stream velocities Vo Uiy
which are asymptotic values of the stream velocity U: M = My + M, + d.(R +
Ny + Na), UM = M, — My + d.(Ny — N2), the shock velocities V(;) = ¢ — Uy,
Viiiy = (—Ugiy, and the sound-wave velocities W,y = = Upy, Wiy = Ciy—Ulii)-
For the shock inequalities we have to verify |IW| < [V| (or >) at the upstream (or
downstream) state. In all numerical examples presented later on we have verified
the shock inequalities. In the joint paper [11] we will study the Whitham stability
of the asymptotic states and the properties of the characteristic velocities.

4. Exact similarity shock waves solutions
4.1. Application of the Section 2 R-H relations

Substituting the similarity densities (1.1) into (2.1) =(2.5) we obtain seven R-H
relations for the (i), (ii) states which are constructed from the three (3.4) parame-
ters in the general case or from one or two parameters for the particular solutions.
We know all quantities associated with the (i) and (ii) states, for instance (see
Appendix Bl1) for the mass M = mg+ mD~%, D =1+ ¢ and the shock thick-
ness w®) = (1 + ¢~ 1)7*1/|4()], both mg, m are known while v, p = 2 (binary),
= 3 (ternary), = 4 (quaternary) is unknown. Consequently the ratio () /w(2) is
small for multiple collisions if 7(")/7() is large. In Sec.3 we consider only the
vanishing of the collision terms. As we shall see this is sufficient to deal with any
collision term. As an example we consider

Q2 = MMy — R* = (mg1 + m;D™%) (mga + maD™9) — (ro + 7‘/)'“’)2
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which becomes a sum of a constant mg;mgy — 3 = 0 (asymptotic state when D —
00 Or Y — o), a D~ term multiplied by a constant mgymy +meym; —2rrg and a
D~ term multiplied by another constant mm; — r%. The other asymptotic state
corresponds to yn — —-oc or D — 1. Consequently the two D9, D=2 constants
are opposite and Q; = ageD~I(1 — D~7) with agy = mgymy + moymy — 2ror.
Using the same method for @, = N{ M, — No M, we find ag, D79(1 — D~7) with
agy = ngyma + meany — nggmy — npmg;. Similarly for a ternary collision term, the
constant vanishes (asymptotic state D — oc) and the sum of the three constants
associated with D=*7, k = 1,2, 3 is zero (asymptotic state associated with D — 1).

New relations will come from the complete study of the nonlinear equations
(2.3). In the nonlinear terms the new parameters will be the positive constants
oc,...or, and v from the differential terms. Writing these equations as sums
of D9 terms with different powers, we put to zero the associated coefficients.
These coefficients contain linearly v and the cross-sections. Consequently all the
cross-sections are not arbitrary parameters and we choose subsets of positive
cross-sections from which we can determine all other positive cross-sections. For
simplicity the positivity study is done numerically.

4.2. Relations coming from the nonlinear (2.3) equations

We rewrite the two nonlinear equations associated with Ny, I:

p+N1=Qrp+Qr1p+ Q1+ Q1 s QR =Qap+ Qrp+ Q2+ Qa4

We recall that ¢ = 1/(p — 1) and the linear differential parts give two terms
41  piNi=(01-0Omvg [D“(”“)— D7, O R=-r(vq [D_("H)— D1

with ¢ = 1,1/2,1/3 respectively, for only binary collisions, or adding pseudotriple
and ternary collisions, or with quaternary included collisions. In the nonlinear
parts of (2.2) we have different possibilities depending upon whether we choose
only binary or adding ternary or including also quaternary collisions. For binary
alone we have only terms proportional to D=9, D~%¢_1If ternary or pseudotriple
collisions are included, we have D=9, D~27, D=37 terms and finally, with quater-
nary collisions, we have in addition a term proportional to D%, The relation
will be obtained requiring that the coefficients of any power of ~7 are the same
in both lhs and rhs of (2.2).
Firstly, when only binary colisions occur we get for the nonlinear terms:

42  Qu=auD ¥ -D0,  Qu=apD - D M)y

with ag; defined in (3.3),. Equalizing the coeflicients of D=7, D=2 in (4.1), (4.2)
we find two relations:

(4.3) Q- C)nl’y(z) = cr‘(qz)u.m, G (rg)agz.

http://rcin.org.pl



TWO MULTISPEED DISCRETE BOLTZMANN MODELS... PART | 697

Secondly, adding pseudotriple and ternary collisions we define Q;p4p+¢ =
Qi + Qip + Qir, 1 = 1,2 that we write down with (2.3)—(2.4):

@4)  Qupepre = Qi1 [0F + Mo + oo R+ Miyaps| + QuNjzope

= ag3 D" — (ags + bo3) D™ + bo3 D77,
(45)  Qapeper = ~Qi2Mpops + Q2 [08)) + Mol + 2N h(ope + op))

= agaD ™" — (aga + boa) D™ + bga D

The coefficients ay;, by;, ¢ = 3,4 are written down in Appendix B, cf. (B.2)-(B.5).

They contain linearly the binary coefficients ag;, ¢ = 1,2 with factors both linear

in the (i) state asymptotic densities ng;, mg;, 7o and in the cross-sections 053), ch s

oc, op, og. Equalizing the coefficients of D%, & = 1,2,3 in (4.1), (4.4), (4.5)
we obtain four independent relations:

(46)  —(1-0ny¥/2=ap, r(vV/2=ag, ag +by; =0, i=12.

Thirdly, adding quaternary collisions (2.5) we define: Q; p4p+t4q = Qipsp+t+Qigs
i = 1,2. The Q; p+,+: are the same as (4.4), (4.5) with the only change ¢ = 1/2 —
1/3. The quaternary terms @;, are of the type:

— —4 —3q -2
apa+i D77 + boari D7 + coay i DT = (agasi + botasi + Corar) DT,

4.7

47 1=1,2.

The particular structure in (4.4)-(4.7) of the coefficients of the D~* powers
comes from the fact that these collision terms vanish at one asymptotic state
when D = 1. The coefficients ay;, by;, co;, j = 5,6 are written down (for brevity
we put ox = oy, = 0) in Appendix B, cf. (B.6)—(B.9). They still contain factors
linear in the cross-sections 0'5_),), o,,), oc,...op, but quadratic in the asymptotic
densities of the (i) state. Equalizing the coefficients of D~*7, &k = 1,2,3 in both
the linear terms (4.1) and the nonlinear terms @; ;+,+:+, We obtain six relations:

(1= Oy /3 = ag3 + ags, Cry®/3 = age + ags,

(4.8) .
boz+i + coavi = 0, am+i + aga+i + boari = 0, 1=1,2

4.3. Solutions for binary and binary plus multiple collisions

Firstly, when we consider only binary collisions, we have three new parameters
~ ), og) # 0,1 = 1,2 and two new relations (4.3). In addition to the arbitrary
(3.4) parameters, for p = 2,q = 1 the similarity shock waves are determined with
the parameter o)) and, from (4.3), v and o!? are deduced.

Secondly, for binary, pseudotrlple and ternary collisions p = 3, ¢ = 1/2 we

have eight new parameters v, nfg), cr,, , oc, ap, o and four new relations (4.6).
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In addition to the (3.4) parameters, the similarity shock waves are determined by four
arbitrary parameters chosen among the cross-sections. If furthermore we compare
the two cases where either the binary collisions are alone or not, while the two
equilibrium states ¢ and o2 are the same, we only have another parameter (2

and two new relations (4.3). From (4.3) ag) = ng)aoznl/amrc is fixed, the two v
values are different, in addition to (3.4) we have three arbitrary parameters and
we can compare the shock profiles in both cases by evaluating the ratio w(?) /()
which is proportional to 7 /4. From (4.3)-(4.6), (B.2) we get v(3/27(2) =
—aga/agiol?) > 1 either if ng; = ngy (uniform (i) state) or if apg /o <« 1.
Thirdly, for binary, pseudotriple, ternary and quaternary collisions p = 4,
q = 1/3 we have fifteen new parameters 7(4),053'). a,(,',),cr(:, op,...0n, o and six
new relations (4.8). In addition to the (3.4) parameters, the similarity shock waves
are determined by nine arbitrary parameters chosen among the cross-sections. If we
want to compare it with the case where only binary collisions occur, we still loose
one parameter (from (4.3) we see that the ratio aﬁ)/ag) is not arbitrary but
fixed). Similarly, as above the ratio w(®* /w(?) is proportional to v(* /5?2, From
(4.3)-(4.8), (B.4)—~(B.8) we get: 7D/3v® = (agy + ags)/apzed’ > 1 if either
noy = ngz (uniform (i) state) or if a(-”/crg) < 1. If Fig. 1b-K collision is taken

into account it is sufficient to have in addition 0,\-/02) < 1.

5. Numerical calculations for compressive shocks

In Figs. 2a-b, 3a-b-c, we present numerical calculations for the exact solutions
of Sec. 3, and in Fig. 4a-b those of the Runge - Kutta procedure (Appendix C).
In Figs. 2a-b, for the d = 2,3 models, the two equilibrium states, ¢, ng) =

and U‘([;?) are the same for binary alone and ternary included collisions. In Fig. 2a
the R-H solutions are obtained with the general (3.4) formalism and the (i)
upstream state is at +oc. We have og) = aﬁ’,) =1, op =0 and deduce: opp =6 -
1074, o = 5- 1073, In Fig. 2b the (ii) upstream state is at +oc with only s # 0,
p2 # 0. We have o) = 0.011, 05, = 0, ¢\ = 1, and deduce: o!¥ = 7. 104,
op = 54, oo = 61 and observe small values for the ratios of the two shock
thickness. The shock inequalities are satisfied, and we find small ratios of the two

shock thicknesses.

Figs. d ¢ Gy Can Vi W Vi Wi 4@ 30 )@
2a 2 .69 043 082 13 1.03 64 0.77 131. 510 (1/3)10‘2
2b 3 997 0.9998 0 183 0.186  1.9998 1 —04 -35 (1.6)10’2

In Fig.3(a-b-c) with d = 2, ng; = 1, ng) = 1 for binary alone (a) or ternary
(b) and quaternary (o5 = o;, = () collisions included (c), the two equilibrium
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F'1G. 3. Binary, ternary and quaternary.

states and ( are the same. Further in (a-b), ag) = 0.098 are the same while in
(c) ag) = 0.05. We get v =9.103, 73 =3 .10% v* = 9. 10* and for the
Cross-sections:
oF oc op ag) a(;f) o TFJ oTH oG
3b 0 0 0 3-1077 10°%* 15.10773.107% 3.7.1077 7.5-107°].
3¢2-1059-10%6-10"*5-10"7 1.6 -10~* 5.10~7 10~% 125.1077 2.5.107®

The ratios of the two thicknesses w(®/w(?) = 0.53, 0.16 in Figs.3(b-c) are not
small. In Fig.4a we plot the M, densities for the uniform (i) state: ngy = ... =
ro = 1... Profile a corresponds to the binary collisions. In b profile we included
triple collisions with ag) =0, 0c = op = op = 0.005 for b, and crf;) = 0,
oc = op = o = 0.02 for ¢. While the M; overshoot persists for small ternary
cross-sections, it disappears for larger values. In d all ternary cross-sections are
Zero, while Oy =0 =0]=0y =0 = 0.02, O =0, = 0.

mo ne G Ciis) Vi W, Vii Wi
4a 1 1 0995 0913 0.999 0.995 0.913 0.047 0.051
b 1 1 —099 —0.913 —-0.998 —0.99 —0.913 —0.098 —0.107

It can be seen that the length of the interval of the density changes in the shock
decreases when the multiple collisions are added, cf. Fig. 4a. In Fig. 4b we show



b)
 EE O S (b () R i B (o (57 e i S Rt e T N T PR R EON [
10 =
| a
b n
- C -
05 n
[ |
0 (T TN I SRR N WY SN (OO 1 S S OO NN (S| 1 T
-02 -0r 0 or 02 n 03

FIG. 4. a) M, profiles, d = 2, { =0.995,b) M, profiles, d = 2, { = 0.99.
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M for the uniform (i) state, and observe analogous phenomena, with « profile
as before, b with 0.02 for ternary and zero for quaternary cross-sections, ¢ with
zero for ternary and o) = op =05 = oy =06 = 0.02, 0 = o1 =0.

6. Discussion and generalizations
6.1. Discussion of the models with z-axis along the median

One motivation of this paper was to show that multiple collisions can be handled
by analytical methods. Comparing the (1.1) type of exact solutions to the R-K
numerical solutions we see that we loose some properties at the microscopic
level (possible overshoots of some densities) but not at the macroscopic one.
Furthermore we are able to give sufficient conditions for the decrease of the width
of the shock when multiple collisions are present. Adding fifth-order collisions
(not presented) we have observed the same features. The present construction
of the exact solutions, independent of the fact that the equilibrium states are
common to binary alone collisions or multiple included (cf. ternary collisions for
the unispeed hexagonal model [4]), can be done for any DBM.

Another motivation for the study of multiple collisions is the generalization
of the Whitham stability of the equilibrium states which has only been done for
models with binary collisions. This study is presented in the joint paper [11].

The present results are generic for a whole class of DBMs. Requiring spec-
tatorless collisions, microscopic conservation laws and microreversibility, we can
construct multiple collisions for a given p-th order. The simplest model associated
with the present one is the 9v; model [12] with a rest particle. In a recent work
[13] the two 8v;,9v; models were compared. In this work [13] a criterion, based
on the assumption that equilibrium states are the same for binary and multiple
collisions, was established for the H-Theorem. This criterion allows to check, for
any multiple collision term, that the contribution associated with any density is
correct. As we shall see in the joint paper [11], the joint criterion is satisfied for
all Fig. 1b multiple collisions.

In this paper we have verified the following interesting result. The mudltiple
collision terms associated with a given density contain the binary collision terms
multiplied by factors which are densities-dependent. IFor any nonlinear equation as-
sociated with a particular density we always find one nonnegative factor of a binary
collision term. For that density, this binary collision term corresponds to a binary
collision. Are these properties peculiar to the present class of models or to the
fact that we choose the shock axis along the median of the square model? In
the next subsection we study the 14v; Cabannes model [8] with speeds 1, /3, and
in subsection 6.3 — the present models with z-axis along the diagonal of the 8v;
square, cf. Fig. 1c. In both cases we find the same results concerning the factors
of the binary collision terms when multiple collisions are present.
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6.2. Cabannes model

The cubic CaBANNES [8] model is a 14v;,d = 3 model with densities A;, R
being the same as in Sec. 1. On the contrary, the V; are associated with the speed
V3, with different velocities in the space: Ny : (1,4£1,41), Ny : (=1,£1,£1),
but have the same projections 1, —1 along the = = x; axis. Writing [1], [3] for the
particles associated with the speeds 1, /3, for this model, in addition to the mul-
tiple collisions studied previously we have new collisions: [1] + [3] + [3] — idem,
[1]+ [1]+ [1] + [3] — idem. For brevity we consider the ternary collisions. As an
example of such collisions we give v; + v, +v3 = V| +v5 +vj with for the v, coordi-
nates: (1,1,1), (1,-1,-1), (-1,0,0) and for v.: (1,-1,1),(-1,1,-1),(1,0,0).
In addition to the collisions presented in Fig. 1b, there exist collisions with two
v/3 speed particles. The relevant nonlinear equations read:

']]+,-'V] — ,(—Ql)(Nl + 1\"2)7
(6.1) IR =...40,
peMy = ...4Q(N) + No),

where points represent all Fig. 1b collisions. The three linear conservation laws are
satisfied. The additional collisions contain linearly only the binary collision term
—Q), @1, present at the binary level respectively for py Ny, ¢4 My, with positive
factors proportional to Ny + Nj.

6.3. Multiple collisions for the 8v; square model with r-axis along the diagonal

For brevity we consider only the d = 2, 8v; square model, cf. Fig. 1¢, with co-
ordinates (zp,z7) for the velocities: (+1,+1), (£2.0), (0, £2). For the solutions
with the 2 = 2 axis along the diagonal of the square, we define the densities
[6, 12] My, Ny, R, Ny, M, associated with the velocities with z; coordinates, re-
spectively 2,1,0,—1, —2. We have three linear relations and only two nonlinear
independent ones that we write for binary collisions, using notation ¢4 := d,+2d,,
py =0 £ Oy

({+A"Il + I)+A]1 + ()[R = 0., ]J+.(V]_ + P- 1V2 = O,
G-My+p_Ny+ QR =0,  piNy=05(Q1+Q),
(6.2) OR=0P0Q;+ Q21— Q1), Q1= NaR— NMy,
Q2 = M{N; — NiR, Q3 = My M, — R,
4+ My = —0Qs - 2002,

Thus, at the binary level we have three @, collision terms, d, I has the three terms
while p4 Ny and ¢4 M, have only two. We can expect the following structure when
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multiple collisions, cf. Fig. 1¢, are present:

) 1
p+Np = Ql("‘(rg) + Ajn) + Qz(Ug) + An) + Q3A43,

(63) g+ M, = Q1412 — 2Q2(0 + Ap) — Q3(cP + Ap),
1
Ry = —=Q1(0 + A13) + Qa(0l) + A) + Qa(0F) + A33)

Below we present, cf. Fig. 1c, the collision terms corresponding to the ternary,
quaternary and fifth order collisions. We omit for brevity the positive multipliers
(ternary, quaternary and fifth order collision rates) in front of the relevant expres-
sions, and report the Ay, A3y, A1z, A2, A3y, Asz factors of the binary terms for
the collisions associated with Fig. 1c-C-D. . .S-T. With the transform N; —— N,
M, — M, we get A;; —— Ajyy. From the first linear (6.2) relation we obtain
other coeflicients: Aj3 = Ay + Ay, Az = 2455 — Ay or Aj3 —— Ajz and finally
with A3; + A33 = A3 we can check the results.

Q An Az A1z A Az Az

G M 0 -N; Ny/2 0 0

D 2N, 0 —2N; N, 0 0

E Np 0 0 N 0 0

F 2RN, 0 —2RN, RN, 0 0

G P, 0 0 P 2NNy 2NN,
H 0 0 0 0 2NN, 2NN,
I 0 0 0 0 2P 2P

J 2P 0 0 2P 0 0

K 2P, 0 0 2P 2N, 2N%

L MM, RN 2M, M, 20 M, Py 3RN}
M 2MNaNp 0 —2MN,N{,  MyN{Np 0 0

N Ps+3P 0 —Ps—2P 2Py + Py) 0 0

O 3P+ 4P, 0 —Ps—2P 3P+ Py 0 0

P NINNG 0 0 NiNoN 0 0

Q 2NN, 0 —2NEN, N3N, 0 0

R MMN}, RNLNL 2MMyN}, 2MMaNy  Pg  3RN?
g Pi1 N —2P1» Pi3 2N}t NE

T 2MLENLEN, 2NLNBE —4NIMiN{, 2N,MiNJ, 4ANZNG, 2NZLNG
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with N5 = Ny Ny, M5 = My + M, (as in Sec. 1), while N}, = N2+ N2, N} =
N3+ N3, Py = RN\Np, Py = N\ R+ Ny My, Py = NoR+ Ny My, Py = My M+ R2,
Py = 2R(N2+2Ny), Ps = NH4R+3My), Po = NXAR+2M,), P; = N3 (R+ M),
Py = N3 (R+ M3). Py = N} (R+2M), Pig = 2RN (N + Ny), Py = My(N2+
3NaNB) +3MaNE, Py = MiNE2+ MuN2, Pis = NiNoMy + 2(NEMy + N2M,).
All these terms, except My, N, N5 are positive.

1. Firstly, we discuss the coeflicients of the binary terms associated with the
p+ V1, g+ My equations. If only binary collisions occur, then in each equation there
are two binary collision terms, cf. (6.2). With multiple collisions included we observe
that all Ayy, Az, Az, Az factors of these binary collision terms are nonnegative,
while A3y, Ay, coefficients of the third binary collision terms, not present on the
binary level, have not a well-defined sign. Consequently, at least two of the three
factors are nonnegative.

2. Secondly we discuss the coefficients of the three binary terms for R;, which
are all present on the binary level. Although Assz is always nonnegative, this is
not always true for A3 and Ay3. We find not well-defined signs in three cases of
the fifth order collisions. For A3 and the collisions associated with O, 5,7 we
respectively find: N2 My+RN{(2N2—Ny), —NEM5—M{NoN [ and —2N NS M.
Furthermore, due to the fact that A3, Ay; are exchanged when Ny —— N,
My «—— My, these two terms are both nonnegative or not. Consequently either
the three factors are nonnegative or only one.

In conclusion, in the equation for any density we always find at least one term
which is a product of a nonnegative, density-dependent factor, and a binary collision
term. This binary collision terms remains also if only binary collisions occur.

With the same assumptions for the Sth order collisions as for the 4th and 3th
order in Sec. 2, it can be shown that the collisions presented in Fig. 1c-M-N...S-T
are the only possible ones.

From a partial study of the sixth order collision terms, concerning the non-
negativity or not of the :\;;, A;; factors, we have found the same results as those
presented here.

For the model with the z-axis along the median, with collisions up to the fifth
order, we find the same features (presented in the joint paper [11]). Furthermore,
for the factors of the binary terms not present at the binary level we still find that
they have not a well-defined sign.

Appendix A. R-H relations

For the two (1), (ii) states (3.1) we have 11 parameters: (, ng;, mo;, n;, m;, ro, v
and 7 relations (3.2) - (3.3). We choose ng; = 1, a scaling parameter np, define
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the associated scaled variables: ny = ny7ip, m; = n(n;, r = n\7, dg; = Nydp;,
bo; = nbg;, and rewrite the relations in terms of the scaled parameters:

mgyz2 = Ne2Mo1 ro = /Ng2amot,
(A1) y T ¥
my = —y(my + 2d.), ¥ = z(m + d.),

(A2) ny = —no1agi/boi, i=1,2 —

3
a01bo2 — To2bor = Z(xlk — Bk)m’f =0,
k=0

with Ay, B, written down in the second Ref.(7). The two asymptotic states are
determined from ngy = 1 and three arbitrary parameters mgy, > 0, ngy > 0, |(] < 1.
From (A.2) we get mq, 7o and all positive parameters for the (i) state. From
iy, we get o, T and g, by, m1 = —ap1/bor and the five parameters n;,m;, r or
the (ii) state. For brevity we discuss positivity for two particular solutions. Firstly,
if at the (ii) state only p, # 0, then the solution with ng; = 1 depends on one

arbitrary parameter { with positivity conditions: 1/1/1 + d?/4 < ¢ < 1. The other
parameters are deduced from (A.2):

1>n0 = (1-¢)/(1+¢)>0,
X = (2/d.)¢ — /1 - (2,

my = d./1-(2/X >0,

(A3) ro = d.(1-{)/X >0,
me = do(1-P?/XV/1+( >0,

mz = (1-0)(Cd. — /1 -¢3)/X(A+) >0,

p2 = my+ mgy > 0.

Secondly, if at the (ii) state only s, # 0, p # 0, then, with ng, = 1, the solution
depends on two arbitrary parameters with conditions for the positivity: ngy > 0,
sup[(1=np)/(1+np), 1/(1+d. /np2/2)] < ¢ < 1 and the other found from (A.2):

mo = 2(1 - ¢)/ [¢/roz — 2(1 — ¢)/d.] > 0,
mgy = ngpmgp > 0,
ro = /mgymgy > 0,
(A4)
ma = (1-¢)[mo +2d.]/(1+¢) >0,
P = my+ mgyz >0,
s2=mnp— (1-¢)/(1+¢)>0.
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Appendix B. Similarity solutions

B1. Firstly, for DBMs with p-th highest order collision term we write down both
the mass M and the shock thickness w(®):
M = myg+mD™1,
mo = mgy + mgz + d.(ro + noy + ng2),
m = my + my + d(r + ny + ny),
(B.1) qg=1/(p-1), D =1+¢",
w?) = |m|/ max|dM/dy| = (1 +¢7 ') /|4],
p =2, w® = 4/]7@), p =3,
w® =330, p=d4, w® = 4RO

with mg, m known from Appendix A, but v has to be determined.

B2. Secondly, from the (4.4)—(4.5) B; y+p+ relations we determine the coefficients
aga+is boa+i i = 1,2 0f D%k = 1,3. We define nfz = ngy * nga.
For Q1 54p+¢ We get from (4.4):

(B.2) apnD7I(-1 + D”f)[ag) + (mg + m D"”)Ug)
+oc(rg+ D™ + opp(mo + mez2 + (mq + mz)D_"')]
+oppagaD™I(1 - D—")(Hl_z + () — nz)D_q) - (103/(1010(82)

=1+ [moa‘(pz) + ocrg + ope(mm + 7??02)] /ag) - 111-2(L02(T[)E/(1.01(7g),

(B.3) bos = ag (-mcrﬁ;z) + ocr + opp(m; + 1712)) —apope(ng —n — 2).
For Q2 54,4+ we get from (4.5):
B4)  apD (A~ D7)[of}) + (mo + mD")al)

+2(opp + op)(n, + (m + nz)D'q)]

—agy D711 — D7N)2[mgy — moz + (mq + 7112)])_q)]n[)g-nm/agzdg)

1 1 = 1
=1+ [Tno(TED) + 2(opg + Ui;)n?'z] /(753) - (1.0]2UDETI,]2T1701/7701(102053),

(B.5) boa = —apa [mag) + 2(opg + og)(n + nz)] + ag20pp(my — my).

B3. Thirdly, for the quaternary terms Q; qua: written down in (2.5), (4.7) with
ok =op =0, opy = op + oy we get the coefficients apg+;, boa+i, coa+is i = 1,2 of
D~k k=143
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From Ql,q = apq U_q(l - I)_f")[(Tl.'.](j‘[l j\’z‘l" ‘nlz .\r1)+ J\"]Ell)(f(','], op] =op+toy
we get:

ags = —agi[2moinoaory + aaronis),
(B.6)

bos = agi[(myny + many)opy + (ny + na)rog],
(B.7) cos = —bos + agi[ors(noima + nggmy + nymey + nymy)

+oc(rnfy + ro(ny + na))].
From Qz,q = ap D71 — D~")[ey NyNy + (T[(R2 + M M3)] we get:

B8) age/am = [2moymoeao; + opgngingz] > 0,
bos = —apa[(mimy + 1'2)(7] + opnyna],

(B.9) co6 = —bos — agz[a1(2rrg + mymgy + mamoy) + oy (nyngy + nangy)).

Appendix C. Solution by numerical integration

We solve the classical stationary shock wave problem related to (2.1)-(2.5)
by reducing it to a system of two ODE with limiting values corresponding to the
equilibrium states (with the parameters related by the R-H equations). Inserting
the ansatz for similarity solutions into (2.1)-(2.5), we obtain

Ny = [(L— )Ny =G ]/ + L)
M; = [C3 - (1 - M, - 2d.(1 - ON1]/(1 + ©),
R =[(1- (M -1+ OM; - (3]/du,
dNy/dy = Q/(1 - (), dMy/dy = Q,/(1 - (),

where C; are functions of the parameters of the asymptotic states, determined in
Sec.3, and (); are functions of Ny, M with limit conditions:

(C.1)

lim Ny = ng, lim Ay = mgy,
C2 i e
( ) lim f\’rl = 81, lim M, = P1-
n— +00 n— +00

The free parameters are: ng, = 1, mo;, ng, ¢ (cf. Appendix A), and all the cross-
sections. We solve (C.1), (C.2) by the Runge-Kutta’s IV order procedure, with
the initial data Ny = ngy +¢1, My = moy + €2, 0r Ny =381+, M} = p; + €2, &;
small, depending on the direction of integration. We start from the neighbourhood
of the saddle, in the direction which can be calculated by the analysis of the
corresponding eigenproblem for the linearized equations, and we end up in the
arbitrary close neighbourhood of the node [7].
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Two multispeed discrete Boltzmann models
including multiple collisions
I1. Stability properties

H. CORNILLE (GIF-SUR-YVETTE) and
T. PLATKOWSKI (WARSZAWA)

IN THIS PAPER accompanying [1] we analyse the stability poblems for the equilibrium states of the
discrete velocity models (DVMs) with multiple collisions, considered in Part I. We provide sufficient
conditions for the stability when the multiple collisions are taken into account, using the approach
developed by Whitham in the wave theory of propagation of weak perturbations. In the proof
we use the factorization properties, developed in Part I. Finally we verify the H-theorem for the
considered models and deduce a criterion useful in order to check the correct contribution of each
multiple collision term.

1. Introduction

IN THE ANALYSIS of nonlinear fluid flows important role is played by the analysis of
the stability of the solutions related to uniform states. The corresponding equa-
tions linearized around the uniform state provide informations about stability.

In particular, if the linearized equations are replaced by higher order linear
PDE with a sum of products of differential operators of degrees differing by one,
the sufficient conditions for stability of the uniform states have been given by
WHITHAM [2].

Whitham gave the conditions of exponential damping at large time of the
waves associated with the highest order differential operator by the waves pro-
vided by the lower order differential operator. The lowest order differential op-
erator, associated with the main waves, provides the characteristic speeds of the
propagation.

Applying the Whitham approach to the DVMs, one linearizes the system of
evolution equations for the density functions around an asymptotic equilibrium
state, and we consider the system of linear PDE for the wave perturbations. The
system of equations being equivalent to one linear 5th order equation, we find
a sum of a fifth, fourth and third order operators. With the wave ansatz for the
perturbation, these operators give the associated polynomials in the variable ( -
the speed of the weak disturbance. The roots of these polynomials characterize
the speeds of the propagation, associated with the differential operator of the
given order. The Whitham stability conditions for DVMs with binary collisions
have been studied in [3, 4, 5] and, in particular, for the models considered in [5].
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Our goal is to present, for the first time, a proof of the Whitham stability con-
ditions with multiple collisions. Although the characteristic velocities are (like in
the binary case) independent of the cross-sections, the roots of the fourth order
polynomial depend on the cross-sections of the multiple collisions, and we cannot
apply the binary results. The Whitham stability conditions being an interlacing of the
roots of the corresponding polynomials, we must take into account these multiple col-
lision cross-sections. The second goal is to discuss the H-theorem for the considered
models.

First, we describe the models [6, 7, 1] and specify the equations. To construct
a stability criterion, when multiple collisions are taken into account, we recall
different structures of the nonlinear equations, studied in Part I and generalized
here in Sec. 2. More in details, we recall important factorization properties of
the collision terms for the considered models. Let us consider a particular density
not present in all binary collision terms appearing in the nonlinear equation for this
density. For that particular density any multiple collision term has one of the two
following properties. Either it contains as a factor only that binary collision term
in which the considered density is present (and then the remaining factors are
positive), or it includes also another binary component from which that density
is absent. In the considered models and with a particular choice of the wave
propagation, two such particular densities (with independent nonlinear associated
equations) exist,

For the considered models, with two different choices of the wave propagation,
our most general factorization result is the following. /n the nonlinear equation
for any density, at least one factor of the binary collision terms is nonnegative.

As we shall see, these different analytical structures of the collision terms are
useful for the determination of the signs of quantities which depend on the cross-
sections of multiple collisions (crucial for the stability analysis).

Second, we give details of the linearization procedure, which leads to the type
of equations, which can be treated by the Whitham method.

In order to determine the sound wave velocities we linearize the model equa-
tions around an equilibrium state, and we obtain a sum of three differential
operators with associated polynomials Ps, %4, I’s. The characteristic velocities are
the roots of the lowest order cubic polynomial /5. In order to generalize the
Whitham theory, we find inequalities between the roots of I’s, P4 and the roots
of Py, P3. If these inequalities are satisfied, then the main wave is provided by
the I3 roots, while the disturbances provided by the higher polynomials are ex-
ponentially damped. The main result is that the P4 roots, contrary to the Ps, I3
ones, depend on the multiple collisions cross-sections. However, like in the bi-
nary collision case, we prove that the inequalities between the s, I’y roots are
satisfied so that for the P5 waves we can refer to the previous results established
in the binary case [3-5]. We discuss the properties of the polynomials associated
with the subsequent order operators. In particular, in Lemmas 1, 2 the interlacing
properties of the subsequent order polynomials are proved.
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Third, in Lemmas 3-5 we prove our main results on stability properties. For
the Whitham stability conditions we find sufficient conditions in three cases.
First, if the cross-sections of particular multiple collisions are small enough and
without conditions for the other multiple collisions. Second, provided some well
defined constraints on both the multiple collision cross-sections and the densi-
ties of the equilibrium state are satisfied. Third, for arbitrary multiple collision
cross-sections, we find conditions only for the density values of the asymptotic
state.

We would like to give an intuitive explanation of these results (for the rigor-
ous proofs the reader can refer to the tedious details in Sec. 3). For the present
models and with a particular choice of the wave propagation, there exist two
different binary collision terms with different positive cross-sections. There exist
also two densities for which the associated nonlinear equations contain only one
binary term at the binary level. Concerning the multiple collisions, there exist two
different classes. For the first class, concerning these two densities, the multi-
ple collision terms contain only the binary term present at the binary level with
a positive factor. In the neighbourhood of an asymptotic state these nonlinear
equations look like the binary ones, with the only change that the two posi-
tive binary cross-sections are replaced by two positive constants. For this class
the proof of Whitham stability for multiple collisions is a trivial extension of
the binary one. For the second class, the main difference is that the nonlin-
ear terms contain both factors of the two binary terms. If we assume that the
cross-sections (of the factors of the binary terms not present at the binary level)
are small enough, for the Whitham stability proof, we come back to the previ-
ous case. Now, what happens when these cross-sections are not small. We give
two different types of sufficient conditions. Firstly, the conditions mix both the
multiple cross-sections and the asymptotic densities of the equilibrium state. Sec-
ondly, the multiple collision cross-sections disappear (they can be as large as we
want) and only the asymptotic densities of the equilibrium state in the conditions
remain. In conclusion we can always find sufficient conditions for the Whitham
stability.

Finally we report results for the H-theorem [8, 9]. For the models with ternary,
fourth order and a particular type of the fifth order collisions, the H-theorem is
proved by use of the nonnegativity properties of the terms associated with the
considered collision terms (Lemmas 6, 7).

Firstly, for the considered hierarchy of models, we choose the wave propaga-
tion along a median of the square. For p-th order collisions, a criterion for the
validity of the H-theorem is proved. More in detail, with a particular structure
of the expressions associated with each multiple collision (elementary collision
terms), we show that each term gives a nonpositive contribution to the evolution
of the associated h-functional (Lemma 8, Theorem 1). For the multiple collision
terms, up to the fifth order, we have verified this criterion and we report the
results in some cases. Secondly, we perform a similar study for the 8»; model
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with the wave propagation along the diagonal of the square [1]. We study both
the H-theorem and establish the associated criterion (Lemma 9, Theorem 2).
When we determine all multiple collisions of any given order, we have to
perform a great number of analytical calculations in order to obtain all possible
elementary collision terms. For instance, consider any type of collisions presented
in Fig. 1a: either M or N ... or T. For each drawing, taking into account the sym-
metries of the square, in principle eight collisions are possible. Nevertheless we
find at most four different analytical expressions that we call elementary collision
terms (cf. Fig. 1b with three elementary collision terms corresponding to Fig. 1a
— M). The interest of this criterion is that we can check the correctness of any of
these elementary collision terms. On the other hand, we recall [9] that a similar
criterion was obtained for another hierarchy of models not considered here.

a) N, R N

M, M,

I
|

-

N,V 2

g ey
S A

fifth-order collisions

(F1G. 1 a]
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2. Models and equations with multiple collisions

The first model is the square d = 2 8v; model on a plain. For one-dimensional
flows along the z-axis [1] there remain five independent densities Ny, My, R, Mo,
N,, associated with the x-projections 1, 1,0, —1, —1, and the velocities (x; = =, 23)
in the plane: N;:(1,+1), Na:(=1,£1), M;:(1.0), My:(-1,0), R:(0,%1).
The second model is a d = 3. 14»; model with five independent densities for the
same 1-d projections: Ny : (1,£1.0).(1,0,4+1), N, : (—1,£1,0),(-1,0,+£1),
My :(1,0,0), M;:(-1,0,0), R :(0,£1,0).(0,0,£1). For both models these
five densities satisfy three linear relations [1] (p4 := O £ 0., d. 1= 2(d — 1))

p+e Ny +p_Ny, =0,
(2.1) p+My+p_My+ d, R, =0,
pi My —p_ My +2d.ps Ny =0

and two independent nonlinear equations chosen either for py Ny, 0, ¢, or for
p+ My, p_M,.

We recall the two binary collision terms: Q = NyM, — NaAMy, Q2 = MMy —
I?. We notice that Ny appears only in @1, R only in (,, while M, M, appears in
both @;. For the models with multiple collisions up to the fourth order taken into
account, we recall [1] a factorization property, important for the stability consider-
ations of the next section: only the factors of binary collision terms present at the
binary level are nonnegative.

Notice, for the ternary and quaternary collisions, the following discrepancy
between the (Nq, It) and (M, M;,) couples of the associated nonlinear equations:
For the py Ny, 9, R equations we have only one nonnegative factor, whereas there
are two such factors for the equations associated with py My, p_AMs.

22) AR =Q, [ng) o A“] 014, Dl = =04 [nfj’ + An| + Qa4

with A;; m-th order polynomials in N;, M;, R, m = 2 for quaternary collisions. We
have verified that for the fifth order collisions included (shown in Fig. 1a), we have
still the form (2.2) of the nonlinear equations for 2, Ny, with the order m = 3
for A;; polynomials. For collisions up to the fifth order we have found A;; > 0.

Taking into account the linear (2.1) relations we write the associated nonlinear
equations for py My, p_»M,

pedyfde = ~Qa [0f) + 2814 /24 Q1 [0 + Bay].
2.’31i = /‘11 + 2z12].
(2.3) 1 )
p-Myfd. = -Qy [0 +2B1_] /2= Qi [0l + By],
Byy = Ap £ Arn/2,
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"TWO MULTISPEED DISCRETE BOLTZMANN MODELS... Parr I1 717

where, up to the fourth order collisions, we have found B,y > 0. The main new
result, coming from fifth order collisions, is that for Ny, R nonlinear equations we
still find A;; > 0 but for the My, My ones, in each equation only one of the two
factors B4+ or By is always nonnegative. This means that with the fifth order
collisions included, for each nonlinear equation associated with Ny, K, My, M,, at
least one factor of the binary collision term is nonnegative. However, there exist
also a combination of B4, B,y and a quadratic expression of A;;, A;; which are
nonnegative:

By = M{(MyBys + NyByy),
(2.4) B_ = My(M,B,_ + NiB,_),
A = AnAzn — ApAy.

These results will be very important, for the study of the stability, in the next
section. In Fig.1a each of M, N, ... 5, T diagrams represents all the fifth order
collisions obtained by applying the transformations of the symmetry group of the
square to the given collisional configuration.

In Appendix A we determine all the fifth order collisions satisfying 1) spec-
tatorlessness (i.e. all the particles change their velocities in the collision), 2) mi-
croscopic energy conservation, 3) momentum conservation.

Analysing all the diagrams we can write the contributions of all the considered
fifth order collisions to the relevant collision operators. We omit the positive
constant multipliers, proportional to the multiple cross-sections. We begin with
the coefficients A;; in (2.2) and A in (2.4)

Q¢ An Az Arz Az A

M PF+20P QM QrMp P >0
N 2P +4Py QT (R+2M3) 2Q%YME+2RQ- iE- >0
@, 0 4QYR + RN} 0 0 0

P SQA'IRNE A]l;‘]QA[]E 4.-'\[11”2.’\15 QrMRN >0
Q  4QmpND MMM, 4M MM QumrNp >0
R 4N|NaNp NN, M 2N N,N; NiN,N, >0
S Ps QM5+ P 2MpQ* +2P~ 2PC + RN >0
T 2P +2RN}, 2MBQY MOt 2P >0

with Qur = MMy + R?, Py = RN Ny, PE = MyNE+ MiN3, Ps = 2N3(M, +
R) + 2NY(My + R), QF = NoM; + NyMy, M5 = My F My, N = Ni F N,
PF = R(N| My F NaMp), Ni = N} — N2 We notice that N, M, P5, Q,
P~ are not sums of positive products of the densities and that they are present
only in Ayg, Ay,
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We verify A;; 2 0,i=1,2, A = A1 Ap — AjpAy > 0 while the terms A;; = 0
for Ny = Ny, My = M, ¢ # j. The A;; factors depend linearly on the multiple
collision cross-sections so that both A;; and A;; — 0 when they vanish.

We go on with the coefficients B;,, i = 1,2, By = M{(M2B1+ + N2By4) of
(2.2)-(2.3):

Q By By By
M Quni2+ Py QT(3M, + M))/2 >0
N Qun + 2R QY(3M; + ML) + 2R, >0
0 0 8RQ* +2R2N Y >0
P Qmr(5N; +3N,) My ML(3My — M3) >0
Q@ QmRrR(N; + Ny) My M2(3My — My) >0
R NiN2(3N; + N»,) 2M NN, >0
S Qun +2R2N, QY (My+3M)+ 2N, MR >0
R Qyn + BNE QT (M + 4M)) >0

where only Qy, v = 3M,N2— M NF and 3M; — M, are not sums of positive terms.
We notice that either the two B;; are nonnegative or only one. On the contrary
By is always nonnegative. If we apply the transform N; —— N;, M; — M,
we get By «—— B;_, By «—— B_. It follows that always one of the two B;_ is
nonnegative while all B4 are nonnegative.

In the same way one can consider multiple collisions of higher orders. If p
particles collide, we say that the collision is of the p-th order. We assume that
the corresponding evolution equations with the p-th order collisions taken into
account satisfy equations of the (2.2) type with collision terms containing linearly
the binary @, Q2 ones and the A;; being polynomials in N;, M;, Ik, the highest
monomial being of order p—2. They contain multiple collision cross-sections, such
that A;; vanish when all these cross-sections vanish. Analysing the contributions
of the considered multiple collisions up to the fifth order, in terms of the densities
N;, M;, R, we have found positivity properties, crucial for the stability analysis of
the next section:

(25) A > O, By > 0, A > 0.

A partial analysis of the sixth order collision terms confirms these positivity results.
As we shall see in the next section, there exist also for an asymptotic state,
taking into account the above relations, two other important properties linking
the asymptotic values of Az, Ayy, Ny — Na, My — M.

3. Whitham stability conditions

We consider an asymptotic state (ng;, 1mo;, o) (called (i) state in Ref. 1) for
the (V;, M;, Rp) densities. In the asymptotic state the two binary collisions terms
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vanish:
(31) (22 =0 — TO1Mp2 = Y201, Ql =0 — moymp2 = 7'%.

The study of stability of the asymptotic states, using the Whitham approach, will
be done in the next subsections. Important tools will be provided by the positivity
(2.5) of the five terms ,\“, Bi, A and some other related coefficients, defined
below. Let us call A4;;, Bi, /1 the asymptotic values of A;;, By, A. The A;;
terms have not a well-defined sign, but for the asymptotic states (3.1) vanish for
ng; = nge. From (2.4) we get as first results:

(32) .‘T,‘,‘ >0, [}:i: >0, A= ]] Tzz = AIZAZI > 0.

For purposes of the next subsections it is convenient to define new constants:

12 = noymaaAn, a1 = moymppAn
and
) o1 = Mo me [(TH A”] > 0, gy = ng1 g2 [ag) + 322] =10
(34) A = 0107 — apay > 7'11%17’1)027}01/T >0,
(3.5) Gy = 01/2+ 53+ @y +a12/2)> By > 0.

We see that the positivity of these five constants @;, a4, A is a direct consequence
of (3.2) or of the positivity properties of the density-dependent quantities (2.4).
Another important property is obtained by taking into account the two relations
(3.1) of the asymptotic states. For each collision term considered we have verified
the following relation:

(3.6) dy = d12/2, (no1 — ng2)iy > 0

and the corresponding values, obtained from the A;; values of ternary, quater-
nary and fifth order collisions, are reported below with the cross -sections of the
DE,K,.T of Fig. 1b [1] and the present Fig. 1a. We define nl,_ = ngy + npz and
find:

(3.7) a1 /mmmopany, = opg + njhor + mone(oar + 20y)
+2myympapg + nongaor + (roniy + 2mexne1)os + 2menezor > 0.

CoNJECTURE. We conjecture that for the asymptotic quantities, the positivity
properties (3.3)-(3.6) proved only up to the fifth order, hold for any p-th order
multiple collisions.
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3.1. Linearization around an asymiptolic state

We consider small perturbations around the asymptotic state (ng;, mq;. ro):
N; ~ ng;i(1+ Xi(x, 1)), M; ~ mo,(1+Y;(x, 1)), R~ ro(1+ Yy(z,1)), and substitute
these densities in the five nonlinear equations associated with (V;, M, I7y). We
keep the terms linear in (X;,Y;, Yy). We can replace three nonlinear equations
by the three linear (2.1) equations which will remain linear in (X}, Y7, Y}), and
there will remain only two nonlinear equations chosen to be either (2.2) or (2.3).
We define linear differential operators of the first order:

(3.8) dy = nop+, d_ =npp_, b+ =mops, - =mepp_, b = red

and obtain from (2.1) three equations linear in (X, Y, ¥p):

de X1 +d X, =0,
(3.9) 2dod e X1 + 64Y) - 6_Y5 = 0,
64V +6.Y5 + d.Yy = 0.

For the nonlinear equations, taking into account (3.1), we first determine the @Q;
binary collision terms and retain the first order terms:

Q1 = noymea(Xy + Y2 - X2 = 1),

(3.10)
Q2 ~ mormea(Y1 + Y2 — 2Y)).

We can now write down the linearized version of the nonlinear (2.2) equations

(311) —d+‘\Y1 + 52(_‘72 = ‘-\'] <} )”1 . )2) =t ?}21()'71 + Yz - 2)0) = (),
(3.12) —&Yo+ H(Y1 + Yo - 2Yp) + @pp(Xz2 - X, + Y, — ¥2) = 0,

where 621 = 7[12/2.

With the three linear (3.9) relations and the two linear (2.11), (2.12) relations
we have a homogeneous linear system of the type: L. X = 0 with X a column vector
with components: Xy, X3, Y|, Y2, ¥ and L the formal matrix with differential
operators written down below in (3.13). The condition detL. = 0 gives A = 0
with:

dy d_ 0 0 0
—2d.d 4 0 —d4 o_ 0
(3.13) A= 0 0 6 5 d.6
T FN T W S SO,
—ay app optap o -ay -2a1-4¢
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This determinant is the sum of a fifth, fourth and third order differential op-
erators: Ay, k = 5,4,3 with As = 2d,.d_6,6_6bp; recalling Gy = ayp/2, o4 =
a1/2 + a9 + 2ay, > 0, we further find:

A4 = 2(S+(5_(l+(1_51 + 605+5_((i+ + ([_)(}2 + ("0([,44.(1_,[(5.}.5_ + 6_.(:‘1'.;_]‘
For Ay = 20\ A3 we find the (3.4) positive factor A = 3,5, — @piy; and
Ay =[dy + d_][2646_ + (64 + 6_)d.bg/2] + 2d.dyd_[64 + 6_ + d.5g).

3.2, General properties for the associated polynomials

As was explained by Whitham (2], for the stability of the equilibrium state we
must show that the wave motions associated with the higher order operators are
exponentially damped, at large time, by the main waves provided by the lower order
operator. For each differential operator of a given order [2, 3] we must seek
Ar(h(n)) = 0, 5 = z — (!, for h an n-dependent function. So with each A,
operator [2] we associate the polynomials /7. ({) and seek the roots. In order
to obtain these roots we substitute in Ay formally: dy — ng(1 — (), d- —
—nga(1+C), 0+ — mo1(1 =), 6— — —mp(1 + ), b — —ro¢. We find that Ps =
¢(1-¢%)? = 0 has roots —1, 1,0, 1, 1 which are the same as for binary collisions
and are independent of the multiple collisions. We find that A4 depends linearly
on a;,a;; or equivalently on 7;,54. As we shall see, I’4 has the roots —1, +1 and
two other (¥ in the interval | — 1, +1[ which depend on the cross-sections of
the multiple collisions. In a recent paper [5], for the same models but without
multiple collisions, comparing the P, P4 waves we have obtained the damping,
provided the Whitham interlacing property —1 < ¢~ < 0 < ¢* < 1 is satisfied.
Here we will show that this interlacing property holds. On the contrary, the roots
of the cubic ’5(¢(;)) polynomial, which are the characteristic velocities of the weak
shock theory, are independent of the multiple cross-sections. For completeness
we will report the proof [5] that they also belong to ] — 1, +1[. In summary,
if we compare with the previous results for binary collisions, the main problem
is that the P4 roots depend on the cross-sections of the multiple collisions and
we cannot apply directly the binary results. For the waves associated with Py, P3,
Whitham has given the interlacing conditions for the roots which lead to the statibily.
Let —1,(~,(",1 and ¢V, j = 1,2,3 be the roots of P, = (1 — (H)P(C), P3. We
must verify that:

(3.14) ] e fW B (W e e Bl 1,

For the Py = (1 - t,‘(zi))]’z polynomial the roots are —1, +1 and two other (* from
P5(¢*) = 0. For the study of P, we define two auxiliary polynomials 7,(¢), P2(¢)
with roots Py(a) = 0, Py(at) = 0:

(315) PL=ag(l-()=ne(l +¢), o= _0""02 2.1
nor + ng2

(3.16) Py = 2(1 — (Pymoyngz + CduroPy/2.
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The P, polynomials can be written in two equivalent forms:

(3.17) Py/mgngy = 61 Py + Cro[ Proa(d. + mpz/no2)
—d.((1 = Onor + (1 + ()ng2)2a]
= 7 2mgano(1 — (2) + (ro[aa Prmoa/no2
+d.(no1(1 = Q)a_ — npa(1 + ()7 +].

For the roots a, a* of P}, P»; we deduce simple properties:

Py (0) > 0, la*] < 1, at >0, &5 2,
(3.18) a” <a<a”, Paa(a) > 0, at Pr(at) < 0,
P(£1)50, Py(+1) < 0, aP(0) > 0.

Lemma 1. The Ps, Py interlacing properties —1 < (-~ < 0 < ¢* < 1 are
satisfied.

Due to 7; > 0, 54 > 0 and P;(+1)50 we have:

P (0) = 12mganor > 0,
Pz(]) = 7‘0[52])](1)77702/7202 — 21/,.H()2(~7+] < 0,
(320) 1’2(—1) = —7‘0[52])1(—1)?)?02/H02 + 2(1,.‘1’)01?};_] < O,

(3.19)

and the Ps, P4 interlacing properties follow from 5(0) > 0, P»(+1) < 0.
We write the cubic P; polynomial, with roots ¢ in terms of the above P;, Py:

(3.21) P3/moy = Py Pyy/ngp + 2dangy(1 — g'z)[l’l — Cd.rongr /mot]-

LemMA 2. The P; roots are real and belong to |1, +1[, furthermore ’3(a¥)20
and we have the following inequalities:

Py(£1) 2 0, aP3(0) > 0, aPy(a) < 0,
(3.22) as>0h 3 1<tV P<ca<cit®<,
a<0 : -1<Wca<c@<c0<®<.

For the proof of the first result we start from 3(+1) = (mg1/no) Pi(£1) Pa(£1),
P3(O)/P1(O) . Pzz(O)/an + 2![,.?!02 > 0, (L]"_‘;((l) . —2([.;”02(] - (12)(127‘()7101 < 0,
and with (3.18) we deduce (3.22).

For the proof of the last results we write P3(a) = 2d.nga(1 — (a®)?)[P1(at)—
a*d.rong; /ma] and apply (3.18).
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3.3. Sufficient conditions for the Whitham interlacing properties of /4, P;

We precise the (3.22) relations recalling that ¢~ < a < a*:

T a>0 3 (Mg c0<c@cacat =,
3.23
<0 : Wccae <a<®<0<a® <.

LemMmAa 3. Sufficient conditions for the interlacing (3.14) are Py(a) > 0,
’2((Li) < 0.

Firstly we consider @ > 0. From (3.23) we have (@ < a < a* < (@, If
Py(a) > 0 and Py(a™) < 0, we get a < ¢* < a* and it follows 0 < (@ < (* <
¢, Similarly from (3.23) we have (() < ¢~ and if Py(a~) < 0, we get a= < (~
and it follows ((V < (= < 0. Secondly we consider « < 0. From (3.23) and the
assumptions of Lemma 3 we get: () < a= < a < (? < 0,a” < (- < a and
bothat < (®),0< (* < a®,

CororLary 1. The Whitham conditions are satisfied if @y, ¢ # 7 is small
enough.

From the first expression of /% written down in (3.17) we get for a,; small
enough: Py(a) ~ 5, Pn(a) > 0 and Py(at) ~ moiro(dngy + mop)aat Pi(at) < 0
with (3.18) and we apply Lemma 3.

For ternary and quaternary collisions the conditions of Corollary 1 become
with (3.7): ocp, o small enough and oy, oy, apg, or, 7s, o — small enough
if fifth order collisions are included.

We seek sufficient conditions for the Whitham conditions (3.14), with any Gy,.
LemMa 4. Sufficient conditions for the Whitham conditions (3.14) are:

Py(a) >0 and P(a”)<0 for a >0,
Py(a) >0 and Plat)<0 for a<O.

For the proof, rewriting the first expression of /% in (3.17) we get:
(3.24) sign[at Py(a®)] = sign[(a — a®)F2(moy/ngads + 1) + 2ag (aa®t — 1)].

First, we consider @ > 0,a* > 0 and get a — a* < 0 from (3.18), aa* — 1 < 0,
ap; > 0. Tt follows that »(a*) < 0, one condition of Lemma 3 is satisfied and
only the two conditions of Lemma 4 remain. Second, we consider a« < 0, a= < 0
and get a —a~ > 0 from (3.18), aa™ — 1 < 0, @y < 0 (recalling a(ng; — ng2) > 0
from (3.15)). It follows that P(a~) < 0, one condition of Lemma 3 is satisfied
and only the two conditions of Lemma 4 remain.
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CororrAry 2. Sufficient conditions for the Whitham conditions (3.14) are
provided by
a>0 or a<0: npmysigma; > rod.(ngy — nga)ay — Pa(a) > 0,
a>0: oy >7cay(l —aa”)/(a—a"),
c=2/(my/npd. +1) — Pr(a™) <0,
a<0: 5 >cin(l —aat)/(a-a*) = P(a™) < 0.

(3.25)

For the proof of the first condition /%(a) > 0 we rewrite the first (3.17) expression:
(3.26) sign [ Pa(a)] = sign [2aymo1no2 — 2rod.a(ngr — noz)]

For the two other we apply (3.24).

In order to explicate these results we must take into account the multiple
cross-sections in a; and @,;. We try to find sufficient conditions independent of
these cross-sections, which means valid if they are very large. These cross-sections
are contained linearly in &; and @,,. We consider ternary, quaternary and fifth or-
der collisions and use the following method. We seek lower bounds for &; which
factorize a term containing linearly the cross-sections with positive coefficients
functions of the microscopic densities. We determine this positive term to fac-
torize also the cross-section-dependent part of (ng; — ng2)a;;. If we succeed in
finding such a factor, it can be eliminated from (3.25) and we cbtain sufficient
conditions independent of the cross-sections.

Firstly, we consider only the ternary and quaternary collisions with @y, written in
(3.7). The (3.25) conditions are satisfied if acp and 75 are small. However, as
we shall see they can be also satisfied if they are large, provided conditions on
the asymptotic state are required. The five parameters ng;. m,. ro satisfy the two
(3.1) relations and it remains to choose three arbitrary parameters noy, 192, Mmo1,
from which we obtain the two other:

(327) mpr = 7”0[”02/7'01a rg = 'n'lm\/‘n()z/m]] .

We wish to obtain from (3.25) conditions independent of the cross-sections. The
first (3.25) condition becomes:

(3.28) a1 > rod.(no1 — no2)dar/me2mon -

Gy is written in (3.7) but for ternary and quaternary collisions we retain only the
terms opg = op + op, ox. op is written in (3.3) but for A}, we have [1] terms
coming from other ternary and quaternary cross-sections oz, oy, 0.

dy = mormo2(non — no2)(ope + (o1 + na2)or ),
(328)2 o1 = moime [(T](__;) + 2(7?01 + npXope + o + O’]\'(Hm + ‘1102))

+2ngngoy + 2mmm0201] :
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For &, we obtain a lower bound if we retain only the terms coming from opp, o
2moymoa(nor + no2)(@pE + ox (nor + ng2)) = 2(nor + no2)iar/(nor — noz) > 0.

If we require that in (3.28); the inequality should be satisfied with this lower
bound, it will be automatically satisfied for the &, larger than this lower bound.
With this lower bound substituted in (3.28); we see that the positive factors
a1 /(ngy — ng2) at the lhs and (ngy — ngp)dg; at the rhs are present. Conse-
quently the constraint (3.28); becomes independent of @y, or of the cross-sections
ope,ax. In such a way we obtain the conditions for ternary and quaternary col-
lisions:
ternary and quaternary:

(329)1 [’2((1‘) >0 if 1< 2(7101 + ”O'l)v/”UITOZ/d*(T’Ol . '!102)2.

Secondly, we include the fifth order collisions and the lower bound becomes
51 > (no1 + no2)az /(no1 — noz2) > 0, the only change being a factor 2, and (3.29),
becomes:

fifth order:
(3.29), Py(a) > 0 if 1 < (ngy + no2)y/no1noz/d(nor — no2 ).

Similarly o, has also a lower bound related to aay : 0y > ("ty/a with C' a
parameter which depends on the multiple collisions considered. For ternary and
quaternary collisions €' = 1. For only fifth order collisions Fig.1 M-N-T we find
¢ = 2. If all ternary, quaternary and fifth order collisions are considered, then
(' = 1/2. Taking into account this lower bound in (3.25), we get constraints
independent of the cross-sections:

a >0, Py(a”)<0 if a(C-7)—a (C- a®%) > 0,

(3.30)

a <0, Py(at)y <0 if —a(C -7) +a*(C - a%c) > 0.
Recalling that the a* roots of /%, written in (3.16) depend only on the parameters
of the asymptotic state, we obtain the following Lemma:

LEMMA 5. Sufficient conditions for the Whitham conditions (3.14), valid for
any ternary, quaternary and fifth order cross-sections values, are provided by the
(3.29), (3.30) conditions on the arbitrary parameters of the asymptotic state.

For P5(a) > 0, d = 2, and ternary and quaternary collisions we get as sufficient
condition: 0.23 = 1/4.35 < ngy/ng; < 4.35 (better than nga/ngy = 1 for A;; = 0).
If we include fifth order collisions we get: 0.36 < ngy /ngy < 2.77. For Py(a*) < 0
we can either consider ¢ < C, mqy/d.ngy > 2/C — 1 or take into account the a*
values which depend on the ngy, ngz, mg; parameters.
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4. H-theorem and criterion for elementary collision term

In the present introduction of elementary collision term and in subsections
4.1, 4.2 we consider the models with z-axis along the median of the square, while
in subsection 4.3 we will report the results for the 8v; model with z-axis along
the diagonal. This model was previously studied in our first paper [1] subsection
6.3, and the drawing of the multiple collision terms in Fig. lc.

Each drawing of Fig. 1a corresponds to a collision term of the type ¢ = X -V
with X and Y products of the densities. Let us call gn,,gr, qrs, the nonlinear
terms associated with py Ny, Ry, g4 M. For each drawing these terms are equal
to ¢ multiplied by constants qn, = Aq, ¢qr = vq, qum, = (q. For instance, for the
drawing represented in Fig. 1a - M we find ¢; = RZNIM, — M N} with A = —1,
v = —1, ¢ = 3. Now taking into account the symmetries of the square, other
collisions can occur. For instance cf. Fig. 1b for the three elementary collision
terms of Fig. 1a — M. Firstly, it can happen that the same analytical ¢ is present in
other drawings and for the sum we must verify that the corresponding coefficients
A, v, ¢ are such that the conservation laws are satisfied. We call such a ¢ term
elementary collision term. Secondly, other analytically different ¢ collision terms
can exist. For instance with the transform N, «—— Nj, M, «—— M>, from the
previous ¢ term we find another one ¢y = 1?.2;\"22;1!, — M3 N} that we still call
elementary collision term ¢ = X —Y with X and }" only products of the densities.
Thirdly still, with the symmetries of the square, we find also another elementary
collision term ¢3 = M{MaN{NoR — R3N{N, which simply factorizes (),. Let
us write for the two first collision terms, containing factors of both Q;,Q; ¢ =
X(1-X/Y)with Y/X = N"'R7... where for brevity we do not write the powers
of M;, N,. For each of the two ¢ terms we plot the aq, Ay, v, v values:

Coll. q a3 A 7 5
M,q R*NEM,—- M3N} -2 -1 -1 =2
M,q RNZMy-M3N? 2 1 -1 =2

We remark that a;/A = v/v, and the same relation being found for other ele-
mentary collision terms, we will study later the theoretical reason for this result.
Finally for collisions of the A type we must sum all these terms with the associ-
ated A, v, ¢ constants and if we write X' —Y" for the respective sums of gy, , ¢r. qar;
in general they are not proportional to one analytic term and X, Y are not sim-
ply products of the densities. For the H-theorem we can either show that each
elementary ¢ collision term gives a negative contribution to the evolution of the
h-functional, or the same property for the sum of these elementary terms attached
to the same type of collision; for instance for the Fig. 1 fifth order collisions A
or N ... or T. We begin with this last case.
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4.1. H-theorem: Models with r-axis along the median

We define Qar,,Qn,,@r for the nonlinear part of the nonlinear equations
associated with the densities AM;, N,, R. For brevity we do not introduce double
subcripts corresponding to the sums over all elementary collisions terms and to the
sums over all types of collisions:C, D, ...L for ternary, quaternary and M, ...T for
fifth order. The main reason, as we shall see, being that it is suflicient for each type
of collisions to prove that it gives a negative contribution. From the conservation
laws we have the linear relations Qn, = —Qn,, Qar, = —d(Qr/2+0QN,), Qum, =
~d.(Qr/2 — Qn,). We define the h-functional //d. = Rlog & + 3~ N;log N; +
5" M;log M, /d. that we introduce into the nonlinear equations of the models.
For the h-functional we must prove:

A = Nylog Ny — Nplog Ny + (M, log My — M, log My)/d.,

(4.1) (0.h + 0:A)/d. = QrlogR + ZQM- log M,/do + Qn, log N, < 0
— H-theorem.

Using the above linear equations we can eliminate @, and @ »,. Keeping only
Qn,, @r the rhs of (4.1) becomes:

(4.2) Qn, log(MN /M N2) + (1/2)Qr log(R?/ M, My).
We recall that )y, and ()i contain linearly the binary collision terms: Qr =

Qz(ag) + A1) - Q1A QN = —Ql(ag) + Axp) + QA7 that we substitute
into (4.2):

(4.3) [Ql(nﬁf) b A= (32.,-121] log(M; N2/ MyNy)
A [Qz(ng) + An) = Qi Apa| (1/2) log(R*/ M My).

LemMa 6. If A; > 0, A;; = 0, the H-theorem is satisfied. As application for
the triple and quadruple collisions C', F, G/, I, I, .J, L as well as for the fifth order
O collisions, the H-theorem is satisfied.

In these cases, recalling that Q; = Ny M; — NoMy, Qy = MMy — R?, we see
that the rhs of (4.1) written in (4.3) is negative.

For A;; # 0 we give the proof for the remaining DD F, I cases of the ternary
and quaternary collisions, and below we shall study the fifth order collisions using
a criterion for the elementary collision terms.

We rewrite the rhs of (4.1)-(4.3), from the linear relations (Jp = —(Qar, +

Qan)/de, Qn, + (Qnrr, — Qar,)/2d., in terms of Qay,
(4.4)  2(dh + 3, A) = Qar, log(MEN2/ REN)) + Qar, log(ME N/ REN,).
Lemma 7. For the ternary and quaternary collision terms with cross-sections
opE, o, the H-theorem is satisfied.
We find Qs /2d. = [ope + (N7 + Ny)or J(N; R? - ./UizNj), j # @ and the
contributions to the rhs of (4.4) are negative.
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4.2. Criterion for elementary collision term: r-axic along *he median

For the elementary collision terms we c«iablisii a criterion for the validity of
the H-theorem, from the property that the bir.«ry an! multiple collisions have the
same equilibrium states. This means that the cquiishrium states are determined
only by the two independent relations: N '/,/\ \fy = 1, R?/MM, = 1. As
explained above, let ¢ = X - ¥ be any elcmeniary multiple collision term (X, Y
only products of the densities) and define:

(4.5) Y/X = NN MPMER,

LemMMA 8. For any elementary collision term ¢ = .Y — Y, necessarily Y/ X is the
product of R2/M M, and N M,/N, M, in some arbitrary powers. Furthermore
we have:

(4.6) Y/X =[R2/ M M2 [N My /Ny M.

Firstly, otherwise at equilibrium state we eliminate R = /A5, and between
the N;, M; there will exist another relation than M; N, = M;N,, and different
equilibrium states. Secondly we apply (4.5). We discard, in the following, the
trivial cases with only one factor in (4.6), because in this case ¢ simply factorizes
one of the two binary ¢; terms and it is sufficient to apply Lemma 6. Let us
define, for this elementary collision term, the constants proportional to ¢ for the
nonlinear equations associated with py Ny, I?;:

(4.7) an, = Aq, qr = 1q.

From the v, A coefficients, with the linear relations corresponding to the conser-
vation laws recalled above, we deduce the corresponding ones —\, —d.(\ + 1/2),
do(A — v/2) for qn,, qar,, qar,-

THEOREM 1. The elementary ¢ = X — Y collision term gives a negative contri-
bution to the H-theorem if [A/c = ay, v/e =5, ¢ > 0]

Firstly, in (4.1) we replace qr,qn,,qrs, by ¢ multiplied by the corresponding
A,v constants written in (4.6) and above. We explicitly write the contribution
coming from ¢

(4.8) Gh+0,A=d.X(1-Y/X)log [(1{2/);/1.-\12)"'/2(.\'1 Mz/_f\"zﬁll)"] + ...

but the complete rhs is a sum of such terms with different A, v values. Secondly,
considering Y/ X written in (4.6) and the relations between the A, v and a7y
parameters written in the Theorem, we see that the rhs of (4.8) is negative for
the contribution coming from Q.

We want to apply this criterion to all multiple collision terms not proportional
to only one binary collision term. For a collision DI or K or M, N ... or T we
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have different ¢ elementary collisions terms. We do not report both values for

two ¢ terms obtained by the exchange Ny «—— N, My —— M,.
Coll. q a, A v
DE M2N, — Ny R? I~ 1 ,20-2
K MNZ — R*N, L2 2
K R*N? - M?NyN; -1 -1 -2 -2
M RNI}M;- M}N2 -2 -1 -1 =2
N R?NIM, — M}N}? -2 -2 -2 -2
N  RMIN}-RN;N, 1 1 2 2
P,Q RN - NpMyMP -1 -1 -4 -4
R MIN?N,—R®N}N, 1 1 2 2
S M3RN;N,— RN} -1 -1 2 2
S,T M}NI-RMN? -2 -2 2 2

All these elementary collision terms can be written as linear combinations of the
two binary ones and we verify the criterion: «; /A = 7 /v. For the terms obtained
with Ny —— Ny, M| — My, R — R we see that o — —a1y «—— v
and we have verified that A — —\, v —— v so that the two ratios do not
change. In conclusion all the ternary, quaternary and fifth order collisions satisfy

the H-theorem.

4.3. H-theorem and criterion for the model with z-axis along the diagonal

We call Qp,Qn,,Qrr, the nonlinear part associated with the equations 1,
p+ N1, p_Na, g4 My, q_ My. We recall both the three linear relations [1] and the

analytical structure
Qi t=1,2.3

Qn, +Qn,
1
(4.9) Q3 =
Qn, =

Qr =

of Qr,Qn,, combinations of the three binary collision terms

=Qm +ON+TOQR=0QM +QN,+Qr =0,
= NoR— NiMy, Qs = M;N, - MR,

MM, — R?,
Q1 (Ug) + ~"‘11) + Q> (O’S) + .rlzl) + Q3431

-1 (Ug) ot ,‘-113) + Oy (US) + .'123) + ()3 (Ug) + ,-\33) i

The coefficients A,; which depend on the densities N,, A, I? have been reported
in a table [1]. We define the functional i = " (M;log M; +2N;log N;) +2Rlog i
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and we must prove that

2(Mylog My — Mylog Mz + Nylog Ny — Nalog N),
2Qrlog R+ (Qar, log M; + 2Qn, log N; < 0
— H-theorem.

A
(4.10) oh + 0, A

Using the (4.9) linear relations we eliminate Qn,,Qas, and rewrite the rhs in
terms of Qn,, @r:

(4.11) dh + 0. A = Qn, log(MaNE/MN3) + Qrlog(R?/ M1 ALy).

We recall that all ternary and quaternary collisions Fig. 1c — C-D...L as well as
fifth order collisions Fig. 1c — M-N...T were studied [1]. For the H-theorem, like
in the two preceding subsections, we can, for a given type of collision, either sum
over all elementary collision terms or verify the criterion for each elementary
term. We begin with the first case.

Lemma 9. In both cases: (i) Qn, = C13. NiQi, Qr = (20Q03,C; > 0, (i) Qn, =
C1Q1 + C2Q2, Qr = C2Q2 — C1Qq + (303, C; > 0, the rhs of (4.11) is negative
and the H-theorem is satisfied.

For the proof we first consider case (i) and the rhs (4.11) becomes:

2C1[Q2log(RN1/M{N2) + Qlog(MyN,/RNy)| + (303 < 0.

We can apply this result to Fig. 1c — C-D with 'y = 1,3 = 0, to Fig. I¢ - F with
Cy = R,C, =0, to Fig. 1c - H with C; = 0,03 = MM, + R?, and to Fig. 1c - |
with C"l = 0, ("2 = 21V]/V2.

Secondly, we consider case (ii) where the rhs (4.11) becomes:

2C1Q1log(Ma N1/ RN2) + 2C2Q log(RN1/MiNo) + C3Q3log(R? /My M7) < 0.

We can apply this result to: Fig.1lc — E with ¢} = (5 = Ny + Np, (3 = 0,
Fig.1c — P with ¢y = C; = Ny Na(Ny + N2), 3 = 0, Figs. 1Ic — J-G-K with
C;= N;R+ N;M;, i # j and, respectively, C3 = 0, 2NN, le + sz. All ternary
collisions and all quaternary (except Fig. 1c — L) are covered by this lemma. For
the missing quaternary collisions and all fifth order collisions we will apply a
criterion for elementary collision terms. We sketch briefly the proof which is
similar to the previous one with the z-axis along the median of the square.
Firstly, the equilibrium states being the same for binary or multiple colli-
sions, for any elementary collision term ¢ = X — Y the ratio Y/.X is the prod-
uct of N2My/NZM; and R?/M;M, at some arbitrary powers. Indeed, from
Q;=0,:i = 1,23 at equilibrium we have R = M;Ny/N; = N;AM,/N; and
only one relation between N, M,. If the above product is not true, eliminating
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R = /MM, at equilibrium, we will have another N;, M, relation. Secondly,
writing Y/X = N[N MPMP2RY, we have

[e] 2 Y 2
(4.12) Y/X = (N}Mo/NEM,) d (R2/M1 M) e

Thirdly we define the constants ¢n, = Aq, gr = vq and finally get the

THEOREM 2. The elementary q = X — Y collision terms give a negative contribu-
tion to the h-functional if Aje = ay, v/ec=7,¢> 0.

For the proof, we substitute in (4.11) Qn,, Qr by ¢ multiplied by A, v and
apply (4.12).

(4.13) 9k + 9, A = d . X(1 = Y/X)log[(R?/ M My)" (NZMp/N3M )] < 0.

As a particular case, if v = 0 we must have » = 0. This happens for the Fig. 1c
- Q collision with ¢ = N{N3M, — NoN}M, with oy = A = —2. We apply this
criterion to all other cases not covered by Lemma 9. We discard also elementary
collision terms proportional to only one binary term and report only one case for
the two ¢ which can be deduced from N; «—— Nj, M; «—— My:
Coll. q ap A ¥ v
L R3Ny — My M3N, 1 1 -3 -3
0] N3M?-RN3M; -3 -3 1 1
R R¥N}?-MN\N,ME 1 1 -3 -3
R R3N1N2 — A[)N%I‘Izz 1 1 -3 -3
S N N3MR-N3R* -1 -1 1 1
S N}MaR - N3ME -3 -3 -1 -1
T M3}NZN, - N3R*? -2 -2 2 2
1 R2NZN, — N3ME -2 -2 -2 =2

We verify in all cases the criterion: o /A = v/v.

Appendix A. Fifth order collisions

We determine all the fifth order collisions satisfying 1) spectatorlessness (i.e.
all the particles change their velocities in the collision), 2) microscopic energy
conservation ¥ v? = ¥ v/2, 3) momentum conservation v =Y v; = Vv = Y v,
where primes denote the relevant values, e.g. after collision. We remind that in
the square 8v; model there are only four different velocity vectors v; of the [1]
type, and four of the [2] type.
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Cask I. We show that for 5th order collisions there are no collisions [1]+ [1]+
[1]+[1] + [1] = idem, and [2] + [2] + [2] + [2] + [2] = idem, satisfying 1), 2), 3).

We note that if there are five [1] particles in the same direction (say, M) with
projection of the total momentum v on the = axis ¢, = 5 before collision, then,
in order for 1) to be satisfied, the only possible directions for the postcollisional
particles are those which correspond to R, inverse of R, and M;. This results in
v, < 0, therefore 3) is not satisfied. If there are four or three [1] particles in
the same direction, then with 1) satisfied, 3) is violated. More in detail, in the
former case there are two different possibilities of the fifth [1] particle, and the
projection of the total momentum on the direction of the four [1] particles is 4
or 3, which, by 1), can not be satisfied in any of the postcollisional configurations.
In the latter case there are four possible configurations of the remaining two [1]
particles, and in each case with 1) satisfied, the projection of the total momentum
on the direction of the three [1] particles can not be satisfied. For two pairs of
[1] particles in two directions, there are two possibilities of the precollisional
directions of both [1] pairs: parallel or perpendicular. The fifth particle occupies
the third direction, therefore, with 1) satisfied, there is only one possible direction
for all the [1'] postcollisional particles, and again 3) is violated. For at most
one pair of two [1] particles in one direction, 1) can not be satisfied, since all
four directions possible for [1] particles before collision are occupied. Similar
considerations hold for [2] + [2] + [2] + [2] + [2] = idem case.

Cask II. There are no collisions [1] + [2] + [2] + [2] + [2] = idem, satisfying
1), 2), 3). If there are four [2] particles with the same precollisional direction, say
that of Ny, or three in the same and one in the opposite direction, then, with 1)
satisfied, the projection of v on Ny is not conserved. For three [2] particles in N
direction and one [2] perpendicular, the projection of v either on 2 or on y axis is
not conserved. Conservation of momentum excludes also two [2] particles in the
same direction [along the scheme discussed above for Case I: with 1) satisfied, 3)
can not hold, we omit details]. Finally, for four [2] particles, each in a different
direction, 1) can be not satisfied.

Case IIL. [1] + [1] + [2] + [2] + [2] = idem. First we assume three of [2]
particles in the same (e.g. N,) direction. There are six different configurations
of the remaining two [1] particles: one, in which two [1] particles have velocities
opposite to each other (we identify symmetrical cases), three with perpendicular
velocities of [1] particles, and two with their velocities in the same direction.
With 1) satisfied, we eliminate all these configurations by checking that either
the projection of v on Ny, or on one of the coordinate axis is not satisfied.

Second, we assume each of [2] particles in a different direction. Again, with 1)
satisfied, the postcollisional velocities of all [2] particles must be the same which,
for any configuration of the two [1] particles, results in violation of 3).

Third, for two particles [2] in one (say NV,) direction, the third of [2] is either
perpendicular, or has the opposite direction along Ny. In the former case the
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projection of v on z is at least 1, whereas, with 1) satisfied, the projection of v/
on z is at most —1. Thus, 3) is not satisfied. In the latter case either three of
[2/] has the same (perpendicular to N;) direction (the case already excluded), or
two of [2'] are perpendicular to Ny, and third [2'] has the direction opposite to
both [2/]. Examination of all configurations and outcomes for both [1] particles
implies that the only collision compatible with 1), 2), 3) is that shown in diagram
R of Fig. 1a.

First we analyse all the precollisional configurations of the remaining [1] par-
ticles, associated with the given configuration of the three [2] ones. There are
six different configurations of [1] particles. If both [1] are in A direction, then,
due to 1), there can be no v, momentum conservation. If the [1] particles have
different directions (there are four different configurations of this kind), then,
with 1) satisfied, the possible [1'] directions exclude the momentum conservation
in the v, direction. There remains the configuration of both [1] particles in M
direction. In this case we have v, = —1, v, = 1. We now analyse all the configur-
ations of the [1'] particles (we remind that [2'] directions are already fixed). For
each possible configuration we calculate the momentum projections on the x and
y axis. When these projections agree with the precollisional ones, we check 1) in
addition. With that procedure we obtain the R-diagram as the only one which
satisfies 1) and 2).

Case IV. [1] + [1] + [1] + [2] + [2] = idem. If each of [1] has a different
direction, then with the remaining unoccupied direction as the only one (by 1))
for all [1'] particles, 3) can not be satisfied. For two of [1] in the same direction,
the only collisions satisfying 1), 2), 3) are those corresponding to diagram O in
Fig. 1a.

Finally, with three of [1] particles in one direction, we obtain diagrams M, N,
S, T of Fig. 1a as the only ones for the considered type of the collisions. In all the
other cases, with 1) satisfied, 3) is violated. The proof follows the lines reported
above for the R-diagram, therefore we omit details.

Casg V. [1] + [1] + [1] + [1] + [2] = idem. First, all different directions of
[1] are excluded by 1). Second, with three of [1] in the same direction, e.g. the
y-axis, either the fourth one is perpendicular, or has the opposite direction along
y. In the former case y-projection of v can not be conserved. The latter leads to
diagrams P, () only. Finally, the case of two [1] particles in one direction gives
no new diagrams.
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Flutter analysis of a two-dimensional airfoil with nonlinear
springs based on center-manifold reduction

J. GRZEDZINSKI (WARSZAWA)

METHODS OF LOCAL BIFURCATION theory are applied to a nonlincar integro-differential flutter equa-
tion of a thin airfoil placed in an incompressible flow. Center-manifold reduction leads to the
two-dimensional normal form of the classical Hopf bifurcation. Limit cycle amplitude and fre-
quency are calculated and compared with those of time marching finite difference scheme and
harmonic balance method.

1. Introduction

THE SIMPLEST aeroelastic model of a two-dimensional airfoil representing typical
wing section of an aircraft is extensively used since the earliest days of flutter
analysis [1]. Under some simplifying assumptions, limiting in general the analysis
to the small amplitude harmonic motion of an airfoil of infinitesimal thickness
placed in a plane ideal gas flow, the problem is fully linearized and the essen-
tial part — the unsteady aerodynamic forces — is given analytically. The stability
boundary in terms of flutter velocity — the critical velocity above which the steady
aircraft motion becomes unstable — is then determined by solving repeatedly an
eigenvalue problem for a complex-valued matrix.

Although recent flutter analysis of an aircraft is much more sophisticated and
includes many degrees of freedom, this simplest two-dimensional model serves
frequently as a basis for testing new computational methods of aeroelastic anal-
ysis, usually relaxing some of the linearizing assumptions. This is also the case of
the present paper.

Even if it is linearized, the aerodynamic operator relating the unsteady aerody-
namic forces to the deflection of an aircraft structure (generalized coordinates)
always determines feasible methods for flutter analysis of nonlinear structures.
In the unsteady subsonic motion, the aerodynamic forces depend on the history
of motion as a result of the shedding of the vortical wake behind an aircraft.
Consequently, the aerodynamic operator is always of the form of convolution in-
tegral and cannot be simplified without additional assumptions. Thus, in the time
domain, the flutter equation is an integro-differential equation. This causes no
difficulty in the absence of nonlinear terms — after applying Laplace transform the
whole problem transforms as a linear algebraic equation into frequency domain.

The great simplicity of working in the frequency domain influenced probably
the development of the harmonic balance method dealing with certain structural
nonlinearities and introduced for the first time in 1959 [2]. This method, capable
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of handling only concentrated nonlinearities, replaces each nonlinear restoring
force by the first term of its Fourier transform. If there is only one nonlinear
force present in a system, then for any given limit cycle amplitude the flutter
equation can be solved for the corresponding flight velocity. Multiple nonlin-
earities result in greater complexity of calculations. The amplitudes of aircraft
deflections at concentration points are not known prior to the calculations since
their ratios are determined by the resulting flutter mode. Therefore, any method
of solution uses iterative procedures, usually focussed on the aeroelastic system
under considerations [3].

An alternative approach relies on numerical algorithms worked out for nonlin-
ear algebraic equations not related to any particular dynamical system. Recently,
the most promising are the continuation methods available also as a ready-for-use
package of subroutines [4]. Continuation methods were successfully applied to the
linear flutter equation [5, 6]. It is worth noting here that this equation, although
linear with respect to generalized coordinates, contains aerodynamic forces being
nonlinear functions of the frequency of oscillatory motion. Therefore, any method
of solving this equation is essentially a nonlinear procedure. A preliminary study
of continuation method applied to the flutter analysis of a two-dimensional airfoil
with nonlinear springs can be found in Ref. [7].

All linearization techniques in frequency domain assume pure harmonic mo-
tion of aeroelastic structure and characterize each nonlinear force during oscilla-
tions by a certain average value over a single period of time. If such a simplifica-
tion is nonsatisfactory, then it is necessary to return back to the integro-differential
equation in time domain. The most general approach solves this equation by nu-
merical integration in time with appropriate initial conditions. This time-consum-
ing method encounters one more difficulty concerning calculations of unsteady
aerodynamic forces for an arbitrary motion - in order to perform calculations the
matrix of the impulsive response functions of the system must be known. This
is not a serious problem in the case of two-dimensional airfoil placed in an in-
compressible flow since the response matrix is then given in terms of well-known
Wagner function [8]. However, analogous calculations dealing with compressible
flow and aeroelastic systems with many degrees of freedom are of much greater
complexity.

The problem simplifies significantly if the response functions are replaced
by their approximations having the form of a sum of exponential functions of
time. Such an approximation is usually performed in frequency domain because
Laplace transform changes the exponential terms into rational functions resulting
in much simpler task [9].

Moreover, the rational approximation in frequency domain simplifies the flut-
ter equation in time domain since it gives a system of first-order ordinary differ-
ential equations instead of an integro-differential equation. There exists a great
variety of methods worked out for nonlinear ordinary differential equations and,
therefore, the above approach is frequently used in flutter analysis [10]. On the
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other hand, the rational approximation changes qualitatively the aerodynamic
operator replacing its logarithmic singularity by a finite number of poles located
in an arbitrary manner in the complex Laplace plane. It is known that such a
simplification may influence the stability analysis of an aeroelastic system and,
therefore, it would be preferable to retain the original form of the aerodynamic
operator.

The critical flutter velocity determines a branching point in the phase space
of a nonlinear aeroelastic system. In a small neighbourhood of this point two
types of solution to the flutter equation are permissible. The first one describes a
steady motion that can be stable or unstable, while the second one represents
an oscillatory motion and tends asymptotically to the limit cycle oscillations,
being in turn also stable or unstable. This type of instability is referred to as
the Hopf bifurcation and belongs to bifurcations of the best qualitative under-
standing [11]. Hopf bifurcation is two-dimensional, what means that limit cycle
oscillations are described by only two generalized coordinates, no matter how
many degrees of freedom are used in order to describe the original aeroelastic
system. A two-dimensional subspace containing these asymptotic oscillations is
called center manifold. Thus, as far as an asymptotic analysis is considered, it is
possible to obtain the limit cycle for an entire aircraft from only two differential
equations. The method of deriving these equations uses the techniques of center
manifold reduction and normal form theory [12]. For an aeroelastic system of NV
degrees of freedom this approach contains several steps:

o formulation of the problem in terms of a system of 2N nonlinear integro-
differential equations of the first order, instead of a system of N equations of
the second order — this is the requirement of the methods of bifurcation theory
worked out for such equations;

o identification of the bifurcation point — this is done by solving the fully
linearized flutter equation;

e increasing the number of generalized coordinates by one by adding the
flight velocity U as a new variable, and also increasing the number of equations
to 2N + 1 by introducing a new equation d{//dt = 0 - this is done in order to
work on the interval in velocity space in the vicinity of bifurcation point;

e restriction of the aeroelastic system to the appropriate center manifold —
this step requires creation of a special nonlinear transformation of the initial
2N +1-dimensional system of integro-differential equations into a two-dimen-
sional system of ordinary differential equations of the first kind;

« normalization of the reduced system — this step puts the reduced aeroelastic
system into a simpler form by applying the so-called near-identity change of coor-
dinates. The simplicity achieved lies in the phase-shift symmetry of the resulting
system of equations;

e calculation of the limit cycle amplitude and frequency for a given flight
velocity — this task, because of the symmetry of the final equations, is equivalent
to finding roots of a polynomial with real coeflicients.
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The last three steps deal with formal power series expansions o’ nonlinear
terms with respect to generalized coordinates and, therefore, restrict the analysis
to a certain neighbourhood of the bifurcation point. The range of valdity of the
results has to be estimated for each aeroelastic system separately.

2. Flutter equation

The geometrical scheme of a thin two-dimensional airfoil is shown in Fig. 1.
Semi-chord b of the airfoil serves as a reference length. The pitch angle and

b

FiG. 1. Two-dimensional thin airfoil.

the plunge displacement during oscillations are described by a and h, respec-
tively. Nondimensional distance measured from airfoil mid-chord to the elastic
axis is denoted by z,. Four nondimensional parameters describe linear dynamical
properties of the airfoil:

m

= airfoil — air mass ratio,
7pb
S ) ) ) ) )
Ty = b nondimensional distance measured from the elastic axis to the
m

centre of mass,

I . . , .
To = 1/ ﬁ radius of gyration about the elastic axis,

7=t uncoupled natural frequency ratio corresponding to linear
w
il springs,

p air density,
m mass of airfoil per unit span,
S, static moment about the elastic axis per unit span,
I, moment of inertia about the elastic axis per unit span,
wp, uncoupled natural frequency of plunging motion,
w, uncoupled natural frequency of pitching motion.
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For given uncoupled natural frequencies wj, and w,, the corresponding spring
constants /'y, and A, can be written as

Ky = mw%, K, = Iw2.

o

Both springs are assumed to be nonlinear and produce cubic restoring forces F},
and F, in the plunge and pitch degree of freedom, respectively:

(2.1) Fp = Kp(h + czh?),  Fy = Ky(a + c,0d),

where ¢, and ¢, are known constants.

Displacements of the airfoil during an unsteady motion are described by the
N-dimensional (N = 2) vector of geometrical coordinates u(t) being function of
time t:

2.2) = { Zg; } _

In the absence of external aerodynamic forces and under the assumption that
¢;, = ¢, = 0 (linear springs), the natural frequencies w; and modes ®; (j = 1,2)
can be calculated from the eigenvalue problem

(2.3) wIM®; = KP;

where M and K are mass and stiffness matrices, respectively:

M = 17?; —85, | s iy, 0 ‘
-S. I, 0 K,
It is convenient to introduce modal coordinates, although in the present case
this is equivalent only to a formal linear change of coordinates. For systems with
many degrees of freedom such a procedure is frequently used in order to reduce

the total number of coordinates, even in the presence of nonlinearities [10]. The
vector q(¢) of modal coordinates is defined by the relation

(2:4) u(t) = [®1 | ®a(r),

and in the absence of structural damping forces it satisfies the equation of mo-
tion [13]

(2.3) q (1) + Kaq(t) + k(q) = Fa(q),

where F4(q) is the vector of generalized unsteady aerodynamic forces. The gen-
eralized stiffness matrix K is expressed by natural frequencies w; and w,,

1 w% 0
(2.6) K—[O w%}
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The nonlinear term corresponding to Eqgs. (2.1) is given by

- (1) @ \?
. T | Kpew (871 + P72
@) = o af | P,
Kac, ('Pz g+ Py (/2)

where &) denotes the J-th component of the :-th natural mode.

The aim is to find the critical flutter speed for the Eq.(2.5), and also the limit
cycle amplitude and frequency in the neighbourhood of the critical point.

Since the aeroelastic system is nonlinear, it is not possible to assume harmonic
motion during limit cycle oscillations. Therefore, unsteady aerodynamic forces
must be written in a general form valid for an arbitrary motion:

0

2
2.8) Fa(q) = % / 2(~7)q (r, + l'ir) dr
where U denotes the flow velocity. Elements of the matrix g are response func-
tions corresponding to the impulsive changes of generalized coordinates q. For
a thin airfoil in a two-dimensional incompressible flow these functions can be
expressed in terms of well-known Wagner function [8]. Finally, the equation of
motion (2.5) takes the form of an integro-differential equation containing an
integral of convolution type.

The point of interest of this paper is an asymptotic motion of the airfoil. In
the analysis of this kind of motion the methods of local bifurcation theory of
dynamical systems will be used [14]. Bifurcation theory has been developed for
the first-order equations and the flutter equation (2.5) has to be transformed into
such a system. This can be easily done by introducing a 2.V-dimensional vector
of new coordinates y(t),

yi(1)
2.9) y(t) = { f } ,

where y; (1) = q(t), y2(1) =4 (). The resulting first-order flutter equation is
0
(2.10) Y (1) = Duy(t) + / Gu(=0; )y(f + )6 + i (y),

where square matrices of the order 2N, Dy, Gy and the nonlinear term f/(y)
are given by
R R By
Dg=|---=- , ()= ===
=iy 0 ~k(q)
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0 0

o=t
TWE\TTY/
with K and k(q) given by Eq.(2.6) and Eq.(2.7), respectively.

The critical flutter conditions are fully determined by the linearized flutter
equation obtained from Eq.(2.5) for oscillatory motion

(2.11) q(’) = ge**,
where
(2.12) s =7+ iw,

in the absence of nonlinear term (k(q) = 0). The vector of unsteady aerodynamic
forces is then given by the simple linear relation

Fa(a) = A(s; U)ge™ |

where
12 % :
2.13 A U) = P [ gtrye-Brar
2 g
0

is called aerodynamic matrix. Usually, this matrix is calculated directly, hence
there is no need to evaluate the response matrix g. In the present case the aero-
dynamic matrix is given by

p*+ 2pC(p) p+ 2+ p)Cp)
T

A(p; U) = —mpb*U? |, ' @, 2 ®, 82|,
[ ] —p(.'(p) % -4 ]2—] (l + g) C(})) [ ]

where

2.14) Co) = Ky(p)

Ko(p) + K1(p)
is the generalized Theodorsen function [8] of a complex argument

sh

(2.15) P=

with Ko(p) and K'(p) being the modified Bessel functions.
Finally, the flutter equation reduces to the eigenvalue problem

(2.16) (A(s; U) — K)q = s°q.
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Loss of stability occurs when damping drops to zero (y = 0 in Eq.(2.12)) and
the flutter boundary is determined by the real negative eigenvalue of Eq.(2.16)

(2.17) st = —uwf,

corresponding to the critical flutter velocity U/ = .

The critical bifurcation point of the first order equation (2.10) is defined by
the eigenvalues of its linear part corresponding to fi/(y) = 0. It can be shown
[11, 15] that also in the presence of convolution integral within the linear part,
the eigenfunctions have the form

y(t) = ye**,

where s is given by (2.12). The resulting eigenvalue problem is the following:

2.18 0 : : -lA— y
(i) Aoy K o T

It follows from comparison with (2.17) that at the flutter boundary the charac-
teristic matrix of linearized first-order flutter equation has a complex-conjugate,
pure imaginary pair of eigenvalues s = +iwy. Therefore, the Hopf bifurcation of
time-periodic solution occurs in the nonlinear aeroelastic system [11].

3. Center-manifold reduction

The Hopf bifurcation is two-dimensional. It means that in the space of sol-
utions to Eq. (2.10), all bifurcating solutions tend asymptotically to a two-dimen-
sional attracting subspace, called center manifold, and generated by eigenvectors
corresponding to eigenvalues of zero real parts [14]. Moreover, these asymp-
totic solutions satisfy certain system of two nonlinear ordinary differential equa-
tions of the first order, which can be derived from the integro-differential equa-
tion (2.10), written for many degrees of freedom. This procedure of obtaining
a low-dimensional system of equations from initial multi-dimensional system is
called center-manifold reduction. The most important is that the center-manifold
reduction preserves entirely all information about the asymptotic behaviour of
the full initial system.

There are two problems associated with center-manifold reduction. Since the
aim is to calculate asymptotic limit cycle oscillations for a general form of the
nonlinear term fi;(y), this term is assumed to have a formal power series ex-
pansion with respect to generalized coordinates y. Consequently, the method of
center-manifold reduction is also based on such expansions. The second problem
concerns the way the velocity U should be treated in. The critical flutter condi-
tions correspond to a certain critical value of the velocity U/ = Uy, which in turn
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determines the existence of pure imaginary eigenvalues of Eq.(2.18) and the cen-
ter manifold, as well. At this critical branching point the amplitude of oscillations
tends to zero and, in order to obtain finite amplitude limit cycle oscillations, the
velocity value must be different from critical. Unfortunately, if I/ # Uy, the char-
acteristic matrix of Eq. (2.18) no longer possesses pure imaginary eigenvalues and
the center manifold simply does not exist. On the other hand, the existence of
the center manifold has been proven in a certain neighbourhood of equilibrium
solution yg(¢), corresponding to U/ = [y, in the space of solutions y(¢) [11, 16].
For that reason the center-manifold reduction usually applies to the so-called
suspended systems [17]. Suspended aeroelastic system is derived from Eq.(2.10)
by introducing the difference

(1) w=U-10)

as an additional variable satisfying the equation = 0. The 2N + 1-dimensional
vector of new generalized coordinates is the following:

yi(t)
(3.2) x(t) = { ya(0)
- -
and it satisfies the equation
0
(3.3) % (1) = Dx(1) + / G(=O; Wx(t + ©)d6 + (x),

where square matrices of order 2V + 1, D, G and the nonlinear term f(x) are
given by

010 0
D=| K0 0|, fx)=1: -k
0 00 0
0 0 0]
Gu(-6;u) = p(UOZZ ")3g (UO;“(—)) 50 : 0
_______ QiRET BN L |

Since the matrix G(—@;u) now includes the independent variable u instead
of the bifurcation parameter U, the integral in Eq.(3.3) is no longer linear with
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respect to x. In what follows, the matrix G is replaced by the Taylor series

1 — (- v{l(l( () O)
(3.4) G(-0;u) = G(-O;0) + JZTJ — !

It is also assumed that the multi-variable power series expansion for the nonlinear
function f(x) on the right-hand side of Eq.(3.3) is known:

1
(3.5) f(x) = Z —hx
u>2
where
2N +1
xu _ {‘rl{l : 1;_ I;\v_:]]} L l/ = v, Vj : 0

The number of components of the vector x“ and also the number of columns
of each matrix f, changes from one term to another and equals to the number
¢, 2n+1 of compositions of v into 2V + 1 parts. The elements of matrices f, can
be easily calculated from Eq.(2.7). For cubic restoring forces the only nonzero
matrix is f3. Substitution of series (3.4) into Eq. (3.3) yields the integro-differential
equation valid in a certain neighbourhood of the critical bifurcation point,

(3.6) % (1) = Dx(1) + ] G(~0;0)x(1 + 0)dO + f(x) + h(x),

-0

where f(x) is given by Eq.(3.5), while h(x) equals

0
I 47 1G(0;0) ,
3.7) h(x) = 3 / "N+ @) dO,
"2 (n - 1) o dun
where x7 = {a]' - 27?233/ 1}, and always n = man 41 + 1 (22v4+1 = v) which
2N +1
implies that Z n; = 1. Equation (3.6) will be reduced on the center manifold.
i=1

The linear spectrum of Eq.(3.3) now includes one more eigenvalue with zero
real part than the previous spectrum of not suspended system (2.10). Hence the
center manifold corresponding to Eq.(3.6) is larger than that of Eq.(2.10) and
has the dimension of three.

From a quite formal point of view, the center-manifold reduction is equivalent
to the appropriate nonlinear change of coordinates given in the form of a series

(3.8) x(t+0)=>" !1 w,.(O)z"(1).

>l
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where the vector z(1) of new coordinates has only three components. The matrices
w,.(0) of order (2N + 1) x ¢, 3, where ¢, 3 denotes the number of compositions
of yt into 3 parts, are composed of continuous functions defined over the interval
O € (—o0,0]. The algorithm of center-manifold reduction, described in details
in Ref. [15], provides the way of calculating these functions and also the method
of simultaneous deriving the first-order ordinary differential equation describing
the limit-cycle oscillations in terms of new variables z:

(3.9) P()=Az()+ > ;}—'d#z" :

u>2

where A denotes the diagonal matrix of eigenvalues iwg, —iwp, 0, and d, are
rectangular matrices build up with already known complex numbers. The way the
suspended system has been introduced implies that z3 = u and also %3 (t) = 0,
which means that an asymptotic motion is essentially two-dimensional. The third
variable u acts once again as a parameter while the suspended system serves as
a convenient tool for deriving series expansion with respect to it.

The next important conclusion drawn from the algorithm of center-manifold
reduction says that there is no need to know the response functions forming ele-
ments of the matrix G(—@;0). This is because the columns w,,.(O), k = 1,2,..,
¢.2N+1, ft > 1, of each matrix w,(@) of the transformation (3.8), can be only of
the elementary form:

W, (0) = W,.07¢"

with an integer j > 0, and s being a complex imaginary number [15]. Conse-
quently, all integrals appearing within the algorithm can be carried out as follows:

0 .
j qr(;(—(—);O)(_)J o _ 0"+jJA(4<;(fO)
) dur ' AUrdss

where r > 0, and the only non-zero block of the matrix

0 00

A(s;Ug) = | A(s;Up) 0,0

0 00
is the aerodynamic matrix A(s; /) given by Eq.(2.13) and calculated for a pure
harmonic motion and the critical velocity Uj.

Since Eq.(3.9) is an ordinary differential equation, it can be easily transformed
to the so-called Poincaré normal form either by Lie transforms [12] or by recursive
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change of coordinates [18]. Both methods introduce new variables ((!) related
to z(t) by the near-identity transformation

(3.10) 2(0) =) + Y Vl'b,,q"(t).

v>2 !

This transformation retains the form of Eq. (3.9) also with respect to new coor-
dinates {(¢). The requirement for calculating elements of matrices b, is to make
as many coefficients d, equal to zero as possible. However, the simplification
achieved lies not in a small number of terms of the resulting normal form, which
in fact remains infinite, but rather in the phase-shift symmetry introduced by
the transformation (3.10). The normal form of Hopf bifurcation in polar coordi-
nates r, ¢

(3.11) G=re’,  G=q,
may be written as [14]:

F=r (7(1:) + Z(lj(rl.)T'zj) ,

J=1

(3.12)

T
I

w(u) + Z b;(w)r¥,

J=1

where v(u) + iw(u) is the complex-conjugate pair of eigenvalues (y(0) = 0,
w(0) = wg). All functions y(u), w(u), a;(u), b;(u) are real and have the form
of power series expansions with respect to =. In practical calculations Egs. (3.12)
are implemented up to some finite order j < n. Therefore, the amplitude r,, of
the limit cycle oscillations satisfies an algebraic equation obtained from Eq. (3.12),
by setting 7= 0:

(3.13) y(u) + Z a.J-(u)rflj =0

7=1
For any given u the left-hand side of Eq.(3.13) is of the form of a polynomial
with respect to r,,. Hence all possible limit cycle amplitudes are determined by

the real positive roots of this polynomial. Since limit cycle oscillations {; = ¢, (t)
on the center manifold are pure harmonic [11],

(3'14) (:H = Tnein! s
then for each amplitude r,, the corresponding frequency w,, is calculated from
(3.15) wi = w(u) + ij(u)rflj :

j=1
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The sequence of transformations of variables given by Eqs. (3.11), (3.10), (3.8),
(2.9) and (2.4) yields the final limit cycle oscillations of physical variables u(t)
given by Eq.(2.2). Since two of these trnsformations are nonlinear, the physical
variables do not oscillate harmonically in time, contrary to the center-manifold
variables ((1).

4. Numerical examples

The main new data that must be supplied to the algorithm of center-manifold
reduction are derivatives of the aerodynamic matrix A(s; {) with respect to vari-
ables s and U. It can be seen from Eq.(2.13) that these derivatives can be easily
evaluated if derivatives of the aerodynamic matrix with respect to a single com-
plex variable p (2.15) are known up to the desired order of approximation. For the
n-th order of approximation of the Egs. (3.12) the highest derivatives are of order
2n — 1. In the numerical examples in the paper two-dimensional incompressible
aerodynamic theory is used and, therefore, all elements of the aerodynamic ma-
trix are given analytically in terms of the generalized Theodorsen function C'(p)
(2.14). By using the following relations for the modified Bessel functions Ko(p)
and K'1(p):

dio(p) .., dii(p) _ - Ki(p)
dp R1(p), dp Kole)~ =4

the first two derivatives of the Theodorsen function can be obtained

dC(p) _ A, B 1, .
= 200 -1+_(CH)-HCH),

£00) _ 20 -1,,400) (;, C0)-1)
([7)2 = p ([p p 5

The higher order derivatives satisfy the following recurrence formula, valid for
k> 1:

dH1C(p) _ (2 ket 1) ) | 1) | 2 C)
dpk+1 P dp* p dp* p dpt-1

The first numerical example has been chosen in order to compare the center-
manifold reduction with direct integration of equations of motion. The report of
Lee and LEBLANC (Ref. [19]) presents flutter analysis of a two-dimensional thin
airfoil based on a time marching finite difference scheme. Only cubic nonlinear
restoring force in the pitch degree of freedom has been taken into account, which
corresponds to ¢, = 0, ¢, # 0 in Eq.(2.1). Although equations of motion have
been written in the report in the integro-differential form, they are equivalent
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to the system of ordinary differential equations because of exponential approxi-
mation of Wagner function applied in calculations. The airfoil data values are the
following: z, = —0.5, y = 100, z, = 0.25, r, = 0.5, 2 = 1.2 and ¢, = 3. These
values have been chosen because they generate a relatively strong nonlinear effect
as compared to those presented in the report.

Variations of the limit cycle amplitudes in plunge 7 /b and pitch « with the
ratio of the velocity U to the critical bifurcation velocity {7y are illustrated in Fig. 2
and Fig. 3, respectively.

020
hb |

016

o2 |———

008 ——~ e

T s o

I Il 1

OIOO 101 102 ursu, 103

['1G. 2. Limit cycle amplitude in plunge.

05

A R

02 -

I |
100 101 102 o, 10

I'1G. 3. Limit cycle amplitude in pitch.

The sequence of lines for n = 1...6 corresponds to the different numbers of
terms included in the series of Eqs. (3.12). The related Hopf limit cycle amplitude
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r,; and frequency w,,, given on the center manifold by Egs. (3.13) and (3.15), are
shown in Fig. 4 and Fig. 5, respectively.
04

C,- n=1

03

02t
34

0l — S i

0 L n L

100 101 102 Uy, 103

I'1G. 4. Amplitude of center manifold Hopf limit cycle.

110 T
0w A,

108

100 101 102 Uy, 103

I'1G. 5. Frequency of center manifold Hopf limit cycle.

The significant change of slopes of two curves corresponding to n = 5 and 6 in
Figs. 2 and 3, for the velocity ratio greater than 1.02, breaks the converging trend
of the first four curves. Such behaviour illustrates an important property of power
series expansions used in the center-manifold reduction — these series usually do
not converge. More often the divergence is generated by the normal form trans-
formation given by Eq.(3.10) [14]. Nevertheless, the finite order approximation
can be considered as a part of an asymptotic expansion, and the optimal number
of terms should be estimated for each aeroelastic system separately. The number
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of terms strongly depends on the interval of variation of the bifurcatian param-
eter. For the numerical example presented above the four-order approximation

seems to give the best results.

The next two pictures (Figs. 6 and 7) show the comparison of the limit cycle
amplitudes calculated by this four-order approximation, with analogous results
of the numerical integration of flutter equation [19], and also with results of the

harmonic balance method [7].
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FiG. 6. Limit cycle amplitude in plunge.
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In the second example both springs are nonlinear. The airfoil data values are

the following:
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['1G. 7. Limit cycle amplitude in pitch.

po=

0

20,
= 1.5,

ro = 0.25,
Chp = 0.3

http://rcin.org.p

and €

103

13

55



FLUTTER ANALYSIS OF A TWO-DIMENSIONAL AIRFOIL

Variations of limit cycle amplitudes in physical variables 7 /b and «, and also the
Hopf limit cycle amplitude r,, and frequency w, on the center manifold, with
the velocity ratio {//Uy, are illustrated in Figs.8—11. For this data the six-term
approximation gives satisfactory results in a wide range of variation of the bifur-
cation parameter U.

10
h/bl n=2
08 b——m—— _b&\ ,’:"ﬁ’
, ‘\\
06 — -
| 5
)
04 e e
02 —
Op7 08 09 i 10 g, 1
['1G. 8. Limit cycle amplitude in plunge.
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—
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o L 3 1 1
07 08 09 10 usy, 1

The next two pictures (Figs. 12 and 13) illustrate the comparison of the limit
cycle amplitudes corresponding to the six-order center manifold approximation
with analogous results of the harmonic balance method of Ref. [7]. This example
shows that sometimes it is not enough to take into account only the first term
in the series expansions of Egs.(3.12), even for only qualitative analysis. The

Fi1G. 9. Limit cycle amplitude in pitch.
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07 08 09 ’ 10 o, 1

F'1G. 10. Amplitude of center manifold Hopf limit cycle.
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1 1 1 i
%7 08 09 10 o,

I'1G. 11. Frequency of center manifold Hopf limit cycle.

single-term approximation gives a square-root dependence of the Hopf limit-cycle
amplitude r,, on the bifurcation parameter u, obtained from Eq. (3.13):

1 dy(0)
" a(0) du =i

valid for small « (note that 7(0) = 0). In the present example, the above for-
mula is satisfied within a small interval above the bifurcation point, resulting in a
stable limit cycle, while in a wide range below this point the unstable limit cycle
oscillations occur.
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I'1G. 13. Limit cycle amplitude in pitch.

5. Concluding remarks

Three different methods compared in the paper, although applied to the same
numerical examples, are not expected to give exactly the same results. The method
of numerical integration of equations of motion should give, in general, the
most reliable results. However, the implementation of Ref. [19] simplifies sig-
nificantly the aerodynamic operator and, therefore, cannot serve as a reference
method. The harmonic balance method assumes pure harmonic oscillations of
an airfoil and also treats nonlinear springs in a simplified manner. Finally, the
method of center-manifold reduction is based on asymptotic series expansions
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producing errors that can be estimated only numerically. Nevertheless, there is
a good agreement between these three methods. Hence the main advantage of
the center-manifold reduction lies in a possibility of extension of this method to
such aeroelastic systems that the harmonic balance method cannot handle and
the direct numerical integration method cannot be used in sufficiently effective
way.

The method of center-manifold reduction applied to nonlinear asymptotic
stability analysis is especially focussed on aeroelastic systems with many degrees
of freedom, because it finally reduces the analysis to a low-dimensional system
of differential equations describing finite amplitude limit cycle oscillations of an
entire aircraft. The method is general in the sense that it allows for any source of
concentrated and also distributed nonlinearities. In particular, both aerodynamic
and structural nonlinearities are treated in the same way. Moreover, the method
does not introduce simplifications of the aerodynamic model. Therefore, the main
source of the instability of motion — the energy transfer from the gas flow to the
aircraft structure — remains undisturbed.

The draw-back of center-manifold reduction, however not related to the
method ifself but rather to the most widely used procedure of obtaining an effec-
tive solution, is a power series representation of nonlinear terms. For that reason
the present analysis has been restricted only to structural nonlinearities, which
seem to be easier to handle in this way than the nonlinear unsteady transonic
aerodynamic forces.
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Travelling waves in a two-temperature model
of laser-sustained plasma

B. KAZMIERCZAK and Z. PERADZYNSKI (WARSZAWA)

IN THIS PAPER we prove the existence of travelling fronts in a two-temperature model of a laser-sus-
tained plasma. We use the implicit function theorem starting from a solution of a one-temperature
model. We estimate the temperature difference as a function of electron-heavy particle collision
frequency (which is treated as a perturbation parameter) and its influence on the speed of front
propagation,

1. Introduction

IN THIS PAPER we consider the problem of existence of solutions of combustion
fronts type for the equations describing laser-sustained plasma. Here, plasma is
composed of electrons and heavy particles with temperatures 77 and T3, respect-
ively. To obtain the existence result we use perturbation technique, taking one
temperature approximation as a starting point. This is an interesting case of
perturbation around an infinite value of a perturbation parameter, which in our
case can be interpreted as the collision frequency.

2. The physical problem

Let T}, T; denote the temperatures of electrons and heavy particles, respect-
ively. Then, assuming that the pressure p is constant, 7} and T satisfy the fol-
lowing system of equations [1, 2, 3]:

8 3 m
(E-i-v-grad) {5k877*111+72'1E}
21 = div (ki1grad?) + kiagradTy) + f — (Ty - T))W,

J 3 E
(a +v. grad) {-2-1.“}3712'12}

= div (kygradTy + kypgradTy) + (77 — To)WV.

In the above equations by k;; we have denoted entries of the effective heat
conductivity matrix, by n;, ny — the number densities of electrons and heavy
particles, and by v — their common convectional velocity. I is ionizaton energy
and kp is the Boltzmann constant. I denotes the laser beam intensity. The source
function f is responsible for the outer balance of plasma energy; [ = kI — rad,
where the first term represents absorption of energy from the laser beam of
intensity 7, and the latter one — the energy losses due to plasma radiation.
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All the functions appearing above are assumed to depend on the temperatures
T1, T> only.

As a matter of fact, f depends only on 71, i.e. f = f(7}). Both x and &g are
strongly dependent on 7). They are almost zero for 77 < T}, where 7; > 0 (e.g.
for Argon plasma Ty ~ 10000K) and they grow rapidly for higher temperatures.
(For example the dependence of x on Ty is shown in Fig.1). Therefore, with
a reasonable approximation, which is very commonly used, one can assume that
(1) = Ofor Ty < Ty. However, this apparent simplification creates some mathe-
matical difficulties mainly connected with the fact that f+(7) = 0 for 7" < Tj. In
[4] we made the assumption f7(7.) < 0 (where 7. < Tj is the temperature of
the ambient gas), which was essential in the proof. That proof does not work in
the case of the source function considered here.

Argon, 1 atm
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QL
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w
Q
[}

A 1 A 1
g 5 0 5 20 25
temperature [1000 K]
FiaG. 1.

The term (77 — T3)W describes collisional energy exchange between electrons
and heavy particles. WV is proportional to the frequency of electron-heavy particle
collisions. This frequency tends to infinity as the pressure tends to infinity. So, it is
possible to write W(p; u,r) = A(p)W(u,r), where ) is a dimensionless parameter,
A(p) — oo as p — oo. Thus X is a relative measure of the electron-heavy particle
collisions. Consequently, for high pressures the temperatures of electrons and
heavy particles are nearly the same and we have to do with one temperature
model.

2.1. Travelling waves solutions

Solutions to Eqgs. (2.1) may be sought in the form of travelling waves. Thus, for
n e R and y € R, let us assume that Ti(x,t) = w1 (x + n+ x1), Ta(x, 1) = up(x
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n + ) (n is called the direction of propagation and y the speed of a travelling
wave). Inserting these relations into (2.1) we arrive at the following system of
ODEs:

22) (kyuf + kiguh)' — g {Cyuly + Craub) + f = Mug — ug)W = 0,
‘ (kyyuy + kagub)' — q {Couy + Copuh} + My — ug)W = 0.

Here symbol ' means differentiation with respect to £ € R, £ := x . n + yt,
while

(2.3) g:=(x+v-n), Ci; = p“l {%A‘Bn{[‘i + 511711-13} S
T;

where by p we have denoted the mass density and é;; is the Kronecker’s delta.
By the continuity equation we have ¢ = const, so ¢ will be treated as a real
parameter. Physically ¢ is the mass flux.

DerINITION 1. A C%(RY) solution (uy(€), u2(€)) to Egs. (2.2) is called hetero-
clinic, if it tends to different constant vectors (asymptotic states) as £ — +oo and its
derivatives vanish at +oo. ®

Thus to have travelling waves for Eqgs. (2.1) we must find heteroclinic solutions
to Egs. (2.2). It is known that for a given A such solutions can exist only for certain
values of the parameter ¢, as we have to do with a kind of an eigenvalue problem.
Thus ¢ should be treated as an unknown, whose value must be determined. The
aim of this work is to prove existence of heteroclinic triples (g, u1, up) satisfying
Egs. (2.2) under the condition that A is sufficiently large.

DEFINITION 2. Let us denote

u = uy, TI= Uy — Uy,
kyi= ki 4k, kai= kit ka,

(2.4)
K =k + ky, d = kykyy — kraka, C:= 3 Cy,
k(u) := K(u,r = 0), c(u) := C(u,r = 0). w.
By adding Eqgs. (2.2);, (2.2), we arrive at the equation:
@5) "+ {—ge(uyd’ + (K (ur)Yu + [(u) + Ny} (K (1) =0,

or the equivalent equation

(2.5 (K (u, ")) — ge(u)’ + f(u) + Ny =0,

http://rcin.org.pl



760 B. KAZMIERCZAK AND 7. PERADZYNSKI

where

Ny = — [kpa(u, r)r’ + koo(u, m)r']" — qC(u, r)’ + qe(u)e’
+q {Cra(u,7) + Cau, )} .

The equation for r is obtained by finding k,u” from (2.2), and substituting it into
(2.2);. It has the following form:

(2.6) r" — AWK (d)™'r + Ny =0,
where

N, = —kz(d)_l{qCu(u, M+ qCr(u, rY(u — rY — (k(u, r)) '
—f () + (kra(u, r)Y' '} + k()" (=kau, 7))u + (kaa(u, 7))'r’
+qCn (u, ) + ¢Cpu, r)(u — 1)’}

3. Heteroclinic orbits in a one-temperature model

The difference r between the temperatures must tend 0 as A tends to infinity.
Thus, for A = oo we must formally put » = 0. Then N; = 0 and Eq. (2.5), reduces
to

(3.1) (k'Y — ge(u)u’ + f(u) = 0.
3.1. Properties of the function f

Asymptotic values of any heteroclinic solution to (3.1) must solve the algebraic
equation f(u) = 0, i.e. the equation:

3.2) S(u) = k()] — Eaaq(u) = 0.
Let J(u) := [Eraa(w)](x(u))~! and let Jy := m>|{} J(u) = J(ug). It is known ([5]),

that for v > wug, J(u) is a parabola-like function of u. Then, for u > up, we
have f(u) = x{u)(I — J(u)) and for every I > Jy the equation (/ — Jo(u)) = 0
possesses a solution wy > ug. So, we assume u(~c) = u,. This solution is stable
because f.,(u+) < 0. As we have mentioned in the Introduction, the absorption
coefficient x vanishes for temperatures smaller than a certain temperature 7p,
ie. f(u) = 0 for u < Ty. Thus, the “left-hand” zero of the function f(u) is
nonunique. Its value must be determined by the physical boundary condition at
(—o0). Consequently, we assume that u(—o0) 1= u_ = T, < Ty, where T is the
temperature of the “cold” incoming gas.

Now, the following two remarks will be of crucial importance for our further
consideratons
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REMARK 1. Physical arguments show that effective conductivity coefficients
ki(u, r), ko(u, r), c(w) (the total specific heat of the plasma divided by its density)
and W (scaled frequency of collisions) are positive for v > 0, v — r > 0. Also,
d = kyi1ky — kiakp; is positive due to the fact that £y, and &,y are relatively
small. Finally, it is quite natural to suppose that all the considered functions are
sufficiently smooth. =

REMARK 2. By the use of a standard integral transformation, Eq. (3.1) can be
changed to the equation of the type:

(3.3) M" — gy(M)M' + (M) =

In fact, let « — M (u) := k(y)dy. As k > 0 for v > 0, then M, > 0 and

this transformation has the inverse M — u(M). It is easy to check that (M) =
c(u(M)[k(w(M))]~! and ¢(M) = f(u(M)). According to Remark 1, v is smooth,
bounded and positive, whereas, according to the above properties of the function
f(u), the function ¢(M) is nonnegative for M € (0, M;) and identically equal
to zero for M € (0, M* ) and some M* € (0,M;). Eq.(3.3) appears in the
combustion theory and it is relatlvely well analyzed. Due to the properties of f

we have ¢(M) < 0 for M > M, = /L(J)du Then, by means of phase plane

andlyms (see [6, 7] and references thereln) one can prove the existence of a
unique mass speed ¢ = ¢o and a unique monotonic heteroclinic orbit M (£) to
Eq.(3.3) such that M — 0 as § — oo and M — M, as £ — oo. It is easy to note
that¢g > 0. m

Now, one can ask a question, what happens, when A < oo, but is still sufficiently
large. To be precise, the question is whether we can find an appropriate value of
gq for which there exists a solution (u(£), 7(£)) to (2.5), (2.6) such that u(£) tends
to u4 or u_ as £ + oo, respectively, and r'(£) — oo as |£]| — oo. We will consider
this problem in the subsequent section.

4. Existence theorem and its proof

This section is devoted to the proof of existence of heteroclinic orbits to the
system of ODEs:

(4.1) w' Elgnsal rrsnt
(4.2) v’ — Ab(u,7)r + P(q,u, v/, 7,7’

N N’
Il

One can see that this system generalizes the system (2.5), (2.6). However, it
will be considered below independently of the latter system.
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The asymptotic states to the system (4.1), (4.2) are the solutions of the system:

(43) E(g..0.7,0.0) = 0.
(4.4) b(u,r)r + €2 P(q, u,0,7,0) = 0,
where

2= ),

Let us note that generalization of (2.5), (2.6) to (4.1), (4.2) consists, among others,
in the fact that solutions to (4.3), (4.4) may depend on the parameter q¢.

Our aim is to show that heteroclinic solutions to the system (2.2) can be
constructed from appropriate solution to the equation

(4.5) u" + Ey(q,u,u') =0,

where
Eolg,u,u’') := E(q,u,',0,0,0).

This equation is obtained by putting formally » = 0 in Eq.(4.1). The main tool
of our analysis will be the implicit function theorem.

If ¢ = 0 and b is strictly positive, then the system (4.3), (4.4) can be satisfied
only by the pairs (u,0), where u fulfils the “reduced” equation:

(4.6) E(q,4,0,0,0,0) = Ey(q,u,0) = 0.

H1. For q = ¢y the equation (3.6) has at least two solutions, which, without
losing generality, may be taken to be 0 and 1, such that

E().u((l():oﬂo) < O: EO.U q0, 10) < 0. m

H2. For ¢ = ¢y Eq.(4.5) has a heteroclinic solution G/(¢). Without losing
generality we may assume that G(—) =0, G(x) = 1.
There exist finite nonzero constants «, 3, Cy, and (3 such that a, 3 > 0 and

(G'(E)Cre ¢ —1) = o(1) as £— —oo,
(G'(E)C2e* —1) = 0(1) as £— . =

REMARK 3. As it is known, the asymptotic behaviour of ; as £ — oo or
& — —oo is determined by characteristic roots of the linearized version of Eq. (4.5)
near (u,u’) = (1,0) and (0,0). Thus, (2a) is a the positive characteristic root of
linearization near (0, 0), and (—2/7) is the negative root of linearization around
(1,0). m

H3 B e r>0he il PelCy 8

H4. b(u,r) > b > 0forall (u,r) in a certain C'*-neighbourhood of (¢,0). =
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DEFINITION 2. For o and 3 determined in H2 and for i = 0,1,2, let B; denote
the subspace of C'(IR) consisting of functions y for which the expressions

Yn 1= maX{SUp PPy M), sup E‘“pl;u(“)(fl)l} o mE
p>0 p<0

are finite (the symbol ") denotes the n-th derivative of y).

B; is a Banach space with the norm ||y||; := Z Yp. @

n<t

HS5. For all (¢, q) near (0, qy) there exist two families of solutions to system
(4.3), (4.4): [u-(c,q),r—(c,q)] and [u4 (¢, q), 7+ (¢, ¢)], such that [u_(c, q), 7 (¢, ¢)]
— [0,0] and [u+(c,q),r+(,q)] — [1,0] as (e,¢) — (0, qp). We assume that the
dependence of these functions on (¢, q) is at least C'2 smooth. m

H S is in particular fulfilled, when [u_(c,q),r—(c, ¢)] and [u 4 (s, q), 7+ (, ¢)] are
independent of ¢ and ¢. Such a situation takes place in the case of our plasma
system (2.5), (2.6). =

DEFINITION 3. For [u_(c, q),r—(c,q)] and [ui(c, q). 7 +(¢, q)] determined in HS
and G defined in H2, let

I, 36) 1= 4-(6,0) + GO+ 10} - uter )]
S, q;6) :=r_(5,9) + GE)[r+(c,q) —r_(c,9)]. m

REMARK 4. Due to Eq.(4.4) and H4, S ,(0, ;&) is identically equal to 0 for
q and all & so by H2, H3, H5 S (c,4:€) = O(e?), See,q;6) = O(e?) and
S eee(e, ;) =0(?) ase — 0. m

In [4] we assumed that Fy (¢, 0,0) < 0 and £y (0, 1,0) < 0. Now we admit
these quantities to be equal to 0. Consequently, the constant solutions (0 or 1) to
Eq.(4.5) may not be exponentially stable. This causes the difficulties connected
with convergence of some integrals (cf. the proof of Lemma 3 and Remark 7 in
Appendix 2). To remedy the situation, we will decompose « and r in the following
way:

(4.7) u() := U(E) + L(¢,q;6), r:= R+ S(e,q,8),

and assume that U and R belong to the space B;. Let us note that L and §
satisfy appropriate boundary conditions, i.e. they tend (as £ £+ oo) to appropriate
solutions of system (4.3), (4.4). We can thus look for I/ and R instead of v and r.

The system (4.1), (4.2) is an autonomous one. So, if it is satisfied by (u(£), r(£)),
then it is also satisfied by the function (u(£+ &), (€ +£&p)) with any finite &,. To get
rid of this ambiguity and to fix the position of « in the é-space, U will be subjected
to an additional condition of the form: U/(0):’(0) + U’(0)G"(0) = 0. This can
be interpreted as the condition of orthogonality of the vector (U/(0), U//(0)) to
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the vector (G'(0), G"(0)). As a matter of fact, the vector ((:(0), ¢"(0)) can be
replaced by any nonzero vector, which is not orthogonal to (G’(0), "(0)). This
condition guarantees that (’, being a solution to the linearized equation

U" + E.4(q0,G,GYW + E (9. G, GHY' =0

is excluded from the considered spaces of functions.

DEFINITION 4. Let BY denote the subspace of By consisting of functions y such
that y(0)G'(0) + y'(0)G"(0) =0. =
Now, we will transform the system (4.1), (4.2) so that the implicit function

theorem can be applied. For given functions U/ and r and ¢ # 0 we may define a
linear operator A(U, R,¢) : B — By determined by the relation

(4.8) y— AU, R,e):=y" —e72(U + L, R+ S,¢)y,

where the dependence of L and S on (g, ¢) was not explicitly written. If U and
R are sufficiently close to 0 then, due to H3 and H4 and all £ # 0, this operator
has a well defined inverse A=!(U, R, ) (see e.g. [8] p. 69, 50, [9] Ch. XI; see also
Appendix 1). Taking advantage of this fact for ¢ # 0 we can write the system
(4.1), (4.2) in the following form:

(4.9) Qi1(q, U, R,e) =0, Q2q, U, R, e) =0,
where we defined

(4.10),  Qi(q,U,R,e):= (U + LY’
+E(q U+ L (U+ LY, R+S.(R+SY.(R+5)),

(410,  Qaq,U,R,e):= R— A"WU,R,e)N(q, U+ L, R+ S)+ 5, ¢ #0,
and
(4.10); N(q,U,R):=-P(q, U+ L,(U+LY,R+ S,(R+S5)).

Before applying the implicit function theorem we have to prove continuity and
differentiability of the mappings @1 and @,. First, we must extend the definition
of ; for ¢ = 0. Let us define

(4.11) Q2(q. U, R,0) = 0.

In Appendix 1 we will prove the following lemma:

LemMMA 1. Let the assumptions H3 and H ¢ be fulfilled. Let ¢, be defined by
(4.8), (4.10)1, (4.10); and (4.11). Then for all (¢, U, R,<) from some neighbour-
hood of (g9, 0,0,0) in R' x BY x B x R!:
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i. O, is a continuous mapping from R!x BYx By x[R! to B, and ||Q2(q, U, R, 0)
—R|2 = O(J¢]) fore — 0.
ii. , is continuously Frechet differentiable with respect to (¢, U, R). If

DQa(q,U, R,)[§. U, R]
denotes the Frechet derivative with respect to (¢, U, R) at a point (q, U, R, e
acting on [, U, R] (which is equal to lim0 %Qz(q + 1§, U + nlU, R + nR,¢)), then
e

1DQa(q, U, R, )G U, Rl - Rll2 = |e] Ol + [|Ul2 + (| Rl|2). =
It is also clear that, according to assumptions H3 and H5,

LEMMA 2. () is a continuous mapping from R! x B’2J x By x R! to By,
continuously Frechet differentiable with respect to (¢,U, R). ®

Hence the mapping Q(q, U, R.¢) := [Q:1(q, U, R.¢),Q2q, U, R,¢)] is a well de-
fined mapping from R! x B9 x B, x R! to By x B,, continuously Frechet differen-
tiable with respect to (¢, U/, R). Moreover, for ¢ = 0, the equation Q(q,U, R,c) =
0 is satisfied by the triple (¢ = ¢o, U = 0, & = 0). The last thing we have to
prove is to show that the linearized system defined by the Frechet derivative of
@ at (¢0,0,0,0), i.e.

(4.12) DQ(4,0,0,0)[¢. U, k] = (f1, ),
has for all (f, f2) € By x B, a uniquely determined solution (¢, U/, k) € R! x
BY x B,. We need several subsidiary symbols:

a(€) = Eou (90, G(€), G'(€)),

()(6) = P)O,u(qu (;(E)-‘ —"’(6))3

(4.13) h(€) = Eoq(90, G(£), G'(£)),
€
p(€) 1= exp fa(s) ds |,
0

mi(€) := E w(q, G(6), G'(£),0,0,0), 1 =0,1,2,

where () denotes the i-th derivative of r, and F , - the derivative of £ with

respect to (9,
As we will see, it is also necessary to assume that

He. [ GOMOME)E # 0. m
LemMma 3. Suppose that assumptions H1-H 6 are true. Then, for all (fi, f2) €

By x B, the system (4.12) has a uniquely determined solution (g, U,R) € R! x
BY x By, thus the operator DQ(qo,0,0,0) has a bounded inverse. m
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The proof of Lemma 3 will be given in Appendix 2.

DEFINITION 5. For i = 1,2, let B; denote the subspace of C'*(IR") consisting
of functions ¢ such that ¢’ € B;_y. B; is a Banach space with the norm |||z, =
[9llco + l1¢'ll5,_,- =

Now, by Lemma 3 and the implicit function theorem (conf. e.g. [10] p.17, 18,
19) we conclude that for all sufficiently small |¢|, there exists a unique solution
(q(2), U (), R(¢)) for Egs. (4.9) belonging to the space [R' x B, x BY, and thus a
unique (up to translation in £) solution (q,u,r), with u(c) = U(c) + L(e, q(¢)),
r = R(e) + S(c, q(¢)), for Egs. (4.1), (4.2) belonging to the space [R! x By x Bo.
The asymptotic values of u(c) and r(<) fulfill the system (4.3), (4.4) with ¢ = ¢(¢).

As £2 = \~!, we have proved the following existence result for heteroclinic
solutions to the system (4.1), (4.2).

THEOREM 1. Assume that assumptions H1-H6 are fulfilled. Then for A > 0
sufficiently large there exist a unique (up to a translation in €) triple (qx,u\, 7))
satisfying the system (4.1), (4.2) such that:

i. the functions u) and ry belong to the space Ba;

ii. (gn,uyr, 7)) e (g0, G, 0) in the norm of R! x By x By;

ii. (uy(—00),7\(—o0)) and (ur(c), rr(oc)) are equal to the appropriate solu-
tions of the system (4.3), (4.4) with ¢ = ¢,. =

By returning to the initial variables #; and u; we can obtain the similar exist-
ence result of heteroclinic solutions for the system (2.2); 5.

REMARK 5. Theorem 1 can be proved also when the functions appearing in
the system (4.1), (4.2) depend on A = =2, provided that for all ¢ close to 0 they
are sufficiently smooth with respect to the other variables (as in H3). =

It is easy to note that, according to Remarks 1 and 2, assumptions H1-H 6 are
satisfied for our plasma system of ODEs given by (2.5), (2.6). First, by appropriate
affine change of variables we can suppose that v_ = 0 and u; = 1. Thus Remarks
1 and 2 imply H1-H4. The properties of f(u) imply HS5. Also assumption H6
is fulfilled because £ and ¢ are positive. Thus the above theorem ensures the
existence of heteroclinic solution to Egs. (2.5), (2.6).

5. Estimations of temperature difference in travelling fronts for laser-sustained
plasma

In the case of the plasma system (2.5), (2.6), the problem is simplified, since
this time r— = r4 = 0, and the function S(¢,¢;€) is equal to zero and r = R.
Moreover, the function L(s, ¢; £) is constant in (¢, ¢) and neither Ny nor N (with
u substituted by U + L) depend on the parameter ¢. (N, and N, are written
after Egs. (2.5); and (2.6)). According to the implicit function theorem (see e.g.
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[10]), the triple (¢, U, R) is the uniform (with respect to ¢) limit of the sequence
{(q, U, 7).}, where (¢, U, 7)o = (90,0.0) and, for n > 1,

((]7 ty T)n = (qa u, T)(n—-l) - (([Q(’[Oa G, 0,0))—]{0((% u, T‘)n—vlv E)]

Thus, in the first approximation (n = 1), according to Lemma 2, we have r =
Q2(q0, U = 0,7 = 0,e) = A~1(0,0,¢)No(qo,[U = 0,7 = 0]), i.e. r is given as a
B3 solution to the equation

(5.1) r = B)r = = Ny(6),

where for a fixed ¢ we have put B(£) = B(G,0)(¢) = ¢ 2[WKd~'](£) and the
functions W, K and d are taken at the point (U = 0,r = 0). Similarly we have
denoted Ny(§) = Na(qo, [U = 0,7 = 0])(¢).

Taking advantage of the WKB-method (see Lemma 4 in Appendix 1), we can
find an approximate (in C?) solution to Eq.(5.1)

13 0o
(52) (€)= +2"1v_(6) ] Y, (s)No(s) ds + Y+ (€) / Y_(s)Na(s)ds b ,
J, /

where
€
. _1
Yi(§) = B73()exp | % /m{[b'
0
Differentiating (5.1) we obtain the equation for z = ¢/, from which we have

£ oo
26 =27V (© [ VT ds + Vi) [T ds
—00 I3

where 7'(s) = (Na(s)) — (B(s))r(s). Then, by means of (4.1) we can find an
approximation for r”.
Further, Ny(qo, [, 0], <) has the following form:

Na(0, [, 0],€) = —ka(d) " {qoC1G" = by oG — [}
+hy(d) " {~k2,G? + 002G}

where C7 = C1 + Cqp, Cr=Cy + Oy
It is easy to note (see Appendix 1) that for small |¢| we have, according to (5.2),

r= 2 (WK —kaaoC1G" — k1 G? = f1+ ki[—h2,.G"* + oC2G']} + O(2).
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It is seen that the same formula can be derived, when we set ¢ = ¢y and u; =
up = G (everywhere except in W(uy - uy)), multiply the first equation by k,, the
second by k; and subtract it from the first.

Now, let us estimate é¢g — a change in a mass flux ¢ (see Eq.(2.3)) due to the
finitness of A. First, we note that Eq.(2.5) can be written in the form:

u” = qe(u)(k(u))™' + (k(u)) Tk u? + f(u)(E()™" + Pg,[u,r]) = 0.

It can be checked that the linearization of P at ¢ = ¢p, u = G (i.e, U = 0), r = 0
is equal to

Po = K (G, 0)r(k(G) " HG"} + G?((G)) VK 4 (G, 0)r
+1'G'(K(G)) 'K (G, 0) + (k(G)) ™ {k2(G, O)[B(G,0)r — Na(go, G, 0,¢)]
~q0C (G, 0)G"r + goC5 (G, 0)r'},

where C5 = C1y + Cy; and we have used Eq. (5.1) to eliminate »”. According to
(4.13) we have

¢
p(€) = exp /{~qg(ﬁ(ug)(/;(‘u0))_1 + zllb(k(’llo))_lk'u('uo)}([..5'
0

eo]

b= / [pGe(C) k()] () de.

-0

Then, according to the proof of Lemma 3 (Appendix 2), we have in the first
approximation:

b= 1 [(GPo)E) de.

Appendix 1. Proof of Lemma 1

First, let us consider the linear equation:
(A1) y" =€)y = [(6),

with b(€) > b > 0 for all £,b € By, f € By (see Definition 5) and -2 large.

If b = const, then the homogeneous form of Eq.(A.1) is fulfilled by the
functions yy = exp(+£v/b), and the unique bounded solution (A.1) takes the
form

¢ o0
V&) = ~@VD el S u-©) [y @I ds +50©) [y-(f)ds
J, 5

Hence in this case [|y(c,)|[1 = O(J¢]) as ¢ — 0.
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The general solution to Eq.(A.1) can be constructed by the use of two inde-
pendent solutions to its homogeneous version. The asymptotic form (for ¢ — 0)
of these solutions can be estimated from the WKB theory.

LEmMMA 4. Let b(&) > b > 0 for all &, b € By, f € By. Then, for all sufficiently
small |¢| the unique C? solution to Eq. (A.1), which is bounded for all ¢, has the
following representation:

¢
(AD) Y€)= —ll27 1A+ 1DV [ Ve ds

+Y+(£)/}’L(.9)f(s) ds §
3

where

12© = () e 1o [ (I + 20-9) s
0

Ve = (o) e {41l j(mwzm(s)) s
0

p_, p+ are continuous bounded functions independent of ¢, and 7 is a constant
independent of ¢. =

The proof of this lemma follows from [9] p.327 and the estimations given in
[11] section I1.2 (with slight modifications). =

LemMA 5. Let b € By, b(€) > b > 0. Let f € By (see Def.5). Then, for y(e,-)
determined by (A.2) and for ¢ — 0 the following relations hold:
(A3) ye By,
(A4)  ly(es s, = 0Dl SNy
(A5)  lly(es s, = OEDIS s, ™

P roof. From (A.2) one can conclude, that

y(e, &) = 2 LEOOE)) " + O(lePyw(®),

where |w(€)| < exp(af) for £ < 0and [w(€)| < exp(—p3£) for € > 0 (see Definition
2). Hence from Eq.(A.1) we obtain y”(£) = O(|<|)w(§). Then, differentiating
Eq.(A.1) we obtain the equation z” — ¢=2bz = f' + ¢~ 2b'y, where z := y'. The
right-hand side of this equation has its By norm finite (and independent of ¢).
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If 2 is its solution, then it can be expressed by relation (A.2) with f replaced by
(f" + e=2b'y). Thus, we obtain (A.5) and hence (A.4). As y” € By, hence (A.3).
The lemma is proved. =

Now, we take 0(£) := b[U + L(s,q), R + S(c,¢)](€). According to assumption
H 4 for all (¢, U, R, ¢) sufficiently close to (qp,0,0,0), we have b(&) > b for all £
and b € B;. Thus, by Lemma 4 and Lemma S point i. of Lemma 1 is proved.
Now, we will prove point ii. of Lemma 1. Let

S(e,q.8) = 5"(e,q,6) — e72b[U + L(c,q). R + S(c,9)])5(e, 4,€)
and
(e, q,6) = S"(e,,) — e7[U + L(s, 9), R + S(c,9)]S (<, 4, ©).
Then, let ((£), ((£) be the unique solutions in B, (Def.5) of the equations:
¢" = e7[U + L(e,q), R+ S, )¢ = N[q, U + L(e,q), R+ S(c.q), €],
(" — 72U + L(e, q), R+ S(e, Q)¢ = Nl[q,U + L(e,9), R + S(e, 9), €],
respectively. The difference Y := ((+5(c, ¢)) — (C + 5(c. ¢)) satisfies the equation

Y — e 2(u, R)E)Y = (N[q, U + L(c.q). R + S(c, ). <]
~N[q,U + L(,q), R+ S(e,q),e] + e72(C + S(e, ))O[U + L(s.q), R
+5(, )] — bU + Lz, 0), R+ S 0) + S(e.q) — 2. 0))(©).
Owing to H2, H3, H4, HS, Definition 3, Remark 4 and Lemma 5, the mappings
(N + X) and b are Frechet differentiable with respect to (¢, U, ) (as mappings

from R' x BY x B, to By and to B,, respectively), thus according to the definition
of A (relation (4.8)) we obtain from the last equation:

Y = AN U, R, &) (DN + X))+ 7 2(C + S)YDO)[§, U, R
f
AU, R €) (R (G, U, R) + Ry, U, B)) .

Here j:=q—q U:=U-U, R:= R— R, D(N + Y) and Db denote the Frechet
derivatives of (N + X') and b at the point (¢, U, It), whereas || Rn(q, U.R)| and
|| Ro(U, || are terms of the order o(|3| +||U||2+ || 72[|2) as (|§]+ | U]+ || E|l2) — 0.
Further, taking advantage of (A.5) and substituting ( +.5 = (+ 5 + Y, we obtain

Y = (AU, B, e)(D(N + 2) + e XC + 8)D0)) [7. 0, B) + 6. U ),

where [|6(7, U, B)|li = o(lg] + |U]]2 + [|R[l2) as (|g] + [|U']}2 + [|}]]2) — 0. Thus,
the Frechet derivative of (¢ + .5) with respect to (¢, U, i) at the point (¢, . R, <)
is equal to A~1(U, R,e)(D(N + X) + ¢~2(¢ + S)Db). Due to the fact that ¢ =
AYU, R,e)N(q,U, R,¢), H5, Lemma 5, Remark 4 and definition of (),, we have
proved the Frechet differentiability of (). By the use of (A.4) and (A.5) we obtain
point ii. of Lemma 1. Thus the whole lemma is proved.
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Appendix 2. Proof of Lemma 3

Due to point i. of Lemma 1, the form of ¢, Remark 4 and (4.13), the system
(4.12) can be written as:

(A7) DU = &7, /1, R)(©),
(A8) R = f2(6),
where
(A.9) DU := 0" + (&)U’ + e(€)U
and
2
&7, f1. R)E) := fi(€) - Zomf(é) [RO©)] - h€)G — D [L,4(0,40.6)] 7.

Let us note that G’ fulfils the homogeneous version of Eq. (A.7), but it does not
belong to BY, since (G'(0))? + (G”(0))? # 0 (otherwise GG would be identically
equal to a constant). According to assumption H2, for p sufficiently large the
functions

¢
h2(6) = G'©) [ECN ! dz
tp

are also well determined solutions to the homogeneous version of Eq.(A.7) for
£ € (+u, too). These solutions can be extended to functions ¥, » determined on
the whole [R!-line. It is easy to note that ¥;(£) (¥2(€)) tends to some nonzero con-
stant or grows exponentially as £ — oo (£ — —o0). Thus, by choosing appropriate
linear combination of ¥; and v),, we obtain a solution ) such that

D(E) = me (1 + o(1)) as £ — o0,

() = mae (1 + o(1)) as £ — —oo,

for some nonzero constants m; and mj. Here v; = 23—a(x), 72 = —2a—a(—0),
where « is defined by (4.13);. Without losing generality we may also assume that
the Wronskian "' — "9 is equal to 1 for £ = 0.

Knowing two linearly independent solutions of the homogeneous equation we
can write down the general solution of Egs. (A.8), (A.7). Namely:

R(&) = f2(6),

(A.10)

£
0(©) = ~G'©) [ 1R, iy L))z + aG(E)
0

¢
+0©) | e+ [ GG )
0
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Let us note that ¢ belongs to the space By. Due to assumptions H2 and H3,
() behaves like a nonzero constant or grows exponentially for |£] — oo, so ¢,
should be chosen properly so that U € B,. Thus ¢; must obey the conditions:

€2

[ @m0 5 R
0

€2

| GG ) i
0

Hence we obtain / G'(2)p(2)®(q, f, f2)(2)dz = 0. This condition, together with

—00
assumption HS, allows us to determine in a unique way the value of ¢:

00 oo -1
i= [/ G'p@(0, fl,fz)ds} [/ G"gpdz‘ )

— 00

Since U must belong to BY, then the constant ¢; is also uniquely determined. Tt
is easy to check that with the above choice of constatnts U belongs to B,. The
first statement of the lemma is proved

Thus, the operator DQ(qO,O 0,0) is invertible on the whole By x Bz Due to
Theorem 4.2-H p. 180 in [12], the operator (DQ(qo,0,0,0))~! is continuous and
thus bounded. The whole lemma is proved. =

REMARK 7. Let us see more precisely what happens when £ ,(g9,0,0) or
Ep .(q0,0,1) become equal to 0. According to H2 and (A.10) the terms

£ 3 co
9E) | —c2 + / G'pd dz | = 9(€) / G'pbdz | = —9(8) / G d
0 o0 3
can be written, for |£| sufficiently large, as terms proportional to
& co
(1 + o(1)) / (1 +o(L)PG)d=|  or  (1+0(1)) / (1 + o(1))d(2) dz
o0 3

We want these integrals to belong to B3, so at least to By. As & € By, then it
follows that @ vanishes exponentially at +oc.
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New formulation of the space-time finite element method
for problems of evolution (*)

CZ. BAJER and R. BOGACZ (WARSZAWA)

IN THE PAPER the space-time finite element method was developed for probiems of evolution. The
equilibrium equations were determined in terms of velocity. Non-stationary partition into spatial
finite elements, which arises from the evolution of the shape of material, was assumed. Properties
of the solution scheme, particularly its convergence and stability, depends on the form of the
distribution of virtual velocity. The system of one degree of freedom, described both by linear
and nonlinear differential equation, was investigated. The damping of higher-mode oscillations
and the amplitude and phase error were estimated. The solution of testing and real problems
were performed. High efficiency of the proposed method for complex problems, also with internal
contact, were proved.

i. Introduction

THE SPACE-TIME discretization of the structure has some advantages. First, it en-
ables the non-stationary partition of a structure. It allows to solve in a simple
way quite new problems: problems with moving edge, mesh adaptation in hyper-
bolic problems, mesh condensation which moves together with a travelling force.
Second, the evolution of the domain considered in nonlinear problems can be ef-
ficiently modelled by the continuous change of geometry in time. The method of
the space-time finite elements, described for the first time by OpeN [1] and then
developed in papers [2, 3, 4, 5], has considerably been changed as compared with
its first formulation. The fundamental difference concerns the approximation of
characteristic parameters. In commonly used time integration schemes it has the
form

(1.1) u(x, t) = N(x) - q(1),
whereas in the space-time approximation we use
(1.2) u(x,t) = N(x,1) - qc.

The same question concerns both the state parameters and the geometry of a
structure. Thus the evolution of the geometry has a continuous representation in
the formulation and in the equilibrium equation.

In the paper we will discuss some numerical properties of the time integration
method derived from the formula (1.2). The first approach to the formulation de-
veloped here can be found in [6, 7]. The reader can also find there the historical

(*) The work has been done as a part of the project No PB-309389101, granted by KBN.
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background. It should be emphasized that we do not apply directly the Hamilton
principle (nor any other energy methods). The method has various possibilities of
modification. The order of the error can be evaluated and changed according to
our requirements. The artificial damping can easily be introduced and controlled.
Engineering problems with the evolution of geometry can be solved with much
more higher efficiency than by means of other numerical tools. The approach
can be extended to nonlinear evolution of geometry within the time interval. Tt
could allow us to increase considerably the time step of calculation with material
and geometrical nonlinearities. Thermo-mechanical coupling, temperature prob-
lems, problems with phase change can be modelled in a natural way by using
non-rectangular space-time elements.
Let us shortly recall and develop the formulation.

2. Formulation

We start from the differential equation of motion

dv

The principle of virtual power gives the form

dv
(2.2) (m~— + kr) v* =0,
dt
where v* is the function of virtual velocity.
We assume the linear distribution of real velocity v over the time interval
0<t<h,

t t
(2.3) v = (1 - ﬁ) vo + 5o
The displacement z(t) is described by the integral
2.4 :—j 1t = ho+ 2 |1 (1 1)2 .
(2.4) a(t) = [ vdt = hg > N v + 501
0

Here the proper choice of distribution of the virtual velocity v* is the fundamental
problem of the method. The convergence, efficiency, accuracy of time integration
and accuracy of the solution in the case of geometrical nonlinearities depend on
the form of v*. The simplest one is the Dirac distribution:

(2.5) 7)'=1)1(5(]£-a), 0<a<l.
)
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The form (2.5) is convenient for our purpose since it reduces the computational
effort and allows us to select the parameter « according to the stability condition.

The integration of (2.2) in time interval [0, 1] with respect to (2.3), (2.4) and
(2.5) gives the following formula:

kh?

1= =—J1=1~d)] . /
(26) v = 2m vy — i——-44--1‘—11,‘0 5
N kath? m St ka2 h2
2m 2m

which allows us to compute v, if the initial conditions vy, ¢ for time step [0, 1]
are known. Now the geometry z; is the last unknown value we must determine
to proceed to the next step [h,2h]. The average value of the velocity taken at
point gh, 0 < 3 < 1 results in the formula

(2.7) xy = 9 + h[(1 — Bvg + Bu1].

The energy at the end of the time interval is preserved if 3 = 1 — a. Then we
have finally

(2.8) 1 = a9 + hfavg + (1 — a)vy].
It was proved in [7] that the unconditional stability of the process (2.6), (2.8)

2 .. .
occurs for £ < a < 1. For o = 1 we have the explicit formula while for other

values (0 < a < 1) the scheme is implicit and requires iterations to determine
the geometry ;.

3. Numerical dissipation

Numerical damping of higher frequencies with zero damping of the basic
frequency of the structure is the important question for each time integration
method. Several papers on this subject exist (for example [8]). The ideal solution
is when we can control the damping properties of the procedure (in particular
cases the damping should be equal to zero). Lower frequencies should not be
damped while higher should be damped relatively stronger. With respect to the
shape of the damping diagram, we can divide all methods in two groups: the first
one (Wilson, Houbolt method) with the zero slope of the damping function for
small h/T, growing with the increase of h/T, and the second one (Newmark,
trapezoidal rule) with a certain slope of the damping function for /T — 0.
The practical experiences indicate that the first group damps higher modes too
much, and the second group does the same with lower modes. Other methods,
which use more artificial parameters in their formulations, improve the damping
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1. 3. Displacements in time of the free end of the 40-clement bar with sclected parameters «
and v for time step A = 0.1 and 1.0.

properties but their use is dangerous since the regular dependence of properties
on the parameters does not exist.
Here, let us modify the Eq.(2.7) by
13

, 0<~y<1.
1+7 =S

(3.1) B=1-

The system (2.6), (2.7), (3.1) has the artificial damping which depends on the
parameter 7 and on the moment ah in which the equation of motion is con-
sidered. Figures 1 and 2 present the damping decrement as a function of v for
two values at a: 0.8 and 0.9. Tt can be interesting to compare the response of a
40-element model of a bar fixed at one end and subjected to an impulse. The
most characteristic results are depicted in Fig.3. Even small value of v allows
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FiG. 4. Displacements in time of the free end of a 40-clement bar computed with a long time
step: without damping and with v = 0.1 (thick linc — theoretical solution).

to reduce the spurious vibrations of higher modes. For the Courant number

k=1(k=

ch/b, ¢ — wave speed, b — length of the finite element) it suffices

to take v = 0.05 = 0.10. For short time steps 7 should be increased. Figure 4
presents the displacement in time of the free end of the same bar. However,
the calculation was performed with a long time step. Small artificial damping
with 5 = 0.1 stabilizes vibration after several steps. Otherwise the response of
the numerical model does not correspond with the response of the mathematical

one.
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4. Convergence

Simple error analysis enables us to determine the reminder of the Taylor
expansion of the exact solution which is not represented in the numerical solution.
The order of the error and respective coefficients for different parameters «
are given in Table 1. The best case is for a = 1/2. However, the scheme is

Table 1. The order of convergence for different parameters a.

method  error order  cocfficient
a=0 At? %
= % Ar %
a= % Aar 112
o= % At? %
a=1 A %

conditionally stable. We can decrease the error order and improve the stability
by a linear combination of several Dirac peaks introduced to (2.5). Then the
virtual velocity has the form

14
(4.1) vt =1 ; w;0 (E - n,-) ,

where w; are the weights and «; are the coordinates of peaks. The formula which
corresponds to (2.6) is of the form

i h

1+"ZZ . 1+"QZ a?
e (% — w; o
2 £ 2 &

Both k and m are, for simplicity, equal to 1. For example, if we take a; = 0,
ay = 1/2, a3 = 1, we can determine wy = 5/6, wp = —2/3, w3 = 5/6. The
solution has the error O(h*). The time integration scheme

(4.2) v = 0.

h?
1-+ h 1
(43) v = 2 vy — 2 o, ) = ag+ —2‘})(”0 + 'i‘])
e . - O
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is identical with the classical space-time finite element scheme described in [9].
We should strongly emphasize here that the coincidence occurs for the simplest
case of a linear, one-degree-of-freedom system. Here we investigate such a case
for the reason of its simplicity and possibility of comparison of the results. We
can notice that in the case of linear vibration of simple oscillator, the central
difference method is identical with the velocity formulation for @« = 0. The New-
mark method (3 = 1/4, v = 1/2) and the trapezoid rule are identical with the
case of a = V2/2.

Higher ranges of approximation are also available. In the case described above
by (4.3) the cost of calculations is doubled (in a general case of multi-degree-of-
freedom system). Matrices have to be determined for / = //2 and t = h. The
matrix for { = 0 is taken from the previous step.

The phase error P for the method described by (2.6), (2.8) is given by the
relation

- ]
(4.4) P = \/; K= t—l- ;

\/"(2a2f{+4~»{)) ’ b

arct
g( ale+2 -k

In the limit lim,._o P = 0.

5. Multidimensional case

As a multidimensional case, let us consider the change of the geometry in
time (Fig. 5). The equation of virtual work and the recurrence solution scheme is
derived in the same way as in the case of one degree of freedom. The integration

FiG. 5. Evolution of the spatial domain in two dimensions.
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is carried out over the space time volume §2:

(5.1) /(v*)"'p 3—: 49 + /( £y od = /(v*)’f‘rm.
(P4 2 i
The displacement is described by the integral
t
(5.2) lE) =g /vdt.
0

The interpolation formulas
(5.3) v=N{ and v =N"q

and constitutive equation o = Ee allow us to write the equilibrium of forces in
the time layer [0, /2] in the form

(5.4) (K+M)4g=F s,

where

(5.5) K= / / (DNua(x)) EDN( ”;) U e,
(5.6) M = // NE (i 2 ”h)) dv,

(5.7) s = f j/h(PN]h(x)T EeodV,

(5.8) F = / ] N7, (x) - R(x, o) dV.

K, M, s and F are the stiffness matrix, mass matrix, initial internal force vector
and external force vector, respectively. Here the integration is carried out over the
spatial volume V. Shape matrices N, are determined for the spatial geometry
in t = ah and N(x, ) for the space-time volume in a given time.

Two numerical tests prove the efficiency of the method. The first one presents
vibration of a bar element, fixed at one end. Very soft material ensures large
displacements, comparing with the initial element length b = 1.0. Two plots in
Fig. 6 present the motion in the phase plane. They are obtained for the initial
condition vy = 1.0. The first one was performed for & = 0.1 and for different
values of a. The second one compares the results for # = 0.5 obtained by the
space-time procedure (solid line) and by the modified Newton - Raphson method

http://rcin.org.pl
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F1G. 6. Motion of a bar in the phasc planc.
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Fia. 7. Test of viscoplastic deformation.

with central difference method for time integration (dashed line). The precision
of the calculation is sufficiently high in spite of the large geometry change per
step. The second test was performed for the viscoplastic material. The Norton
constitutive law [10] was taken for calculation. The 3 x 3 finite element square
hits a rigid base with the initial speed vy. Displacement of the upper corner as a
function of time is depicted in Fig. 7. Different time steps were taken. The fastest
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calculation was obtained for h = 5 with a = 0.5 (5 steps with 34 iterations per
step). The second interesting case is for i/ = 1.0 and o = 1.0. Here we have the
explicit formula (no iterations) for which we need 15 time steps.

6. Numerical examples

More complex numerical examples prove high efficiency of the presented ap-
proach to problems of evolution of geometry. Two examples of viscoplastic de-
formation are presented below. The first one is the benchmark. The cylinder
(H = 3.24cm, R = 0.32cm, p = 8.93g/em®, k' = 0.005, m = 0.1) hits a
rigid base with a speed v = 0.0227 cm/ps. The computation was performed with
a = 0.5and h = 1ps in 80 steps (Fig. 8). Finally, the following results were ob-

FiG. 8. Impact of a bar — dcformed mesh and genceralized strain.
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tained: height 2.12 cm, radius 0.71 cm, maximum strain 3.0. Other authors got the
following range of values: height 2.08-2.16 cm, radius 0.67-0.72 ¢m, maximum
strain 2.6-3.2. It is essential that other methods (for example [11, 12]) require
9500 steps or 3200-12600 cycles. On this background the space-time approach is
much more efficient. The second example has 1250 spatial quadrangular elements.
The axi-symmetric viscoplastic cylinder (/I = 10cm, Ry = 2cm, Rey = 2.2cm)
is crashed with a speed v = 180km/h. The calculation lasts longer in this case
since an internal contact is considered. There is no friction between parts of
the material. The deformed mesh and 3-dimensional view is depicted in Fig. 8, 9
and 10.

—

r
“ v=180 km/h

F1c. 9. Finite element mesh in successive stages.
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Fi1G. 10. 3-D view of the axi-symmetric cylinder in chosen moments.

7. Conclusions

In the paper we have presented a new approach to the space-time finite el-
ement method. The formulation is based on the velocity vector as a basic param-
eter. Problems with nonlinear geometry evolution can simply and efficiently be
solved. In this case we can choose both the explicit and implicit scheme. Real
engineering problems can be solved with a small number of time steps and small
number of iterations per step.

The properties of the time integration scheme depend on the parameters of the
formulation. The accuracy, degree of approximation, reduction of higher mode
oscilations were investigated. Comparison with other numerical time integration
methods can be done but direct relation between the methods is impossible.
All the methods developed to date are derived for the integration with constant
coefficients. The method presented in the paper is prepared for problems of
evolution. One-degree-of-freedom system is only the particular case.
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A counter-example to the “fundamental theorem
of stochastic calculus of variations”

P. KAZIMIERCZYK (WARSZAWA)

A COUNTER-EXAMPLE is given to the statement called “the fundamental theorem of stochastic
calculus of variations”. The weak point of the proof of this theorem is indicated as well. The
importance of the counter-example is also discussed from the point of wiew of the main application
of the theorem - characterization of stationary points of “Yasue action” functionals.

1. Introduction

THE cLASSICAL calculus of variations has apparently been exceptionally useful as
a unifying principle in mechanics, as well as a guide for formulation or determi-
nation of new laws of physics. To extend this powerful methodology to the class
of processes important in stochastic mechanics, in particular to the class of dif-
fusion process, a specific calculus is necessary as the sample-paths of diffusions
exclude the path-wise use of common rules of differentiation and integration —
the diffusion processes are defined via the Ito stochastic calculus.

In the introduction to one of the famous monographs on the classical calculus
of variations ([1]), the authors emphasize that the proofs of fundamental re-
sults (like the derivation of Euler - Lagrange equation, say) require tedious, long
and subtle arguments concerning the consecutive limit passages. In the case of
stochastic processes, especially where the sample-wise approach is excluded, one
more parameter (an element of a probability space) has to be kept under analy-
sis and, simultaneously, the nature of the limits becomes less uniform. Moreover,
a variety of probabilistic concepts of convergence can be employed. Thus, one
should expect a further increase of complication in proofs of variational calculus
rules.

Motivated by such a conviction, a group of theoretical mechanists asked me
(a mathematician) to join their seminar devoted to the assessment of some vari-
ational results, seemingly established in the field of statistical mechanics.

One of the approaches assessed was that originated in sixties by E. NELSON —
see his monograph [2], theorem 11.12. The idea was developed by K. YASUE in
1980 through three parallell publications — one ([3]) concerning just “the funda-
mental lemma of stochastic calculus of variations” and the consequent ([4] and
[5]) employing this result to characterize the stationary points of “Yasue action”
functionals. The argument of [3] was invoked indiscriminately in a series of later
publications (cf. [6=-8] in [6] the name Y-E-N — Yasue - Euler - Nelson was given
to the result). During the eighties the “stochastic calculus of variations” went
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through many editions, and in particular, made its way into monographs (see [9],
Chapter V).

It was, thus, rather an unexpected discovery that this result is false! The the-
orem, as it was stated in publication [3], applies to a wide family of stochastic
processes including diffusions. The simplest diffusion — the Wiener process itself,
is used in what follows to construct a counter-example. Although the gap in the
proof is easy to notice and the example is equally easy to construct, a number of
publications utilizing the false result call for an explicit communication. According
to the valuable remarks of the reviewer, there exist many publications, in which
additional assumptions are employed prior to the usage of the variational lemma
under consideration. This work does not prove that the results of such applica-
tions of the false theorem are necessarily false: under stronger assumprions, the
thesis may hold true. There exist, however, some publications, where the theorem
of [3] is applied to the classical diffusions. In such cases, the counterexample that
follows, constitutes a serious warning.

2. The Y-E-N Theorem

To construct a counter-example it is necessary to prove that all assumptions
of the theorem considered are satisfied. Thus, the main part of the paper [3] has
to be recalled. The “proof” from [3] is also cited below in order to facilitate the
indication of the gap leading to the erroneous thesis. It seems probable that the
knowledge of the source of error may, in future, encourage one to modify the
theorem and the proof.

Let z(f), @« <t < b, be a random process defined in the probability space
(12, A, Pr), where {2 is the totality of sample paths, A is a o-algebra of measurable
events, and Pr is a probability measure defined on A.

DEFINITION. z(1), a <t < b, is an (SO) process if each (1) belongs to 1,($2, Pr)
and the mapping t — x(t) from R to L(12,Pr) is continuous.

Let P, and F, be o-algebras of measurable events generated by {z(u)| a <
u < t}, and {x(u)| t < u < b}, respectively. The conditional expectation with
respect to any o-algebra B C A is denoted by E[- |B].

DEFINITION. z(1), a < t < b, is an (S1) process if it is an (SO) process such that

(2.1) Da(t) = lim, R~V E[x(t + h) — x(1)| P,]
and
(2.2) Dya(t) = lim, =V E[z(t) — 2(t — h)| F)

existin Ly(§2, Pr), and the mappings t — Dx(t)and t — D,x(t) are both continuous
(from R to Li(12,Pr)).
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The totality of (S1) processes with continuous sample paths, such that x(t),
Dx(t) and D,x(t), a <t < b, all lie in L,(s2,Pr) and are continuous functions of
t in Ly(42, Pr), is denoted by Ly(S1). The main object of interest is the so-called
action functional

b
(2.3) [=E [ / L(x(t), Da(1). D,z (1)) dt

where L : R x R x IR — R is a smooth function playing role of the Lagrangian.
DEFINITION. A functional J : L,(S1) — R is differentiable if

6J = J(z(:) + 6z(2)) — J(2(+))
= dJ(Ea(-),2(-)) + R(6x().2())
for any z(+) and 62(-) € L2(S1), where dJ is a linear functional of 8x(t), a <t <b,
R(6z(-),z(-)) = o(||6z||) and || - || is the Ly(S2,Pr)-norm. The linear part d.J is
called a (functional) derivative of the functional J.
Under the above assumptions, the following statement is called the funda-
mental theorem of stochastic calculus of variations ([3]).

(2.4)

THEOREM. The action integral I is differentiable and has a derivative

b ) ,
25) dI=E U {ﬁ—ﬁ) sl (2)1)0—];(1)) ol (()T‘))]%—))} 52(1) dt

+( oL, 0L )5~( !
aD.z(t) . aDz()) M. |

Proof of the Theorem (cited in accordance with [3]). By the Taylor
expansion

b
oL dL
61 =F |:/ (md!([) 9Dr (I)D()I(f)
JdL
+ D2 ()]) 61(1)) d!} + o(||8z]))-
The rest of the proof is the direct application of the following lemma — a slight

modification of Theorem 11.12 of NEeLson [2]. Both the original [2] and the
following versions [3] were associated by the same justification (see below).

Lemma. Let (1) and y(t), @ < ¢ < b, be random processes in L2(S1) and
f,g : R — IR be smooth functions, then

26)  E[fGOuu0)] = [ [a@OIDIE@ + 1E@)D.o) 41}
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The proof of the lemma consists (both in [2] and [3]) of the following sequence
of equalities:

n—1

@7 B[SO = lim 3™ B[t e0))a ()@ ))g (1))
=1

n—oo

n—1
= lim " EI/G(5010) ~ JG()3(0u(1,)
j=1

g0 + FUEG) + [0 )
g (k-]

1
(2.8) = lim > Elgu(t,)Df(2(t;)) + [(=(1;))
=1
xDyg(yA DI — a)/n

b
=k { JHs@ODIG 0 + SEOID.g0)) e

The weak point of the above argument is the equality between (2.7) and
(2.8). Under the general assumptions of the lemma, this equality does not al-
ways hold true. The factor (f(z(t;4+1)) — f(=(t;)))(b — a)/n is, under the expec-
tation operator, replaced by the limit of its smoothed (conditionally averaged)
value D f(x(t;)) and, similarly, (g(x(1;)) — g(y(t;,-1)))n/(b — a) is replaced by
D,g(y(t;)). However, the differences (f(x(t;41))— f(x(t;)))(b—a)/n— D f(z(t,))
and (g(x(t;)) — g(y(t;—1)))(b — a)/n — D,g(y(t,)) are not negligible when multi-
plied by general (possibly neither centered nor independent) factors, and when
the number of such terms in the series tends to infinity. It is likely that to conclude
the proof along a similar line, at least the statistical independence of processes z
and y should additionally be assumed.

3. The counter-example
Let us consider the following two stochastic processes:
Xw)=Wy(w) and Y,(w)= W),
where {Wi(w), {F:}, {P:}, t € [0,7]} is a standard Wiener process (cf. [2, 10]).
It is easy to verify that both these processes belong to the class 7.,(S1). Firstly, the

function z — =3 is of class C'*°. Secondly, the Wiener process I is continuous
both path-wise and in the mean-square sense. These properties assure that both
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X and Y are (SO) processes. To see that they are also (S1) processes, it is enough
to calculate

(3.1) D W, = lim A E[Wyen — W, | P] = 0,
(3.2) D W, = lim h~ E[W, — Wi | Fi,
1

(3.3) D.W, = lim h~ LE[W, - Wiy |a(W))] = W,
(3.4) D W} =0,

DW= Jim A~ LEW? — W3, | A,
(3.5)

DW= Jim, AYE[W? - WE, | a(W))),

3 . Atamiah = 3.3

(3.6) D, W; = h11r61+ h="[3h W+ W7 h’]=0

Equalities (3.1) and (3.4) follow from the fact that the Wiener process is of
independent, Gaussian, zero mean increments. Equalities (3.2) and (3.5) follow
from the Markov property. Equalities (3.3) and (3.6) can be deduced from the
formulae (2.54) and (2.55) of [7] (in (2.54) the sign A should be replaced by V),
but can also be derived via the following elementary calculation.

Directly from the definition of the Wiener process one knows that the prob-
ability density function of the vector [W;, W, — ;] is as follows:

1 1
pwew.—w,(a,c¢) = i exp {—5[“2(5 -1+ '-“2[}} :

Thus, the probability density function of the vector W, — W;, W, has the form

Pw.—ww. (e, ) = pwow.—w (b = ¢, ¢)

-1 1

= m exp {—% [(b — ) (s ~1) + czl.] } ’

Next, using elementary operations one obtains the conditional density (the condi-
tional distributions for Gaussian random variables are very well known; we invoke
them just to show that the example can really be constructed in an elementary

way):

Pu. vy (C, B)
. o - By = k Ws— W wWs
pw,—w,w. (¢|b) T pw.—wew.(c,b)db

- = e xp{gﬁ(ws;z)z}.




794 P. KAZIMIERCZYK

Thus, one easily calculates (for a Gaussian random variable Z with mean m and
variance o2, the mean value of Z3 is equal to EZ3 = 3ma? + m?)

3.7) E(W, - W w,) = w,2 %

S
- t)z + ”3 (8 - [')3
52 S

(38) B, - W) = 3w, C

Formulae (3.7), (3.8) applied to (3.2) and (3.5) yield (3.3) and (3.4), respectively.
The constant function 0 and the process ?Wt are both continuous (sample-wise

and in the mean-square sense). Thus, it is evident that both processes X and Y
belong to the family L»(S1).

Now, we are ready to state the counter-example. Let f = g = [d (identity
operator) in the lemma of Nelson and Yasue. Then, according to this lemma, one
should obtain

b b
(39 EW! = EwWW,| =EY.X/|.=E / Y, D, X;dt = E f H"f%i'V, dt.

But,
(3.10) EW! P = E[W} - W} =30 - o),
while
i /3 3
3.11 E [ -whdt = | 23 dt = Z(b* - ).
t ! t 2

Obviously, (3.10) with (3.11) contradict (3.9). Thus, the lemma cited above is
false.

To show that also the theorem is false it is enough to notice that the lemma is
used directly in the proof of the theorem, and to use the same two processes .X
and Y': as the perturbation element éz(t), and as the point at which the functional
L is calculated. Let, for instance, the functional L be defined as follows (cf. [2+-9].

L(z(t), D x(1), 1)*1-(1.))=1 1117,]]):1'(f)12+ Lnu)*.r(z,)ﬁ — V().
PR 2

Then, according to the proof given to the theorem in [3], the lemma should be
applied, in particular, to justify the following (false) equality:

b
JL b oL

— ox(l x(t .

D2 "Dl ] Db ot )‘“]

b
aL !
o) /m)—p*él(f)([/ = F
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Let z(2) = X,, 6z(t) = ¢Y; (where X and Y are the processes defined above).
Then

JdL m
——=mD, X, = —X
aD.z(t) EE T -

and we arrive at exactly the same situation as the one analyzed while constructing
the counter-example to the lemma. Therefore, the theorem is false.
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An existence theorem of periodic travelling wave solutions

to the power Kadomtsev - Petviashvili equation

Y. CHEN, J. WU (FAYETTEVILLE) and S-L. WEN (ATHENS)

Tue pOWER Kadomtsev - Petviashvili equation [ue + (n + 1)(n + 2)u"uz + uzzz ] + 3uyy =0
is considered. The authors convert the equation into an ordinary differential equation and show
the existence of nonconstant periodic travelling wave solutions using elementary arguments. An
explicit solution is given for the case n = 4.

1. Introduction

THE KORTEWEG-DE VRIES equation is a nonlinear evolution equation governing
long one-dimensional, small amplitude, surface gravity waves propagating in a
shallow channel of water [1]. It arises in the study of many physical problems,
such as water waves, plasma waves, lattice waves, waves in elastic rods, etc. For
a general review we cite the article by Miura [2].

A two-dimensional generalization of the Korteweg-de Vries equation is the
Kadomtsev - Petviashvili equation (referred to as KP equation henceforth), which
was obtained in 1970 in the study of plasmas [3]. The evolution described by the
KP equation is weakly nonlinear, weakly dispersive, and weakly two-dimensional,
with all three effects being of the same order. The KP equation has also been
proposed as a model for the surface waves and internal waves in channels of
varying depth and width [4]. In this paper the authors consider the power KP
equation of the form

(1.1) [ Filn + D0+ 2 ue ¢ U] 3y =0,

where n is a positive integer. Equation (1.1) reduces to the KP equation when
n = 1, and the modified KP equation when n = 2. In this paper, we shall prove
an existence theorem of nonconstant periodic travelling wave solution to the
power KP equation for » > 2 using elementary methods. It should be noted that
nonconstant periodic travelling wave solutions to the KP (» = 1) and modified KP
(n = 2) equations have been discussed by two of the authors [5, 6]. The drawbacks
in using functional analysis methods to prove existence theorems seem to involve
more restrictions on the solution u and its derivatives (see Theorem 4 in Ref. [6],
for example). The approach of this paper follows more or less the line used in
Ref. [5]. As in Ref. [5], we shall also establish a criterion for the existence of a
single soliton solution, namely, C' = (aw — 3b%)/a* > 0.

The plan of the paper is as follows. In Sec. 2, we reduce the study of Eq. (1.1)
to that of a second order ordinary differential equation. The existence of solitary
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wave solutions is discussed in Sec. 3 and the existence of periodic traveling wave
solutions for n > 2 is proved in Sec. 4. A special case (n = 4) is incluced as an
example which gives an explicit periodic solution. The results we have obtained
here seem to be new.
2. Formulation of the problem

We consider a power KP equation of the form [3, 5]

(2.1) [ue + (n + 1)(n + 2)u" vy + Urgr], + 3uyy = 0,

where u = u(z,y,t) is a function of 2, y and t. We look for real-valued solutions
of the form U(¢) = u(x, y,t), where £ = ax + by — wi with a, b and w teing real
constants. Without loss of generality we assume « > (. Equation (2.1) can thus
be written as

(2.2) —(aw — 30HU" + *(n + D)(n + 2)(U"U'Y + *UP® = 0.
Integration of both sides of Eq. (2.2) twice with respect to £ yields
(2.3) —(aw — 3V + a*(n + 2)U™! + «*U" = A€ + Bad?,

where A and B are integration constants.

3. Existence of solitary wave solutions

Seeking a solitary wave solution, we impose the boundary conditiows U, U’,
U”, and U" — 0 as £ — +o0. These yield A = B = 0 in Eq.(2.3). Ir view of
1d[U'?

VO = 370

, we obtain

(1) S wer = 4 [Lore + Sute).

where C = (aw — 3b%)/a?.
There are three cases to consider:

First, if C' < 0, a nonconstant real solution to Eq. (3.1) exists only when 7 is
odd, and the solution is

- 1/n
0 = { Gret | C -}

2a

where £ is an integration constant.
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Second, if C' = 0, a nonconstant real solution to Eq. (3.1) exists also only when
n is odd, and the solution is

1
{(n2/2a2)(€ - &)2 "

Clearly, the solutions of these two cases are unbounded, and therefore, they are
not of much physical interest.

U(§) =

Third, if C' > 0, we have the solitary wave solution to Eq.(3.1) as

i
U = {C ("“— 5@)} |

We note that C' > 0 gives a condition under which a nontrivial solitary wave
solution exists. This condition indicates a relationship that must be satisfied by
the wave numbers «, b and the frequency w, namely, aw > 362, for the existence
of nonconstant solitary wave solutions. On the other hand, if aw < 302 either no
real solution exists or the solutions are unbounded.

4, Existence of periodic wave solutions

To obtain bounded solutions we assume A = 0 in Eq.(2.3). Then we have
from Eq.(2.3)

1 2 1 +2 9 2
e = _ [ " J ] -
(4_1) L pes ( { 2( + BU + D) 1 (( )

where C' = (aw — 3b%)/a® and D is an integration constant. The Eq. (4.1) leads
to

V2 dU
(4.2) Tdf = NGOk

For the existence of periodic solutions the zeros of the polynomial F'({/) on
the right-hand side of Eq. (4.1) play an important role. The polynomial #'(I) has
at most four terms. When n is odd, the number of variations in signs occuring
in the coefficients of F'(I/) and F'(-U) is at most three, and when n is even,
the number of variations is at most four. Therefore, /'(U/) has at most three real
zeros if n is odd and at most four real zeros if 7 is even.

If n is odd, applying a similar argument as that given in the Appendix A of
[5], we can see that F'(I/) > 0 when F(U) has three distinct real simple zeros
Uy > Uy > Uz and Uy > U > U, where Uy is a simple maximum and U/, is a
simple minimum of U.
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Furthermore, U’ = (\/Q/a) VI (U), and \/F(U) changes its sign when U goes
on a path of an infinitesimal circle around the point /; or I/; in the complex
U-plane. This implies that U’ changes its sign at {/; and U;. Hence, U(€) is
periodic. In this case U(£) can be obtained from the integral equation

[7

V2 o av
T(‘f—fl)—“—r\/ﬁ,

where U(&;) = U,. And the period 7" in £ is given by

(4.3)

{"n

= du
4.4 = 3a ) e,
(44) @

It should be noted here that there is no restriction on ' which can be positive,
Zero, Or negative.

If n is even, periodic solutions to Eq. (4.1) exist in the following four cases:

1. F'(U) has only two simple real zeros U/; > U,. Equation (4.1) has a periodic
real solution {/(§) which can be obtained from the integral equation (4.3) with
period 7' in £ given by Eq. (4.4).

2. F'(U) has real zeros U/, > U, > Uz with /3 being a double zero. Equation
(4.1) has a periodic real solution U/(£) such that [/ < U7 < U, and U(£) can also
be obtained from Eq. (4.3) with the period 7" in £ given by Eq. (4.4).

3. F'(U) has real zeros U; > Us > U4 with U; being a double zero. Equation
(4.1) has then a periodic real solution U(€) such that U4 < U < Us, and U(€) is
given by the integral equation

J.

Uy
V2 _ CdU
?(E o 63) - J I"(l/:) L)

where U(&3) = Us. The period T in £ is given by

(4.5)

Us
dU
(4.6) T =2 =
i VvV EU)

4. F(U) has four distinct real simple zeros such that {/; > U, > /3 > Uy. Since
F(U) = -U"*?+ (C/2)U* + BU + D, it can be shown that when Uy < U < U
or U <U < Uy, we have F(U) > 0.

First, if U, < U < Uy, Uy is a simple maximum and /5 is a simple minimum
of U. U’ changes its sign at /; and U,, and hence, U(£) is periodic. U(£) thus
can be obtained from Eq. (4.3) with the period 7' given by Eq. (4.4).
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Second, if Uy < U < Us, then similarly, {7’ changes its sign at simple maximum
U3 and simple minimum Uy, and hence (/(§) is periodic. In this case, [/(£) can
be obtained from Eq. (4.5) with 7' given by Eq. (4.6).

It should be noted that in the Case 1 when F'({/) has only two simple real
zeros, there is no restriction on C' which can be positive, zero, or negative. In the
Cases 2, 3, and 4, in order to have F(U) > Owhen U3 > U > Usor Uy > U > U,
and therefore have periodic wave solutions, the coefficient ' must be positive.
Thus, similarly to the solitary wave solution, we note that C' > 0 gives a condition
under which a nontrivial periodic wave solution exists when F'(U) has more than
two simple zeros and » is even. This condition indicates a relationship that must
be satisfied by the wave numbers «, b and the frequency w, namely, aw > 3b2, for
the existence of nontrivial periodic solutions.

ExampLE. Let n = 4 and assume B = 0. If F'(U) has four real zeros, it must
be the case U; > U, > Uz > Uy with Uy = —U; and U; = —U; because F(U) is
an even function. We choose U; > U > U, a solution of Eq.(4.1) can then be
written as

(+7) 12@45)=j! -
' a 1 &\ -US + (C/pUt+ D

Let (&) = U%(£), then dU = dz/(2y/z), and hence

V2 __l ;i dz
o €-&)= 22{ \/3(_33 +(C/2)z + ]))'

(4.8)

It is shown in Appendix that the function (i(z) = z(—z% + (C'/2)z + D) has four
distinct real zeros Z, = U2 > Z; = U} > Z3 = 0 > Zy = —(U} + U?) and
7y > z > 7Z,. Therefore, the function z(¢) can be obtained as

2(6) = %

1= psn? [(V2a/a)E - &).r|
and hence, 2

UG = L

Jl—mﬁ[%?«—fmﬂ

a =/Z(Zy - Z4) = U\JU + 203,

where
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Iy =2y _UE-U}

Z g’
and
|G- 22 Ut -U;
Z\(Zy — Z4) UNU? +202)
Therefore, U(£) can be written as
]
U(€) = — e f
Uur-U 20
1-— 2 2 (E fl)
Ui
= U\Us
J(/ — (U2~ UD)s [‘f” =B 7)]
Uy U

Jua - [ 2]

Since UZ > U} > 0, it is easy to see that U/(£) is a bounded periodic solution.

Appendix

Since the function F(I') = —U®+ (C'/2)U?+ D has four distinct real solutions
Uy > Uy > Uz > Ug with Uy = —U; and Uz = —Uj, it can be written as

FU) = (U2 - UDU? - UHU? + MU + N)
=_US - MU’ + (U} + U} - N)U* + (U} + UHMUP
+ [+ VBN - UR0U3| UF - URURMU - UFU3N.
Because the coefficients of /3, U*, /3 and U/ must be zero, we have M = 0,
=U2+U}>0,C/2=U}+UNW}+ U3 >0,and D = -ULUZN < 0.
Therefore, F({/) must have a pair of conjugate imaginary zeros /s = i\/U? + U}

and Us = —i\/U + U}.

Let G(z) = z(—2% 4+ (C'/2)z + D). Since = = U?, the polynomial (7(z) has
four distinct real zeros 7Z; = I], Zy = U Zy =0, Z4g = —(U; 2 4+ U 2) and
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Zy > z > Zj. Thus, Eq. (4.8) can be written as [7, 8]

<

vz _17
a(f £1) 22[\/3(_z3+((7/2)3+p

_ lj dz
222 V(Z1 = 2)(z = Z2)(z — Z3)(z — Za)
1

- V(21— Z3)(Z; - Za)F(/\’T)’

where F(\, ) = sn~!(sin A, r) is the normal elliptic integral of the first kind with

modulus 7,

e (&1 = Z3)(z = Zy)
A = arcsin \/; ~ 7 = 73)

and

Let « = \/(Z)— Z3) (72— Z4) = VZ\(Za— Z4), B =

2 _ (21— Z2a)(Z3 — Z4)
AR

2 -2, Z1-27
H—%2 B °

Y

2
and v = F(\,r) = Ta(f — &), then we obtain

Zy — BZysn®(v, 1) _ 7
1-psn®(v,r)  1- pgsn2(v,r)’

(6) =

Thus, the solution to Eq. (4.1) becomes

Uy

U f = 1
i V1 - Bsn?(v, 1)

where sn(v, ) = sin A.
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BRIEF NOTES

Mechanical modelling of domain patterns
in strained epitaxy of thin films (*)

W. POMPE, M. SEMSCH (DRESDEN),
H. BALKE and K. BRAMER (CHEMNITZ)

IN THIS PAPER we analyse the stability of domain patterns of single crystalline tetragonal films
on single crystalline cubic substrates. Two parts of the total energy of the domain patterns are
considered: the elastic relaxation energy and the twin energy of the domain walls. It is shown
by means of a three-dimensional elastic FEM-analysis that square domain patterns have energy
minima with smaller values than the stripe patterns, Therefore, the square patterns are energetically
favoured over the stripe patterns.

1. Introduction

TobpAy, NEw TECHNIQUES allow for the manufacturing of polycrystalline and single-
crystal thin films on single-crystal substrates. The substrates are coated with a
precursor film and subsequently heated. If the film and the substrate structure
are very similar, single-crystal films can form [1]. Lattice misfit causes twin domain
patterns in the film [2]. However, from a theoretical point of view, different twin
domain patterns are possible. Here we consider square (shear) domain patterns of
a tetragonal film on a cubic substrate. We calculate the normalized total average
energy change of the pattern formation as a function of the domain size. Stable
domain patterns are expected for relative minima of this energy.

2. Type of domain patterns

We consider two possible arrangements of tetragonal film crystals on a cubic
substrate (Fig.1). In both cases the lattice axes with the lattice parameters a
and ¢, of the film crystals lie in the directions of the coordinates = or y. The
crystal axes of the cubic substrate with the lattice parameter b are parallel to the
coordinate axes z, y and 2. The two arrangements differ in their c-directions. For
the a;-domain the c-direction is parallel to the z-axis and perpendicular to the
e-direction of the a;-domain.

(*) Paper presented at the 6th Polish-German Symposium on “Mcchanics of Inelastic Solids and Structures”.
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a, - domain a, -domain

b b substrate

FIG. 1. Possible arrangements of a;- and a;-domains.

In our model the twin walls between the a;- and a;-domains are taken to
be orthogonal to the interface and inclined by 45° to the z-coordinate (square
pattern in Fig. 2a). In Fig.2b the arrangement of the stripe ay-az-pattern is also
given. It is needed for the comparison of our results with the conclusion of [2].

a)
wiZ
V4
3 4
az az A a;
~ i | P
H i “45°
a, a, )—1—;3'4 a, h
ool
i \N S S substrate
w
b)
w /
a, a, a, a, a, g, a, a,
LA / A S . substrate

I'1G. 2. Types of domain patterns, a) square, b) stripe.

In both arrangements film thickness and domain width are denoted by 4 and
w, respectively.
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3. Square aq-ap-pattern

In the initial state the thin film is homogeneously strained by the misfit strains
€, and &,

b—a b—rc
l a = k] c = )
(3.1) £ ; €e 7
and stressed by
I E
(32) Oy = i“:“"lj—z‘(fa + I/Ec), a, = m(fc + l.’fa),

F - Young’s modulus, » — Poisson’s ratio (Fig. 3a).

a) 6 b)
6
S
e /
#
|
| 2T
6, =@ 5, 6, 7
———— 02 l O] — 02 _ﬂb
|
| ;
| /
|
L b o
y 6
&

& x

F1G. 3. Eigen-stresses in the film, a) az-domain, b) square with a;- and a;-quarter domain before
relaxation of the external shear iraction 27,

In the presence of a twin boundary on the internal diagonal plane parallel to
the line S5 and the z-axis, the lattice orientation in the lower part of the square
is rotated by 90° around the z-axis. For maintaining the static equilibrium, an
external shear traction

(33) 27—7‘ = E'}'v Ep = €a — ey

is applied at the internal diagonal plane (Fig.3b). The elastic relaxation of this
traction provides the energy available for transformation to twin energy.
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4. Domain energy

The total energy change in a square «-a;-domain is the sum of the released
elastic energy U/ and the twin energy of the domain wall (/,

(4.1) Uotal = U + U,

where U is the difference between the stored elastic energy of the final state with
the twinned square pattern (s, and the stored elastic energy of the initial stress
state in the film U, with U = Ug, — (.

The size of the square «j-az-domain amounts to w?. Therefore the total av-
erage energy change per domain size « *. normalized by h£<2, is

B U+ yhwv2
(4.2) View = —hEez

where 7 is the specific wall energy.
If we neglect the coupling of one individual domain to its surroundings, we
obtain a rough analytical estimate of a lower limit for the released energy

weh EEE.

1 2(1+v)
' ER

U>—§ 7

sz, wh =

Upon substituting this into (4.2) we have

1 W2 h

" - '
Utotal > 41+v) hE2 w
T

with B ”
Urmta| — 00 for —’—)— — 0.

For h < w, the elastically relaxed volume is in the order of magnitude of wh?.
Therefore Uy from (4.2) tends to zero for w/h — oo.

The three-dimensional finite element model gives a more precise result. A tri-
angular prism with a height of about 3v/2w was modelled [3]. The upper boundary
was free. In order to get bounds for the released energy, the lower boundary was
taken free or clamped. At the lateral faces the normal displacements and the
shear stresses were equal to zero except for the shear loaded part of the size
hwv2 of the diagonal face, see Fig.2a and 3b. Various meshes composed of 8
nodal points elements were used. The number of degrees of freedom was about
16 000.

In Fig.4 the normalized total average energy change per domain size w? is
shown as a function of w/h for different specific wall energies ')'/Es,zrh. We can
find an equilibrium domain energy minimum and an equilibrium domain width
for any film thickness.



L LR T T 1 T Trrrr1] T T T v 1Iry

004

Y/E€}h=005

-004

-008 1 o1l i1l i L1 11113
OUO_J 1 10 w/h 100

F1G. 4. Normalized total average energy change of the square domain pattern after (4.2)
as a function of the normalized domain width (v = 0.32).

004

002

y/EE h=005

U+yh
whEE

Utofal

-002

1 [ N 1 IR S 0 I | L [ S B8

a1 1 10 w/h 100

F1G. 5. Normalized total average energy change of the stripe domain pattern after [2]
as a function of the normalized domain width (here, U is the released energy per unit
length, v = 0.3).
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5. Comparison of the domain energies

In [2] the total average energy change per unit length and domain size w,
normalized by Izl_isfp, was calculated for the stripe «-az-domain patterns. The
result is plotted in Fig.S. By comparison of Fig.4 with Fig.5 we see that the
equilibrium energy of the square domain patterns is smaller than the equilibrium
energy of the stripe domain patterns by a factor of about two. Therefore the
square patterns are energetically favoured.
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