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Propagation of waves in rotating
magneto-thermoelastic media

J.N. SHARMA and D. CHAND (HAMIRPUR)

THE PAPER 1S AIMED at presenting the distributions of deformation, temperature, perturbed
magnetic field and stresses in vacuum as well as in the elastic medium due to a thermal shock,
acting on the plane boundary; the solutions are derived by formulating a generalized
thermoelasticity theory that combines both the theories developed by Lord and Shulman as well
as by Green and Lindsay. The Laplace transform technique has been used to obtain the short
time solutions. The theoretical results obtained have been verified numerically and are
represented graphically for the case of carbon steel material.

1. Introduction

Kauski and Nowacki [1] studied the magneto-thermoelastic disturbances in
a perfectly conducting elastic halfspace being in contact with vacuum, due to an
applied thermal disturbance acting on the plane boundary, in the absence of
coupling [2, 3] between temperature and strain fields. MassaLas and DALMANGAS
also considered the problems by taking into account the thermo-mechanical
couplings. The problem [2] was extended to the generalized thermoelasticity theory
developed by Green and Linpsay [4] involving two relaxation times, and by
Cuarteriee and RovcuoupHuri [5]. SHArRMA and Cuanb [6, 7] studied the transient
magnetic-thermoelastic waves in the context of generalized theories of thermoelas-
ticity developed by Lorp and SnuLman (L —S) [8], and Green and Linpsay (G—L)
[4]. Roycuoupnurt and Desnath [9] and Cuanp et al. [10] studied the mag-
neto-thermoelastic waves in a rotating medium.

In the present paper the distributions of deformation, temperature, perturbed
magnetic field, and stresses in vacuum as well as in the elastic medium due to
a thermal shock, acting on the plane boundary, have been investigated by formulating
a generalized theory of thermoelasticity [11] that combines both the theories
developed in [4, 8]. The Laplace transform technique [12] is used to obtain the
solutions. Since the “second sound” effects are short-lived, the small time ap-
proximations have been considered. The results obtained theoretically have been
verified numerically and are represented graphically for the case of carbon steel [13].

2. Basic equations

The equations governing magneto-thermoelastic interactions in a rotating homo-
geneous isotropic solid, which combine the L-S and G-L theories, consist of the
following equations
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a. Maxwell’s equations
2.1) Vxh=4MJjc, VxE=—phlfc, V-h=0, E=—pu(ixHy/c.

b. Strain-displacement relations
1 s
(22) €ij = 3 (ui,j + uj,i)s ij=123.

c. Stress-strain-temperature relations

2.3) 0= A0y e+ 2pe ;—y(0+1,0)5,.
d. Equation of motion
24) 1V 2t (A4 p) V (v-u)+%[(v x ) x H]—yV (0+¢,0)
= plii+ 2 x ( xu)+2Q2 xd].

e. Energy equation
2.5) KV20 = pC,(0+t,0) + yT,V " (i + by 1, ii) -

Here
0 temperature change,
e;  components of the strain tensor,
g;  components of the stress tensor,
u= (U, u,u,) is the displacement vector,
p density,
C, specific heat at constant volume,
K= 1;/C, Ay is the coefficient of heat conduction,
A,u  Lamé constants
C specific heat at constant strain,

e

r=(1+2u)a,

a, coefficient of linear thermal expansion,
t,, t, thermal relaxation times,

0y Kronecker’s delta,

u du/dt,

J electric current density,

h perturbation of the magnetic field,
H, initial magnetic field,

E electric field,

4,  magnetic permeability,

c velocity of light,

Q angular velocity.
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For the L-S theory ¢,=0, 6 , =1 and for the G-L theory ¢, >0and 4,,=0 (k=1 for

’ U1k

L-S and 2 for G-L theory). The thermal relaxations ¢, and ¢, satisfy the inequalities [4]
(2.6) 1, 21,20

for the G-L theory only.

3. The problem and its solution

We consider a homogeneous isotropic (thermally as well as electrically) conduc-
ting elastic medium at uniform initial temperature T, in contact with vacuum. We
suppose that an initial magnetic field H is acting along the x,-axis in both the media.
Let the medium be rotating along the x,-axis at a uniform angular speed £2. Then for
H, = (0,0,H,), u=(,0,0), 2=(0,0,L2) and x,=x, Egs. (2.1), (2.4) and (2.5) become

3.1) E=p 040)c, h=—c 00,25\ 3=c(0,—%,0)/4n,
0x 0 0x

(3.2) (A+2u+aj )—-—y (0+t 0) p i+ Q%u—2Qu),
0*u u 00
. 0 LT
(3.3) pC,(0+t 0)+yT (a 5 51*t°6x6t2) Kaxz,

where a, = (u, H%/4np)"/? is the Alfven wave velocity. In vacuum, the system of
equations of electrodynamics is expressed by

02 1 o2
(m‘:z‘a?)"?ﬂ’

2 2
(3.4) (i_la_)}zg=o, bt

0x?  c2of

The components of Maxwell’s stress tensor in the elastic medium T, in vacuum 77,
and stress o, in the elastic medium are given by

(3.5) T, = —ph H JAn, T3 = —h3H,/[4r,
u .
(3.6) 0, = (l+2,u)—a; — 7@+, 0).

We assume that the medium is at rest and initially undisturbed.
The initial conditions can be written as

(3.7) u=0=T, —=0 at t=0, x>0.
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We consider the boundary conditions
0,+T,,—T} =0,
(3.8) E,=E},
000,t)=0,H(), at x=x'=0,

where H(?) is a Heaviside function of time.
We define the quantities

=(A+2)lp, ad+ci=ch n=cxlk, t=ciilk,

(3.9) U=pculyTk, Z=0/T, &=y2T,/p*ciC, k=K|pC,,
,=0*t, w*=pC,ci/K, C,=pC, 1,=w*t,.

Using quantities (3.9) in Eqgs. (3.2), (3.3) and (3.4), we obtain for #, n'>0

92U aUu d*U iz 0*Z

3.10 i, 7o T Rl ¢ | ol Wi
(3.10) e Iy ey = Rl Ly ey rrt

322 0z *Z 0*U a3u
-1 ot 09 s[anar +OuTo 6n612]’

azh" 62h°

(3.12) ne ﬁ” 0,
where
(3.13) Q,=kQ/ck, n'=-n, B=c/c,

The initial conditions (3.7) are now given by

The boundary conditions (3.8) and inequalities (2.6) become

é‘—E]—Z By az+,3h =10,

U ohy
292 oy

Z(0,7)—0,H(1)/T,=0, at n=n'=0,

(3.15) B

and
(3.16) T,21,20,
for the G-L theory only.
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We consider a potential function ¢ defined by

(3.17) o

Using Eq. (3.17) in Egs. (3.10) and (3.11) and then applying the Laplace transform
with respect to time defined by

(3.18) W) = T W di,

we obtain for 7, 1°'>0,

(3.19) (141,85 Z = (D?— 52+ 20,5 — 23 ¢,
(3.20) [D*—s(1+7,9)]Z = es(1+6,,7,5) D* @,
where D=d/dn.

Applying the Laplace transform to Egs. (3.12) and (3.15), we get
(3.21) K= A,e ty's,

D*¢ — (1+tls)z+ﬂ171‘3’ = (),

(3.22) B,s*D¢—Dh2=0,
Z(0,5)—08,/sT,=0, at n=n'=0,

where

(3.23) f(s)= [fiye ™dt etc, and D=d/dy.

0

Eliminating Z from Eqs. (3.19) and (3.20), we obtain the general solution for ¢ which
vanishes at infinity, as

(3.24) ¢ (n,8) = A e M+ A, e 2", for 5>0,
where 4,, 4, are the roots of the equation
(3.25) M=[s(Q+e=20)+s*(1+1y+et,+08,, 1)+ 22+£5%,,7,7,] 12
+5sQ3+0Q (1 £2,—2)s*+ (1201 ) £+ 1,5=0.
From Egs. (3.19) and (3.24) we obtain
(3.26) (l+rls)2=Al[l§—sz+QD(Zs—QO)]e"l"+Az[li—sz+ﬂo(2s—90)]e"12".

Using Egs. (3.21), (3.24) and (3.26) in (3.23) and then solving and simplifying, we
obtain for n, >0
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(3.27) S (n,5)=0,(1+7,5)[{Bs2— PR (25— Q)+ 1,8, B,5 e *1"
—{Bs?—BR,(25s—R)+A,B,B,5} e %2452 T,
(3.28) Z(1,5) = 0,[{A2— 2+ Q25— )} { B 52— BR, 25— Q)+ f,Bs4,} e 1"
—{A2— 24+ 0,(25— Q)} {Bs*— R, (25— Q)+ BB ,52 )} e M| T, 524,
(3.29) R, ) =0,(1+7,5)B, (A, — 1) {Bs?— PR, (25— )} e P/ BT, As?,
(3.30) UM, )=0,(1+7,5) [A,{Bs?— pR (25— )+ B B,54,} e *2"

— A, {fs*—pR(2s—2)+ P B 51,} e~ ‘11"]/T052A,
where

(331) A=A ,—4)B,B,5*+B(A,—2)s+B,B, A, A,+B,B,2,25—R)].

4. Small time approximations

The dependence of A, and A, on s is very complicated and so inversion of the
Laplace transform is difficult. These difficulties, however, are reduced if we use some
approximate methods. Since the thermal effects are short-lived, the discussion is
confined to small time approximations, i.e. we assume s to be large. A similar
approach was made by Suarma [14]. The roots 4, and i, of Eq. (3.25) can be
approximated by

4.1) A 2=8Vi3+B ,+D,(s"H+0( ),

where

“2) vid=(K,+ T2,

4.3) B, ,=(K,+ (K, K,—2+87,2)/''?)/2\/2 (K,+ 'V»)2,

4.4) D, ,=[+(K?+2K Q23—41 0 +8R)/I'"? T (K,K,—2+87£2,)>

| T2 — (K, + (KK, — 2+ 80,22/ 2(K, + T3)/4 /2 (K, + T2,
4.5) r=Ki—4r, K =1+¢-20Q, K,=1+r1,+er,+d, ¢e1,
Again

I'=(1+set,—1 )*+4er,7,+ 61,6, {e7,+2(1 +1,+¢1))}.

The wave propagating with speed v, will be elastic, that with speed v, will be thermal,
and the third one travelling with velocity ¢, will be tha Alfven-acoustic wave [6].
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Using Eqg. (4.1) in Egs. (3.28)—(3.30), we obtain

(4.6) Z(n,5)= 00[{N 7

S

N’ r
A

s

+ (N Q’+N;P')/s1} e_‘z"]/Tn

(for L-S and G-L theories),

(R0 BY('5) =0, B, (7, P+{P+1,(Q—2Q e *"|T,
(for G-L theory),
5.8) h3(r, s)=00ﬁz[§ +(Q-20,8 P)/szjle“"’"/TD,

(for L-S theory),
4.9) U(n,8)=0,[{ M, Pt [s)+(M,Q" +M,P)[s? e~ *2"— (M| P't,[5)

+(M;Q'+ MP)/s% e *"YT,
(for G-L theory),

4100  U(y,s)=0,{M, P'[s)+(M,Q"+M,P")s% e *2"—{(M} P/s?)

+(MQ'+ M3 P) s e 1T,
(for L-S theory),

and
@.11) T, (7', )= — H,h3(n', 5)/dn
(for G-L theory),
(4.12) T, (n',5)=— H, B3 (', 5)/4n
(for L-S theory),
@.13) 7, (1,5)=0[{B3R,P'—N P)s+(B3(R,Q"+R,P’)
— N,Q'—N,P")/s?% e 1" {(B3R{P'— N1P)[s + (B3 (RiQ"+ R;P)

— NiQ'—N;P)s3 e *2"]
(for L-S theory),
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4.14) G, (n,s)=0p[{z, (AR P'—N P)+((f2R P —N, P
+ 1, (B3(R,Q'+R,P)—N,Q"—N,P")/s} e *1"— {7, (B2 R P'— NP’
+ (B3RP'—N;P)+1,(B3(R1Q"+ RyP) — N1Q'— N, P))/s} e~ *2"]
(for G-L theory).
Now inverting the Laplace transform of Eqs. (4.6)—(4.14), we obtain
4.15) Z(n,0)=0,[{N,P'+(N,Q"+N,P) (t—n/v,)} H(t—n/v) e B1"

—{NiP'+(N1Q"+N;P") (x—nfv)} H(r—nfv,) e "2")/T,
(for L-S and G-L theories),

(4.16) h3(', ) =B0,[x, PO (c—n'B)+ (P+1,(Q—22) H(x—n'B/T,
(for G-L theory),
4.17) U, t)=0,[{t,M,P'+(M,Q"+M,P") (x—n/v,)} H(t—n/v,)e B

—{T,MP'+ (M Q"+ M;P") (1—n/v)} H(x—nfv)} e "1"YT,
(for G-L theory),

(4.18) U(,0)=0,[{ M,P’" (x—y[v)+(M,Q"+ M ,P") (—n/v,)% H(x—n/v,) e B2

—{MP'(t—n/v)+(MQ"+M;P) (x—n/v)?} H(t—nfv,)e 1"JT,
(for L-S theory),

and
4.19) (' ,1)=—H,hS (', 1)/4n
(for G-L theory),
4.20) TS, Or', 1) = — H, W', ©)/dm

(for L-S theory),
@4.21) o,(m,1)=y0,{BiR P —N P)+(B3(R,O'+R,P)—N,Q'—N,P"}
x H(t—nfv))e” 1" {(B3R{P'— N1P) + (B3 (RIQ"+ R,P)— N1Q’

(for L-S theory), — N3P (x—nfv))} H(x—nfv,) e P2"]

422) o, (1, 0)=y0,[{t,(BiRP'—N P 5(x—n/v)+((B2R P — NP’
I 1.'1(ﬂﬁ(RlQ'+R2P’)—N1Q'—N2P’)H(T—q/ul)} e_BI"—{Il(ﬂg(R;P'—NiP')
x 8 (t—nfv)+(r, (B3 (R1Q"+ RP)— N1Q'— N, P)+ (B3R P'— N P)

x H(t—nfvy)} e P21]
(for G-L theory).



PROPAGATION OF WAVES IN ROTATING MAGNETO-THERMOELASTIC MEDIA 395

Here the following notations have been used:
@23)  P=[piprvivi+ B2 BIAI (v, + v, vivi+2 B A1 v (v, + )
—B BB, v, (0, +v) = BiBrvivi+ B B vivi+ B (0, +0)*
=3B B Bv, v, (v, +v,)°— B B BIv1v3 (v, + 0 )l BI B3 vivs,
(4.24) Q=[2p*B3 B3v, v, (v, +v,) (B, +B,)— i fvivi+ 20 B1 B3 0103
—BBiBivivi(B,+B,)+2 I B30,0,{(v,+0,) (B, + Byp,)
+ (B,+ B, v,v,} +4 1 p5v102Q —3 BB B,v,v,(v,+v,)*(B,+ B,
—6Bp2p2v, 0,2, (v, +0,)2+2 B30, v,(B v, +Bp,)
— 128 3 B301vi R, (v, +v,) =3 B2 B B3 { (0, +v,)* (Byo, + Byo,y)
+20,0,(B,+B)) (v,+,)} +4 B* (v, +v,)* (B, +B))
+8 8% B,B, (v, +0,)°)Bip3viv3,
P'=vp, Pl(v,—v,), Q'={vw,Q/(v,—v,)}—vp,(B,—B,)P/(v,—v)?
(4.25) L=(1-v¥)(1—-vd)/vhi,
M=[2(B,+82p,(1-v})+2v,(B,+Qp,) (1 —vI)]/viv},

M=o, + 8,80, Mi=(Bo,+ B, B0,
Mi=(B, (Bo, + B,B,)+v, (B,8,8,~ 2 F2)1/v,v,,
M,=(B,v, (Bo, +B,B,)+v, (B,B,5,—282))/vv,,

N, =10 (Bo, + B,B) /vy,
Ny =(1—v) (Bv, + B,B)/v,v3,

(4.26) N,=[(2B,+ 20,20 (Bo,+ B,B,)/v,]+(1—v) (B,B,B,—2B2)/v3,
Ry=(Bo,+ B, )i, Ri=(Bo,+B,8)/v.0%
N3=[(2B,+20,20) (Bo,+ B,B)/o,p,)+ (1—vD) (B, ,8,~ 2 2w},
R,=[2B,0, (Bo,+ B+, (B, BB, — 2B o,

Ry=[2Bp, (v, +B,8)+v, (B, f,B,~262.)/v,03

Bs=¢,/c,
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5. Long time solutions

The long time solutions can be obtained by expanding the roots A%, 1% of
Egs. (3.28) for small values of s in Taylor’s series. The roots 4,, 4, can be
written in the form

A =(1+e)V2 [s+ 0 (s¥2),
A,=(1+8)V25+ 0 (s?).

These expressions for the roots do not contain the thermal relaxation times up to the
first order, which again confirms the fact that the ‘“‘second sound” effects are
short-lived. Hence short time solutions are more important than the long time
solutions. However, the deformation, temperature, the perturbed magnetic field and
stresses in vacuum as well as in the elastic medium can be obtained by using these
values of 4, and 4, in various relevant equations as in the previous sections.

6. Discussion of the results

The short time solutions in the previous Sec. 4 show that they consist of three
waves, namely, elastic, thermal and Alfven-acoustic waves travelling with velocities
v,, v, and ¢, respectively. The terms containing H(t—n/v), H(t—n/v,) and
H(t—n'/B) represent the contribution of elastic, thermal and Alfven-acoustic wa-
ves in the vicinities of their wave fronts #=v,7, #=1v, and n'=1/B. In this case the
deformation is continuous in the L-S theory but is found to be discontinuous in
G-L theory. The temperature, perturbed magnetic field and stresses in vacuum as
well as in the elastic medium are all found to be discontinuous in both the
theories.

The discontinuities are given by the formulae

(Z—z) =0,N,P"exp(— Bv,1)/T,,

n=vyT

(Z*—-27) =—0,N,P"exp(—B,v,1)/T,,

n=v,
(BS' —hS )y =yp = 0o PIT,,
(TS =Ty =gp= —0,8,H P/AnT,,
(a;‘l—aIl)F,,l, =0,y (BZR,P'— N, P)exp(—B,1),
(011 —0 =0 = — 0,7 (BIRP'—NiP)exp(—Bp),
for L-S theory,
(Ut —=U")yep e =—0,M, Pz exp(—Bp1)/T,
(U"—U_)F,,z, =0,7, MP'exp(—Bp,0)/T,
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(Z* =2 )y =0, N,P'exp (=BT,

(Zzt-27) = —0,NP'exp(—B,1)/T,

n=v,t
(h(l)'l+ - hOS_)n'=1:jﬂ = Ooﬁz[Qtl+ P(l == Tlgo)]/Toa
(T — Ty =yp=0,8 H,[Q7,+P(1 —7,2)/4rT,,

(01— 01)p=0s =0[B3RP'— N P'+1,{fi(R,Q'+R,P)—N,Q'—N,P}]
xexp (— B 1),
(0= 0wy=v; = —OBRP — N1 P +1,{ BY(RIQ + R;P)— NjQ'— N, P}]
x exp (—B,v,7)
for G-L theory.
Clearly the discontinuities in deformation, temperature, and stress in the elastic

medium decay exponentially, and the perturbed magnetic field and stress in vacuum
vary linearly with time.

7. Particular cases

1. If the medium is non-rotating, i.e. 2=0, then the results obtained reduce to
those in [6, 10] for the L-S theory and for the G-L theory; the results can be deduced
from the corresponding equations by putting 2=0.

ii. If 1,=1,=0, then we have

K=1+&e-2Q, K,=1, I'=1, v,=1, v,—»c0, B,=(—20)/2,

B,—» 0, D ,=[e(d—&)+20,(:6—-2Q)]/8, D,—c0.

It is observed that the deformation and temperature are found to be continuous at the
elastic and thermal wavefronts in both the theories. The stress in the elastic medium is
also found to be continuous at thermal wavefront in both the theories. The perturbed
magnetic field and stress in vacuum at the acoustic wavefront and the stress in the
elastic medium at the elastic wavefront, experience finite jumps in both the theories,
given, for both the L-S and G-L theories, by

(hg+ _h%_),,::‘/p:Og ﬁzP/To’
(T‘ﬁ - T“l;)ﬂ’i‘llﬂz _eﬁlHJP/4nTo!

(011=01n=0 s =0,7 B B3 Pexp[—(e—282,) 1/2].

iii. Fort,=7,=0and 2,=0, we have the case of the conventional coupled theory
of thermoelasticity, and thus

K =1+¢ K,=1, I'=1, v,=1, v,»w, B,=¢2, B,»owo,
D ,=¢(4—¢)/8, D,—-c0.
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In this case the results obtained agree with those of case ii), except for the stress in the
elastic medium which suffers a discontinuity at the elastic wavefront in both the
theories, given by

(03— 01)g=0,e =007 B B3 Pexp (—e1/2).

iv. If 1,=1,=0, ¢=0, 2,#0, then we have

3K,=1-22, K,=1, I'=1, v,=1, v,»00, B,=-0Q, B,>wx,
D, =—-0Q%/4, D,—co0.

The results obtained here agree with case ii), except the fact that the stress in the
elastic medium experiences finite jump at the elastic wavefront in both the theories,
given by

(Uﬂ—‘fﬂ)Ful,:Goyﬁﬁchxp(Qor).
v. If 1,=1,=0, =0, 2,=0, then we have

K,=1, K,=1, I'=1, v,=1, v,»0, B,=0, B,»c0, D=0, D,~cw.

1

The results obtained here again agree with those of case ii) except the stress in the
elastic medium, which experiences a finite jump at the elastic wavefronts in both the
theories, given by (o], — U;l)ntvltz 0,y B B:P.

vi. In the absence of the magnetic field, i.e. H,=0, then f,=f,=0, what means
that there is no coupling between the electromagnetic and strain fields, than the stress
in vacuum T2 =0. The result agrees with [5].

8. Numerical results and discussion

In this section the jumps obtained theoretically in the previous sections for
deformation, temperature, the perturbed magnetic field and stresses in vacuum as
well as in the elastic medium, are computed numerically for carbon steel material [13]
for which the physical data are

A=93x10"°Nm 2 u=84x10""Nm 2
p=79x103kgm™3, T,=293-1°K, £=0.34,
C,=64x10>Jkg *deg™?!, Q2=8r.ps. and H,=1 gauss.

The variations of jumps are plotted as functions of time for relaxation time (r,, 7)) =0,
0.1, 0.5, for non-rotating and rotating medium in both L-S and G-L theories, as
shown in Figures 1 to 5. It is found that, in general, the variations of jumps in the
cases of perturbed magnetic field and stress in vacuum are linear in nature, whereas in
the cases of deformation, temperature, and stress in the elastic medium, they decay
exponentially with time.
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Analysis of interaction of impulse-like pressure wave in
a fluid with undeformable layer of porous material (*)

M. CIESZKO and J. KUBIK (POZNAN)

THe PROBLEM of interaction of a plane impulse-like pressure wave in fluid with an undeformable
layer of porous material is analysed for the case of normal incidence of the wave. The method of
analytical solution of the problem is proposed. This allowed us to discuss the influence of the
viscous drag force of fluid in the porous layer and its pore structure parameters on the reflection
and transmission of the incident wave. It was shown that the viscous drag force causes not only
damping and dispersion of waves propagating in the porous layer but also affects the reflection
and transmission of waves at both surfaces of the layer where the pore structure plays the
fundamental role. The pore structure is the cause of the amplitude growth effect of the wave
penetrating the porous layer.

1. Introduction

Porous MaTEriALS saturated with fluids (as the air, water, gas, crude oil) are
encountered both in the nature (soils, oil-bearing rocks, bones, crops etc.) and in the
technology (sintered powders, filters, construction ceramics, insulating and
sound-absorbing materials). Increasing research interest has been lately observed in
considering physical phenomena (microscopic) occuring in porous media and in their
macroscopic description. Particularly, theoretical and experimental investigations of
mechanical behaviour of fluid-saturated porous materials as well as their mechanical
properties are developed (see [1, 2, 18]). Due to the complexity of deformation
processes in such materials and multiparameter character of their description the
investigations require especially prepared methods [9, 11, 19].

In extensively developed dynamical methods applied for examining porous
materials it is important to know basic features of reflection and transmition
phenomena of impuls waves interacting with bounded porous media. On one hand,
samples in the form of layer are often used as elements of systems in the dynamical
methods to determine the pore structure parameters and other material constants [8, 10,
12]; on the other hand, the analytical solution of a boundary problem makes it possible
to formulate the conditions necessary for the tests to be performed. Furthemore, the
obtained relationships are indispensable to interpret the measurements in an
appropriate manner.

This paper is the first part of the analysis regarding interaction of an impulse-like
pressure wave propagating in a fluid with a layer of porous material. It concerns the
normal incidence of a plane wave on a rigid, fixed and permeable layer immersed in
a fluid. The second part will be devoted to the case when a porous layer is deformable.

(*) The reported research was done under the grant No. 300149101.
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The aim is to obtain an analytical solution to the problem and to discuss the
influence of the geometry of pores and the diffusion forces on the process of reflection
and transmission of an impulse wave.

The considerations are based on the assumption that the motion of a fluid outside
a porous layer is described by the Navier-Stokes equations, while the motion of fluid in the
pores of undeformable layer is described by suitably reduced equations of the theory of
deformable porous media [6, 7, 13 — 15]. In the framework of this theory the structure of
the skeleton is characterized by two parameters: volumetric porosity and structural
permeability. These two parameters enter the continuity and the motion equations of the
pore fluid in an explicit way, and so do they in the compatibility conditions formulated as
the continuity of the fluid mass flux and its effective pressure on both faces of the layer.

The analysis is given in two steps. First, the interaction of the plane harmonic wave
with a porous layer is considered for which the explicit expressions describing
acoustical fields in particular regions of the system are obtained. These expressions are
employed at the second stage to construct a solution of the problem of interaction for
an arbitrary profile of the plane incident wave. The solution has been obtained in the
analytical form considering interaction of the wave with the layer as the superposition
of interactions of wave harmonic components given by Fourier transform.

It is shown that the forces of viscous friction between fluid and skeleton cause not
only damping and dispersion of the propagating waves, but also influence the
phenomenon of reflection and transmission of waves on both faces of the layer, where
the pore structure plays a fundamental role.

2. Interaction of an acoustic impulse wave with a layer of porous material; formulation
of the problem

We analyse the problem of reflection and transmission of a plane pressure wave
through an undeformable layer of porous material with the thickness » immersed in
a fluid. The incident wave is perpendicular to the layer (Fig. 1). The fluid is assumed
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to be barotropic, i.e. the effective pressure p/ in the fluid is a single-valued function of
its effective density p” (p’ =p’ (p’)). Moreover, it is assumed that the viscosity of the
fluid does not influence its macroscopic stress state (the stress deviators in the fluid,
both outside and inside the layer, are neglected). The viscosity is accounted for in the
interface force between the fluid and the porous skeleton.

Under the above assumptions, the propagation of disturbances with small
amplitudes in the half-spaces x <b (region I) and x> b (region III) is described by
linear one-dimensional equations

dv dp
2.1 — 4 ==
@1) o=
1w
ak ot ox
2.2)
p= @ —phiph,

where v stands for the velocity of fluid particles and

dl (%)% o=

is the velocity of propagation of disturbances in the medium. Effective density and
pressure in the undisturbed fluid are denoted by pf and pj, respectively.

The description of the fluid motion in the pores of the undeformable layer (region
II) will be based on the so-called two-parameter theory of deformable porous body
saturated with fluid [6, 7, 13 — 15], where the structure of pores is characterized by two
parameters: volumetric porosity f, and structural permeability A (1 <f,). The problem
of the motion of barotropic fluid through the pores of an undeformable skeleton
reduces to a specific case of this theory and the equations for propagation of
disturbances with small amplitude take the form

dv dp -
(2.3) a+a+kv—0,
12 d
L P LS
ci ot 0Ox
24) i F
k = k'[(Ap}),

where k' is a coefficient in a linear law of diffusion resistance and ¢, is the velocity of
propagation of the wave front in the medium and is related to the velocity a, of the
propagation of disturbances in the fluid itself (regions I and I1I) by means of the formula

(2.5) ¢, =+/xa,, x=Af,.
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The acoustic fields in particular regions of the system are coupled through the
compatibility conditions on the contact surfaces. For small disturbances these
conditions are: continuity of the effective pressure and of the fluid mass flux on the
faces of the porous layer (')

In the case of barotropic fluid we obtain [5]

(2.6) Plicom =01 o0,

2.7 O xmom = A0 | 4ot
and

(2.8) Bl o= = | sunts
2.9) Ap | g =0 | s=pt,

where a~, a* denote the left-hand and the right-hand side limiting values of the
magnitude.

To solve the problem, a state of the system at an initial instant of the process must
be assumed. The initial condition is formulated as follows

_ jg(x) for x<0,
(2.10) PO | oot = {0 R

Equations (2.1)—(2.4) together with the conditions (2.6)—(2.9) fully describe the
phenomenon of the reflection and transition of an impulse wave through a porous

layer. Their form shows that, apart from the parameters b and k, characterizing the
geometry of the system and the dissipative properties of the fluid in its viscous
interaction with the walls of pores, an essential influence on the acoustic properties of
the system is also exerted by the parameters of the pore structures of the layer. These
parameters are explicitly seen in the continuity equation (2.4) and in the compatibility
equations (2.7), (2.9). Interaction of the wave with the porous layer also depends on
the form of an incident wave, given by the expression (2.10).

3. Solution of the problem

The acoustic fields in particular regions of the system, described by Eqgs. (2.3),
(2.4), may be represented by one of the muttually coupled quantities that charac-
terize the motion of the fluid — its velocity or its pressure. The solution appears
easier when these fields are represented by the velocities of fluid particles. This
results from the possibility of replacing the compatibility conditions (2.6), (2.8) for
pressure by the compatibility conditions for velocities. Opposite replacement does
not apply.

(') These types of continuity conditions are analogous to those required at sudden stepwise changes of
cross-sections in the wave-guides transmitting disturbances [17].
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Making use of the continuity equations (2.2), (2.4), the motion equations (2.1),
(2.3) take the form of wave equations

i 1o
B:l 0x* a2 o2’
32) Blv_ 1 6ZU+E60
& 0x2 c2\or ot)’
The conditions (2.6), (2.8) lead to
av v
(3.3) — =% — ,
0x e 0x S
Lol
(34 0x| _,-  0x| _,+°

However, the use of velocity fields appears inconvenient if we aim at observation of
the interaction of the wave with the porous layer as a function of time. The reason for
the difficulty is a discontinuity of the fluid velocity at both faces of the layer. From
this point of view it is much more convenient to use the effective pressure field in the
fluid which remains continuous on the layer faces. Thus, after solving the problem for
the velocities of fluid particles, we shall again employ the continuity equations (2.2),
(2.4), in order to express the acoustic field in terms of the pressure field in the fluid.

The initial-boundary problem of interaction of an impulse wave with a porous
layer will be solved analytically in two steps. First, the interaction of a plane harmonic
wave will be considered to obtain the explicit analytical expressions for the acoustic
fields in the particular regions of the system. Thus the frequency characteristics will be
determined. Secondly, an impulse wave falling on a porous layer will be dealt with. To
this end, the incident wave will be decomposed into its harmonic components with
a continuous distribution of spectrum and, next, the knowledge of the interaction of
harmonic waves with porous layer, gained at the first step, will be employed to
construct the solution for an arbitrary plane impulse wave.

3.1. Interaction of a harmonic wave

When a plane harmonic wave with the frequency f(w=2n /) and an amplitude 4,
falls perpendicularly on a porous layer, the acoustic fields in the regions I and II
consist of two waves moving in opposite directions, whereas the acoustic field in the
region III is represented only by a wave leaving the layer. These waves are the sums of
all the elementary waves suitably directed after consecutive reflections and transmis-
sions of the incident wave on both faces of the porous layer.

The acoustic fields in the regions I and III being the solution of Eq. (3.1) can be
expressed with the use of the functions
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(35) U[ = Re{(Ale—zxiix_ Dlezxifx) eimr}’

(3.6) pll — RC{A3E_2ﬂixeimt}.

The acoustic field in the region II, satisfying Eq. (3.2), is represented by
(3.7 ol = Re{(d,e” 2***— D e?*ikx)glot}

where 4,, D, (x=1, 2, 3) denote the amplitudes of particular waves and Re () stands
for a real part of the complex expression. Wave numbers kand k& satisfy the following
relationships:

(3.8) k=fla,, k* =k2(1—, ‘/;%)
where
(3.9) k=flc,, ko=klc,

The expressions (3.5)—(3.7) contain four unknown amplitudes which must be
determined from four compatibility conditions (2.7), (2.9), (3.3), (3.4).

Substituting Egs. (3.5)—(3.7) into the appropriate compatibility conditions (2.7),
(2.9), (3.3), (3.4), the following algebraic system of equations is obtained

A =D, =4~ D},

A +D,=/xK(4,+D),),

3.10
(3.10) A(Aze—mnxlﬁ_Dzezxinxlfw) =t Aae—zxin,
Jx K(Aze‘l""'K/J’_‘ + Dzezni!lKlJ’_‘) = A7,
where
e 1
(3.11) K:k'/kz(l_iﬂh)z
2n n

and n,=b k is a dimensionless coefficient characterizing the dissipative properties of
the fluid that saturates the porous layer. The magnitude 5 =5 k can be interpreted as
a dimensionless frequency of the incident wave.

The above equations make it possible to determine the ratios of the wave
amplitudes propagating in the system to the amplitude of the incident wave as explicit
functions of the quantities that characterize an internal structure of the pores,
dissipative properties of the fluid and macroscopic geometry of the system for various
frequencies of the incident wave. In particular, these equations enable us to determine
the relationships between the reflection and the transmission coefficients of the
harmonic wave falling on the porous layer and those parameters (see [4]).
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From Egs. (3.10) we have

B 1-K?
17 14+ K2-2iKctg (2)’

ol

A, = (1+B-(1-R) D,/ 2xf,,
{3.12) . ~ -
D,=(1+R)+(1-R)D,/2df,,
ZJ = e?*¥ (] —El)cos(z)—-ile(l +Bl)sin(z),
where

()=( 3 Az R=xf,|K, z=2mK//x.

The expressions (3.5) —(3.7) together with Eqgs. (3.12) fully describe the velocity fields
of the fluid in particular regions brought about by the incident harmonic wave. From
the conditions (2.7), (2.9) it follows that these fields are discontinuous on both faces of
the layer.

To describe the problem by means of the pressure fields, continuous on both faces
of the layer (see conditions (2.6), (2.8)), let us use the continuity conditions (2.2), (2.4).
Then the pressure fields in particular regions, coupled with the velocity fields
(3.5)—(3.7) will be given by the expressions

(3.13) pl(x',f) — Re {Ai(ezzin(f—f) s Blelen(hﬁ)}’

- ~ .~ K - ~ - K =
(3]4) [.‘E(.f, 0 = Re {Al (AZCAZ“"('\&X) + Dzeznm(r+‘ﬁcx>)}’
(3.15) p™(%,0)=Re {lezez"""("’f)},
where

A, = Aa,ph/ph
is the dimensionless amplitude of the incident pressure wave in the fluid, and
(3.16) A,=xK4,, D,=xKD,

denote the amplitudes of the resultant pressure waves in a fluid saturating the porous
layer related to the amplitude of the incident wave. In the relations (3.13)—(3.15)

a dimensionless coordinate X and a dimensionless time f have been introduced.
Suitable formulae are

%=x/b, F=1tT=ta,/b.

http://rcin.org.pl



412 M. CIESZKO AND J. KUBIK

The spatial coordinate X is a measure of the distance from the origin of the frame of
reference expressed as a fraction of the thickness of the porous layer. The dimension-
less time 7is a measure of time elapsed related to the time necessary for the wave in the
bulk fluid to travel through a distance equal to the thickness of the layer.

Such a choice of independent variables is convenient both in the numerical
calculations and in the diagrammatic illustration of the interaction of the wave and
the porous layer.

3.2. Interaction of an impulse wave

Let us now make use of the knowledge of the response of the considered system to the
harmonic wave and determine its response to an arbitrary impulse wave. The impulse
wave travelling in the fluid towards a porous layer with the pressure distribution

satisfying the initial condition (2.10) will be decomposed into the harmonic com-
ponents with the use of the Fourier transform [3].
We obtain

(3.17) fE-%) = | Fue=ueay,

where Fu) is a spectrum of a function f{z) defined as its Fourier transform

(3.18) Fu) = Tf(z)e'z“z“du.

Since f{z) is a real function, its transform F(u) becomes a Hermitian function
satisfying the condition [3]

F(—u) = Fu),

where F*( ) is a complex function coupled with the function F(«). This means that the
real part of the function F(u) is an even function and its imaginary part is an odd
function. Since exp (2niu(z—X)) is also a Hermitian function with respect to the
variable u and a product of Hermitian functions remains a Hermitian function, the
expansion (3.17) can be rearranged to become

(3.19) f(I—%) = T Re {2F(u) e~} gy,

The above expression can be interpreted as a decomposition of an arbitrary wave
J(f—X) into the harmonic components and that is why 2F(u) appears to be
a distribution density of the wave amplitude while 2 F(u)du is an amplitude of a wave
with a frequency contained in the range {u, u+ du). The expression (3.19) makes it
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possible to consider the interaction of an impulse wave with a porous layer as
a superposition of interactions of the particular harmonic components of its expansion.
Assuming that

u=n, A, =2Fmad,
p*=dp* (x=1 11, III)
the pressure fields in the fluid corresponding to the harmonic components of the
impulse wave are given by the formulae (3.13)— (3.15), while its resultant fields in the
particular regions can be obtained by integrating these formulae over the whole
frequency ranges for which the harmonic components exist, i.e. over 7€[0; o).
Bearing in mind that all functions appearing in Eqgs. (3.13)—(3.15) which depend

on the frequency 5 are Hermitian functions, the expressions for the resultant fields
take the form

(3.20) FED= | F(n)(el""!('_—ﬂ+1—)lezm(£+a)dn
for X<0,

= - TN I T S
() &Y = | F(U)(Aze_”"'("ﬁ")+Dze“"'(”ﬁ"))dﬂ

for 0<%<1, and

+

J Fn) A e dy

(3.22) (X, D)

for x>1.

The formulae (3.20)—(3.22) satisfy the appropriate equations of the fluid
dynamics (2.1)—(2.4) and the compatibility conditions (2.6)—(2.9) given on both
faces of the porous layer.

Although the considerations are limited to the waves of an impulse type, the above
expressions constitute a general form of solution for the perpendicular incidence of an
arbitrary plane pressure wave on the rigid immovable layer of porous material
immersed in the fluid.

The solution (3.20) —(3.22) for a plane harmonic wave of the frequency 5" and the

amplitude 4 , whose spectrum (the Fourier transform) is represented by the Dirac delta

F(n) = 4,8 (—n"),

reduces to the form given by the formulae (3.13)—(3.15).

In the case in which a wave impinging on a porous layer constitutes a pressure
impulse of the Dirac delta type with a unit area, its spectrum is a constant function
equal to unity over the whole frequency range: F(y)=1. Then the solution
(3.20)—(3.22) takes the form which is called an impulse response of the system.



414 M. CIESZKO AND J. KUBIK

4. Influence of the diffusion drag forces and the structure of pores on the reflection and
transmission of an impulse wave

An explicit functional form of the solution (3.20)—(3.22) in the general form is
very difficult to obtain. Main reason is the existence of viscous behaviour (diffusion
resistance) of a fluid flowing through a porous layer; the walls of pores case
a dissipation of mechanical energy. Moreover, the phase velocities of harmonic
components depend on their frequency [16, 19]. This leads to a nonlinear relationship
between the frequency # and the exponents of functions in the expression (3.21) that
discribes the fluid pressure field in the porous layer. As a result, the wave profile
during its travel through the porous layer undergoes certain deformations caused by
damping and dispersion of the wave.

Remembering Eq. (3.11), these functions can be shown as a product of three terms
characterizing those two phenomena. We have

@.1) e INELKI% D) _ png®/2 pFxin(K—1)2 /5 p2xin((43]x)

The first term on the right-hand side of Eq. (4.1) characterizes damping, the
second is responsible for a dispersion of a wave corresponding to its harmonic
component represented by the third term.

In view of the decomposition (4.1), the fluid pressure field (3.21) in the porous
layer takes the form

@

4.2) PU(R, ) = e "0*2 j ( F(n) jzexin(x—l)zi/ﬁ) e 2R in (%1% dn

— @

+ e'loflz T (F(ﬂ) D"ze—uiq(Kfl)Z ffﬁ) ezxiq(fﬁ-flﬁ) d,]

— 0

Viscous interaction of the fluid with the walls of pores causes not only damping and
dispersion of waves propagating in the layer but also influences the course of reflection
and penetration of waves on both faces of the porous layer. All the three effects together

with the structure of the pores determine the values of the ratios of amplitudes 1-—)1' Zz,

D,, A, of the harmonic components of the fluid pressure wave in particular regions ().

An influence of viscous interaction and the structure of pores on the reflection and
transmission of waves is particularly pronounced when a wave impinges on a porous
half-space. In this case the acoustic field in the porous half-space is formed only by
a wave penetrating through its surface and therefore the ratios of the amplitudes of
harmonic components do not depend on the dispersion and damping taking place
inside the porous medium.

(?) Detailed analysis of the dependence of the reflection and transmission coefficients of harmonic waves
through porous layer (closely connected with their amplitudes) on the dissipative properties of the fluid and
the structure parameters of the porous layer is made in [4] for a broad range of frequencies of incident
waves.
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4.1 Interaction of a wave with a porous half-space

Solution of interaction of an impulse wave with a porous half-space is a special
case of the expressions (3.20) and (4.2) describing the pressure fields in the fluid
alone in the region £<0 and in the fluid saturating the pores of the layer. All that
remains to be done is to enlarge the thickness of the porous layer up to infinity.

For b—co (k,#0) from Eqs. (3.20) and (4.2) it follows

4.3) FrED= | _F(r,)(ezﬂrr(f'—ﬂ+D’"lezzin(:'+§))dn,
(44) ﬁ'n (_)E, f) — 8‘"0;'/2 I Hq)jzegiq(xfl)zfl\/; ez"i"(f*f/\/;‘) dy”
where
e )
4.5) 5 K=t 4 K

T W,

and the dimensionless quantities X, 7, #, 5, are defined as

X=x/b, T[=tayjb, n=>bk, n,=>bxk,.

The dimension b, is a certain constant reference length.
The squared modulus of the ratio D, of the amplitudes given by the formula

s 2 (P—xf);+0?
4.6 =|D, "= == ;
o 4 (P+/% f,)*+ Q?

where

P =Re(K) = \/(1 +\/l+(E/2nj)2)/2,

@.7)

0=Im(K)= —\/(—l+\/1+(l€/2nf)z)/2

represents the ratio of the amount of energy of the harmonic wave (or its harmonic
component) reflected from the surface of the porous medium to the energy of the
incident wave. This quantity is called the coefficient of reflection and enables us to
define the role played by the diffusion forces and the structure of pores in the course
of the phenomenon considered.

Dependence of the coefficient § on the dimensionless frequency 2z fjk for two
different pore structures is shown diagrammatically in Fig. 2. This coefficient is seen

http://rcin.org.pl
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x|
1]
ol

0 ! 2 3 2rnf/k

FiG. 2. Diagrams of the reflection coefficient f vs. dimensionless frequency 2z f/k (for an acoustic plaster
filled with air [20] 27 f/k=1 corresponds to f=400 Hz).

to be the largest for low frequency and gradually decreases with the increase of
frequency to arrive asymptotically at the value

1—\/’4];)2
48 = ()
S o (1+fo.,

which is fully defined by the parameters of the pore structure.
The quantity i is the reflection coefficient in the case of filling the half-space with

an inviscid fluid (k=0). This means that the influence of viscous friction on the
reflection of the wave is considerable for lower frequencies

nflk<1,  (2an/(\/xn,)< 1)

and fades away in the range of higher frequencies

4.9) 2nflk>1,  QRmun/(\/xn)>1),

where an essential role is played by the structure of pores, while the coefficient of
reflection can be considered constant.

Bearing in mind that both the amplitude ratios ﬁ; and 4, and an exponent of the
function characterizing the dispersion of the waves depend on the viscous friction
through the magnitude K, the conclusions with respect to the viscous friction can be
directly referred to these magnitudes. This means that the amplitude ratios D, and A,
are constant and the dispersion of waves fades away (exp (i (K—1)? y %/x/x)—1) in
the range of higher frequencies of harmonic components of their spectra.

In the case in which the main part of the spectrum of the wave impinging on
a porous half-space corresponds to the frequency range satisfying the condition (4.9),
an influence of the viscous friction on the reflection and transmission of the wave as
well as its dispersion can be ignored. Then the expressions (4.3), (4.4) describing the
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luid pressure fields in both regions assume, after inversion of the transforms, an
:xplicit functional form. We obtain

4.10) PrE D =fT—%) + B2 S(T+3)
for x < 0 and

4.11) PUE D) = (1+ By e "2 f(I— A %)
for x = 0.

From the expressions (4.10), (4.11) it follows that the amplitude of a wave
penetrating the porous medium considerably increases as compared with the
amplitude of an incident wave, although its global energy is smaller by the energy of
the reflected wave. At the same time, the effect of wave concentration is the larger
(apparently paradoxically), the greater is the part of the incident wave energy
reflected from the surface of the porous medium.

The appearance of the concentration is caused by two reasons: a stepwise increase
in the fluid mass transfer upon penetrating the wave into the porous medium,
resulting from the continuity of the mass flux on its surface (see formula (2.7)) and
a smaller velocity of penetration of disturbances in the fluid that fills the pores as
compared with this velocity in the fluid alone (see formula (2.5)). Both reasons are
closely connected with the pore structure parameters; the first one with the structural
permeability parameter A, the other with the parameter x=A1/f,.

4.2. Interaction of a wave with a porous layer

Confining the considerations to the waves whose main part of the spectrum is
present in the frequency range satisfying the condition (4.9) it is possible to obtain the
explicit functional forms of the solution for the interaction of an impulse wave with
the porous layer. The following approximations hold here true:

R=~xf,
Z= 2m]K/\/; ~ —ing/2 + Zmp/\/s_{.

With the use of them, the influence of the viscous friction on reflection and
transmission of the wave on both faces of the porous layer as well as the dispersion of
the wave within the layer can be eliminated.

Making use of Eqs. (4.12), the amplitude ratio 51 given by the formula (3.12),,

takes the form
_ 1-A8
_ R—12 _ 0.
D1 _ﬁO (1 l_ﬁodleﬂi'ﬂﬁ)’

(4.12)

where

d = exp(—1,/2).

http://rcin.org.pl
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On expanding the expression

1
1LE7 d2etxinix’

(| Byd%e="N*| = B d?*<1)

into a series, we get
4.13) 51 = ﬁllz[l = ]_;_&) Y (B,d? euinlﬁjl_
0 n=1

Such a form of the amplitude ratio D , and the approximations (4.12) make it possible
to inverse the Fourier transforms in the expressions (3.20), (4.2), (3.22) in a straight-
forward manner. We arrive at

FED =109+ prafar 9— B0 (g aystsz—2mpf)

n

@.14) p (%D (1 +5%) {df[f(f—f/\/m > (B, f(r- (f+zn>/J§)]
e g i 3
~ i £ Gor 1+ G20

0 n=1

mED =

1-8, & =
L Y B f(I—(X—1)—2n—1)//x).

P =

The pressure fields (4.14) in the case of an inviscid fluid (§ = 0—d = 1) constitute
an exact solution to the problem of interaction of a wave with a porous layer.
Their forms indicate that the decisive factor in the studied phenomenon are the
pore structure parameters of the layer that determine the value of the coefficient
Be

g The phenomenon of reflection and transmission of the impulse wave (through
a porous layer immersed in a fluid), whose initial profile is given by the function

(Fig. 1)
SED | joy= €% (HE—X)—1)sin2nn° (X — %),

is depicted in Fig. 3. H (X) is the Heaviside function, #° and t are the dimensionless
frequency and the dimensionless coefficient of spatial fading of the wave, X is the
coordinate of the wave-front. The illustrative example refers to a dispersionless (but
damped) interaction of the wave, the fluid pressure field of which is described by

Eq. 4.14).
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porous
™ layer

he=2 x=1/3
£, =03
B AV | e

T=45
7-55 _
/\/\/\"_~_V“—"V‘——¥~f\/\——
- o g o h o

FiG. 3. Example of reflection and transmission of an impulse wave through a porous layer.

5. Final remarks

The paper deals with the interaction of a plane impulse wave propagating in
a fluid in which an undeformable porous layer is immersed. Analytical solution is
obtained with explicit forms of expressions for the pressure distributions in the
particular regions of the considered system. Influence of the viscous forces in the pore
walls and the parameters of the pore structure on the reflection and penetration of the
wave is discussed.
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The obtained results appear important both from the cognitive and practical
points of view. They can be useful in the design of the dynamic methods for the
determination of internal parameters of a porous medium, for instance by use of the
ultrasonic devices (when the main part of the wave spectrum is in the range of high
frequencies). Interpretation of the experimentally obtained data may also be easier.
Moreover, an analysis of reflection and penetration of an impulse audible waves
through a porous layer when the main part of the spectrum is in the range of lower
frequencies is made possible and seems to be interesting from the point of view of
noise control.

The method proposed in the paper can be extended to cover the case of
a deformable porous layer. The next paper will be devoted to this issue.
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A theory of viscoplastic shells including damage
M. KLEIBER (WARSZAWA) and F.G. KOLLMANN (DARMSTADT)

In THIS PAPER Wwe first extend the inelastic constitutive model of Bodner and Partom to include
some damage effects. For this purpose the inelastic strain rate tensor is decomposed additively
into a deviatoric and a volumetric term. Furthermore a non-associative flow rule is assumed.
Then a parameter f§ can be defined which measures the ratio of the rate of the plastic dilactancy
over the effective deviatoric inelastic strain rate. For this parameter we adopt an evolution
equation first proposed by Gurson in the context of rate-independent plasticity. Finally, we
suggest an evolution equation for the void volume fraction. We apply the inelastic constitutive
model to a general inelastic shell theory presenied by K'ollmann and Mukherjee. We use a mixed
variational principle which contains velocities and strain rates as variables to be varied
independently. For axisymmetric shells a mixed Finite Shell Element is presented. We give some
numerical results for a cylindrical shell made of pure titanium and loacfed by internal pressure.

1. Introduction

WHILE THE THEORY of elastic shells is well established [1 — 3], inelastic shell theory is still
a vivid research area. Inelasticity is understood in this paper as a rate-dependent
behavior. KoLimann and MukHERIEE [4] have proposed a general theory of inelastic
shells under small deformations. They presuppose that the inelastic part of the
deformation is governed by a unified constitutive model using internal variables.
KoLimann and BERGMANN [S] have developed a finite element model for axisymmetric
shells starting from the theory of Kollmann and Mukherjee. They use Harts [6]
inelastic constitutive model. In a further paper Korimann, Corpts and HACKENBERG
[7] give a FEM formulation, using the inelastic constitutive model of Bopner and
PartoMm (BPM) [5].

Significant achievements have been obtained to model the development of
damage in combination with inelastic deformations. Most of the known results have
been obtained under the assumption of rate-independent plasticity [9—12]. In this
context the model of Gurson [6] is often used as a point of departure. Extensions
covering some viscoplastic material models are now available as well [13, 14].

In this paper we first extend the theory of Bodner and Partom to include in it some
damage effects. Then we show the application of the theory obtained to finite element
modelling of shells starting from the formulation of Kollmann and Bergmann.
Finally, we give some numerical results.

2. Bodner —Partom model with damage

First, we give a brief overview of the original BPM for small strains. We start from
the additive decomposition of the total strain rate £ into an elastic part £ and an
inelastic part "
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2.1 £ =8¢+ ¢&".
Bodner and Partom assume the inelastic flow rule for the isotropic material as
2.2) £" = s,

where s is the stress deviator and A is a scalar parameter. We define the following
invariants

2.3) LE):= %é" %
2.4 J .
2.4) 2.-55.5,

where the colon (:) denotes the standard inner product of second order tensors.
From Egs. (2.2), (2.3) and (2.4) follows the relation

L&)
2.5 A2=-2—=,
2.5) i
Bodner and Partom assume
(2.6) LE) =1(J),
where the scalar function f(J,) is defined as
AN\n
2.7) fJ):= Dgexp[—(Tz) :I
2
In Eq. (2.7) the quantities D, and n are material parameters and A4, is defined as
Z2 (n41\un
(2.8) Az.—3( n ) .
The quantity Z is an internal variable which depends on the plastic work W,
(2.9) Z=Z+2Z,~-2) exp(— ’"ZWP) ]
0

where m, Z and Z, are again material parameters. Inserting Eq. (2.8) into Eq. (2.7)
we obtain

2.10) 1) = Dgexp[— ":1 (5)]

For the subsequent analysis it is convenient to replace I, (€") by the effective
inelastic strain rate

(2.11) = [Sgmgn
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and J, by the effective deviatoric stress

(2.12) g:= /%s:s.

From Egs. (2.11), (2.12) and (2.5) follows the relation

9 (e")?
. 2= )
(2.13) =

Equations (2.6) and (2.11) give

. 4
(2.14) (") = 3.
Finally, Egs. (2.10) and (2.12) result in
2.15) fU,) = Dgexp[— "i;—l (g)”] — 2%().

With Egs. (2.13), (2.14) and (2.15) the flow rule (2.2) takes the form

o enat o[ T

Next, we compute the dissipated plastic work during the time increment A1=1,—¢,.
By the definition

t ‘2
W,= jzu:é"dt = [s:€"dt
L5 1

By considering the flow rule (2.2) and Eq. (2.13) we obtain

)
(2.17) = j& €
'
and by Eq. (2.14)
e e
.18) W = | — g(o) adt,
r . \/5

where the function g(o) is defined in Eq. (2.15).
To include damage into the BPM we first assume that the inelastic strain rate is
non-deviatoric, i.e.

(2.19) é"=é"+%tré"1,

http://rcin.org.pl
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where é" denotes the deviatoric part of €, tr is the trace operator and 1 is the second
order unit tensor. We presuppose that damage is caused by the nucleation and growth
of voids and that compressibility of the plastic strains is the macroscopic consequence
of the existence of voids. To include the effect of voids into our model we assume the
following non-associative flow rule

(2.20) i"=A(s+po1).

In Eq. (2.20) f is a parameter to be discussed below. Setting f=0 the inelastic flow
rule of the undamaged material is recovered. Taking the trace of Eq. (2.20) leads to

@21) tré" =3 Af5.
A comparison of Egs. (2.19), (2.20) and (2.21) reveals that
(2.22) "= 1s.

Defining the equivalent inelastic deviatoric strain rate &" analogously to Eq. (2.11) we
find from Eq. (2.13), replacing " by e", the following relation

w2
(223) e =340
Eliminating Ao in Egs. (2.21) and (2.23) we obtain
(2.24) fase
9 ot

The parameter f is thus a measure of the ratio of the plastic dilatancy over the
effective deviatoric inelastic strain rate.

To capture the effects of voids in the simplest possible way we assume that the
only additional parameter entering our model is the void volume fraction £. In rate
independent plasticity [9 — 12] the following equation describing the relation between
the parameter f and the void volume fraction has been proposed

(2.25) g - §smh(“_"),

where o is the current yield stress of the void-free base material. Since some studies
[11] indicate that Eq. (2.25) underestimates the parameter f, we use in our work the

approximation o, = ¢/2 so that Eq. (2.25) takes the form
t
(2.26) LT (i’) .
3 o

Next, we compute the effective inelastic strain rate. From Egs. (2.11) and (2.20)
follows the relation
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. 4
(2.27) = /§ + 28215

Define
9
(2.28) Ki= 1+§ﬂ2.
Equations (2.27) and (2.28) give
T N
(2.29) e"=§xla.

However, for the model (2.13) without damage we have

5. _
This motivates to replace the function f(J,) in Eq. (2.14) by a modified function

f(a, £). Here o denotes the effective stress of the material containing voids. This
effective stress is related with the effective stress of the undamaged base material by

(2.30) a=(1-80p.
Now we replace @ in Eq. (2.15) by ap according to Eq. (2.30) and obtain
- n+1/(1-§&Z\z p

@31) f@.6):= Daexp[— ’ (( ) ) ] - 260,

a
Equation (2.14) of the undamaged model is modified to become

; 4 -
(2.32) ) = gf (0,%).
From Eq. (2.29) we then obtain
- @D _ 5800
Ka Ka

Now the extended inelastic flow rule Eq. (2.20) takes the form

(2.34) & =./3 g Gf) G+pa1).
Ko

Finally, an evolution equation for the void volume fraction ¢ is needed. We
assume

(2.35) £=(1—&)tré"+ Be".
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The first term describes the growth of existing voids whereas strain-controlled
nucleation of new voids is controlled by the second term. The parameter B takes
a non-zero value only if the current value of the accumulated effective plastic strain

t
&= [e"dt
0

exceeds its maximum value attained so far. By using Eqgs. (2.21), (2,29) and (2.28), we

obtain from Eq. (2.35) the relation

(2.36) =3 [‘/75 Jri-1d —¢)+§B]m,f:).

The BPM extended to cover the effects of damage is summarized in Box 1.

Box 1. Bodner —Partom model with damage

& =389 1 ga1)

Ko

: y
E=3 [% JE=T0-0 +38]6G.0
ﬁ=§sinh(u~u)
3 G
k= _[1+ gﬁz
8.0 = Do\/exp[— kit (“ 'f’z)”]
n g

: W
Z=2Z + (Zo-vZ])exp(— mZ ")

0

ol L
Wp - I_ ﬁ(&,{)adt

/3

B, D, Z, Z,,m and n are material parameters

3. Inelastic shell theory

A shell # is the Cartesian product of a two-dimensional surface ¥ &, with

a closed interval [—A/2, h/2] c R
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(3.1) B=F%[—h{2,h2] cé&,,

where &, is the three-dimensional Euclidean space. The parameter A is the shell
thickness. For simplicity we presuppose h = const. We introduce curvilinear
coordinates @* (x=1,2) on &. In the following Greek indexes always range from 1 to
2 while Latin indexes range from 1 to 3. The two-dimensional surface & is the shell
midsurface (SMS). On the SMS covariant and contravariant base vectors a, and a”
can be defined in the standard manner. The first and second fundamental tensors on
& are denoted as a and b, respectively, and b is the determinant of b. The covariant
base vectors g of the shell # are given as

g, = Ha,,
(3.2)
g, =A,.
Here
a xa
3.3 a,=—1—2-
3.3) 3 la, xa, |l

is the unit normal vector on the SMS & and
(3.4) p:=1I-(b

is the shifter tensor. In Eq. (3.4) I denotes the identity tensor on & and { €[—h/2, h/2]
is a normal coordinate. The determinant u of the shifter tensor is

(3.5) u=1=_trb+ (2b.

Following KorLimMann and MukHERIEE [4] we assume that the displacement vector
u* of the shell # (quantities with a star (e.g. u*) are defined on the shell # while
unstarred quantities (e.g. u) are defined on the SMS¥) can be presented as

(3.6) u*:=u+ (o,

where u is the displacement vector of the SMS & and § is the difference vector which
describes the rotation of the normal vector a, of the undeformed SMS during
deformation. In this work it is assumed that the difference vector & is independent of
the displacement vector u and, therefore, our formulation can account for transverse
shear strains.

Denoting the strain tensor of the shell # by £* we take from [4] the following
representations

lus;ﬁ = eaﬂ + cxaps
(37) #8;3 = ?a + Cpa:

» —
€33 = V5
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Here e, K., V» P. and y, are strain-like quantities defined on #. In [4] also
strain-displacement relations are given.

For inelastic analysis the additive decomposition (2.1) — with all quantities
starred — is used. Following the approach of classical elastic shell theory the plane
stress hypothesis (o3, = 0) and the assumption é;,=0 are introduced. Then the
following relations hold [4]

= 1 "
844 = [—1&* +2GER],

l+2G
(3.8) lé;" =1 [é;“+é;’;
5;; == ésg-

Here A and G are the Lamé constants and A’ is the modified Lamé constant for plane
stress.

Following [4] the lines of principal curvature are used as coordinate lines on the
SMS & and physical components (denoted by <.>) referred to these coordinates are
introduced. For matrix notation we introduce a generalized displacement vector

(3.9) o' =[u”,87]
and a generalized strain vector

(310) Y= [e<11>'e<22>’e<1z>! x<11>5 K:<22,>’K<12>’ Y< 1> 7<2>3p<1>’p<2>]s

where the superscrit T'denotes matrix transposition. The general strain-displacement
relation can be written as

(3.11) y=L,v,

where L., is a linear operator. Component representations of this operator are given
in [4]. Further, a general elasticity matrix is defined

Dee Dex 03x4.
(312) D?Y = Dxe Dxx Oaxd-
04)‘3 04)‘3 D@w

All components of D,, are derived in [4].
The inelastic strain rates contribute the following rates of inelastic pseudo-forces

and pseudo-moments

. h/2
N<nij> =2G J- é<u> dc,

—h/2

. h/2

M:ij> =2G j é<u> CdC

—h/2z

(3.13)
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They can be combined to form a vector of generalized inelastic pseudo-force rates

(3 14) [F"]T = {[N<ﬂaﬁ>]T: }V‘<n33>a [M<naﬂ>]T M<n33>: [N<na3>]T’[ <na3>]T}} E]

where e.g. [A}("aﬁ)]’" and [N .. ]7 are arranged as eT,5. and yZ,., respectively, in Eq.
(3.10).

Finally, boundary conditions must be specified. The boundary 64 of the shell can
be decomposed as

(3.15) R=F "uF VT,

where ¥+ ={S < oB:{=h/2} and ¥~ ={F < 0B:({ = —h/2} are the lateral
surfaces of # and & is the edge. We consider only the case, when tractions are
prescribed on #* and &~ and displacements on %*. In this case the tractions can be
considered in a generalized load vector F,. Details of this load vector can be found in
[4] and [5].

The deformation of the inelastic shell is governed by the following variational
principle [4]

(3.16) ég[zyTDwy—?.yTDwL,un+FLD+[F"]TL’;vu}dy’zo,

where LY, is a linear operator defined by KoLLMann and BERGMANN [5] and dS is the
area element on the shell SMS &.

The variational principle contains only displacement rates and strain rates and not
stress rates. This is a major advantage in inelastic shell analysis since the assumption
(3.6) is reasonable that the displacements are distributed linearly over the shell thickness.
As a consequence of this basic kinematic assumption, also the strains are distributed
linearly over the shell thickness (compare Egs. (3.7), and (3.7) ), where quadratic terms
in { are neglected. A reasoning for this approximation is given by Kollmann and
Mukherjee. However, unlike the elastic shell analysis, the distribution of the stresses and
their rates over the shell thickness is not known a priori in inelastic analysis. Rather, it
changes in time and space and is a part of the solution sought. For this reason it is not
possible to compute from stress resultants and moments — which arise naturally in any
shell theory including stresses — the stresses in arbitrary points of the shell 4.

4. Mixed finite element model

We shall derive the discrete version of the variational principle (3.16). For this
purpose we introduce different shape functions N and N for displacement rates and
strain rates, respectively. We denote the nodal values of the velocities and strain rates

by vand ¥y, respectively. Then the discrete approximations of the velocities and strain
rates are given as

¥ =NV,
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- =N,

Using standard techniques we obtain the following mixed FEM from Eq. (3.16)
K, y—K,5=0,

42 _KL §= —B,—P,.

The terms in Eqgs. (4.2) have the following representations.

4.3) K,,:= £ N'D,,Nd¥,
4.4) K,:=[N'D,L,Nd¥,
2
@.5) P,:= [NTF,d¥,
5
(4.6) Py:= [NT(LL) F"d2.
7

In this study we confine ourselves to axisymmetric shells and use a conical element
according to Fig. 1 which has been originally proposed for a displacement formulation
by Zienkiewicz et al. [15]. KoLLMaNN, CorpTs and HACKENBERG [7] have shown by
numerical experiments that the mixed model Eqs. (4.2) gives satisfactory results only if
the order of approximation of the strain field is equal or greater than that of the
displacement field. In the present work we use first order approximations for both fields.

Denote the arc length on the conical element by s, its mean radius by R, its length
by L and the angle of aperture as a. Introduce a dimensionless coordinate n by the
transformation

@.7) s=L(g+ u )

Lsina

with n € [—1, 1]. Then the shape functions for our mixed element are

— 1
4.8)

= 1
Nyn) = N(m) = 5(1=n).

Details of the numerical implementation of the model are omitted here for the sake of
brevity. We only mention the following points. Evaluation of the Bodner — Partom
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model with damage requires the knowledge of stresses. The stresses are computed
from the Hooke’s generalized law with elastic strains €° obtained from (2.1). The rates
of the inelastic pseudo-forces and pseudo-moments (3.13), are computed by numeri-
cal integration over the shell thickness. The Gauss rule with five quadrature points is
used. For time integration of the inelastic constitutive model (see Box 1) an implicit
algorithm developed by Corpts and KorLimann [13] is employed. A more detailed
description of the implementation can be found in [2].

5. Numerical results

Our numerical results are obtained for commercially pure titanium [8] at room
temperature. The material data are given in Table 1. The parameter values for E, v,
Zy Z,, D, nand m, which describe the BPM without damage, are taken from [5]. For
titanium no data for either the initial value & of the void volume fraction or for the
parameter B controlling nucleation of new voids are available in the literature.
Therefore, our computations should be considered as numerical experiments rather
than realistic simulations.

Table 1. Material data of Bodner — Partom model with damage
for high purity titanium.

Quantity Unit Value
E MPa 117940
v - 0.34
Z, MPa 1150
Z, MPa 1400
D, s 10000
n — 1
- 100
B - 3
' = 0.01

For our numerical test we consider a cylindrical shell with diameter 4 = 500 mm,
length / = 1000 mm and thickness # = 10 mm. Both edges of the shell are simply
supported with no displacements of the boundaries. The shell is symmetric with
respect to the plane z = 0 (z is the axial coordinate of cylindrical coordinate system).
One half of the shell is discretized by 70 finite elements of equal length. The shell is
loaded by internal pressure with the following history. The pressure increases linearly
from 0 to 13 MPa within 1 s. Then it is held constant over 9 s and finally it decreases
linearly within 1 s to 0 MPa.

http://rcin.org.pl
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Figure 1 shows the distribution of the deflection w over the axis of the shell at the
end of the hold time (+ = 10 s) with and without damage. Clearly in the middle
segment of the shell (0 < z < 200 mm) a pure membrane deformation prevails. In the
rest of the shell bending effects are dominant. The strong influence of damage effects

can be clearly seen.

35
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deflection w [mm]

15 E - \

— — e —_——————
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05 - \

1 L 1
0 100 200 300 400 500
axial coordinate z [mm]

FiG. 1. Deflection of cylindrical shell under pressure (———— with damage, — — — — without damage).

Figure 2 presents the history of the effective inelastic strain rate &" tensor at
a point of the shell (z = 408.9 mm) where bending effects are dominant. In both cases
(with and without damage) a sharp increase of ¢" during the loading phase can be
observed. However the peak values are different (6"ypue = 4.57-107% 571,
" undsmaged = 3-67°1073 s 1), During the hold phase " drops off sharply first. The
drop-off rate is larger for the undamaged material. The equivalent inelastic strain rate
&" is significantly smaller for the undamaged material at the end of the hold time.
During the unloading phase & drops to zero for the damaged and undamaged

material.

In Fig. 3 the distribution of the axial stress o, at different time instants over the
normal coordinate { (—h/2 < { < M/2) at the section z = 408.9 mm is given for the
damaged material. In this section again bending effects prevail. The curved stress
distributions show the influence of the material nonlinearity since for elastic materials
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FiG. 4. Influence of the void nucleation parameter B on the deflection of the shell (¢ = 10 s).

the stress distributions would be linear. During the hold time (1 s < ¢ < 10 s) a slight
redistribution of the axial stress can be observed. For ¢+ = 11 s, where the shell is
completely unloaded, a residual stress field o, is observed.

Finally, in Fig. 4 we present a sensitivity analysis showing the influence of the
parameter B controlling nucleation of new voids on the deflection of the shell. It can
be seen that with increasing values of B the deflection grows substantially. Therefore,
it has to be emphasized that for any realistic analysis this parameter has to be
identified very carefully.

6. Conclusions

In this paper we first presented an extension of the BPM to include some damage
effects. The methodology suggested in Sec. 2 can be used to extend other uniform
viscoplastic models to include damage effects. Next, we briefly discussed an inelastic
shell theory originally proposed by Mukteriee and KoLLMANN [4]. For this theory we
gave a mixed finite element formulation and presented some numerical results for
a cylindrical shell under variable internal pressure. It may be observed that the full
merits of viscoplastic model with damage can only be seen for a finite shell element
model capturing geometrical nonlinearity. Such a model is presently under develop-
ment.
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Bounds on energy in discrete deformable systems

A. GAWECKI (POZNAN)

SEVERAL BOUNDING theorems concerning the elastic and complementary energies in deformable
systems are derived in the paper. Considerations have been carried out in the frame of
geometrically linear theory, using FEM-oriented discrete description. All deformations due to
physically nonlinear properties of the material are treated as effects of the presence of distortions
imposed on the linear elastic structure. A comprehensive example of elastic-plastic and
slackened structures illustrates the theory.

1. Introduction

THE MAIN aimM of the paper is to evaluate the elastic energy of deformable systems
subjected to given loads or prescribed displacements. The distortional approach has
been applied in considerations. The essence of this approach consists in the
assumption that all deformations due to nonlinearity of the material (plasticity,
nonlinear elasticity, effects of gaps, viscosity, cracking) or non-mechanical effects
(temperature, shrinkage, material defects, manufacturing imperfections) are caused
by the presence of distortions imposed on the linear elastic structure. All con-
siderations are carried out in the frame of the geometrically linear theory. Never-
theless, the results obtained here are valid for a relatively wide class of important
problems of deformable system mechanics. The main idea of the work was already
presented in 1989 [1]. A numerical example, enclosed in Sec. 5, illustrates the
theoretical considerations.

Let us assume that elastic coefficients of the material remain constant and are
independent of distortions. Current mechanical state of the system can then be
described by the following system of relations:

Cu=¢=¢;+ &g,
(1.1) C’s =p,
o = Eg;.

In Egs. (1.1) the FEM-oriented matrix description, applied by G. Maier [2] and A.
Borkowsk1l [3], is used. Here p, u, ¢ and £ denote vectors which represent
components of loads, displacements, stresses and strains, respectively. C is the
matrix of geometric compatibility and E represents the strictly positive definite,
square and symmetric matrix of elasticity. The strain vector € is divided into two
parts, namely elastic g; and distortional €5 ones. Superscript T denotes the matrix
transpose.
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It should be pointed out here that in the FEM-oriented description both
the surface and body forces are treated as loads acting at rodes of finite
elements. Therefore, after discretization, they are indistinguishable and a re-
lationship with the classical continuum approach requires some idditional con-
siderations. Nevertheless, the results obtained in the present paper are valid
for suitable discretized shells, plates or skeletal structures and also for
three-dimensional bodies.

The vectors of state variables are functions of time ¢, 0 <f<¢*. We assume that
a structure is initially stress-free in its virgin state (i.e. 6(0)= 0, and consequently:
p(0) = 0,u(0) = 0. &0) = 0). In Egs. (1.1) all the vectors of state variables correspond
to t=r* (i.e. p=p(t*), u=u(t*), o6 = o(¢*), ¢ = g(r*)), but the path of loading is
unspecified.

From Eqgs. (1.1) one can derive the following relationship:

(1.2) p=Ku—C’Eg;, K =CTEC,

where K is the strictly positive definite stiffness matrix of the purely linear elastic
structure. Relations (1.1) and (1.2) lead to the following formulae (cf. J.A. KoniG

[4]):

u=u,+u, u=Klp, u, =K 1C"Esgg,
6=0,+06,, ¢,=ECK 'p, o, = Zzgp,

(1.3) e
Z =ECK 'C'E-E, ge=Cu=¢g, + ¢,

g, =Cu,=E'6,= —E %6, +¢g;, ¢=Cu=El0,+¢,.

In Egs. (1.3) conventional decompositions of displacement, stress and strain
vectors are introduced. Subscript e relates to the linear elastic system without
distortion, subjected to load p, and subscript r indicates all the quantities
due to the presence of distortions. Z is the square, singular, symmetric and
semi-negative definite matrix of the distortion influence, [2, 3]. It is easily
shown that

(1.4) ZC=0 and C'Z=0.

Equations (1.4), expresses the fact that a kinematically compatible distortion field
(i.e. €g = Cu,) does not induce any additional stress state:

(1.5) 6, =Ze, = ZCu =0,

and from Eq. (1.4), it follows that the distortional stresses o, are in equilibrium with
the zero-value load, namely

(1.6) p,=C",=C"Z¢, = 0.
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2. Fundamental energetic relations

Let us consider two identical linear elastic systems subjected to two different
systems of loads and distortions. From the symmetry of elasticity matrix (E=E”) we
obtain the identity:

T U T — T |
(2.1) 6,ep, =5 E' g, S 85, Egp = 0, 85,

where subscripts 1 and 2 correspond to the states induced by the loads p,, p, and
distortions €g,, &g, respectively.

Assuming that p,, 6; (i = 1, 2) are statically admissible and u;, g; (j = 1, 2) are
kinematically admissible, the virtual work principle can be used:
2.2) piu,=9ls, (,j=12).

J

Substituting Egs. (2.2) and (1.1), into identity (2.1) one can obtain the reciprocal
principle for the case of the presence of distortions:

T , SRR, T
(2.3) PiU, — G Ep; = PoU; — 08, -

The form of Eq. (2.3) corresponds to the reciprocal principle used in thermoelasticity
[S, 6]. In the absence of distortions (€, = &g, = 0), relation (2.3) becomes the
well-known E. Bertrs principle [7]. In particular, when g5, = 0, and p,=0, Eq. (2.3)
represents the G. CoLonneTr’s theorem [8].

Since the elasticity matrix E is strictly positive definite, the following inequality is
also valid:

2.4) (85, —£5) E (85, —€5,) = 0,

where the equality sign occurs only if &z, =g,
Making use of Eqgs. (1.1), (2.2) and (2.4) we arrive at

(2.5) (®,—p,) @, —u)—(0,—0,) (¢x,— €z, > 0.

Relation (2.5) results from the definition of elasticity matrix E, from the equilibrium
equations and the geometric compatibility conditions only, and therefore the range of
its validity is very wide.

The total elastic energy Wy of the body is non-negative definite and can be
expressed as

1

1 1
(2.6) W, = §6T£E = ioT(Cu—sR) = i(pru—cTsR) > 0.

Let us consider the difference between the elastic energy of two systems of loads
and distortions

1
(27) 4 WE = WEz_ WE1 = i(pguz_pful_cgskz'*'“{skl)'
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Using the reciprocal principle (2.3), Eq. (2.7) can be rewritten in the following two
equivalent forms:

1
AWE= —=

3 P, — p?)T (u,+u) + %(01 _Gz)T (€ry+ 21y,

(2.8)
1 1
AWy = = 0BT (0, =) + 5 (0,+0)7 (6, — 5.

The difference of elastic energy 4 W can be evaluated from Eqgs. (2.8) and relation
(2.5). As a result, we obtain the following fundamental inequalities:

AWy > — (p,—p) u,+ (6,—0,) g,

AWy < —(p,—p,)"u, + (6,—06,)Teg,,
(2.9) p T
AWy =2 —p3 (“1_“7) + o3 (aRl_ERZ)’
AWy < —pj(u,—u,) + 67 (8g, —Eg,)-

It is worthwhile to note that all the relations derived above remain valid also when p;,
u;, o;, & and £, are replaced by their velocities (rates). Relations (2.9) represent the
most important result of this work.

3. Bounding theorems for elastic energy

3.1. A concept of reference structure

The specific form of relations (2.9) allows us to compare the elastic energy for two
structures of identical geometry, subjected to different load, displacement and/or
distortion systems. The boundary conditions of both structures should be identical
because the geometric compatibility matrix C has been assumed to be the same.
However, the problem of boundary conditions becomes not so important, if we
introduce the concept of slackened structures (cf. [9—12]). It allows us to compare the
structure of different boundary conditions by means of a suitable choice of the
clearance surface. The theory of slackened structures, exhaustively described in [12],
allows for the presence of gaps (clearances) at structural connections. This approach
takes into account elastic, plastic and locking effects, induced by variations of the
so-called clearance strains, g;. Since the theoretical description is FEM-oriented, the
locking effects can be also treated as a material property. The theory of such systems
includes all the essential features of time-independent materials.

It is assumed that subscript 1 denotes a so-called reference structure. Subscript 2 is
reserved for a given structure which will be the subject of the analysis.

Further considerations are restricted to two kinds of the reference structure. The
first one corresponds to the linear elastic system without distortions, i.e. £, = 0. Then
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(3.1) (6,—6,)7gx, =0,

independently of the stress state in structure “2”. The second type of reference
structure corresponds to the holonomic elastic-perfectly plastic model. This model
describes the path-independent class of plastic behaviour by means of a suitable
constructed nonlinear elastic constitutive relation. It is known that the holonomic
theory gives the true solutions in cases when the Haar —KArRMAN'S principle [13]
holds. One should be aware of the fact that applicability of this principle depends
partly on the loading, partly on the configuration of the system and partly on the
material, [14]. The sufficient condition, which should be satisfied for the
Haar—Karman’s model, can be expressed as

o t*
(3.2) |epido, = [}, (1) a6, () dt =0,
0 (4]

where €, is the plastic strain vector and dot denotes the differentiation with respect to
time. Condition (3.2) is satisfied for “restricted statically stress states”, specified by
P.G. Hopge [15]. There are two essential cases in which Eq. (3.2) surely occurs:

1. Stress remains constant after the stress point first reaches the yield (limit)
surface. In this case do, = 0.

2. Stress point moves along a separate flat portion of the yield limit surface. Then,
assuming the associated flow rule, do, and ¢, are found to be orthogonal and their
scalar product is equal to zero.

Relation (3.2) implies a simple expression for the plastic dissipation D, (t*) = D,,
namely

[' r*

(3.3) D,(t*) = _‘-é.?;l () o, ()dt = GTI‘SPl_IS;I ()-o,(dt = 0'11.8?1 =

For holonomic models the following inequality holds:
(3.4) (6,—06)7gp, > 0.

Relation (3.4) results from the convexity of yield (limit) condition and from the
associated flow law. In (3.4) o] denotes any stress state that does not violate the yield
(limit) condition.

It is worth to notice that the stress state obtained by means of the holonomic
theory is identical with those of general plastic flow theory in particular cases of
proportional loading, in the absence of local unloading.

The comparison of elastic energy of systems 1 and 2 will be carried out for the
cases of the same loads or the same displacements and/or the same distortion systems.
It allows us to construct several bounding theorems related to the elastic and
complementary energies of deformable systems. The bounding theorems cover
a wider class of problems than the variational principles. In general, they determine
the upper or lower bounds on the functional or function under considerations.

http://rcin.org.pl



444 A. GAWECKI

However, the true solution does not necessarily correspond to the lower or upper
bound, specified in the bounding theorem. Obviously, all extremum theorems are also
bounding theorems but, in this case, the true solution corresponds to the stationary
point of the functional.

3.2. Linear-elastic reference structure

In practical applications the most interesting is the case of equal loads, i.c.
p,=p,=p. Then, from Egs. (2.9), , and (3.1) it follows that

Hence, we can formulate the following theorem:

TueoremM 1. The elastic energy of a linear elastic structure with distortions cannot be
less than the elastic energy of an identically loaded linear elastic structure without
distortions.

Theorem 1 is of a very general character. Its meaning is intuitively acceptable for
elastic-cracking materials and is well-known in damage mechanics.

On the other hand, from Egs. (2.1) and (2.8) we obtain

1 1 1
(3.6) Aszi(ol—o,)TzR2= —5%8R, = —28}2228,!22 0.
AWy is expressed by the semi-positive definite quadratic form and therefore it does
not depend on the sign of particular components of g, (Z is the semi-negative
definitive matrix).
In particular, the state of p=0 corresponds to 6, =0, 6, =0,,, Wz, =0 and,

1
according to Eq. (3.6), Wy, = — §8£2 Zgy, > 0. The result obtained here represents

a “hidden” elastic energy W, (i.e. AWy = W,), stored after unloading in an
elastic-perfectly plastic structure, due to the presence of kinematically non-admissible
plastic deformations (cf. [16]). This observation provides a simple interpretation of
relation (3.6) which expresses the essence of Theorem 1. Namely, the non-negative
value of AW can be treated as the stored elastic energy calculated for the unloaded
elastic-perfectly plastic model in which the permanent plastic deformations are equal
to the current distortions of system 2.

From the reciprocal principle (2.3) and relations (2.9) we can determine the
difference between the conventional works (W=pTu) done by loads (cf. Sec. 4):

(3.7 AW = pT (u,—u)) = 67gs, > 07g,,.

This difference can be treated as a measure of the relative compliance of two systems.
It should be mentioned here that slackened systems in the absence of plastic
deformations are path-independent ones if the clearance region is convex (cf. [12]).
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Thus, the relative compliance AW is non-negative definite for slackened-elastic
(¢, = £,,) and other holonomic models, e.g.: elastic-perfectly plastic (¢z,=¢€p,) and
slackened-elastic-perfectly plastic (g, =¢;,+€p,). In all these cases ohgg, = 0.

It is worth to notice that the case of nonlinear elastic structure requires a suitable
choice of elastic coefficients of the reference structure. Considerations connected with
this problem will be presented in a separate paper.

The second particular case, which can be rather interesting from the theoretical
point of view, corresponds to equal displacements (u,=u,=u) when all the dis-
placement vector components are controlled. In this case the joint displacements of
system 2 are identical with those of the reference structure. Then relations (2.9) give

(3.8) —078g, S AWy < —038g,,
and using the reciprocal principle (2.3) we conclude that
(3.9) (pz_p1)T u= —6{8112 < _GgeRz :

It is clear that for all the holonomic models AW < 0 and (p,—p,)"u < 0.

Consider now the particular case of zero-value displacements (u = 0). In this case
Wg, = 0 and, because the elastic energy is always positive definite, Wy, = 4W;>0,
unless the distortions of the system are kinematically admissible. Then
Wg,= AWy =0. So, we conclude that the elastic energy of the system with
distortions can be sometimes larger than that of the system without distortions.

3.3. Linear elastic-perfectly plastic reference structure; holonomic model

In this case €5, =¢€p,, where and &,, denotes the plastic strains in the reference
structure. Assuming the convexity of yield region and normality rule, the following
requirement for the holonomic model is valid (cf. (3.4)):

(3.10) (6,—6,) ep, =0,

where o, must satisfy the yield (limit) condition of the reference structure.
In the case of equal loads (p,=p,=p) from relations (2.9) we obtain

(3.11) OQ(GI—GZ)TSPIS AWEﬁ(Gl—Gj)Tt‘RZ,

where the role of system 2 plays a model of linear elastic structure with arbitrary
distortions £,,. Inequality (3.11), when applied to the elastic-plastic systems, allows us
to formulate the following theorem:

TheoreM 2. The elastic energy of an elastic-perfectly plastic structure cannot be less
than that of its holonomic model subjected to the same load.

From inequality (3.11) it follows, however, a more general theorem, namely:

THeOREM 3. If stress states do not violate the given constraints in the stress space, the
elastic energy of any elastic structure with arbitrary distortions cannot be less than that
of the holonomic model of elastic-perfectly plastic structure, subjected to the same load.

http://rcin.org.pl
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The constraints placed on the stress states correspond, of coure, to the yield
condition of system 1. As the system 2 we can assume, however, a bxdy which does
not exhibit any plastic deformations. It can be, for example, the elastic-cracking body
structure whose cracking condition is identical with the yield cendition of the
reference structure, [17].

To the author’s knowledge the case of equal displacements (u, =u,=u) does not
provide essentially new results and it will be not considered here.

4. Energy in systems made of time-independent material

Let us consider the deformation process of a system, assuming that in the natural
(virgin) state for time =0, the stresses are equal to zero. Introduce the concept of
conventional work for time t=1", defined as follows:

'0

@.1) W= [W(@)dt=pTu=W,+W,,
where
4.2) W,= rj pT(Hu(nd:, W, = ?ﬁT(t) u(7) dt.

W, denotes here the strain energy and W, is the complementary (stress) energy when
the load is controlled. Using the strain decomposition (1.1), and virtual work
equation, relations (4.2) can be rewritten in the form

W, = tj:or(t)é(t) dt = Ij:cr(t) £5(1) dt + Ij‘c’"(t) £x(0) dt,

@3 : : :

W, = [6T(De(t)dt = [6"(t)ex(t) dr + [67(£) ex(0) dt,
0 ] 0

where g denotes the total distortion strain vector. Taking into account the symmetry
of elasticity matrix E, it is easily seen that the first terms in Eqs. (4.3) represent the
elastic energy of the system,

P . £y 1 :

4.4 [eT()éx(r)dt = [67(1)ex(r) dt = 5 ole, = Wi(t) = W
0 0

Thus

4.5) We=Wgt+Wp,, W,=Wgt+Wp,,

where

*

4.6) Wi = [oT(O)ég(Ddt, Wy, = ?&T(t) gx(0)dt.
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Wg. and W, denote the stress and strain energies, respectively, induced by the

presence of distortions. For a given final mechanical state of the structure, their sum
takes the simple form

4.7) Wr=Wget Wg,=0"gg,
and
4.8) W= pTu = 2Wy+ W+ W, =2Wy+ Wy.

Let us assume the general case of slackened system made of a linear elastic-plastic
material (cf. [12]). In this case the total distortion vector can be decomposed into two
parts,

Then W, and W, can be expressed as follows (67 (1) €,(f) = 0):
t? 2
W, = [oT(O) [EL(0)+Ex(t) + (0] di= Wy + [oT()Ep(0) dt,
(4.10) ’ :

1 ¢

W, = [67(t)[e (D) +ep(t) +ep(t)] dt = Wi+0T (e, +2p)— [67 (1) €p(0) dt.
0 0
Convexity of the yield (limit) condition and the normality rule give
3¢ *
4.11) [lo()—e(" ép(t) dt = D(t)—6Tep = — [67(1) ep(t) dt > 0,
1] 0

where D(¢") denotes the non-negative definite total plastic dissipation, computed in
the interval <0, "):

@.12) D(fy=D= ?«T(x) ip(r) dt.

Since the clearance “dissipation” in slackened systems is equal to zero, one can
obtain the following equality:

(4.13) tj:GT(t) i () dt = o'g, — 'j.dT(t) g, () dt = ?[:»:L(t‘) —g, ()" 6(£)dt = 0.

On the other hand, from convexity of the clearance region it follows that ¢7¢; > 0.
Hence, using Eq. (4.13), we have

@.14) o’g, = T&T(t) £,(1)dt > 0.

0

http://rcin.org.pl
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Thus, for slackened-elastic-perfectly plastic systems, from inequalities (4.11) and
(4.14) it follows:

(4.15) 'jdr(f) [eL()—ep(D]dr 2 0,
or
4.15) 6'(e,—&p)+D = 0.

Assume now that structure 1 is the holonomic elastic-perfectly-plastic and
structure 2 corresponds to the general model of the slackened system made of an
elastic-perfectly plastic material. According to inequality (3.11), relating to the case of
equal loads (p,=p,=p), we have

Relation (4.16) will be used to evaluate the complementary energy of both systems.
From Eq. (4.10), we obtain

Wcl — WEI’
417
@.17) W,, = Wyt oL (61,4 €p)—D,,
hence
.18) W, =W,y = — AWg+D,—0L (6,,+£p) .

Taking into account inequality (4.16) we find the following estimation of the
complementary energy:

4.19) D, =07 (81,+ 8py) < Wy — W, < D,— 03 (81, 2p)

Let us consider two particular cases.

Case 1

Structure 2 is assumed to be holonomic slackened-elastic-perfectly plastic
(D, = o%gp,). Then D,—o%(g,,+8p,) = 63€,, <0, and according to (4.19), we
arrive at

(4.20) W< W,,.

It corresponds to the theorem:

TueoreM 4. The complementary energy of holonomic elastic-perfectly plastic
structure is a lower bound on the complementary energy of identically loaded, holonomic
slackened-elastic-perfectly plastic structure.

Case 2

Structure 2 is assumed to be elastic-perfectly plastic (g,, = 0). In this case the
left-hand side in (4.19), using HiLL's principle [18], can be expressed as
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t*

[ 2d
D,—ogp, = [6}(1)Ep, (1) dt— 6" () £p,(") = [ [6,()— 0, ()] €p,(Hdt > 0.

Then, according to (4.19), W, > W,,, that corresponds to Hopce's theorem [15]:
“The complementary energy of any restricted statically admissible state is an upper
bound on the complementary energy of the actual solution™.

Similar considerations for p, =p,=p can be carried out assuming that structures
1 and 2 are elastic without distortions and the slackened-elastic ones, respectively. In
this case we obtain

4.22) W, —W,,= —DWy—ale,, <0.

Estimation (4.22) follows from (3.5), where AWy > 0, and from the inequality
oig,, > 0. The result obtained here corresponds to the statement that the
complementary energy (i.e. elastic energy of elastic structure) is a lower bound on
the complementary energy of slackened-elastic structure, subjected to the same
load.

The next problem is connected with the energy of residual stresses that remains
after unloading. Let us consider elastic-perfectly plastic structures subjected to the
same load p, Assume that structure 1 had been proportionally loaded up to p,
without local plastic unloading, whereas the state of p=p, in structure 2 had been
reached on an unspecified path of load. The elastic energy for p=p, can be expressed
as follows

(423) WEI = Wr1+ W* A WE2= Wr;_+ W*,

where W, and W, represent the residual “hidden” elastic energies in structure 1 and
structure 2, respectively. W * denotes the recovered elastic energy which is the same
for both structures. Using Eqs. (4.23) and Theorem 2 we find

(4.24) AWy = Wyy— Wy, = W,,— W, > 0.

Thus, we can state that the elastic energy stored in system 1, that behaves
holonomically up to p=p, is a lower bound on the plastic energy stored
in structure “2”, that reaches the state of p=p, on an arbitrary loading path.
The problem described has been also considered in [19]. However, the final
conclusion of this work is strictly opposed to that presented here due to an
improper interpretation of Hill’s principle. The authors of [19] claim that the
elastic energy stored in system 1 is an wupper bound for W,. Unfortunately,
both the examples presented in this work are related to the holonomic behaviour
before the prescribed load level p, is reached, and therefore they cannot confirm
the validity of conclusion drawn by the authors. The problem of elastic energy
stored in the elastic-perfectly plastic system after unloading is numerically il-
lustrated in Sec. 5. It should be added that the problem of unloading of



450 A. GAWECKI

slackened systems in the presence of plastic deformations appears to be much
morecomplicated and will be considered in separate papers.

Finally, let us summarize some results related to the strain and stress energies in
standard situations. Consider first the case of elastic-perfectly plastic structures
(¢, = 0). From Eq. (4.11) and from the non-negativity of plastic dissipation we obtain

t*
4.25) 0T, = j'cT(t) () dt =D=Wg,, Wg =0,

0

(4.26) Wao = rj‘ciT(t) gp()dt <0.
0
Therefore, in a general case of elastic-perfectly plastic system
4.27) W,2W;, and W,<Wj.
If do”g,=0, what occurs also for the holonomic model, we have
(4.28) W,>2Wg and W,= W;g.
In the case of slackened-elastic systems

(4.29) W,=W, and W,=Wy+aTe, > Wy.

5. Numerical example

Consider a two-span continuous beam shown in Fig. 1. The ideal I-cross-section of
the beam is constant with the moment of inertia J = 1000 cm* and depth £ = 16 cm.

Qr 2

e
1

w [
o |

F1G. 1. Beam layout, loads and rotation constraints at points 1 and 4.

Two kinds of the material of the beam are assumed, namely: the linear elastic body of
infinite strength, and the linear elastic-perfectly plastic body with the yield stress
oy=240 Mpa; the corresponding fully plastic bending moment M, = 30 kNm.
Young’s modulus for both the materials is assumed to be the same: E = 200 GPa. In
addition, at points 1 and 4 the presence of the so-called clearance hinges, i.e. hinges
with rotation constraints, is permitted. In other words, the angle of free rotation (¢;;
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i = 1, 4) at these points can vary between the limits: —¢ ] < ¢, < ¢1,
—¢, <P, < ¢,, where ¢ | =¢7=0.01 rad, ¢, =¢%=0.02 rad. The cases where
clearance hinges are introduced correspond to the systems which are slackened.
If all the limit rotations (—¢; =¢|=0) are equal to zero, the beam becomes
the standard structure with bilateral constraints of two redundant reactions,
i.e. the beam is rigidly fixed at point 1 and the hinge at point 4 vanishes.
Thus, we can consider the following four kinds of the system:
I elastic (6y=>00, ¢7 =0T =0);
II slackened-elastic (gy = c0, @7 # 0, ¢F #0);
IIT elastic-perfectly plastic (g,=240 MPa, ¢7=¢1 =0);
IV slackened-elastic-perfectly plastic
(oy=240 MPa, ¢ #0, ¢ T #0).

The beam is subjected to varying vertical loads Q, and Q,, acting at points 2 and 4,
respectively. Since the presence of clearances does not affect the ultimate collapse
load (cf. [10]), in Cases III and IV the loads have to be contained within the limit
hexagon CDEFGH, presented in Fig. 2a.

It is assumed that the loads can vary inside the load polygon b-c-d-e-f-g-h-i-j-k (cf.
Fig. 2b). The load polygon has been assumed in such a way that plastic deformations
can occur. The initial elastic loci for the elastic-perfectly (“ep”) and for the
slackened-elastic-perfectly plastic “sep™ beam are presented in Fig. 2a. It should be
pointed out that, in the case of slackened beam, the elastic region is non-convex (cf.
(12]).

Two types of loading are assumed:

1. Proportional loading and unloading, according to the paths: a-ba, a-c-a,...,
a-k-a.

2. Cyclic loading, according to the path:

a-b-c-d-e-f-g-h-i-j-k-b-a.
Four kinds of the system and two types of loading generate at each point of the
load polygon the following six cases of the beam behaviour, namely:
e = elastic,
se = slackened-elastic,
ehp = elastic-holonomic perfectly plastic,
sehp = slackened-elastic-holonomic plastic,
eip = elastic-“incremental” perfectly plastic,

seip = slackened-elastic-“incremental” perfectly plastic.

It can be easily shown that the first four cases correspond to the path-independent
solutions, whereas the remaining cases, where irreversible plastic deformations are
observed, correspond to the path-dependent solutions.

Additionally, in order to illustrate the problem of unloading, the beam has been
previously loaded according to three different paths of loading up to point “e” at the
load polygon. Path I corresponds to the proportional loading a-e-a. Path 2 and Path
3 correspond to the following load programs: “a-b-c-d-e-a” and “a-m-n-f-e-a”,
respectively, see Fig. 2b.

http://rcin.org.pl
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FiG. 2. Space of external loads, a) yield locus, initial elastic loci and load polygon, b) yield locus, load polygon
and paths of loading.

Final results are gathered in Table 1, Table 2 and Table 3. Table 1 contains all
current elastic energies at the particular points of the load polygon. Similar
specification for the complementary energy is shown in Table 2. It can be seen that the
results presented confirm the validity of the bounding theorems derived in the work.
For instance, all the values in columns 2—6 in Table 1 are not less than those in
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Table 1. Elastic energy for various cases of system behaviour, W, [kNm].
Point e ehp eip se sehp seip
of load 1 2 3 4 5 6

a 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
b 0.3602 0.4000 0.4000 0.4458 0.4000 0.4000
c 0.4995 0.6250 0.6250 0.5852 0.6250 0.6250
d 0.5976 0.6500 0.6500 0.6833 0.7000 0.6500
e 0.3619 0.3667 0.4144 0.4208 0.4208 0.4144
i 0.4864 0.4864 0.4890 0.6578 0.5000 0.5000
g 0.3602 0.4000 0.4000 0.4458 0.4000 0.4000
h 0.4995 0.6250 0.6250 0.5852 0.6250 0.6250
i 0.5976 0.6500 0.6500 0.6833 0.7000 0.6500
J 0.3619 0.3667 0.4144 0.4208 0.4208 04144
k 0.4864 0.4864 0.4891 0.6578 0.5000 0.5000
b 0.3602 0.4000 0.4000 0.4458 0.4000 0.4000
a 0.0000 0.0000 0.0399 0.0000 0.0000 0.0315

Table 2. Complementary energy for various cases of system behaviour, W, [kNm].

Point e ehp eip se sehp seip
of load 1 2 3 4 5 6

a 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
b 0.3601 0.4000 0.4000 0.7458 0.9000 0.9000
c 0.4994 0.6250 0.6250 1.1530 1.4249 1.4250
d 0.5976 0.6500 0.4833 1.4833 1.5000 1.2833
e 0.3619 0.3667 —0.8596 0.9958 0.9958 —0.6595
i 0.4863 0.4863 —2.7257 1.0935 1.2000 —3.2000
g 0.3601 0.4000 —5.0628 0.7458 0.9000 —5.9334
h 0.4994 0.6250 —5.6878 1.1530 1.4249 —6.2584
i 0.5976 0.6500 —6.3086 1.4833 1.5000 —17.7334
i 0.3619 0.3667 —6.5265 0.9958 0.9958 —9.5762
k 0.4863 0.4863 —6.3299 1.0935 1.2000 —11.9334
b 0.3601 0.4000 —6.4001 0.7458 0.9000 —12.4000
a 0.0000 0.0000 —7.6900 0.0000 0.0000 —14.7815

Table 3. Elastic-perfectly plastic beam. Elastic energy for loading (up to point “2”) and unloading, /¥, [kNm].

Point of load Path 1 Point of load Path 2 |Point of load Path 3
a 0.0000 a 0.0000 a 0.0000
— - b 0.4000 m 0.0509
- — ¢ 0.6250 n 0.3250
- - d 0.6500 i 0.4875
e 0.3667 e 04144 e 0.3672
a 0.0048 a 0.0524 a 0.0053
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column 1 for each point of load polygon (Theorem 1). According to Theorem 2, the
values of columns 3, 5, 6 are greater or equal to the corresponding values of column 2.
Similarly, in Table 2 the values in column 6 are not less than those in column
2 (Theorem 4), the values of column 2 appear to be the upper bounds on those of
column 3 (P.G. Hodge’s Theorem), whereas, according to (4.22), the column 1 is the
lower bound on the corresponding values of column 4. We can also see that values of
columns 2, 3 and 4 in Table 1 and values of the corresponding number of columns in
Table 2 satisfy inequalities (4.27),, (4.28), and (4.29),.

In Table 3 the current elastic energies in the elastic-perfectly plastic beam are
presented for three paths of loading up to point “e” (Q,=0, Q,=40 kN) and
unloading point “a”, where Q,=Q,=0. It is clearly seen that the lowest residual
elastic energy corresponds to the proportional (holonomic) loading (Path I). The
results obtained here do not confirm the conclusion formulated in [19].

4. Final remarks

Inequalities (2.9) derived in the paper are of a general character and of a relatively
wide range of applicability. These inequalities, related to the current elastic energy
estimates, have been obtained using the distortional approach. Particular attention has
been paid to time-independent materials and systems. Besides the elastic and plastic
strains, the clearance (gap) strains are taken into consideration, which can be also
treated as elastic distortions. It should be noted that in the case of time-dependent
materials, some valuable results have been already obtained using the distortional
approach (cf. [20]). The specific form of inequalities (2.9) allowed us to derive several
bounding theorems to the elastic and complementary energies as well as to formulate
some conclusions connected with the problem of elastic energy due to the presence of
residual stresses in elastic-perfectly plastic systems. The results obtained in the paper
presented can also be applied in damage mechanics, where the elastic energy evaluation
plays a very important role. In some particular cases, inequalities (2.9), when applied to
the energy in deformable systems, lead to results known in the literature of the subject
(e.g. Hodge’s Theorem, the elastic energy in elastic-cracking bodies).

The results of the work presented can be numerically applied to some insufficient-
ly recognized problems, where some intuitively acceptable assumptions are intro-
duced and no proofs of uniqueness of the solution exist. In such cases inequalities
(2.9) can be used to check the correctness of computer calculations.

The example presented in Sec. S referes to the simple case of a beam. However, the
FEM-oriented description used in the work allows us to consider much more complex
structures, including also 3D systems. The results obtained in the example confirm all
the theorems and essential conclusions that follow from the theoretical considerations.
The author believes that similar results, certainly more general, can be obtained using
the classical continuum description. On the other hand, the matrix description is very
consistent and convenient to show the construction of the theory as well as allows us to
derive important conclusions in a relatively simple way. It should be pointed out that all
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the problems, which can be met in practical appliations, have to be at least
approximated by means of a suitable discretization in the subspace of finite dimensions.

Finally, it should be noted that many problems of energy in deformable systems

remain to be solved, especially in the cases of slackened systems, cracking and
time-dependent materials. Further research in this domain is being planned.
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Delayed die swell as a problem of instability

S. ZAHORSKI (WARSZAWA)

THE DELAYED viscoelastic die-swell phenomenon, i.e. an experimentally observed change of
curvature (an inflection point) in the jet profile is treated as a problem of “instability” caused by
disturbed boundary conditions at the exit. The conditions of the delayed die swell in the form of
inequalities satisfied by the corresponding increments of forces and velocities are considered.
Axial and radial viscosity variations implied by admissible temperature distributions are also
taken into account. Effects of inertial and air-drag forces on the delayed die swell are discussed
in greater detail.

1. Introduction

THE DIE-SWELL PHENOMENON, i.e. an expansion of viscoelastic as well as viscous jets during
extrusion processes was widely studied in the past, both theoretically and experimental-
ly. For details, the interested readers are directed to abundant references which can be
found elsewhere (cf. e.g. [1, 2, 3, 4, 5, 6, 7]). We should stress, however, that although
various possible mechanisms of the phenomenon, e.g. elastic recovery, relaxation
processes, stream-line rearrangements etc. were discussed exhaustively, there still exists
some doubt whether the dynamics of die swell is well understood (cf. [8]).

Recently, JosepH ef al. [8] widely reported on the so-called delayed die swell
phenomenon appearing as a change of curvature (a point of inflection) in the
expanded jet shape. According to experimental observations, at low rates of extension
the swell starts at the pipe exit. At higher rates, when the extrusion velocity is raised
above a critical value, the tendency of the jet to swell at the exit is suppressed and there
is a delay in the swell. This phenomenon may be associated with a change from the
pre-critical to post-critical flow, i.e. the change of type of the corresponding partial
differential equations governed by the vorticity behaviour (cf. [9, 10]). Referring for
more details to the paper of Josern et al. [8], we should emphasize the fact that
Giesekus [11] was the first to note that the delayed die swell is a critical phenome-
non(!).

Another very interesting paper on the numerical simulation of delayed die swell
was presented by DeLvaux and CrocHEeT [12]. Determining a set of material and flow
parameters under which it is possible to simulate delayed die swell, the authors
proved a critical character of the phenomenon and emphasized the role played by the
viscoelastic Mach number and/or the elasticity number. They also showed that the
effect of inertia is to retard the swelling over a distance of some radii from the die exit.

In the present paper we discuss the appearance of the delayed die-swell
phenomenon as an instability problem depending on disturbances of the relevant

(") Confirmation that delayed die swell is a hyperbolic transition can be found in the recent paper [21].
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boundary conditions at the pipe exit. To this end we apply the concept of flows with
dominating extension (FDEs) previously defined and developed in our paper [13, 14,
15]. The approach presented in the paper is based on the assumption that the die swell
already exists and the corresponding balance of forces is satisfied. Proceeding in such
a way we arrive at certain formal conditions necessary for appearance of an inflection
point (a change of curvature) either exactly at the pipe exit or at any place along the
expanding part of a jet. In our more general analysis we take into account not only
temperature-dependent viscosity variations along the axis but also possible (para-
bolic) radial viscosity distributions in the jet cross-sections (cf. [14]).

2. Die swell as a flow with dominating extension

The flows with dominating extension as well as their various applications were
defined and discussed elsewhere (cf. [13, 14, 15]). For the present purpose we quote
only certain relevant assumptions and relations.

In cylindrical coordinates the velocity gradient in the expanding jet is considered
in the following general form:

1 ou o Ou
=3 0 0 or N 2z
@.1) [VV]=[vV+[W=[ o _1 olr+lo - of
S B
L Or 0z

where, under the assumption of quasi-elongational approximation (cf. [14, 15]), the
fundamental velocity field depends only on axial coordinate z, i.e. ¥'=V{(z). The
prime denotes differentiation with respect to z, and the radial () and axial (w)
physical components of the additional velocity field v (responsible for shearing
effects) depend both on r and z.

We assume, moreover, that the ratio of jet radius to its characteristic length is
small, i.e. ¢ = R/l «1.Inmany situations (especially for the delayed die swell) /may be
identified with the distance s from the die exit to the place where the radius R reaches
its maximum (Fig. 1). Under the above assumption we can use simplifications
characteristic for thin-layer flows, taking into account that diagonal terms in the first
matrix are more meaningful than terms in the second one (weak shearing effects).

The flows with dominating extension (FDEs) have been defined in [13] as such
thin-layer flows for which the constitutive equations of an incompressible simple fluid
(cf. [16]) can be presented in the following linearly perturbed form:

2.2) T = —pl+B A, +p,A2+ 5 A} +B,A2+B,(AD*

+ 8
BV'

aB,
oV’

(VYA + 2 (V)T AL+
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where T is the total stress tensor, p — the hydrostatic pressure, A, — the first
Rivlin— Ericksen kinematic tensor (cf. [16]), and B; (i=1, 2) denote the material
functions depending, through the corresponding invariants, on the gradient V' (z).
The crosses mark linear increments which can be determined on the basis of Eq. (2.1)
(cf. [14, 15]).

The elongational (longitudinal) viscosity can be defined as follows

(23) Mg =3p =3(B,+B,V).

Taking into account not only axial but also radial temperature distribution across the
jet (cf. [14]), we may assume that either, in particular,

24) BV’ (2);r.2) = n(V'(2);2) S (1),
where f(0) = 1 or, in general,
(2.5) B(V'(2);r,2) = p(V'(2)r,2) 1,

where 7 is an arbitrary constant with dimension of viscosity. Moreover, if viscosity
distributions in the jet cross-section can be approximated by a parabolic function as
proposed by Kase [17], we have

(2.6) f(r)=1+ar?, a>0.

If in certain cases the simplified model assumption (2.4) cannot be accepted, we apply
the more general assumption (2.5).

For fundamental quasi-elongational flows the corresponding constitutive equa-
tions (cf. Eq. (2.2)) lead either to

2.7 TG T4 = 3V £(r),

http://rcin.org.pl
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if Eq. (2.2) is valid, or to
(2.8) TGP T = 34V u(V';r,2),

in a general case. The angle brackets denote physical components of the fundamental
stress tensor.
Since the mass flow rate W is conserved along the swelling jet, we obtain

(2.9) W = pnR?V = const,

where R(z) is the outer variable radius. Similar relations are valid at the beginning and
at the end, i.e. for R(0)=R,and R(s)=R, (Fig. 1). In the same places the following
boundary conditions are satisfied:

(2.10) Vo=V(0), V,= W),

where s denotes the distance between the exit and the maximum jet diameter. It also
results from Eq. (2.9) that the additional velocity field does not affect the flow rate;
thus, the fundamental velocity field ¥(z) can be considered as mean velocity in any
cross-section.

Integration of Eq. (2.7) over the entire cross-section

R
(2.11) 3V [ 2nrf(r) dr = F(2),
0
where F(z) denotes the corresponding force, leads to
pPRF(z)
(2.12) . e ete il < )
6nWo(z)

where the prime denotes derivative with respect to z. In deriving Eq. (2.12) we have
used the differentiated form of Eq. (2.9) and the notation:

@.13) o) = § 201 dr,

where ¢ = R? for f(r)= 1. On the other hand, integration of q. (2.7), using notation
introduced in Eq. (2.5), gives

,_ _pRF@) __ pFR
e K== 6iwow ~ ~ 6ima@)’
where
R
(2.15) @(z) = _|' 2ru (V'(z); r.z) dr = a(z) R

It results from Egs. (2.12), (2.14) that F(0) = 0, R'(s) = 0, i.e. for the maximum jet
diameter the total force is equal to 0.
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3. Force and momentum balance

The balance of forces acting in the swelling jet can be presented as follows
(cf. [18, 19]):

(3.1) F(z) =F,(z) = Fu(0) + F,(2) + F(2) + F4(z) — F,(2),

where the subscripts: rh, in, st, ad, and gr denote: rheological, inertial, sur-
face-tension, air-drag and gravitational force, respectively. For z=s, i.e. for the
maximum jet diameter, we obtain

(3.2) F(0) + Fy(s) + Fyls) + Foyfs)— F(s) = 0.

If only rheological and inertial forces are of major importance (cf. [18]), we arrive
at the following simplified relation:

(3.3) F(z) = Fy(0)+ F,z) = —F,+ W(V,—V) for 0<z<s,

where F;(0)= —F, = const < 0 denotes the force at the exit. In particular, we have

(3.4) F,=WWV,—V,) o1 .z=g,
and
(3.5) Fz)=W{WV—-V)=F—-W{V-V,) for z>s,

if the jet is considered beyond the point z=s.

Bearing in mind the momentum balance at the exit and at the maximum-diameter
cross-section, we obtain (cf. [4, 20])

R Rq R
(3.6) T= | p2rrV?dr— [2nrT dr = fp21trV2dr = pnR2V,,
0 0 0

where T denotes the so-called jet thrust.
On defining the mean values at the exit cross-section by

1 R,
(3.7 (=g [ 2nr (+)ar,
00

we arrive at the Ricnarpson's formula [4] for the die-swell ratio:
s
I ;
<V2> _ ;)(T(a.a))

(3.8) D? = R¥R2 =

Since Eq. (3.7) also leads to

(3.9) D=V, IH=W, (T®=12
0
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the die swell ratio (3.8) can be presented in the simplified form:

2 — 0 =J.
(3.10) D A7
Fo 5

The same result remains valid, if we take into consideration the total axial velocity
(3.11) V'=V+w,

assuming that w?, where w denotes the additional axial velocity, is small enough as
compared with V2

4. Disturbed boundary values. Conditions of existence of the delayed die swell

4.1. General case

The delayed die-swell phenomenon is characterized by a point of inflection
(change of curvature) in the jet profile. For some critical velocity at the exit, the
delayed swell begins at the exit (z=0) and next moves along the expanding part of the
jet (cf. [8]). In other words, for the existence of the delayed die swell we have the
following conditions:

@4.1) R'=0, R>0,

for such values of z for which the curvature of the jet profile changes its sign. In
particular, R"(0) = 0 means onset of the phenomenon exactly at the exit. Therefore,
the delayed part of the swelling jet corresponds to

“4.2) R">0.
Differentiation of Eq. (2.12) with respect to z gives for the second derivative

RF (F' (n' ¢ FR?
4.3) R=—t {——(i+‘”)—p }
nWo (F \n ¢/ 2ZnWe

Assuming that, at some moment, the force F(z) is disturbed by the increment AF, Eq.
(4.2) leads to the inequality:

nWo (n'  ¢"\ AF 1. nWelF (q o
4.4 AF —+ =) —=<—zF+—|=—-(=-+=])|,
Sl +pR2(n+<p)F\ 2 TR | F T
where we have used the fact that F < 0 in the expanding jet. Similarly, differentiation

of Eq. (2.14) leads to the slightly different condition
TWo' AF 1 W F @
iWg AF 1. iWe [F @ ] :

pR2 F = 2 pR?

4.5 AF
@) + T
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In both Eqgs. (4.4) and (4.5) AF can be treated as either sudden or periodic
increment of the force F defined by Egs. (3.1) and (3.3). If AF depends periodically
on time, the corresponding inflection point may move forth and back along
the expanding part of the jet. This type of “pumping” has been observed by
Josep et al. [8].

4.2. Inertial case

For more detailed discussion of the above results, we assume that surface-tension,
air-drag and gravity effects can be neglected as compared with the inertial ones (cf.

[18]).

We introduce the following new notations:

(4.6) Hz) = (KR1+ M),

where K and M are constants defined through the expression

F 2
@.7) K=§(Vo—,—§)=gV,>0, M——g' PV0R0<0’

i.e. by F,, ¥, and R at the exit. It is noteworthy that the inertialess case corresponding
to K= —pF, 0/6W and M =0 is irrelevant for the die-swell considered (if other forces
are disregarded), since then F= — F, and R'(s) can never vanish.

Bearing in mind simplified Eqs. (2. 12), (2.6), (2.13), i.e. a parabolic distribution of
radial viscosity, we arrive at

KR*+M

——-
nR(l e 2aRZ)

Integration of the above differential equation leads to

4.8) R=-—

a KR*+M tdz
4.9 1-M_— ZK———R2 R
@9) (131 1n (i) = — 2K1F - 50— R,
where the constant K may be considered as a solution of the equation:
a KR2+M 'dz a
4.10 ~M— |ln—2"" = —2K[= — Z(R?—RY).
(4.10) (1 MZK)anR(2,+M {11 2( i~k
This equation simplifies considerably for a=0, to the following form:
1-D%X
— D2
@4.11) In —x D?*Re,,

http://rcin.org.pl
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where
R? KR?
4.12 D="2  X=- -
and
pV, < dz
4.13) Re,=-—— [ —
3 £n

denotes the Reynolds number averaged over the distance s. The plot of D? (Re,) for
several values of the parameter X is shown in Fig. 2. This parameter can vary between
0 and 1; X=1 characterizes the case with no swell (D?=1), while X—0 denotes
increasing inertia effects.

———————— 075

0 OI5 10 15 20 25 30 Re,

FiG. 2.

Differentiation of Eq. (4.8) with respect to z gives for the second derivative
KR*+ M j

2Rl‘(l = ;aRZ)1

It is easy to observe that for n° > 0 the above quantity is always negative and the
conditions (4.1), (4.2) can never be satisfied. After introducing, however, the
following increments of K and M:

g AF,
4.15 S ERN 8
(4.15) 4K = [(1+WVD)AV le, AM = RDAV,

1 1
(4.14) R"= KR*— M—- aRZ(KR2+3M)+n’R2(1+ aRZ)}

where AV, and AF denote possible disturbances of the velocity and force at the exit,
respectively, the inequality (4.2) leads to the relations:
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BA_FU Fﬂ 1 2\ pz_ P p2 3 2
(4.16) 6[W (1+WV 4V, || 1 -5 aR | R— L R3{ 143 aR? | 4V,

1
> KR2— M — %aRz (KR + 3M)+n'R2(1 +5aR2)

2

Since for n’ > 0 the right-hand side of the above inequality is again positive, it may be
satisfied only for non-vanishing disturbances at the exit, otherwise we have the
ordinary die swell (with no changes of curvature).

In general, the increments of forces and velocities are independent of each other.
In the presence of radial viscosity gradients (a # 0), however, we conclude that the
following limitations are required to satisfy Eq. (4.16):

a) for aRi<?2

av,z0, i LexTe
0 0
@.17)
AF, AV
4V, <0, if =222
0= FO\VD
b) for aR} > 2
4
AV020’ ]-f %sAI/V07
0 0
4.18)
AF, A4V,
v, <0, if —2>-—_-29.
A F,~ v,

It is seen that for very small radial viscosity gradients, positive velocity increments are
accompanied by positive force increments. On the contrary, for higher viscosity
gradients, i.e. for aR2 > 2, signs of the corresponding increments are usually opposite.

Under certain particular circumstances either force or velocity increments can be
considered separately. Therefore, we obtain from Eq. (4.16):

for AF, =0
l—laR2
AV R2
4.19) Aol L) 2 Ry
v, wv 3 R?
14> aR?
2
forAVO:O
3 2
3 AF, ( FO)VRgHzaR
' w o\ w)orReT 1
0 L 1——aR?

http://rcin.org.pl
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where for simplicity we have omitted effects of axial viscosity gradients #'".
Being interested in the onset of the delayed die swell at the exit (z=0), we see that,
for a=0, Eqgs. (4.19), (4.20) reduce to the form:

for AF,=0
AV V.+V

4.21 - £ 2
.21 V, = 2V,—V,+V’

for 4V, =10

AF,

4.22 ——L >V +V.
(4.22) W e

0

Putting z = 0 (R = R,), we finally arrive at the following conditions for the onset of
instability:

for AF, = 0
. _Fo
(G _AVV0 g 3?tr:/ -— ;V ’
0 ] TVQ
for AV, =0
4.24) %—f"—’ 2 V,+V,=2V,— %"/

0

It is seen that the first inequality can be satisfied for the appropriate 4V
< 0, while the second one cannot be satisfied at all, at least for moderate
values of AF,,

Up to now we have been discussing the conditions (4.16) for some particular and
simplified cases. Therefore, a natural question arises how the gradients of viscosity,
radially characterized by @ # 0 and axially described by #’, can influence the delayed
die swell. This question can be answered by comparison of Eq. (4.16) for a # 0 and
a = 0, and for n° # 0 and ' = 0, respectively. Such an approach leads to the
conclusion that for # = 0 non-vanishing radial velocity gradient (characterized by a)
intensifies the delayed die-swell effect, if

8KR? 8V

4.25 A = = 0. Ly " — 0.
(4.25) > —rmm - v+ T

Similarly, for n” # 0 the effect is intensified, if
4.26) <0, a=0.
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The partial derivative of viscosity dn/dz is usually positive when temperature
effects are taken into account. On the basis of Eq. (2.4), we have

3n on

4.27) n= 62 Pz

V”

and n’ for isothermal cases may be negative for negative second derivatives V', since
dn/dV" = 0 for the majority of viscoelastic fluids (cf. [16]).

5. Total velocities, stresses and forces

The constitutive equations (2.2) introduced into the equations of equilibrium lead,
after retaining terms of the highest order of magnitude with respect to ¢, (i.e. terms up
to &), to the nonlinear governing equations (cf. [14, 15]). In this section, omitting
details of the procedure, we present only certain important results obtained under the
Newtonian approximation, i.e. for viscosities independent of the gradient V'(z).

Thus, we have for the total axial velocity

Gl P w2 L Vo(ﬁz—ﬂ)

4n 0z
31{ l " r2

and

(5.2)

The additional velocity gradient

ow

(5.3) 5_——2;6_(” )

introduced into the relation resulting from Eq. (2.2), viz.

ap, ap ow
5.4 (33> __ 1) — 1 A V44
5.4) T T =38V’ +2(5V'+3V' V)(ar)

leads to the following total force:

_ 3 mre(T L UY
(5.5) F’-—3BV[1+]6kR( V,)]nRz

http://rcin.org.pl
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resulting from integration over the cross-section of the jet. Here

oB, 0B,)\ .,
v Tar)”

1
: k=—
(5.6) ﬁ(

is a small parameter enabling analytic (expanded) solutions for slightly
non-Newtonian fluids (cf. [14, 15]).
It is noteworthy that the force F* differs but little from F (cf. (2.11)), since the

second term in Eq. (5.5) may be small not only because of small parameter k but also
for small axial viscosity gradients 1’ and for sufficiently small second gradients V™.

6. Air drag effects

For fibre spinning processes, surface-tension and gravity effects are usually of
minor importance as compared with rheological and inertia effects (cf. [18]). The only
factor which may have some meaning is the so-called air drag (skin friction) caused by
a surrounding medium. These effects can easily be taken into account for the case of
die swell considered, at least in an approximate manner.

According to the considerations of Sano and Oru (cf. [19]), the force resulting
from air-drag contribution can be written as

6.1) F(2)=cR"2V13; =R 227 R 2z,

where cand ¢ are constants. Replacement of R~ 22by R~ 2makes the calculationsmuch
easier, and can be accepted as an approximation. Thus, the total force amounts to

(KR*+M)6 W z

(6.2) F(z) ~ R €

where we have used Eqgs. (3.1), (4.6) and simplified Eq. (6.1). Introducing Eq. (6.2)
into Eq. (4.8) (with a=0) we obtain

k)

(6.3) RR':%(s—z), C= -

where C is a new constant and s denotes the distance from the exit to the maximum
diameter. ’
Differentiation of Eq. (6.3) with respect to z gives for the second gradient

. _ (KR3+ M) "' (KR3+ M) 2
(6.4) R = [(1 +; (s—z))+—”-_‘;R2— (s—2) }

The condition (4.2) implies, for the corresponding increments of K and M, the
following inequality:

(6.5) (AKRG+ AM) (s—z)* > sR*[n+ 7" (s —2)] + (KRG + M) (s —2)*.
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Taking into account the relation between increments in Eqgs. (4.15), we arrive at

Fy 4V, 4F, 6 (KR:+M)
2

6.6 > -
(6.6) w7V, T, g ( +s1)
for the onset of the delayed die swell at the exit.

After integration of Eq. (6.3), we obtain the result
(6.7) R2=RZ 4 - (KR2+M)(S 22,
leading, for z = 0, to the relation:
(6.8) R} — Ri= — L (KR2—M)s?,

n

from which R, can be related to s.
Eq. (6.8), after introducing the notations (4.12), (4.13), can be written as

(6.9) D? = %Rea(l—X)Jrl,

where D? means the swell ratio and Re, — the Reynolds number averaged over the
distance s. Thus, the dependence D? (Re,), for various values of X between 0 and 1, is

1
linear with the slope equal to 2 for X - 0.

7. Final remarks

On the basis of the considerations and results presented above, one may conclude
that:

1. The delayed die-swell phenomenon can be treated as a problem of instability,
caused by the disturbed boundary conditions expressed in terms of forces and
velocities acting at the exit.

2. If the boundary conditions at the exit are undisturbed, the delayed die swell
cannot occur. The curvature of the jet profile is negative everywhere and the ordinary
die swell (without any point of inflection) can be observed.

3. The increments of forces and velocities at the exit are not only small but not
entirely independent. They may essentially depend on radial and axial viscosity
distributions. If either disturbances of forces or velocities appear separately, the
former must be positive and the latter negative, to ensure existence of an inflection
point, i.e. the delayed die swell.

4. The possibility of delayed die swell is greater for considerable radial viscosity
gradients, i.e. for aR? > 2. On the contrary, the positive axial viscosity gradient #’
implies negative effect on the delayed die swell.
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5. An approximate analysis of air-drag (skin-friction) effects, shows that such
effects reduce the corresponding (negative) force acting on the expanding part of the
jet. If n’ ~ 0, the effect of air drag on the onset of instability is always positive.

6. The plots of the die-swell ratio D? vs. the averaged Reynolds number Re, are
monotonically increasing functions; they essentially depend on the inertia parameter.
Higher inertial effects intensify the die swell phenomenon.
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Nonsimilar compressible boundary layer flow
with vectored mass transfer and magnetic field

A. SAU and G. NATH (BANGALORE)

PRESENTED herein are studies of steady nonsimilar laminar compressible boundary layer flow
over a flat plate of a viscous electrically conducting fluid of variable gas properties with
vectored mass transfer and an applied magnetic field. The nonsimilarity is due to mass
transfer at the wall, either suction or injection. Instead of being distributed so that similarity
occurs, i.e. so that (pv),oc x~ V2, we assume that (pv), is constant. This situation generally
arises in practice if the wall is made of a porous material. Moreover, almost all of the
analytical work deals with mass transfer that is normal to the surface. In practice, however,
the surface mass transfer may include a streamwise velocity component u, as well as
a normal component v,. This constitutes “vectored’” surface mass transfer. Solutions have
been obtained numerically using quasi-linearization technique in combination with an implicit
finite difference scheme. It is found that both the skin friction and heat transfer coefficients
respond significantly to the variation of magnetic parameter M, dissipation parameter E and
the viscosity index .

1. Introduction

For niGH veLocarTy flow of a gas past a body, the viscous heating in the boundary
layer converts a large portion of kinetic energy into thermal energy which
partially dissociates the gas and even produces a small, but not negligible,
degree of ionization, and as a consequence, the gas becomes an electrical conductor.
Studies have been made to see if the interaction of magnetic fields with these
conducting gases will appreciably affect the skin friction and heat transfer
in the boundary layer. Rossow [1] was the first, who studied solution to the
flat plate problem considering incompressible laminar flow with constant electrical
conductivity and a uniform magnetic field applied normal to the plate. Flow
of a viscous incompressible electrically conducting fluid with an applied magnetic
field have been investigated by GreenspAN and CArrier [2], Davies [3], GRiBBEN
[4] and Tan and Wanc [5]. Busu [6] has solved compressible laminar boundary
layer flow over a flat plate with an applied magnetic field fixed to the plate.
Vectored mass transfer (both tangential and normal velocity components at
the wall, i.e. u, and v, are non-zero and subscript w denotes the condition
at the wall) effects in case of adiabatic flows have been discussed by Wazzan
et al. [7]. Nath and Muruana [8] studied the effects of vectored mass transfer
with variable gas properties (pocT™!, pocT®, where @ is the index in the
power-law variation of viscosity) in the stagnation region of a two-dimensional
axisymmetric body. INGer and Swean [9] have investigated the effects of vectored
mass transfer on the velocity and thermal boundary layer flow (with constant
gas properties and in absence of magnetic field) over a flat plate. They have
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assumed tangential component of velocity u, to be constant and the normal
component v, oc x Y2 (x is the streamwise coordinate), and obtained similarity
solution to their problem. Cuen and Sparrow [10], in a numerical study, have
investigated the same problem with the assumption that the normal component of
velocity v, at the surface is constant. In a recent study Kumar et al. [11] have
discussed the effect of vectored mass transfer on a two-dimensional boundary layer
flow. These studies deal with self-similar flows.

The effects of vectored mass transfer, applied magnetic field and variable gas
properties on the analogous steady nonsimilar case have not been reported in the
literature; they may find application in aerodynamic heating which occurs in
supersonic and hypersonic spacecrafts and missiles. The study of laminar compres-
sible flow with vectored mass transfer becomes important and it has several
applications such as (i) use of suction and blowing for boundary layer control on
aerodynamic vehicles, (ii) film and transpiration cooling of rocket engines, turbo-
machinery blades and surface of high speed aerodynamic bodies, etc. Moreover,
instead of fixing the magnetic field to the surface, it may be fixed with the main flow
which then produces different effects in the boundary layer [12]. An example is
a rotor vane moving in a fluid at rest in a passage with the magnetic field fixed to
the passage.

The aim of this work is to study the vectored mass transfer on the steady
nonsimilar laminar compressible boundary layer flow, over a flat plate, of a viscous
electrically conducting fluid with variable gas properties, with an applied magnetic
field fixed to the main flow and in the direction normal to the plate. The nonsimilar
solution of the boundary layer equations has been obtained numerically using the
method of quasi-linearization and an implicit finite difference scheme [13]. The
particular cases of the present results have been compared with those of INGER and
SweanN [9], Cuen and Sparrow [10] and KuMARr et al. [11].

2. Governing equations

We consider the steady laminar compressible boundary layer flow of an
electrically conducting viscous fluid with variable properties (pocT ™!, uoc T9,
ooc T") over a flat plate with vectored mass transfer and an applied magnetic field
B, perpendicular to the plate, fixed relative to the fluid. We assume that (i) the
Prandtl number Pr is constant because its variation in most of the atmospheric
flight problems in the boundary layer is small [14], (ii) specific heat ¢, is a constant,
(1) Hall effect is negligible, (iv) magnetic Reynolds number is small, hence the
induced magnetic field is negligible, (v) the high-temperature effects such as
dissociation, ionization, recombination etc. have been neglected, (vi) no external
electric field is applied, (vii) the velocity at the edge of the boundary layer u,=u_, is
a constant, and (viii) the velocity of the wall |u, | < u,. Under the foregoing
assumptions, the boundary layer equations governing the flow can be expressed as
9, 12J:
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2.1) (pu)+(pv), = 0,
(2.2) p(uu +vu) = (uu,),—oBiu—p,
(2.3) p(uh +vh) = up,+Pr~'ph)) + pul+aBju,

where p, u, h, B,, o are density, coefficient of viscosity, specific enthalpy, strength of
the magnetic field and electrical conductivity, respectively. u and v are the velocity
components along x and y-axis, taken in the direction of flow and perpendicular to
the wall, respectively.

The boundary conditions are

ux,0=u, vx0)=v,, hx0=nh,,
(2.4)
u(x,0)=u, h(x,0)=nh,,

where subscripts w and e denote conditions at the wall and at the edge of the

boundary layer, respectively.
Now we use the following transformations:

E=pouux, n=QE Vu,fpdy, x=x/L, u=uf'(&n), h=hgl&n),

0

Pond i B2L
(2.5) p=p.g" Y, o=0,8" onderomotive force o, B;

~ TInertia force Peli,
us PUk
E=-2, N= and ( Y=d/on,
h, Pelte fon

where L is the characteristic length and n is the power-law index; then the
above set of equations in the dimensionless form, when the pressure gradient
is replaced by its corresponding potential flow value, namely, p, = —o Bju,
(since u,=const), reduces to

(2.6) (NF'Y'+/F'+2x Mg (1 —g"F) = 2X (FF;—f;F’),
2.7)  (Pr'Ng') +/fg' + E[NF? + 2x MgRg"F—1)] = 2x (Fg;: — /&),

n
where u,=u_, is taken to be constant and f = | Fdn+f,,.
0
The boundary conditions imposed on the set of Eqgs. (2.6) —(2.7) are
(2.8) f=fy, [(=F)=u/u,=a, g=g, at n=0,

and
F-1, g-1 as n- 0.

The tangential and normal mass transfer parameters are, respectively,
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fw(=F)=u,fu,=a=const and f, = AXV?,

where
A= —(2Rep)"*(pv),/(p,u,) and Re, =u L/v,

We have taken v,=const so that 4 is a const. When >0, 4>0, it refers to
downstream vectored suction and «>0, 4 <0 corresponds to downstream vectored
injection. Similarly <0, 4> 0 refers to upstream vectored suction and a<0, 4 <0
pertains to upstream vectored injection. We have taken the gas with variable
properties modeled realistically, that is [15, 16]

Pl

el”e

poch 1, puoch®, N=

= (hfh)*"", ooch”, plp=hlh,=g, dlo.=(hih)"=g",

where w=0.5 represents conditions encountered in hypersonic flight [15], @=0.7
corresponds closely to the low temperature flows and w=1 represents the familiar
constant density viscosity product for simplification.

The quantities of physical interest are the skin friction coefficient C, and the
Stanton number St defined by

ou oh
— — 2 t = -1 —_ —_ v
Cf 2(# ay)w /peuz ’ S Pr (P ay>w / [(he hw) peue]

These can readily be related to the solution variables via the expressions
C;=C,(Re)'?[\2=F,N,, H =St(2Re)"?=Pr'(1-g,) 'N, g,

where Re, = u_x/v, is the Reynolds number.

3. Results and discussion

Equations (2.6) and (2.7) with boundary conditions (2.8) have been solved
numerically using quasi-linearization technique and an implicit finite difference
scheme. Since the method has been described in detail in [I12], its description
is omitted here. The nonlinear partial differential Eqs. (2.6) and (2.7) were
first linearized using quasi-linearization method, and then the resulting linear
partial differential equations were expressed in difference form by using central
difference scheme in #-direction and backward difference scheme in %-direction.
Finally, the system of equations was reduced to a linear algebraic system
with a block tri-diagonal structure which is solved using Varga algorithm
[17]. To ensure the convergence of the quasilinear finite-difference scheme to
the true solution, the step-sizes Ay and 4X have been optimized to 4n=0.05
and 4%X=0.025 and the results presented here are independent of step-sizes
at least up to the fourth decimal place. The computations have been carried
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out for various values of 4(—0.5 < 4 < 0.5), 2(—0.3 < a < 1.0), M(5<M<20),
£,02<g,<0.6), w(0.5€<w<1.0), (1<n<5), and E(0.0< E<1.0). In all numerical
computations Pr have been taken 0.72 and n_, the edge value of the boundary layer is
taken between 6 and 8 depending on the values of various parameters.

It may be remarked that Eqs. (2.6) and (2.7) were solved numerically for M=0,
w=1, E=0 and x=0 by INGer and Swean [9] using shooting method and for M =0,
w=1 and E=0 by Cuen and Sparrow [10] when 2% is replaced by x in Egs. (2.6) and
(2.7) using local nonsimilarity method. In order to assess the accuracy of the method,
we have compared our results with those of Refs. [9—11] and they are found to be in
excellent agreement (see Figs. 1 —2 and Table 1).

02t

-02

F1G. 1. Comparison of velocity (F) and enthalpy (g) profiles for ¥=0.0, x=—0.2, Pr=1.0, @=1.0,
E=n=M=0.0, — present calculation; « INGER and SwgAN [9].
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10

05

0 =
-10 0 X 10

FiG. 2. Comparison of skin friction (F,) and heat transfer (g ) parameters for Pr=0.7, 0=1.0, E=M =00,
fw= —X%[2, — F_ (present calculation); — — — g (present calculation); « CHEN and SpARROW [10].

Table 1. Comparison of the skin friction parameter (F) with INGER and SwEAN [9] and KuMAR et al. [11] for
Pr=1l,o=1,M=0%=0and E=0.

F
fw Fw (=G) ' - g o i -
INGER and SwWEAN KUMAR et al. Present results
0.5 0.4 0.5914 0.59135 0.59137
0.2 0.6 0.3292 0.32922 0.32921
—0.2 0.2 0.3381 0.33811 0.33813
—0.5 0.4 0.1977 0.19775 0.19772

—0.38 0.8 0.0631 0.06310 0.06311

The effect of vectored mass transfer (i.e. effect of 4 and «) on the skin friction and
heat transfer coefficients (C,, H,) is shown in Fig. 3. Both the skin friction (C,) and
heat transfer (/1,) coefficients decrease with the increase of normal injection (A4) in the
case of downstream vectoring (4 <0, a>0). But in case of upstream vectoring (4> 0,
«<0) both skin friction (C,) and heat transfer (H,) coefficients are found to increase
as tangential injection (o) increases. For the sake of clarity we also present some of the
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0 05 X 10

FiG. 3. Effect of vectored mass transfer (4, «) on the skin friction (C ) and heat transfer (H,) for g,=0.2,
E=1.0, =05, M=10 and n=1.0.

results quantitatively. In case of downstream vectoring (x=0.1), as the normal
injection parameter 4 varies from 0 to —0.5, the skin friction (C,) and the heat
transfer (H,) at X = 1 decrease approximately by an amount of 18% and 42%,
respectively, when other parameters remain fixed. On the other hand, in case of
upstream vectoring, the percentage increase in skin friction (C ) and heat transfer (H,)
coefficients at x=1.0 is about 15% and 80%, respectively, as the tangential mass
transfer parameter o« changes from 0 to —0.3. Thus the effect of vectored mass
transfer is more pronounced on the heat transfer coefficient than on the skin friction
coefficient. In the case of injection, the fluid is carried away from the surface causing
reduction in the skin friction parameter (F,), hence in (7,, as it tries to maintain the
same F over a very small region near the surface and this effect is reversed in the case
of suction.

The effects of the magnetic parameter M, the wall enthalpy g, and the viscosity
index parameter w on the skin friction and heat transfer coefficients (C 1 H,) are
displayed in Fig. 4 in case of zero tangential mass transfer (x=0), and it is observed
that both the skin friction and heat transfer respond significantly to the variation of
magnetic parameter M, and they increase as M increases. As wall enthalpy g,
increases, the skin friction coefficient increases whereas the heat transfer decreases.

But both the skin friction and heat transfer coefficients decrease as w increase from
0.5to 1.0.



1

0 05 X 10

Fic. 4. Effects of magnetic parameter M, viscosity index @ and wall enthalpy g,, on ikin friction and heat
transfer (C,, H) for A=—0.2, x=0.0, E=1.0 and n=1.0, £2,=02, o=)5 ——— g =0.6,
w=05 - —-—g,=02 w=1.0.

[478]
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More explicitly, in absence of tangential mass transfer (#=0) and at =1, the skin
friction and heat transfer coefficients increase approximately by an amount of 50%
and 26% respectively, as the magnetic parameter M increases from 5 to 10, when
other parameters remain fixed. As the wall enthalpy g, increases from 0.2 to 0.6, the
skin friction coefficient increases by 12%, whereas heat transfer coefficient decreases
by 26% at £=1. The variation of w from 0.5 to 1.0 shows that both the skin friction
and heat transfer coefficients decrease approximately by an amount 38% and 51%,
respectively, when other parameters remain fixed. Thus, from the above analysis it is
clear that the magnetic parameter M and the parameter w have significant effect on
skin friction and heat transfer. The reason for increase in the skin friction and heat
transfer coefficients (C, and H,) with M is due to the fact that the velocity and
temperature gradients at the wall increase with the increase in M, since the velocity
and thermal boundary layer thickness decrease. This increase in velocity and
temperature gradients enhances the skin friction and heat transfer.

The effects of dissipation parameter E and n (the index in the power-law of
electrical conductivity) on the skin friction and heat transfer (C, and H,) coefficients
are shown in Fig. 5. As E increases from 0 to 1, both the skin friction and heat transfer

50 2

1 | L 0
0 a5 X 10

F1G. 5. Effects of vscous dissipation E and the parameter n on the skin friction and heat transfer (C o H)
for g,=0., M=5.0, v=05, A=—0.2 and x=0.0, E=10; — - — - — E=0.0.

http://rcin.org.pl
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coefficients increase and the effect is more significant on the heat transfer coefficient
than on the skin friction coefficient. This behaviour is in support of the known fact
that the viscous dissipation affects the thermal boundary layer more than the
momentum boundary layer. Both the skin friction and heat transfer coefficients
increase with n.

In Fig. 6 the skin friction and heat transfer coefficients (C r and H,) are plotted as
functions of the tangential surface velocity o with the normal velocity at the surface f,,
(depending on A) and M as parameters. At Xx=0 both skin friction and heat transfer
coefficients decrease for negative o (upstream vectoring) and the skin friction
coefficient increases for small-to-moderate positive a (downstream vectoring) and
ultimately vanishes at = 1, whereas heat transfer increases with positive wall velocity
o. For x>0, the skin friction coefficient increases with M and with suction (4> 0),
but with injection (4 <0) it shows the opposite effect.

Figures 7— 8 show the effect of magnetic interaction parameter M and viscosity
index @ on the velocity and enthalpy profiles (F, g). Both the velocity and enthalpy

45

S

~
~N
4,0‘ \\
~
\\

i \ \M:YO,A=0.5
g o =0
V\\ ~

Ny ~

s S T SR B
S e S
N\ 5-05 g i - o>c— ]
T s
/' \\ ~ \-\-—-\J
—* = o RN
\‘ = %
Sy
S LE
All M and A ="
0 . -
-03 0 05 a 10

FI1G. 6. Mass transfer vectoring effect and effect of M on the skin friction and heat transfer (C,, H,) for
£,=0.1, E=1.0, ®=0.5 and n=1.0, —— C,, =00; ——— C,, £=0.5; — - — - — H,, ¥=00;
— — — H, x=05.
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FiG. 7. Effect of magnetic parameter M and viscosity index @ on the velocity profiles (F) for g,=0.2,
A=—-02, =00, E=1.0and n=1.0, %=00; ——— £=1.0.

1 1 Il

0 ] 2 3 4 5 n 6

Fic. 8. Effect of magnetic parameter M and viscosity index @ on the enthalpy profiles (g) for g,=0.2,
A=-02,2=0.0, E=1.0 and n=1.0, x=0.0; — —— x=1.0.

[481)
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profiles are unaffected by M at ¥=0 (obvious from the governing Egs. (2.6) and
(2.7)), whereas for ¥> 0 the profiles are different and we have observed significant
overshoot in the velocity profile (F) (for g,, < 1 velocity overshoot occurs when Mn> 1
[18] and its magnitude increases with M, so that there is a point of inflection in the
velocity profile). As w increases from 0.5 to 1.0, the velocity and enthalpy profiles
reach their free-stream value faster and hence the boundary layer thickness decreases,
but the velocity overshoot increases.

The reason for the overshoot in velocity F and for increase in magnetic field when
x>0 may be due to the competition among inertia, pressure gradient and shear stress
effects through the thickness of the boundary layer. The flow in the boundary layer
and the flow in the free stream are subjected to the same longitudinal pressure
gradient given by the equation dp/dx = — o, BZ u, (as u,=constant), which increases
with magnetic parameter M. However, in the boundary layer, viscous effects reduce
the tangential velocity. Consequently the longitudinal pressure gradient impressed on
the boundary layer can cause a higher longitudinal flow acceleration to occur in the
boundary layer than that present without the tangential velocity, even though shear
stress also tends to balance the longitudinal pressure gradient near the surface.
Quantitatively, as M increases from 5 to 10, the overshoot in velocity F at x=1
increases approximately from 29% to 50% for fixed values of other parameters.
Thus, velocity overshoot depends significantly on the magnetic parameter M.

Typical boundary layer velocity (F) and enthalpy (g) profiles pertaining to both
upstream and downstream vectoring are shown in Fig. 9 for a fixed normal mass
transfer (4). As expected, upstream tangential injection increases the boundary layer
thickness whereas downstream tangential injection has the opposite effect.

15 10
g
405
-0
= 1 | 1 |
Q50 1 2 3 4 n 5

F1G6. 9. Upstream and downstream vectoring effect on the velocity (F) and enthalpy (g) profiles for g,,=0.2,
M=50, E=1.0, »=0.5, 4=0.2 and n=1.0, —— =0.0; — — — %=1.0.
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4. Conclusion

The results indicate that both the skin friction and heat transfer coefficients
respond significantly to the variation of magnetic parameter M, dissipation parame-
ter E, viscosity index w and the mass transfer parameters 4 and o. As the magnetic
parameter M and the dissipation parameter E increase both the skin friction and heat
transfer coefficients increase both the skin friction and heat transfer coefficients
increase whereas viscosity index w shows the reverse effect. The vectored mass
injection is found to be more effective in reducing the skin friction and heat transfer
compared to the injection applied normal to the surface. In the presence of a magnetic
field, the velocity profile exhibits overshoot in certain region within the boundary
layer. The boundary layer thickness increases as the tangential injection increases.
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Two widely-spaced spheres in a polar fluid

H. RAMKISSOON (ST. AUGUSTINE)

TuepPrOBLEM of hydrodynamic forces acting on two spheres immersed in a polar fluid and subject
to a Stokes-type flow is considered in the paper. In order to describe the hydrodynamic interactions
of two bodies, the method of reflections is used; the method is known from the literature concerning
flows occurring in Newtonian fluids. The Eq. (3.15) derived in the paper presents the hydrod ynamic
drag exerted on the sphere as a function of mutual position, radii and velocities of the spheres,
taking into account the material constants of the polar fluid considered. Two particular cases are
concerned, when two identical spheres move at identical speeds in the directions which are parallel
or perpendicular to the line connecting the centres of the spheres. Value of the drag is shown to
increase with increasing values of the material constant k characterizing the fluid.

1. Introduction

THe MoTION of particles at small Reynolds numbers through an unbounded fluid finds
application in the fields of meteorology, colloid chemistry, rheology and in the
sedimentation of dilute suspensions. Of particular significance is the magnitude of the
interaction which will be governed by such variables as the shapes and sizes of the
particles, the distance between them, their orientations with respect to each other and
their velocities and spins relative to the fluid.

In this short paper we consider the special case of two widely spaced rigid spheres
translating in an otherwise unbounded micropolar fluid medium [1, 2] which is at rest
at infinity. Applications of such fluids are well-known [3 — 6]. Our main objective is to
obtain the force exerted on each sphere and this is achieved by utilizing the method of
reflections. Two special cases are then deduced including the known classical result.

2. Preliminaries

Micropolar fluid theory was introduced by ErinGen [1] in 1966. Basically, these
fluids can support couple stress and body couples, and exhibit micro-rotational
effects. Fluid points contained in a small volume element, in addition to their usual
rigid motion, now possess the ability to rotate about the centroid of the volume
element in an average sense described by the skew-symmetric gyration tensor v which
is independent of the velocity field u. In the case of slow steady incompressible flow in
the absence of body forces and couples, the field equations are [1]:

(u+x) V2u+xVxyv—Vp =0,
(2.1) (@+B+y) VV v—9yVxVxv+kVx u—2kv =0,
V- u=0,

where (a, B, v, i, x) are material coefficients.
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In the case of a sphere of radius a translating with uniform speed U in an
unbounded micropolar fluid being at rest at infinity, and whose field equations are
given by Eq. (2.1), Ramkissoon and MAsuMDAR [7] have determined the flow field and
the drag F experienced by the sphere. Working in spherical polar coordinates (r, 6, @)
with 0=0 axis being the direction of motion of the sphere; they have shown that in

this case [7],
U.. A 1\ _
¢=5s1n20[T‘+Blr+Bz(A+;)e ":l,
(2.2)
Usinf (u+k) [ o B
= 22 il e |
D) % [Bz A (l+r)e r]’
F= -Uk,
where
K _ 6IlaQu+k) (u+k) (14 ad)
T k+2u+2aiu+2aik
3a%(2 3a?i 1
A =—|=+1 2( 1+ -
1= (3+ 2)+ 212( +a)’
—3a —3al,e*
Bi=—77@+). B=—p—
,12=k(2“+k) - 2k .
yu+k)’ 2 k+2u+2api+2aki
Here

u=u(rl)=U,U,0), v=v(0=(0,0,v)
and the stream function ¥ is given by the usual relations

E Il O SRR UL
"7 r2sinf 00’ % rsinf or’

[t should be noted that the drag depends on the material coefficients, the radius of the
sphere and the translational velocity. In fact, for any axially symmetric body it has
been shown [7] that the drag is given by the elegant expression

rp

F =41 Qu-+k) lim .

r—-w

I'he micro-rotation does not explicitly play any role and, consequently, attention will
oe focussed on the velocity field only.
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3. Statement and solution of the problem

Consider two spheres of radii a and b moving with instantaneous velocities U, and
U,, respectively, in an otherwise unbounded micropolar fluid. The main aim of this
work is to determine the force experienced by each sphere.

In order to facilitate comparison with the classical result obtained by HarpeL and
Brenner [8], we shall as far as is possible utilize their notations. We choose one axis of
the reference system of coordinates (x, y, z) along the line joining the centres of the
spheres which we assume to move in a plane. This is taken as the xz-plane (see Fig. 1).

z

sphere b, UpA U,
radius b

oM

o Unse

Y

FiG. 1. Coordinate system for two-particle interactions.

We need to solve the system of Eqs. (2.1) subject to the conditions

u=U, v=0 on &S,
(3.1)

u=U,, v=0 on §,

http://rcin.org.pl
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and U, v—0 as r—c0, where S, S, are the spheres of radii a and b, respectively. Since
the system (2.1) and the boundary conditions (3.1) are linear, we may decompose the
unknown field parameters as follows:

u=u® + a@ +u? 4+ .. :
v=vO0 4 v 4 y@ 4
p=p9+p04+p2d 4 |

where each (u®, v, p®) satisfies Eq. (2.1) and vanishes at inifinity. However, for the
reason mentioned earlier, attention will be focussed on the velocity field only. We now
apply the method of reflections which provides a systematic scheme of successive
iterations, whereby the above boundary-value problem may be solved to any degree
of approximation by considering boundary conditions associated with one particle at
a time. This method was introduced by SmoLucnowski [9] and applied successfully
and extensively by others [8, 10, 11, 12]. According to this method, details of which
are given in HappEL and BRENNER [8]

(3.2) u9=u, onsS,

(3.3) u? = —u@+ U, on S,,
(3.4) u@ = —u® on S,,
(3.5) u® = —u@ on S, etc.,

where u® is the i-th reflection. If F, is the force exerted on S, by the fluid, it has been
shown [8] that

(3.6) F,=F"+F?+F¥+ ..,

where F{ is the force on S, associated with the i-th reflection. A similar rssult with
b replacing a, holds for F,, the drag force experienced by S,.

The zeroth reflection is the solution given by Eqs. (2.2) for translation of a single
sphere in an unbounded medium. If we take the velocity of this sphere of radius a to
be U, and write

U,=U,i+ U,k u®=uQ740F,

then it can be shown from Eqgs. (2.2) that

B, A, o*(B, 34 a3
0 _ e Wt SN Pl ST T P -l =
(3.7) u@ Uml + ( + = ) Be {2 (rs

2r " 2r3 . 2
3w 2\ 1(1 2
o Tl ALY (M T
+r‘+r3) 2r(r2+r+ )H

where & = x or z, and
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(38) F(E) = _kaUa . _ka(Uax;_i_ Unzk)'

We now proceed to determine F?. From Eq. (3.7) u® evaluated at the center of S,
(x = 0,z = [)is given by

(3.9) uo|; =id U, +kd,U,,
where
d=_£+ﬁ+32€_“(1+£+£)
) 21 2P 2 B e )

B A4 1 A
d2= ——l——l—-Bze_“(ﬁ—f-F).

With the aid of Eq. (3.3), the force F? exerted on S, is
FP = —ku® = —k, (U,—u®).
Using Eq. (3.9) this becomes
(3.10) FY = —ik,[U,,—d, U, )—kK,[U,,—d U,].

The velocity field u'” generated by the force F acting at the center of S, can now be
calculated using the same technique as above. However, now the origin of the
coordinate system will be located at the centre of .S,. Taking this into consideration
one can easily show that

(3-11) u? =id [U,,—d, U+ kd,[U,,—d,U,].

Finally, with the aid of Eq. (3.4) we obtain

(3.12) F2= —k,u? =k, u® = k,[id,(U,,—d, U,) + kd,(U,,—d, U,)].
In a similar manner

(3.13) F@ = ik, d}[Uy,—d, U, + kK,&3[U,,—d,U,.].

Hence, substitution of Egs. (3.8), (3.12) and (3.13) into Eq. (3.6) gives the force
exerted on §, as

(3.14) F,= —ik,[U, —(Uy,—d U, )(d,+d+d;+..)]
_EKa[Unz_(sz_'dz Uaz)(dz+dg+d§+“')]'

Noting that the above include two geometric series and assuming that /is sufficiently
large to ensure | d;| <1, we get on summation our main result,

Fa 2 Uax_dl be Uaz_dz sz
(3.15) _fa—' —d k =

2

To get the force F, exerted on S, we simply interchange ¢ and b in Eq. (3.15).
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4. Special cases
a. Identical spheres. Here we take a=b in Eq. (3.15) to get

F U . U
3| —_——=_t ] k.
) K, 1+d, " 1+d,
The force exerted on each particle is the same, their motions being parallel and
velocities identical.
b. Classical fluids. In the case of Newtonian fluids (x¥=0) we get from Eq. (4.1),
the well-known classical result [8]

F 5
“4.2) < Uy ] L

_ = k
6I1pa 1+3g+1931+1+3a 1 a\?
41" 4\ 21 2\I

Let us examine case a). Assume that U is known and makes an angle « with the
line of centres of the two particles. If F, and F,, are drag components acting on each
particle in the direction of U and perpendicular to it, respectively, then

“4.3) F, = F;cosa + F, sina,
where
— Uk, sina — Uk, cosa
44 g A e =7
44 * 1+d, ’ bs 1+d,
From Eqgs. (4.3) and (4.4), we get
1 1 1
5 F — —k U — ==Y 2 ]
@3) . a[}+¢ (L+¢ 1+¢)“s@
In a similar manner it can be shown that
F, = —k_ Usinacosa L — .
ey 1+d, 1+d,|

The corresponding classical results utilizing (4.2) are respectively giv:n by

F,, = —6ITualU : - : — : cos?x |,
RO PR G
41 41/ 21
4.6)
Fpe = —6I1paU sino cosa e -
e e
2.1 41
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Note that in both cases of Egs. (4.5) and (4.6), if the spheres move along the line of
centres or perpendicular to it, we obtain Fp. = 0. In the former case

L,
F, K, 21

4.7 =
@.7) Fyc  6Ilua 1+d,

while in the latter one

F, K
Fyc 6Ipa 1+d,’
where d,, d, are given in Eq. (3.9). Thus Eq. (4.7) gives a comparison between the drag
in a micropolar fluid and that in a classical fluid when the two spheres of equal sizes are
moving along the line of centres. In the case when the spheres are moving in the
directions perpendicular to the line of centres, the result is given in Eq. (4.8). To get an
insight into these results, we sketch in Figs. 2 and 3 the variation of the non-dimensional
drag F,/F, with A for values of »/u=0, 1, 5, 10, and with a = 2, / = 100.

We now make a few observations:

i. For the case »/u = 0 we expect to recover the classical drag and this is
supported by the graphs.

ii. In both cases — the spheres moving in directions perpendicular to and along
the line of centres, the drags do not differ appreciably and this is not surprising as / is
large and a is small.

(4.8)

E_l

= §n

0

k1 =10

1 A I L 1 | L 1 L I 1 Iy I 1 L i

FiG. 2. Drag on spheres moving along line of centres.
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FiG. 3. Drag on spheres moving in directions perpendicular to the line of centes.

ii. % is often referred to as the coupling constant and it is a memsure of the

strength of the “polarity” of the fluid. We see from the graphs that the crag in both
cases increases with increasing x.
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BRIEF NOTES

Spherical solutions to the Korteweg —de Vries equation
Y. CHEN (FAYETTEVILLE) and S-L. WEN (ATHENS)

SpHERICAL solutions for the Korteweg—de Vries equation are obtained within a reasonable
approximation. They are shown to be representable as infinite sums of spherical solitons.

1. Introduction

THe spHeriCAL Korteweg —de Vries equation (referred to as KdV equation hence-
forth),
du wu 6u Pu

e T FTE

=0,

was first derived by Maxon and VieceLu [1] from the study of three-dimensional,
spherically symmetric acoustic wave propagating in a collisionless plasma of warm
electrons and cold ions. In this equation, wu=uwu(fn), n=¢"?w;, and
¢ = —&Y2(r|A,+ w,t), where ¢ is the expansion parameter, 1, the Debye length, w, the
ion plasma frequency, r the radial distance, and f the time. A numerical approximate
solution to the equation,

U (1, &) = 3Isech?(£/4/2),

was obtained by Maxon and Viecelli under an initial condition [1], and a solution of
the form

Ulu, &) = 52A() G(E“"‘“)),

o w(p)

where p=In(n,/n) and U= —nu, was introduced by CumsersaTcH [2].

In this paper we apply Cien and WeN's method [3] to the spherical KdV equation.
A cnoidal wave solution is obtained and it is proved that the cnoidal wave solution
can be expressed as a sum of infinite number of solitons by using Fourier series
expansions and Poisson’s summation formula. We have also established a criterion
for the existenoe of a single soliton solution, it is C>0, where C is a constant, or

X<—_(sceSec 3).

N



494 Y. CHEN AND S-L. WEN

2. KdV equation
We start from the spherical KdV equation of the form [1]

1
(2.1) nu, + u + nuu, + 5 Mgz = 0.

Motivated by the results obtained by Cuen and WeN in [3] and CumBERBATCH [2], we
introduce the following transformation.
Let 1 = —Inn and U(¢, 1)= nu, then
= U, = —nu—nun, = n(u+nu,),
UUg=1n (ﬂu“g),
and
1 1
3MUse = 51 (Mtdgzy).

Therefore, Eq. (2.1) can be written as
We are searching for real-valued solution of the form G(X)=462U(¢,1) with
P E+2072C

o
introduced by CumsersatcH [2], and G is a C? function of its argument. Since

"2, where C is a constant number, 6 « 1 is a small positive parameter

~U,= -5 3G'(X) ‘Z—f = —673G'(X) {% Ee245 ‘ZCe“’z} ,

UU; = 6 “G(X) G'(X) 2—?= 87 3G(X) G'(X) €72,

oX\3
e Ugy = e "677G"(X) (a_r) = e "6 73G"(X) (57 e = 573G (X) e

¢
Then the substitution of the above results into Eq. (2.2) yields
1 1
-— 5 5—3GI(X) Cer/z__(;— SCG'(X) et/z + a-serfz [G(X) G'(.X’) 4 E G.H(X—)jl i 0’
i.€.
1 1
(2.3) ~3 02G'(X)&e? — 3 [G"(X)+2G(X) G'(X)—2CG'(X)] e”? = 0.

The first term in Eq. (2.3) is of order 62 if G'(X) and ((/\/n) = &e¥?
are bounded. One can argue that since in the original derivation ¢ = eV2(r/1, — ;1)
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and n=¢¥2w;t, where ¢ is a small parameter, r the radial distance and ¢ the time, it

seems to be reasonable to assume | &//n | bounded. This is the case, in particular,
when both r and ¢ are large and of the same order, or in the domain where

| é/\/;, | « 867 * with & <2.
Therefore, a good approximation to Eq. (2.3) is:

(2.4) G"(X) + 2G(X) G'(X)—2CG'(X) = 0.
Integration of both sides of Eq. (2.4) leads to
G'(X) = —GHX)+2CG(X)+ A4/3.

Using the fact

d[G'(X))*

L2l g il

we then have
2.6) 2 [GOF = [ G(X)+3CG(X) + AG)+ B) = 5 @),

where 4 and B are two integration constants and F is the cubic function
—G*+3CG*+ AG+ B.
3. Solitary wave solution

For a solitary wave solution we impose the boundary conditions G, G', G, G"' =0
when X— + co. These conditions imply 4= B=0 in Eq. (2.6), and yield

1 1
(3.1) 3 [ = 3 GHX)[3C—-G(X)].
First, if C<0,1ie. X > i, we shall have the nontrivial solution

3\/n
G(X) = 3Csecz(——V;C (x— Xo)),

where X is an integration constant.

Second, if C=0, ie. X = i, a solution to Eq. (3.1) is

ENE

6

ES AN



496 Y. CHEN AND S-L. WEN

Because the solutions G(X) in these two cases are unbounded, we are not interested
in it.
IFC>07ie X < i the nontrivial solution to Eq. (3.1) becomes

o\’
(3.2) G(X) = 3Csech2[‘/2c (X— XO)J,

where X is an integration constant. We note that C>0, ie. X < EE: gives
n

a condition under which a nontrivial solitary wave solution exists. In particular, if we

choose C=1 and X =0, then from Eq. (3.2) we have

— 3sechz| <F20%
(3.3) G(X)-Ssech[ 25 ¢ }

4. Cnoidal wave solution

For the existence of a spherical solution, the cubic function F{(G) in the right-hand
side of Eq. (2.6) plays an important role. Applying a similar argument as that given in
Ref. [4], we can show that a cnoidal wave solution exists only if F{G) has three distinct
real simple zeros G, G, and G, such that G, > G,> G, and G, < G(X) < G, [4]. In this
case, we have

G‘ dG G dG
“.1) \[ x,— ,
JF(G) ¢ J/(6,-6)(G-G)(G-G)
where X is a value at which G(X,) = G,, and the period 27T in X is

dG
4.2 2T =
& fjJ(G -6)(G-G)(G-G)

Equation (4.1) can be rewritten as [2]

2
4.3) \/ X,-X = Sln “1(sing, K) = ————= F(¢, k),
JvG,—G,
where
G -G G -G
— i 1 1 3. 1 2
¢ = sin G,—G, T o Gl—Ga,

and F(¢,k) = sn '(sing,k) is the normal elliptic integral of the first kind with
modulus k. If we define v = F(¢,k), then
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1
D =ﬁ \/ﬁ (Xl_X)s

and the cnoidal wave solution is obtained

44) G(X) = G,—(G,—G,)sn*(v,k) = G,+(G,—G,) cn¥(v,k)
= G,+(G,—G,) dn*(v,k) = G,+(G,— G )dn? (71—6./G1— G,(X—X)), k),

where sn(v,k) = sing, cn(v,k) = cos¢ and dn(v,k) = /1—k%in¢p.

It should be noted here that there is no restriction on C which can be positive, zero

1
or negative as long as C = 3 (G,+G,+G)). In particular, if X, =0, then
1 2072C
G(X) = G2+(G1— GZ) cn? (76 A/ GI_GJ H—a—— e"'z, k) .

Using the Fourier series expansion of dn*(v,k) [6] and the Poisson summation
formula [7], we obtain

@.5) i) == e i 5 L sehal X L)
. V,K) =— — — — -
B =%~ 3xx Takn, &Nl :
M2 4
where K= [ ———— is the complete elliptic integral of the first kind with
o /1 —k?Zsin20
/2 do

modulus k; K’ = | ———————is the complete elliptic integral of the first kind with
o /1 —k'2sin%0

/2
modulus k&’ = \/1—k% E = [ \/1—k?sin?0 d0 is the complete elliptic integral of the

0
second kind with modulus k. Therefore, the cnoidal wave solution G(X) in Eq. (4.4)
can be written as

4.6) G(X)=P+Q 3 sech?R(X—X,+2mT),

m= —

where

E T
B= G3+(G‘*G’)[T< o ZKK']’

2

0 =(6,~G) 2.
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ar— A6 F(E k) _ WK
G1_Gs \/Gl_Ga

2!
. nK
o DipgR

R

where K, K’ and E are defined following Eq. (4.5). In Eq. (4.6), G is clearly a periodic
function of X with period 2T. Each term in the inifinite series is a soliton. This gives
a representation of a periodic function by an infinite number of solitons. It should be
mentioned that the representation is valid within the order of 62
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Limit analysis of plates
by A. SAWCZUK and J. SOKOL-SUPEL

Limit analysis, furnishing collapse loads of structures and the corresponding mechanisms of the plastic
flow at collapse, represents a simple and effective tool for the security assesment, particularly for structures
vulnerable to exceptional ultimate loads. It answers to one of principal limit state requirements in the
European Design Codes and, therefore, is of interest both for design practice and, in educational aspects,
for comprehension of the structural response.

The book is aimed at graduate and post-graduate students in structural mechanics and at structural
engineers-designers. It presents basic features, methods and results of the limit analysis theory of plates.
Methods for exact analysis are presented and aproximate techniques like the yield-line theory are discussed.
Solutions for a broad class of plates obeying various plasticity criteria (metal and fiber-reinforced plates,
both isotropic and orthotropic) are given.

The fundamental principles of perfect plasticity are briefly shown and assumptions and theorems of
limit analysis are given in Chapter 2. The plate equations are analyzed in Chapter 3. Chapter 4 is concerned
with circular plates under rotationally symmetric loading when ordinary differential equations govern the
plastic behaviour. Analytical and numerical solutions are given. Bounding techniques that furnish
estimates to the collapse load intensity are explained in Chapter 5, whereas in the next chapter orthotropic
and nonhomogeneous plates are briefly considered. Chapter 8 is devoted to bending of plates of arbitrary
shape. Special attention is given to plates obeying a square yield criterion in the plane of principal
moments. A number of new complete solutions is presented allowing to assess the accuracy of the results
furnished by the yield-line theory, which is presented in Chapter 7 and accompanied by a set of tables with
specific solutions.

The text consists of about 260 pages, including 86 figures, 21 tables and 79 cross-references. In the
appendix 69 complete solutions for particular cases of geometry and loading of plates are given.

The book has appeare 1992. Possible orders should be addressed to the Editorial Office of the IFTR,
Swigtokrzyska 21, 00-049 Warszawa, Poland.

http://rcin.org.pl
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ogranized by

CENTER OF MECHANICS
of the INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL REASEARCH
and
COMMITTEE OF MECHANICS
of the POLISH ACADEMY OF SCIENCES

Zakopane, September 5—9, 1994

The 30th Polish Solid Mechanics Conference will be held in Zakopane,
a renowned resort at the foot of the Tatra Mountains.

Following a long tradition going back to the Ist Polish Solid Mechanics
Conference in 1953, the objective of the 30th Conference is to bring together researchers
engaged in all major areas of contemporary mechanics of solids and structures.

The program of the conference will include a number of general (invited) lectures
and contributed papers. The contributed papers will be presented either in oral form
or at poster sessions. The language of the conference will be English.

Social events and tours are planned.

Further details regarding the submission of abstracts will be announced in the
first circular.

Scientific Committee Organizing Committee

Prof. R. Bogacz Prof. W. K. Nowacki — chairman
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Prof. M. Sokotowski Swietokrzyska 21
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First International Symposium
on
Thermal Stresses and Related Topics

THERMAL STRESSES ’95

will be held at
Shizuoka University, Hamamatsu, Japan
June 5—7, 1995

The Symposium will be comprised of invited lectures and of the presentation and

discussion of contributed papers. Ladies Program will be arranged. A post-sym-

posium tour of Kyoto and Nara will be organized. Group flights from the United
States to Japan will be planned.

Write for the First Announcement brochure to:

Richard B. Hetnarski, Chairman Naotake Noda, Chairman
International Organizing Committe International Organizing Committee
James E. Gleason Professor Dept. of Mechanical Engineering

of Mechanical Engineering Shizuoka University

Rochester Institute of Technology 5-1, Johoku 3 chome

Rochester, NY 14623, U.S.A. Hamamatsu, 432, JAPAN



11th Aachen Colloquium on Fluid Power Technology
“call for papers”

The Aachen Colloquium on Fluid Power Technology (AFK) has been established as
one of the eminent international conferences for current topics from the fields of
hydraulics and pneumatics during the previous two decades. The colloquium has been
met with an extraordinarily good response from producers and users of fluid power
technology, as well as other interested parties. Besides reports and discussions, during
the three-day colloquium includes an exhibition and poster-session where exhibits
from the fields of equipment, measuring systems and software are presented. At the
same time, those guests who are interested in the Departament of Fluid Power
Transmission and Control of the University of Technology Aachen, can take the
opportunity to view the laboratories and to inform themselves on current research
projects and new developments.

The main topics of the 11th AFK, which lasts from March 8th, 1994, until March
10th, 1994, will deal with the field of hydraulics during the first two days and with
pneumatics at the final day. The main topics of the 11th AFK are as follows:

1. Improvement of the Competitivness of Fluid Power

2. Energy Saving Measures

3. New Concepts in Mobile Hydraulics

4. Hydraulics in the Plastics Industry and Metal Forming

5. Economical and Environmental Use of Pneumatics

6. New Developments of Pneumatic Components and Systems

On each of the main conference topics several lectures, which last for maximally 15
minutes, will be held.

Institut fiir Hydraulische und Pneumatische Antriebe und Steuerungen der RWTH
Aachen, Steinbachstrasse, 53, W-5100 Aachen, Germany



Guidelines for Authos

The periodical Archives of Mechanics (Archiwum Mechaniki Stosowanej) presents original papers
which should not be published elsewhere.

As a rule, the volume of the paper should not exceed 40000 typographic signs, that is about 20
type-written pages, format: 210 x 297 mm, leaded. The papers should be submitted in two copies and follow
the norms outlined by the Editorial Office. The following directions are particularly important:

1. The paper submitted for publication should be written in English.

2. The title of the paper should be as short as possible. The text should be preceded by a brief
introduction; it is also desirable that a list of notations used in the paper be given.
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