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A thermodynamical model of solids undergoing
martensitic phase transformations with shuffles

J. KACZMAREK (GDANSK)

AN APPROACH, connected with the material structures, to the thermodynamical description of mate-
rials undergoing martensitic phase transformations with shuffies is proposed in the paper. Shuffle
displacements are seen as a micro-nonhomogeneous deformation in mechanical description. First,
one considers thermodynamics of materials which undergo the micro-nonhomogeneous deformation
only. Such a deformation is described by means of relative displacement vectors. Higher gradients of
deformation are taken into account. The material structure of differential for a body undergoing
micro-nonhomogeneous deformations is considered. Next, a form of the free energy for materials
which undergo martensitic transformations with shuffles is discussed. With the aid of the thermo-
dynamics previously formulated, a thermodynamical description of these phase transformations is
suggested. However, some modifications connected with additional variables have been carried out.
In this case the material structure of differential type is also considered. The possibility of using
internal state variables for describing the dissipation is discussed.

1. Introduction

THE MARTENSITIC transformation appears as a complicated phenomenon in materials.
The predominant feature of this diffusionless transformation is a shear strain (COHEN,
OLSON, CLAPP [1]). We can consider martensitic structures with mobile interfaces. Then,
the shape memory effect can appear. Some martensitic structures have no mobile inter-
faces. Then, such a body can be seen as a composite of martensitic grains.

In the case of mobile martensitic structure we come across several complicated phe-
nomena. Then, many different martensite variants appear. They can transform one into
another. Each of them can rotate towards the habit plane in order to fit together with
the parent phase. Martensitic transformation is predominated by shear strain. However,
during the shear strain the shuffles can appear additionally. The shuffles are connected
with complex crystal lattice and are deviations of atoms from the positions indicated by
homogeneous deformation on a microscopic level. It happenes, for instance, in alloys
CuAl, CuAlNi, OTSUKA, SAKAMOTO, SHIMIZU [9], NISHIYJAMA, KAJIWARA [22]. Shuffles
are connected with determination of miscelaneous martensite variants (KACZMAREK [10]).
They are also connected with two-path displacive phase transformation, KACZMAREK [8].

The mechanical description of the martensitic transformation is rather difficult. Mis-
cellaneous approaches are considered in the literature. There, one considers qualitative
one-dimensional models. They are discussed in papers of FALK [3, 4], FALK, SEIBEL [33],
JAMES [5, 34]. Some three-dimensional considerations are given by JAMES [6].

Exhaustive application of thermodynamics to the description of martensitic transfor-
mation is given in papers by RANIECKI, LEXCELLENT, TANAKA [31], RANIECKI, TANAKA
[32]. It is assumed there that the composition of martensite is averaged by means of
variable = which is the mass fraction of martensite in the total mass of the system.

Statistical description of this transformation is studied by MULLER, WILMANSKI [2].

Descriptions more connected with a single crystal and detailed physical phenomena
occurring in it are given by BARSCH, KRUMHANSL [7, 39, 40] and KACZMAREK [8, 10].
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Shuffle displacements are considered in papers COUSINS [11], BARRON, GIBBONS,
MUNN [12], SLONCZEWSKI, THOMAS [37], CAO, BARSCH [38].

In the present paper one considers a description connected with a single crystal. The
aim is to take into consideration whole complexity of this phenomenon as far as possible.
I do hope that the complicated model obtained could be helpful for a more averaged
description. Thus, in the paper are considered the shuffles which are modelled by means
of relative displacement vectors, internal rotations which describe rotations of the marten-
sitic structure toward the habit plane, higher gradients of deformation which are helpful in
description of the geometry of mobile interfaces. Furthermore, one tries to describe dis-
sipative effects with the help of material structures. The dissipative effects are inherently
present in martensitic transformation.

In Sec. 2 the thermodynamics of materials undergoing micro-nonhomogeneous de-
formation only is introduced. There the theory with higher gradients of deformation is
studied. The dissipation is considered in the frame of the material structure of the dif-
ferential type. In Sec. 3 a model of thermodynamics connected with martensitic phase
transformations with shuffles is discussed. There, the model of the free energy introduced
in [10] is used. In this section one considers the material structure of differential type.
The material structure with internal state variables is also suggested.

2. A thermodynamical model of solids which underge micro-nonhomogeneous deforma-
tions

2.1. The balance of energy

In the paper we consider different kinds of deformation. Namely, one considers the
macroscopic deformation. It relates to an area larger than the material point and is de-
scribed by means of the Green tensor field. This field of deformation can be homogeneous
or not. Next, we consider a micro-homogeneous deformation. It is a homogeneous de-
formation of the material point and it is described by the Green tensor in this point.
Finally, the micro-nonhomogeneous deformation is considered. It is a nonhomogeneous
deformation of the material point connected with shuffles.

Let us consider a crystal with V) sublattices. Such a crystal can undergo the micro-
nonhomogeneous deformation. This deformation consist in deviation of sublattices from
their positions indicated by micro-homogeneous deformation. Such a deformation can be
described with the help of N, deformation functions.

Let us distinguish a crystal sublattice. The deformation of this sublattice can be de-
scribed by the function

(2.1) x = x(X,1).

Deformations connected with the remaining sublattices can be described with the help of
N, — 1 deformation functions

(2.2) YA = x+ Rwy,

where R stands for a rotation tensor obtained with the aid of the polar decomposition of
the deformation gradient tensor F = VR. The vector w) indicates the deviation of the
sublattice from the position determined by a micro-homogeneous deformation. The w)
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will be called further the relative displacement vector. One can show [10] that the vector
wy = R™!(y, — x) is an objective Lagrangean vector [29].

The deformation functions (2.1) and (2.2) introduced suggest that the body considered
can be seen as a multicomponent body [26, 28]. Therefore, we introduce densities o,
connected with the distinguished crystal lattice and p) connected with the remaining

sublattices. Furthermore, we have g, + 5~ o) = o where p is the total mass density of
the crystal.

In the paper the summation convention does not concern the index A.

In order to describe the behaviour of the body we postulate the following form of the
balance energy equation:

(2.3) f [pe + pitizi + ) pAANWAN + ¢jj — Te — pbid]dv

x(P) A
s 4
f Z tMy. My_yii My M, Tt ZE ANy Ny NWAN,N,..N,_)da =0,
Ox(P) =1 A p=1

where ¢ is the internal energy density, ¢; are components of heat flux vector, 7. is the
source of heat, b; is a vector of the volume force.

In description of the martensitic phase transformation one considers higher gradients
of the deformations [10]. Therefore in Eq. (2.3) two last summands have the form which
takes into account the theory with the higher gradients of the deformation [19, 20, 21]. The
forces tay.. Mm,_,i and fAN,...N,;,_,N are connected respectively with higher gradients of
deformation given by the Green strain tensor and higher gradients of relative displacement
vectors.

Equation (2.3) can be introduced starting from the multicomponent balance energy
equation similar to that from [27], and taking into account the deformation functions
(2.1), (2.2) and some simplifications.

The form of the kinetic energy assumed in Eq. (2.3) means that the influences of
inertia of the mass connected with relative displacement vectors on the motion of the
body, and of acceleration of the body on the motion of the relative displacement vectors
are neglected. Furthermore, the influence of the rotational velocity and acceleration
effects on the motion of variables w) n is neglected.

Let us assume that the free energy density ¥ depends on variables ¥ = (2 a5 - - -

s Ti,My...Mp» WAN; WAN,Ny» - - -y WAN,N,...Npr» 1), Where T' is absolute temperature.
Taking it into account we obtain

@24) [ ddo= f[ T+Z( 1)( ¢ )YM&“MIr,-

Jdz;
X(P) X(P) 1My...Ms

5 ) (gor—

v=0 AN,N|. Nv).Nw..Nl

v (e (D z ) sy R

ax(P) “¢=1 é=¢ aI‘M' -Ms

21),\1\1] dv
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(2.4) +Z Z (- 1)“*‘(—¢)N . l'k,N,,,nktb,\N,Nl...N,t_l)da
Nl

fcont] et ok OWAN,N,...N,

f [g$T+Ax,+ZB,\Nw\N]dv+ f [EA@LEI My..My_,

_Ox(P) =1

T Z ZB¢ANw,\N,N,...N¢71}da,
p=1 A

New quantities A;, Asi, Ban, Bpan have been defined during the transformation of
this identity. Furthermore we introduce a quantity A;ps with the help of the formula
Ainm,,m, = —A; and the third term in the first line of Eq. (2.4). For v = 0 the derivative
order is equal to zero in the third summand on the right-hand side of the first equality
sign in Eq. (2.4). Derivatives of order equal to zero for #; and )y appear there for
¢ =1. If 6§ = ¢ and v = ¢, then the derivatives connected with indices M5 and N,
vanish in the fourth and the fifth summands on the right-hand side in (2.4). A,; and
Byan are equal to zero for § < ¢ and v < ¢.

Let us assume that dissipation can take place in the body. Then we assume that the
dissipation occurs with the help of a stress tensor t‘ and some dissipative forces f§ N-
We introduce these quantities into the balance equation (2.3) with the aid of the formula

28 2. ]\[+Zf\j\,'w\N_[”wzl "W+Zf)\Nw\N = *t,M mi +Zf\N“’AN
A

+(thydi) M — thydim — Z finwan .

In view of Egs. (2.4), (2.5), the assumed potential relation 0¥ /dT = —s and & =
¥ + T's + T's, where s is the entropy density, we can rewrite Eq. (2.3) in the following
form:

(2.6) f ((pAi — thy ar — pbi + pri)di + Y _[pBan + fiy + privan]ioan

xi(P) A
+pT's — thydim — D FANOAN + 45,5 = Pe = pre)dv
Y
S
5 T
+ f (Z[PA@' — EMy. My yil&i My My F Ling BiT kM Tk
Ixi(P) =1

T
5 Z[Pqu,\N — FaNp N V0NN, ... ’,,5_,)(1'(!.
¢d=1

The balance equation (2.6) leads to the following balance momentum equations:
@7 —(pAinm + tipg) M — pbi + pri =0,
and

(2.8) pByN + fin + priban = 0.
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The boundary conditions for Egs. (2.7) and (2.8) are determined also with the aid of
Eq. (2.6).

The local form of balance of energy will be introduced in view of Egs. (2.6), (2.7) and
(2.8). The following equation

(2.9) [ (PTS_tmf?“‘\[_Zf,\NUJAN +q;,; — PTe)d’U =0
xt(P)

is assumed as a starting point.

LetusconsiderT&=é—1l)—sT=é—(g¥T+ T) (d"‘% ) (’/J_
oy
oT

Y d )
210) pt — (pot +tdy )y, Bl .
( ) P (p(‘)(vi,N 1N N — Z dfﬂi NP ,NPl Py

—E( é)w +fiiN)ﬂJAN

T). With the help of this we obtain

— T WN,Q,..Q, T ¢j,j — PTe = 0.
Z Z aw\NQl Q. Qy---Q §1%] €

The local forms of balance equations obtamed here will be further helpful in postulating
the forms of local balance equations in connection with the material structures.

2.2. The material structure for a body which undergoes the micro-nonhomogeneous deformation

In this section the material structure for a body which undergoes micro-nonhomogene-
ous deformation is suggested. First, one postulates local form of balance momentum and
energy equations. Thus, in view of previously considered equations (2.7), (2.8), one
postulates the balance momentum equations

(2.11) —timm — pbi + pE; =0
and
(2.12) fav + paioan =0,

where t;,7 is the first Piola—KirchhofT stress tensor and fyn is a force connected with the
relative displacement vector.
The balance energy equation is suggested with the help of Eq. (2.10) in the form
S

(2.13) p¢ —TindiN — ZTH\JP, PTi NPy Z Fanrn

5=1

T:
Z Z f,\f\"Ql,..Q.,wf\Nle-wQu + g5, —pre =0,

where t;n, t;n Py...Ps» f\N f\NQ, @, are some stresses and forces. They are connected
with the previously introduced stress tensor ¢;ys and forces fy, and will be considered
in detail after formulas (2.27), (2.30) and in Eqs. (2.26), (2.27), (2.29). This large number

http://rcin.org.pl
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of stress tensors follows from the fact that the theory considered contains higher gradients
of deformation. Furthermore, as it will be shown, they give a possibility of taking into
account the dissipation. On the other hand, our aim is to consider one stress tensor ;s
only. It will be attained further by plotting ¢;5s with other introduced tensors.

The theory of the material structures has been suggested in papers of PERZYNA,
KOSINSKI [13], KOSINSKI, PERZYNA [14], PERZYNA [15, 16], FRISCHMUTH, KOSINSKI,
PERZYNA [17] as an alternative approach to the mathematical theory of materials given
by NoOLL [18].

A system (G, @, R) is called a body element with material structure, where G is the
configuration space, ¢ is a space which contains processes P with values in G. P :
[0,d,] — G, where d,, is a duration of P. R is a constitutive relation. In general this
relation is multivalued. The relation R assigns reaction processes 7' € Zp to the process
P € &. In order to obtain a one-to-one mapping between processes P and Z, the method
of preparation space was introduced [13].

At present we consider the material structure connected with the body which un-
dergoes micro-nonhomogeneous deformations. Let us introduce the following symbols
€% = (EMN,Py- -, EMN,Py...Ps)r € = (EMN), WS = (WAN,Qys -+ -y WAN,Qy..Q7 ) WA =
(w/‘\N)1’\ = 17' "7NA—1~

DEFINITION 1. The collection of quantities
(2.14) 9(t) = (e,€ wi, WS, T, T,5)(1)

we shall call the actual deformation-temperature configuration of a particle X at the moment
t e [0, dp] [ ]

(i stands for all such configurations and will be called the configuration space. Let us
introduce also the space §p of subconfigurations (e, w)). Furthermore, let B : § — Gpg
be a projection from @ to its subconfiguration space Gp.

DEFINITION 2. The collection of quantities

(2.15) s(t) = (¥, tim, Fan, 8, q5)(1)

where 1 is the free energy density, s is the entropy density, q; is the heat flux vector and t; s,
fan are given by Egs. (2.11), (2.12), will be called the actual reaction of a particle X at the
moment t € [0,dp]. =

The space & consist of all reactions. We can consider process spaces @ and Z,® =
{P:P:[0,dp] = G}, Z ={Z:Z:[0,dp] — 8}. Furthermore it is assumed that
each of processes (P, Z) € & x Z satisfies the balance equations (2.11)—-(2.13). Pg stands
for a process with values in Gpg.

DEFINITION 3. The process (P,Z) € & x Z, Dom P = Dom Z which satisfies the
balance equations (2.11)-(2.13) and the Clausius—Duhem inequality given later by Eq. (2.25),
will be called the local thermodynamic process. m

Following the papers [14], [16] we introduce the material structure of the differential
type. In this case the method of preparation space and the intrinsic state space will be
introduced with the help of the following sets:

(2.16) B = {%PB(T) :Ppedp, te DomPB} .

T=1
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d
(217) B, = {J;PB(T)

Thus, we can define the method of preparation space as ' = B and the intrinsic state
space as X = {(g,k): g € G, k € B,}. Furthermore, we assume that the detailed
conditions suitable for differential type structures [14, 16] are satisfied. Then we can
postulate the constitutive mapping

: Pp € Pp, t € Dom Pg, Pp(t) = By € GB}~

T=1

(2.18) R{g,+9(0): By — Zy)

for processes with Dom P = {0} in the form

(2.19) v =1Y(9),

(2.20) tive = th(g) + th(),

(2.21) fan = fin(9) + Sin©),
oot

(2.22) s = ~37

(2.23) ¢ = —AiiTy5 ,

where t¥,,, f¥y are equilibrium stress and forces and t¢,;, f\N? are dissipative quanti-
ties. The suggested form of constitutive equations will be considered in more detail during
investigations of constraints imposed by the Clausius—Duhem inequality. The constitutive
mapping (2.18) determines the constitutive relation R previously mentioned.

The evolution function [16] of intrinsic states e takes the form

(2.24) e(a, P) = (P!, P})
for o € (¥ x ®)* = {(0, P) € ¥ x ®|lo = (P!, P5)}. Symbols i and f stand for initial
and final values of the process.

The foregoing considerations determine the structure of a material of the differential

type [14], [16].
Let us consider the Clausius-Duhem unequality

. PTe q;
2.25 — + [ = =0
(2.25) ps= 1 (T)J_

Let us assume that the stresses and forces can be represented as a sum of equilibrium
and dissipative parts

o
(2.26) Lin =iy +tin,

- —# 4
(2.27) fan=Fv+ Bns
where the symbols # and d are connected with equilibrium and dissipative quantities.
The remaining stresses and forces are assumed to be equilibrium only. Thus t;np,..p, =

- —#
tinp...Pso FaNg, .00 = FaNG,..Q.-

We can calculate pr, from Eq. (2.13). In view of & = b + sT' + 5T, Egs. (2.26), (2.27),
the inequality (2.25) takes the form

—# ai,b . B (_ ()’gb ) .
2.9 N — p——— TN+ t: —_— ) :
(2.28) (t;N pB:t,-,N)x N 52-1 iNPy...Ps P%LN i Ti,NP,...Ps



174 J. KACZMAREK

dp Ly ]
(2.28) +Z (f\N p&w )w\N“‘ZZ (f/\NQ,...Q,,“P—‘_———w—_)'l"’-’,\N,Ql.,,QV
A v=1

[cont] 37“1\1\1',Q|..vQ,_,

81& q;T,;
+tly i + 28 5,
iNTi,N z}: ANWAN — ( 5‘T pS )T T 2 0

It is assumed here that ¥ does not depend on P according to Eq. (2.19). This inequality
should be satisfied in particular by the equilibrium state. Thus, if t¢y, — 0 and f{y — 0,
then

iN pa-l'i,N’ tINPy...Fs panyNPl__,P& y
(2.29) )
i o8 oY 7# g 01 s 9y
AN p—(?wAN’ ANQ..Q, P_‘——awi\N‘leQv» =TT

Taking into considerations (2.28) and (2.29) we can assume that the constraints imposed
on the constitutive equations by the Clausius-Duhem inequality are given by

.T’.
(2.30) ti{Nii,N + ngNw,\N — ng—j >0,
A

Following Egs. (2.26) and (2.27), the total stress t;3; and force fy is assumed as &;pr =

thy + t4h and fay = fiy + fin. Equilibrium stresses and forces defined in (2.29)

are connected with the tensor t¥,, and forces f{,. This connection is given by equations
= pAinm, f¥y = pBan, where A;pr and By are defined by Eq. (2.4).

The phenomenon of the micro-nonhomogeneous deformation suggests a model of
dissipation. The micro-nonhomogeneous deformation induced by micro-homogeneous
deformation causes relative motion of atoms. Motion of this kind is evidently a source of
heat. Therefore, we can postulate that the amount of heat emitted during the deformation
is proportional to the relative velocities of crystal sublattices. Bearing in mind that the
Clausius-Duhem inequality must be satisfied, we assume the positive definite quadratic
form

231) L= Cauniamian + 3. Cromn(ioan — bupr)(an — wun) 2 0
A (,\,U)E[
as the starting point, where [ = {(A\,v): A < v, A, v =1,...,Ny—1}.
The L determines the amount of heat emitted per unit time in a material point during
the body motion. We can transform Eq. (2.31) to the form

Ny-1 Ny-=1 Njy-1
233) L= ) fiyoanv= D, (C'AMNW,\M + Y Craomn(an — Wyn)
A=1 A=1 v=A+1

A—1
- an,\MN(ﬂfaM - ﬂ);}u)) WAN »

a=1

where for A = N — 1 the second summand on the right-hand side vanishes, and for
A = 1 the third summand vanishes. The formula (2.32) defines the dissipative force f{ .

http://rcin.org.pl
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3. Thermodynamics of materials which undergo martensitic phase transformations with
shuffles

3.1. The free energy

The free energy connected with martensitic phase transformation have been consid-
ered in [10]. In this description one takes into account the micro-nonhomogeneous de-
formation, internal rotations towards habit planes and flat character of the propagating
interfaces.

The free energy suggested in [10] is expressed in the form
(3.1 v=F+M+A+Gg.

The first term F} describes mainly the deformation given by the Green strain tensor and
the temperature. The second, M, in connected with the micro-nonhomogeneous defor-
mation. This deformation is introduced with the help of the relative displacement vectors.
The component (7 takes into account the flat character of propagating interfaces. It
contains higher gradients of deformation. The term A describes internal rotations towards
habit planes. These rotations are described with the aid of a variable a. This variable
has a different nature than those hitherto used. Therefore a will be considered in more
detail.

It should be pointed out that all terms M, A and Gy may depend on the variables
appearing in Fj.

In order to define a, four special configurations have been distinguished. The first
one is the reference configuration which coincides with the natural state of the austenite
phase (parent phase). The considered martensitic transformation can take place in six
shear systems [22, 23, 30], as it was mentioned previously. Let us consider one of them.
Let e}, < e}S stand for the fixed shear strains in this system. After exceeding the strain
€3,, the phase transformation starts and after exceeding the strain e} we pass to the
elastic martensite. Thus, e}, and e}y can be considered as a boundary of the spinodal
region.

The second configuration 2, = 2,(Xy,t) is connected with the deformation for
which the strain e, is attained. The third configuration z, = z,(z.,!) appears when
the strain e}, is attained. The fourth configuration z; is the actual configuration. The
deformation gradients which are assigned to these configurations relative to the previous
one are F** = [z, N], F° = [z, 4], F*" = [x; ], and therefore the total deformation
gradient is given by F = FF F°?,

If the configuration z, is not exceeded, then F* = [z;,] and F = F*F**. Let
F* = R°U?® and F*® = RU be the polar decompositions of the deformation gradients. The
rotation R considered here should not be mistaken for the rotation from Eq. (2.2). In the
formula (2.2) the total rotation tensor is introduced. With the aid of these decompositions
one defines the variables

(3.2) ag = R_I(RSUSRU -Rpr, K =1,2.

The vectors p1 and p, are material directors ([24]) connected with two habit planes which
are assigned to the forming martensite variant. We assume that the internal rotation R
is defined just as R = R®. In this case it is assumed that the total rigid rotation of the
whole body is eliminated from our considerations. This is necessary, in turn, in order to
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escape the imposition of constitutive equations determined by part A of the free energy
(3.1) on the rigid rotation mentioned above.

The variable ay is a measure of deviation of the director py from its initial position
under stretch and internal rotation R = R®. The variable a means this variable ay, which
is connected with forming the martensite variant.

The part A of the free energy depends on ay and describes the bifurcation process
connected with internal rotation R [10]. Thus this rotation is a variable in constitutive
relations. It implies that a moment of force acting in the body is related to the material
point in the spinodal region. As a consequence, the Cauchy stress tensor should be
nonsymmetric in the spinodal region. Indeed, if we assume that {;; = gaw/amm and
i depends on af, then we obtain a nonsymmetric Cauchy stress tensor ;; from 1. It
suggests that the balance moment of momentum equation should be investigated in more
detail.

The total moment of force which acts on an element of the body P is assumed as

(3-3) M; = f (Ei]‘kl‘j})k)da + ffijkl'jb};dv,
ax(P) x(P)
where py. is a surface force. The moment of momentum is given by
(3.4) H; = f (Pfijkl'jvk + ‘id,-)(lv .
x(P)

where a; = «;(R) is the internal rotation vector determined by R and i is a moment of
inertia assigned to the material point and connected with this rotation. Then, the balance
moment of momentum equation can be expressed as

(3.5) [ €0k (Ompm + bi = pit) + (€ijk0k — idi)dv = 0.

x(P)
In view of the motion equation (2.11), Eq. (3.5) leads to the condition
(3.6) EijkOjk = 1y .
This equation justifies the introduction of the second term in Eq. (3.4). It is connected
with nonsymmetry of the Cauchy stress tensor in the spinodal region. Omission of this
term in Eq. (3.4) would be in contradiction with our previous considerations.

However, introduction of i¢y; into Eq. (3.4) has greater consequences. Namely, the
term #év;¢v; connected with kinetic energy should be taken into consideration in the bal-
ance energy equation (2.3). This leads to a new equation following from Eq. (2.3). Thus,
Egs. (2.11)-(2.13) should be suplemented by the equation

(3.7) m; +it; =0,
where o
(3.8) 9 e dhpy

m; = po—————
! pé)am IR,y O

Then the constitutive equation for ¢;,s takes the same form as in (2.20), (2.29) with the

relation

_# Y Oekr

(3.9) tin = PR P

where 1) = 1)(e,e,nr, 5. .., 1,01, ,8, 1) is given by Eq. (3.1).
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3.2. The material structure

The material structure for a body which undergoes martensitic phase transformations
and micro-nonhomogeneous deformation is introduced in this section. Two new aspects
should be taken into consideration in comparison with the material structure for a body
with micro-nonhomogeneous deformation only. The first one is the variable a which
should complete the actual deformation-temperature configuration. The second one is
connected with dissipation. In the Sec. 2.2 a model of dissipation associated with the
micro-nonhomogeneous deformation has been suggested. In this case the material struc-
ture of differential type of the first order was introduced. It is well known that materials
connected with martensitic phase transformations have good damping properties [25]. The
material damping connected with these phase transformations has a different mechanism
than that for the micro-nonhomogeneous deformation. Heat emitted in this transforma-
tion will be mainly related to the acceleration connected with breaking passing through
the energetic barrier. Thus the second aspect is that the material structure suggested here
should be of differential type of a higher order.

In view of the above considerations one postulates the actual deformation temperature
configuration in the form

(310) g(t) = (E,eG,w,\,wf,a,T,T,j )(t)
The actual reaction of particle X should be assumed in the form
(3.11) s(t) = (¥, tinr, mj, an, 8, qx)(1) -

The balance equations for this material structure are Eqgs. (2.11), (2.12), (2.13) and (3.7).
In Eq. (2.13) the term —m;¢; appears additionally. Introduction of Eq. (2.13) into
Eq. (2.28) leads to Eq. (3.8). This does not change the inequality (2.30) in the case of
neglecting the dissipation related to ay.

In the case of martensitic phase transformations the heat flux should be also separately
considered. In general the body considered is a multiphase medium. Heat coefficients are
different for the austenite phase and for the martensite one. Furthermore, the martensite
can undergo internal rotations. It has an effect on the heat coefficients expressed in the
basis b which are connected with the Bain axes. On the other hand, these coefficients
are unchanged in the basis d which is connected with the shear system and can undergo
internal rotation. It is because the structure rotates with this basis. Thus, with the help
of basis d it will be convenient to introduce the dependence of heat coefficients on the
internal rotations.

The evolution of the relative displacement vectors during the phase transformation
leads to the formation of different martensite variants with different structures. These
structures are connected with different heat coefficients which will depend on wj.

Thus we assume the Fourier equation expressed in the basis d as a starting point. Let g,
be the heat flux, A be the heat coefficients and T ;. be the gradient of temperature. These
quantities are expressed in the basis d. The Fourier equation takes the formg; = A; Tk in
this basis. The heat coefficient \;x do not depend on internal rotation R because the basis
d rotates in agreement with internal rotations. Thus, as a consequence of the structure
transformation during deformation, A should depend on shear deformation measure
€1, and relative displacement vectors wy only. Therefore, we assume Al = )\zk(elz,wA)
The relation between the gradient of temperature T ; given in basis d; and the gradient
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of temperature T ,, expressed in the basis b, has the form Ty = (dx - b,)T , where
(+) stands for the symbol of the scalar product. Connections between heat flux ¢, in
the basis b,, and @, given in the basis d; can be written as ¢,, = (b,, - d;)g,. Internal
rotations will be taken into account by assuming that d; = di(R). Bearing in mind the
above considerations we can propose the constitutive equations for the heat flux in the
basis b,, in the form

(3.12) Gm = (b » di(R)Aric(e12, W2)(dk(R) - b,)T
Now let us define the sets

d dr
(3.13) B= {EPB(T)H, - L pa(r,- b g PRl

Pp € &g, t € Dom PB}

dm
a(h_—nPB(T)l'r:i :

Pg € &5, t € Dom Pg, Pg(l) = Bg € gB}

o] - &
(314) g = {E B(T)IT=1F‘PB(T)|T=17' v

The method of preparation space is assumed as K = B, and the intrinsic state space as
Y ={(9,k): g € G, k € B,}. Furthermore, we assume that the detailed conditions
suitable for the differential- -type structure [14, 16] are satisfied. We can postulate the
constitutive mapping (2.18) in the similar way as in Sec. 2.2 for processes with Dom P =
{0} in the form (2.19)-(2.21). We assume that entropy takes the form s = s* + %,
similarly to the stress. Furthermore, the equation for heat conductivity should take the
form

(3.15) 4 = qi(9)

based on Eq. (3.12). The free energy is determined by Eq. (3.1). Furthermore one
assumes that the free energy does not depend on the time derivatives of g.

In the frame of this differential structure one can suggest a simple model of dissipation
connected with the phase transformation. The heat emited during this transformation will
be mainly connected with acceleration which appears as a consequence of breaking after
passing through the energetic barrier. It suggests that the dissipative entropy, in the
simplest case, should be proportional to the acceleration of the deformation

(3.16) 82 = cpQépq -
In this case the formula (2.30) should be completed by the summand —ps?T".

3.3. The material structure with internal state variables

It is convenient for calculations to introduce the material structure with internal state
variables. The question is whether such a material structure is suitable for description of
dissipation in the materials considered. Previously it has been suggested that dissipation
depends on time derivatives of the deformation. Thus the internal state variables should
include this situation.

Let us consider an evolution equation in the form

(3.17) p=A(P, ), u(t) = uy.
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Following LUBLINER [35], KOSINSKI, WOINO [36] we can consider the solution of Eq.
(3.14) in the form

(3.18) K(t) = @(Pr(1), 1) ,

where P, is the past history of the process P, and @, is a functional which assigns the
value p(t) to the function P,(7). We can expand this function into the Taylor series in the
right-hand side of point ¢. Then, the functional (3.18) can be approximated by a function
of the form @,(P(t), P(t), P(t),...,1,). Therefore, Eq. (3.17) can describe the pre-
viously considered models connected with the differential material structures. However,
description with the help of internal state variables is more general.

We introduce two kinds of internal variables. Variables 6 describe the viscosity and
variables (3 describe the dissipation connected with the phase transformation. Let us con-
sider a simplified model. Then, we assume that only the stress t = t(g, §) and forces
f\ = £\(g, 8) depend on §. Thus the viscosity influences mainly the stress and the forces.
The variables 3 are related to the dissipation which appear during breaking after passing
through the energetic barrier. This breaking causes emission of heat. We assume that
transformations have no influences on the shape of the potential energy of the deforma-
tion. Therefore we assume that only entropy s = s(g, ) depends on B.

This example is based on simplified considerations which are carried out in order to
characterize the role of these internal state variables. However, in general, it should
allow for the dependence of all constitutive relations on & and p. It is expected that
the properties of the simplified model will be a distinctive feature of these generalized
relations. In this case the following form of the Clausius-Duhem inequality should be

considered:
Y, ~r s — (028 + ps)
(3.19) (1 1N)J,C,N+¥(fmv PawAN WAN 8T+PS i
aw . ¢l
T E)ﬁ,ﬂ Tt

In the above considerations the ,,size” of the material point is smaller than the thickness
of the interface. Thus the suggested model could be a starting point to the description
of a body with martensitic transformation in which the material point contains averaged
properties of a composition of martensite variants. In such a case internal state variable
can describe more complex effects connected with the phase transformation. In this
description the deformation measure is the Green strain tensor e which is a function
e = e(zx,ex), where 2z is the mass contribution of the k-th martensite variant, and
e, is the strain connected with the k-th variant. Then the free energy has the form
F = F(e,T).

Let us consider a part of the material with the volume V' which will be treated in the
limit as a material point. Let us assume that there exist different interfaces marked by
m. Then the m-th interface is at a distance of |, | from the origin of coordinates. We
assume that the interface can undergo parallel translations only. Let us introduce the
internal state variables defined as

(3.20) [t = % {8

where the integration is carried out on the area 5, of the m-th interface in the vol-
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ume V. Let u = (uy,...,up). This variable can describe dissipation connected with the
motion of interfaces. The free energy should be plotted in these variables and takes the
form F' = F(e, T, p).

For determination of the free energy F' = F(e, T, ), the function e = e(zy, ex) and
the evolution function for the variable i, the model studied in the paper could be useful.

4. Final remarks

In the present paper and [10] a three-dimensional model of the martensitic phase
transformations with shuffles is suggested. This description is introduced in two stages.
First, a model of the free energy connected with these phase transformations was studied
in [10]. In this model the author made efforts in order to take into considerations the
complicated phenomena which appear in the materials. In the second stage, in this paper,
a model of thermodynamics which takes into account properties of the previous description
[10] has been introduced.
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Extension of a plane crack due to plane SH-waves
in a prestressed infinite elastic medium

A. N. DAS (DARJEELING)

IN AN INFINITE isotropic elastic medium, initially in a state of uniform anti-plane shear, the problem
has been analyzed of one-way extension of an infinitesimal flaw into a plane shear crack due to
two identical linearly varying plane SH-waves with non-parallel wave fronts. Fracture is assumed to
initiate at a point a finite time after the waves intersect there, and one of the crack edges is assumed
to extend along the trace of the wave intersection. Following CHEREPANOV [7], CHEREPANOV and
AFANAS'EV (8], the general solution of the problem has been derived in terms of an analytic function
of complex variable. The results include the expression for the stress intensity factors at the crack
tips.

1. Introduction

SINCE BROBERG’S [1] investigation of the solution of a crack expanding symmetrically with
constant velocity, under conditions of plane stress or strain, in a homogeneous isotropic
elastic medium in a field of spatially and time-invariant tensile stress, a number of pa-
pers have appeared analyzing different geometrical situations. CRAGGS [2] later solved
the same problem as that done by BROBERG, but he used the method of homogeneous
functions to obtain the solution. ACHENBACH and BROCK [3] considered the wave motion
generated by a uniformly extending shear crack in a state of uniform antiplane shear. All
the problems mentioned above are, however, self-similar ones with index (0, 0), and they
are concerned with symmetric expansion of cracks.

Problems involving non-symmetric extension of cracks under uniform loading along
the crack surface are not easily found, perhaps due to severe mathematical complexity
encountered in solving such problems. Following the method of homogeneous functions
developed by CRAGGS [2], non-symmetric extension of a small flaw into a plane crack un-
der polynomial form of loading was solved by BROCK [4]. Following the same procedure,
BROCK [5] also solved the problem of non-symmetric extension of a crack due to inci-
dence of plane dilatational waves. Recently, the elastodynamic problem of non-uniform
extension of a crack under homogeneous form of loading solved by GEORGIADIS [6].

To the best knowledge of the author, the problem of one-way extension of a crack
due to the action of two identical non-parallel plane SH-waves has not been investigated
so far. In this paper, the problem of extension of an infinitesimal flaw into a plane
shear crack has been solved, under the assumption of a constant extension rate due to
the action of two identical non-parallel plane SH-waves propagating towards each other
in an infinite isotropic elastic medium which is initially in a state of uniform anti-plane
shear. In a finite time after the crossing of the plane wave fronts, a fracture is assumed to
initiate along the line where the wave fronts crossed, and one of the crack edges is then
assumed to travel with constant speed. Superposition considerations allow the original
problem to be separated into three self-similar problems with (0, 0), (0,1) and (1, 0) as
the indices of self-similarity. Following CHEREPANOV [7], CHEREPANOV and AFANAS'EV
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[8], the mentioned self-similar problems have all been formulated as some problems of
Riemann and Hilberi for a half-plane, which can be easily solved. Analytical expressions
for the dynamic stress intensity factors at the crack tips have been derived.

2. Formulation of the problem
Let two identical plane waves defined by the formulae
(2.1) Oy = AW H(Wy), o0y = £AgctgbyWe H(Wy)
referred to coordinate system (z, y, z), where
Wi = eyt £ ysiny + zcosby, 0<8,<7/2,

and H () is Heaviside’s unit function, propagate through the infinite solid which is pre-
stressed so that

(2.1 0y, =0, oy, =0.

Let us assume that at { = 0 the non-parallel plane waves intersect at x = y = 0. A
microcrack is assumed to appear at { = ¢, at z = y = 0 and one of its edges starts to
extend along the trace of the wave intersection with uniform velocity v. The expanding
crack, the circular wave front asscciated with its motion and the plane wave front are

shown in Fig. 1a.

b Imz
4
c t= =ty
y
e,
0 A B - ¢3! 5! vl Rez
- -J ) e —
0 vi x 0 D c B A 0
0
FI.gJ(G) F'Q”b) b
FiG. 1.

In effect crack extension occurs by removing the stresses which would be generated
in the crack plane by the combined applied static and dynamic fields if no cracks were
present.

Accordingly, both the crack faces are subjected to shear tractions equal to —g —
2A(](C2t + 2 cos 6()).

The anti-symmetry of this loading about the crack plane implies that it is sufficient to
consider the half-plane y > 0 with bounding surface y = 0. The boundary conditions for
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this half-plane are then given by

(2 2) y =0, 0<z <ot Oyz = —0 — 2.4()C2t() — 2A()(C2t, + CL'COSH()),
) y=0, x>uot', z<0:W=0,
where t' =1 — t,.

Equation (2.2); shows that, by invoking the superposition principle, the proposed
problem can be divided into three separate problems of a constant shear traction, a shear

stress linearly varying with time and a shear linearly varying with distance along the crack
plane.

3. Constant shear traction on the crack faces

The wave motion generated by constant shear tractions on the faces of the crack
defined by y = 0, 0 < z < vt has been considered in this section and, for simplicity, ¢
instead of ¢’ has been used. The boundary conditions are

y=0, O0<z<vl: 0y =-p,
y=0, z>vt, <0, W=0,
where py, = 0 + 244, 1).
The displacement W which satisfies the wave equation
rw N FW 1 PW
0x2 Ay ot
is to be determined subject to the boundary conditions given by (3.1). From the bound-
ary conditions we observe that dW/dt shows dynamic similarity and is a homogeneous

function of degree zero in z/t and y/t{. Therefore, by the functionally invariant method
of SMIRNOFF and SOBOLEV [9], we can write

ow

(3.3) B Re ¢y(2),

(3.1)

(3.2)

where

(3.4) t—2z+y\/e;2—22=0.

The sign of the radical is to be fixed by the condition that as z — oo,

(3.5) ;- =iz+ 00T,

Equation (3.4) maps the semi-circular region of the cylindrical waves defined by OABCD
onto the lower half of the complex z-plane with cuts, given by

Tt — z’y\/tl -zt + )
14 g

(3.6) z=
as shown in Fig. 1b.
In view of Eqgs. (3.3) and (3.4) we find

0o

0
% = pRe [as:,(z);)—;] ,
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so that

8UZ$,O,t 1 ! =
—%———) = ?Re [ — uzgp(2)\/e5 2 — 22] )

Therefore the boundary conditions (3.1) are transformed to the following conditions in
the z-plane

(3.8) Imz=0, Rez<v™!, Redy(z)=0,

(3.9) Imz=0, Rez>v"!, Img¢)(z)=0.

(3.7)

In order to determine the analytic function ¢,(z) subject to the condition (3.8) and
(3.9) it is necessary to know the behaviour of the function ¢y(z) when 2 — v~1,0. The
zero point of the z-plane corresponds to the point 2 = 0,y = c;t in the physical plane,
where the displacement derivative W /0t is zero. Hence, taking the representation (3.3)
into account, we obtain

(3.10) Re ¢y(0) = 0.
Further, the condition (3.9), after integration with respect to z, may be put in the form
(3.11) Imz=0, Rez>v"', Im¢y(z)=0.

Moreover, the displacement derivative W /dt near the moving crack tip z = vt, y = 0
should show square root singularity, so that at z — v~

(3.12) du(z) = 0 (1/Vz = v71) .

The above boundary conditions given by (3.8) and (3.11), together with the consider-
ation (3.10) and (3.12), suggest that

A
vz—v1’
where A is a real unknown constant to be determined.

By integrating Eq. (3.7) with respect to t it can be easily shown that for z > 0

2¢y(2)dz }

0y-(7,0,1) = —pRe {[@"o(z) ey’ — 77 t/I f \/7_32

ay”(_x’o’t)=”ﬂRe{[¢n(z) R f Z(elez b

=2 2
=14 C, " — 2z

(3.13) Po(2) =

(3.14)

-C.

Next, using the boundary condition (3.1); in Eq. (3.14),; we obtain

A=py/pl,
where
_ 2 [Velea+v) = v ] _ ey=m
G5 = ﬁ[——-—" 22 050 - =P )|, 2= 207,

and F( ), F/() are complete elliptic integrals of the first and second kind, respectively.
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The stress intensity factors at the crack tips ¢ = vt, y = 0 and z = 0, y = 0, defined
by

AN(H = ltr._,vt vVI-— 'Uthz(I, 0, t) 5
N()2 = ltx_.,”\/.'l_JO'yz(—I,O, t) )
respectively, are obtained with the help of Eqs. (3.13) and (3.14) as

A
u—_ (C% - vl)t )
2

AV .

Nl)l

(3.16)

Noz

4. Problem of shear traction linearly increasing with time on the crack faces

For the case of shear tractions on the faces of the crack increasing linearly with time,
the boundary conditions are
(41) Yy = 07 0<z < ’Ut, Uyz = _Plt»
(4.2) y=0, z>vt, z<0, W=0,
where m= 2A()Cz.

The second order derivative d?W/dt? now shows dynamic similarity which can be
taken as the real part of the analytic function ¢;(z), so that

I*w
(4.3) e Re ¢(2)
which implies

Qoy.(2,0,8) . 1

(4.4) —— ERe[—;ms;(z) et — 27,
where z is given by Eq. (3.6) and ¢,(z) satisfies the conditions
(4.5) Imz=0, Rez<ov™', Re¢(z)=0,
(4.6) Imz=0, Rez>v~!, Img¢i(z)=0.
Integrating Eq. (4.3), we obtain

(4.7) % [%%:{] = Re ¢(2).

Taking into consideration the facts that near the moving crack tip x = vt,y = 0 the

displacement derivative @W /0t varies inversely to the factor \/v;f — z, and that

Re¢,(0) = 0,
we obtain (in view of the conditions (4.5), (4.6) and Eq. (4.7)) the result that
d Bz
4.8 il | SR Y
( ) QSI(Z) dz m] ’

the real constant B is to be determined from the condition that on the crack surface stress
Oy = —pil.
yz
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From Eq. (4.4) after integration, we derive for z > 0

/z
oy:(2,0,t) = —pz Re i]‘ {\/62—2 s T—(t/{z__ﬂ}%(ﬂdﬁ

=1 et —T12
(4.9)

__T(t/x s T)}gé,(r)ah‘.

-t/x
Oyz(—2,0,1) = pr Re f { 62—2_72_
cy — 72

_c2

Therefore, using the boundary condition (4.1) in (4.9);, we obtain after simplifications
B =pi/pd,
where
2 c+ v
J=——|F——@Bc2+v)E(p) +
s | TR e+ B

F(), F() and p have been defined earlier.
The stress intensity factors at the crack tips defined by

N]] = “a;—out\/z —_ Uthz(I,O,t) 3
N]z = ltx_.u\/iayz(—m,ﬂ, t),

v
o e U 802)F(P)] :

are found to be

t
N" = ﬂ-— (C% = '()z)tB y
€7

N]z = ﬂ.Bt3/2 .

5. Problem of shear traction linearly varying with distance along the crack plane

Consider the initially undisturbed half-space y > 0 subjected to the shear traction
—pz over y = 0, 0 < & < vt. The boundary conditions are

y=0, 0<z<vt: o0y, =-m7,

(1) y=0, z>vi, z<0, W=0,

where p; = 2A;cos 6.
2

In this case, ——W: shows dynamic similarity. So we take, keeping Eq. (3.6) in mind

oxot
W
901 Re ¢(2)
with
azayz o= _E ! -2 _ .2
(5.2) P20t~ i Re[z¢5(2)\/ €5 z7],

where ¢,(z) satisfies the conditions
Imz=0, Rez<v !, Regyz)=0,

(5.3) i g
Imz=0, Rez>v"", Im¢y(z)=0.



EXTENSION OF A PLANE CRACK DUE TO PLANE SH-WAVES 189

From Eq. (5.2); after integration it is found that

W = —z’Re jr“(z— T)P(T)dT

-1
1

v
so that
,d [10W }
2
—z-—<{ ——— % = Re ¢(2).
{35} = Reant2
Since dW/0t near the moving crack tip should exhibit square root singularity and also
since Re ¢,(0) = 0, we have, in view of the conditions (5.3), the result

5
(5.4 ha) = g [ .

where the real constant C' is to be determined from Eq. (5.1);.
Equation (5.2); can be integrated to obtain for z > 0

t/x
t [ t—rT1x
Oy2(,0,1) = pr Re f {F sz -7 4 = }(ﬁz(’r)d’r,

o5t /€ —T
(5.5) v
t t+
0yz(—2,0,1) = px Re jI {—ﬁ cz—z - 72+ #}¢2(7)d7'.
—eyt Rl x cz'z — 72
So, using the boundary condition (5.1); and Egs. (5.4), (5.5), it is found that
C =-p/ukK,

where
I:\/CE(CQ + ’U v F(p)] X
\/_ \/cz(cz + v) ’

F(), E() and p have been defined earlier. In this case, the stress intensity factors are
obtained as

ut
N21 = ltz_‘-ut\/.’E - 'UtO'yz(fl,',O, t) = —C—Z’U (C% == vz)tC 0
Ny = Ity gV/20y.(-2,0,1) = 0.

(5.6)

6. Discussions

The solution of the orginal crack problem is obtained by taking py = o +2Ayc2ty, p1 =
2Apc; and p; = 2A,cos by and superposing the results obtained in Secs. 3-5 over the
stress fields given by Eq. (2.1). Using the results obtained in the Secs. 3-5 it is possible
to write the stress intensity factors at the edges as
6.1)

o Mot Nyt Ny =L[1+AA gB_MC]\/nTU_—mZ)
! o/ ¢ty \/T_] Po " P2 '

N()2+N12+N22=}_¢[1+AA ﬂB]W;
Czt() \/l; Po Y41

Sz=
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where the parameter 7 = (t/t)) — 1 is the non-dimensionalized time after crack initiation,
and A = (24yczly)/ o is the ratio at ¢ = y = 0 at initiation of the crack plane stress
due to the plane waves and the prestress. Also m is the dimensionless crack tip velocity
given by m = v/c;. The expressions for the stress intensity factors and the constants A,
B and C given in Secs. 3-5 are very simple. One may easily obtain information about the
stress in the crack line and their intensities for each problem, as well as for the original
problem considered in this paper.

References

1. K.B. BROBERG, The propagation of a brittle crack, Arkiv fiir Fysik, 18, 159, 1960.

2. J.W. CRrAGGS, Fracture of solids, John Wiley and Sons, New York 1963.

3. J.D. AcHENBACH and L.M. BROCK, Rapid extension of a crack, ]. Elasticity, 1, 51, 1971.

4. L.M. Brock, Non-uniform extension of a small flaw into a plane crack at a constant rate under polynomial

form of loading, Int. J. Engng. Sci., 14, 181, 1976.

5. L.M. BrROCK, Non-symmetric extension of a plane crack due to tensile pre-stress and dilatational wave, Int. J.
Engng. Sci., 13, 951, 1975.

6. H.G. GEORGIADIS, An integral equation approach to self-similar plane elastodynamic erack problems, J. Elas-
ticity, 25, 17, 1991.

7. G.P. CHEREPANOV, Mechanics of bnttle fracture, Mc-Graw Hill 1979.

8. G.P. CHEREPANOV and E.F. AFANASEV, Some dynamic problems of the theory of elasticity — A review, Int.
J. Engng. Sci., 12, 665, 1974,

9. V. SMIRNOFF and S. SosoLEv, Trudy Seysmologicheskogo Instituta, No. 20, 1932.

DEPARTMENT OF MATHEMATICS
NORTH BENGAL UNIVERSITY, DARJEELING, WEST BENGAL, INDIA.

Received January 18, 1993.



Arch. Mech., 45, 2, pp. 191-210, Warszawa 1993

Algebra of the transfer matrix for layered elastic material
Z. WESOLOWSKI (WARSZAWA)

THE COMPLEX-VALUED 4 X 4 transfer matrix M for periodic elastic layers possesses the following
symmetries

My =Mp, Mpn=My, Mp=-Mu, My=-Ms,

My =—-Mzn, Mg=-Msy, Mg=My, My= Mz,
detM =1, MuMnMyMy = MpMaygMznMy .

In the paper it has been proved that, due to the above symmetries, two real or complex parameters
%, ¥ and a set pp of further 18 scalar parameters may be defined and calculated. The transfer matrix
may then be represented as the function M = M (e, ¥, pp). This new function for each integer n
satisfies the identity

(M, ¥, pp)]* = M(ng, n3, pp).
The derived identity drastically simplifies the calculation of displacements and stresses in the peri-
odically layered medium.

Introduction

THE TRANSFER 4 X 4 matrix governing the reflection and transmission of the elastic
wave at the boundary between two homogeneous materials possesses a very special, non-
Hermitian symmetry. It is shown that due to this symmetry it is possible to represent the
matrix M in a special form, which leads to drastic simplification of the calculation of the
powers M ™.

In the earlier paper [3], in connection with propagation of transverse wave (plane
problem with displacement orthogonal to the plane) in periodic system of layers, was
considered the 2 x 2 matrix H with the following symmetry:

= [i' _z}] , detH =1,
21 2
where the bar over the complex number denotes the complex conjugate. Due to this
special symmetry the parameter ¢ may be introduced leading to the very useful in com-
putations and elegant formula f/ (@)™ = H(n¢y). The trivial generalisation of the above
2 X 2 matrix is the 4 x 4 matrix
21 27 0 0
_|Z2zm 00
H=10 0 2 2|
0 0 zZ 7
provided the determinants of the upper-left 2 x 2 part H,, and the lower-right 2 x 2
part H, are equal 1. There exist two different parameters ¢ and 1) connected with the
2 x 2 matrices Hy, ;. The 4 x 4 matrix H satisfies the identity H (e, )" = H (np, n)
because each of its 2 X 2 constituents satisfies the above mentioned formula, the first with
parameter ¢, the other with parameter 1. The purpose of the present paper is to show
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that the more general 4 X 4 matrix M governing the wave propagation of longitudinal
and transverse waves satisfies the same identity.

1. Transfer matrix

Consider two elastic materials separated by the plane z = z,. The layer situated
between z; and z,, its displacement, strain and stress shall be identified by the label
1, whereas the layer between z, and z; will be identified by the label 2. The waves
propagate in some directions inclined to the z-direction, Fig. 1. The longitudinal wave
propagating in medium 1, reflected by a plane produces the reflected, longitudinal and
transverse waves propagating in medium 1 and transmitted, longitudinal and transverse
waves propagating in the medium 2. These waves are multiply reflected leading to the
wave pattern shown at Fig. 1. Similar pattern is obtained for the incident transverse wave
propagating in the medium 1.

\’V\

N A
e
Pl
Xq Xp X3
v,

Fic. 1.

In each region the displacements are represented by the displacement potentials ¢
and ¥, where K is the layer label, ' = 1,2. The potential ¢ represents the sum of
all longitudinal waves propagating in the layer A’, and the potential 1 —the sum of all
transverse waves propagating in the layer K. In [1] was considered the antiplane wave
with the displacement in the z direction. Here we consider only the displacements in the
plane z, y. The results of [1] and of the present paper, taken together correspond to the
general reflection and refraction at the plane boundary between two elastic materials.

The following potentials in the regions K are expected:

YK = Ak exp i[—wt +pr(z — )+ sy]
+ B expi[-wt — pg(z — xk) + sy],

Y = Crgexpi|—wt + qr(z — zg) + sy]
+Dgexpi|-wt — gx(z — Tzx) + sy].

(1.1)
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The terms proportional to Ay, By represent two harmonic longitudinal waves of am-
plitudes A, By. The terms proportional to C'i, Dy represent two transverse waves
of amplitudes C'yc, Dg. The total displacement in each region is equivalent to two lon-
gitudinal and two transverse waves. The parameter s defines the incidence angle. The
parameters px, g may be derived from the equations of motion. All waves possess the
same frequency w. If any wave does not exist, then the corresponding amplitude equals
Zero.

The displacement components u, u,, %, in each layer may be calculated from the
formulae

(1.2)  uge =0pk /0 — YK [0y, ugy = 0pk/0y+ dVK/Iz, wu,=0.

The above potentials must satisfy the equations of motion

(13) Pipn) 02 + Pooc |y = —Fprc 00,
LK

(1.4) by /0% + Poprc |0 = ——pic |01,
CTK

where c¢p i and ¢y are the longitudinal and transverse wave speeds, respectively. It
follows that the five parameters s, px, ¢x in Eq. (1.3) are not arbitrary, but must satisfy
the relations

2 SR W, 2T
Pk + 8 =w/etk, cik = Ak +2uK)pK
2 2 2102 2ry -
Qk + 5" =w'/crg, ek = pK/pK
where py is the density of the material. If, in paricular, s is given in advance, then the

other parameters are defined by Eqs. (1.5). Only one wave direction is arbitrary, the other
wave directions must match the first one (Snellius rule).

The expressions for the potentials allow us to calculate the displacements and stresses.
We omit here the very simple calculations resulting in the formulae

(1.5)

—lUg " 4 =S -5
—1iU,y, = S 8 ¢ —0
(1.6) T - -z 2uqs 2uqs
S “2ups 2ups wy wy
expiplll 0] 0 0 Al
0 exp(—ipl;) 0 0 B,
e 0 1] E',Xpiqlll 0 Cl 2
0 0 0 exp(—iq1ly) | | D1
—Uy P2 —P2 —8 —4 A,
ady . [ = s @ -al|B
' Tra -2 -z 2ugs 2uqs| | Cr |
Tzy ], —2pap28  24izpr8 wy wy D,
where
(1.8) wi = (s’ —qk)y, h=2z2- 2,

(1.9) 2z = Ak(pl + %) + 2ukpk .
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At both sides of the boundary between the regions the stress vector and the displacement
vector have the same values. In order to express the amplitudes A, By, C3, D, by the
amplitudes A;, By, C'1, D the inverse matrix of that in (1.7) must be calculated. As the
final result the relation

A, A
B B
(1.10) C; = M, C:
D, D,

is obtained. The transfer matrix M, allows us to calculate the amplitudes of the waves
propagating in the region 2 provided the amplitudes of the waves propagating in the
region 1 are known. Its components are given by the relations

My = [a;(Zpaprs* — prwa) + by (2paqas® + qz1)] exp ipily

My = [ay(=2ppr1§® + prwa) + by(2p2qas” + qz1)] exp(—ipily)

Mz = [az8(w; — wy) + 2b,q1q25(p2 — )] expiqily
(1.11) M = [az28(wz — wy) — 2b2qugas(p2 — p1)) exp(—iquly),

M3 = [-2a;p1p2s(p2 — 1) + b2s(22 — 21)]expipily s

My, = [2aop1p28(p2 — ) + b28(22 — z1)] exp(—ipilh),

Mz = [ay(2p2p2s® — pawn) + by2uaqis® + quza)] expiqaly

Mis = [a;(2pap2s® — pawn) — b2 qns* + qr22)] exp(—iquly)

My = My, My, = My, My = —My, My=—-M;,

(1.12) Pl 4 =l g A
My = —Msy;, My =Mz, My= Ms,, My = Ms;,
where
1 1 1 1
(1.13) by

= -, e me—
22112p28* — paw; 2211¢28% + 222
The matrix of symmetry (1.12) will be called w-symmetric. The product of two w-
symmetric matrices is w-symmetric. The above transition matrix was derived, with a
slightly different notation, in [2].
The following identity may be obtained from (1.10)

(1.14)  pi(A1A; — BiBy) + qi(C1Cy — D Dy)
= p(A24; — BoBy) + (C2Ch — DyDy).

It expresses the fact that the energy fluxes in both regions are equal.

Assume that the two above layers of material 1 of thickness /; and material 2 of
thickness [, are repeated in space, Fig. 2. Consider the dynamics of this periodic structure.
The elementary cell consists of two elastic layers. The transfer matrix for the transition
1 = 2,3 = 4 etc. is the matrix M, (here we added the suffix 1) given by (1.11) and
(1.12). The transfer matrix for the transition 2 = 3,4 = 5 etc. will be denoted by M;. It
may be obtained from formulae (1.11), (1.12) by interchanging the indices 1 and 2. The
transfer matrix M for one cell is the product of M, and M,

(115) M= MzM] .
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x|

by Ly o l, [ g

cell 1 cell 2 cell 3

FI1G. 2.

In order to save space we do not give the full, long expressions for the components of M.
Note only that this transfer matrix for one cell is determined by nine real quantities

(116) S, /\la Hi, P15 [la /\21 K25 P2,y 12-

The frequency w does not influence M. The matrix M is the product of two w-symmetric
matrices, and therefore is w-symmetric. The displacement field in the subsequent cells

may be expressed by the amplitudes in the first cell and the powers of the transfer matrix
MY, M2 M3, ...

2. Preliminary numerical analysis

The complex-valued 4 x 4 transition matrix derived above has the special, non-Hermi-
tean symmetry. In order to make the symmetries better visible we write M in the short-
hand notation

21 22 23 Z4
22 41 —24 —2Z3
Ll Zs 26 27 2y
—Z5 —2Zs 2Zy 27
Note that the eight complex numbers 21, 2;, . .., 24 are determined by the nine real phys-
ical parameters mentioned above. Therefore there exist additional relations between the
components of M.

Consider now the powers M™ of the matrix M for arbitrary integer n. The compo-
nents (M"™);; are the functions of the discrete variable n. Guided by the behaviour of
the spatially periodic mechanical systems we expect that M ™ is a periodic function of n.
More precisely we expect to define the periodic function of the continuous variable n,
which for integer n coincides with M ™.

In order to verify this proposal, about 100 succesive powers of M for numerical com-
ponents given in advance were calculated from (1.11). The results fully supported the
expectation.

Assume that, similarly to [1], some scalar parameter ¢ may be introduced leading to
the representation of M in the form M = M () and M™ in the form M (ny). Then
each component of M must be of the form (a;; cos ¢ + b;; sin ¢) and the corresponding
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component of the n-th power M " should be of the form (a;; cosny + b;;sin ny). Easy
numerical and analytical computations show that there is not enough freedom to meet the
data for M. On the other hand, the matrix H defined by (2.3) requires two parameters
®, ¥. Because H is a special case of M as given by (2.1), the matrix M requires the
knowledge of at least two such parameters.

The simplest choice is therefore the assumption that there exist exactly two parameters
o and ¥ and for each integer n there is

(2.1) (M;;)" = ai;jsinng + b;jsinny + ¢;; cosnp + d;j cosny

+i(e;jjsinng + fi;sinny + gi; cosng + hi; cosni),
where
(2.2) Gijs Digy-Ciss igs €ty fige iy Mg
are constants. We shall show that the formula (2.1) follows from the symmetry (1.12). In
order to check this hypothesis it is necessary to calculate a;;,b;j, ..., gi;, h;; from the
w-symmetric matrix M given in advance, and then to check if the formula (2.2) holds for
each n.

In order to calculate the ten constants @, ¥, bij, ¢ij, dij, €ij, fij, fij» 9ij» hij (for
fixed i, j) we must have the (i, ) component of five powers of M, namely of M, M?,
M3, M*, M>. In order to check the formula (2.2) we must calculate aditionally at least
M®. Each component of the matrix M is the complex number z,. Each component of
the matrix M? is a sum of 2 complex products z; z;. Each component of the matrix
M3 is a sum of 22 complex products z; z; z3, and so on. Finally, each component of
the matrix M® is the sum of 2° complex products z; z; 23 24 25 2. The last product
is equivalent to 2¢ = 64 products of real numbers. Therefore to calculate the matrix
M?® alone it is necessary to determine 16 x 32 x 64 = 32768 real numbers. Note that
already the components of M, as given by (1.14), have a very complex structure. The
number of necessary transformations at this stage entirely excludes the purely analytical
approach.

In order to prove the formula (2.1) it was decided to base on the mixed numerical
and analytical calculations. However, the final proof is purely analytic. The numerical
calculations are not essential, they give only some suggestions concerning the structure of
the results.

For the elastic constants given in advance and dimensions in both regions 1 and 2, and
for the prescribed frequency w, the six powers of M were calculated. The calculations
were repeated many times for other elastic constants and other dimensions. These six
powers of M allow us to calculate 64 coefficients a;j, bij, cij, dij, €ij, fij» gij> hij and
®, ¥ from the following system of equations:

(2.3) a;jsing + bijsing + ¢jjcosp +d;jcosy = Re(M);;,
a;;jsin2p + b;;sin2¢ + ¢;jcos2p + d;;jcos 2y = Re(MZ),'J- .
(2.4) a;jsin2p + bijsin3%y + ¢;jcos3p + d;jcos3yY = Re(M?);;,

.......................................................

ai; sin()np + b,’j sin 69 + Cij cosbp + d,‘j 0056113 = Re(M“)iJ- 3
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(2.5) eijsing + fijsiny + g;;cosp + hijcosyp = Im(M);,; ,
€ijsin2¢ + f;;sin 2y + g;jcos2¢ + hijcos2y = Im(MZ)U 5
(2.6) eijsin3p + fijsin3y = g;;cos3p + h;jcos3yY = Im(M3),'J' ,

€i;jsin6p + fi;sin6y + g;;cos6p + h;jcos6y = Im(Mf’),-_,- .

Theoretically ten equations are sufficient, but because of numerical reasons we pre-
fer the overdetermined system (2.3)-(2.6). In this case the first six equations with six
unknowns may be solved independently of the further six equations. To check the cor-
rectness of the approach and correctness of the program, the same coefficients after
obvious change of the above system of equations were calculated basing on other powers

of M, eg. M3, M3, M7, M°, M'' and M1,
As the result, a set of identities was obtained. The first four identities are
(2.7) en=p, dn=1-p, en3=1-p, dy=p,
where p is a new constant. We do not repeat the formulae following from the w-symmetry.
The further identities are
cz=di=gz=h2=0,
(2.8) c34 = d3g = g3 = h3g =0,
guu=hu=g53=hy=0.
Note that the matrix M is determined by nine quantities: four elastic moduli A, ftx,
thicknesses /4, [, two densities pg and the propagation direction m of one wave in one
material (the other directions are then automatically determined). After eliminating the

coefficients a;;, ..., fi; it follows that between the coefficients some additional relations
must exist.

The numerical analysis of the non-zero coefficients leads to the relations
(2.9) diy = —cp3, dyg = —cu,

€z = 0'12/7"17 fiz = blz/ml 5

2.1
e e = au/ma, fia = bu/ma,
(2.11) €13 = —613/7713» Sz = ‘bxs/msa g13 = C13M3, hiz = —cizms,
. €14 = 1114/'"14, fia = b14/m4, G1a = —Crang, hig = clamy,
ay = —has, by = —hbys, 3 = heys, dy = —heys,
(2.12) ey = —hai/ms, fy = —hbiz/ms, g3 = —hmaciz, hy = hmaeys,
. azx; = —hay, bs; = —hbya, 32 = hey, dy; = —heyy,
€3 = ""hﬂl4/7n4a fa = —hb,4/m4, g3 = —hmyen,  hyp = hmaeys,

where h, my, my, ms, my are constants. Note that the calculations were performed for
the physical situation defined by the nine real quantities: dimensions and elastic constants
(1.16). For such data real h, m,, m,, ms, m4 were obtained. In the general case complex
values must be allowed.
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It is necessary to remember that these relations were obtained numerically, where the
numbers of absolute values smaller than 10~'? were considered as equal zero. Further
we give the analytical verification, that the identities (2.7)-(2.12) are not approximate, but
exact.

Now there remain only 20 unknowns

(2.13) p, h, my, my, ma, my, ey, fu, €, fi,
apz, biz, @z, bas, 13, by3, €13, @iy biay €14

Their number is still large, but the numerical analysis has reduced the problem to a rather
decent situation. Instead of the previously expected 128 coefficients a;;, ..., h;; (or 64 if

the w-symmetry is taken into account) we face now only 20 unknowns.

3. Analytic approach

The redundant parameters may now be eliminated. We prefer to eliminate them in
two stages. At the first stage only the zero parameters are eliminated and the relations
(2.12) with parameter h are taken into account. This does not destroy the symmetry of
computations. The transition matrix M after the first stage elimination has the following
components:

My = peose + (1 — p)costp + i[en sing + frysiny],
Ms; = (1 — p)cos + peosy + ifexzsing + fyzsin¢],
Mz = apzsing + bypsiny + ifezsing + fiasiny],
M34 = aszq Slll(’D + b34 sin ’Q[) + i[€34 Sil’l({) + f34 sin '{/J] 5

M3 = ayzsing + byzsin ) + ¢y3(cos p — cos P)]
3.1 + t[egzsing + fi3siny + gy3(cosp — cos )],
My = aygsing + bygsinty + ¢y4(cos @ — cos V)]
+ i[easing + fiasinty + gra(cos g — cos )],
M3, = h[—ay3sinsing — byzsiny) + ¢p3(cos @ — cos )]

+ thlensing + fi3siny — gia(cos — cos P)],
M3, = h[—ajssin — bygsin + ¢q4(cos ¢ — cos )]
+ th[—eyysin — fiasiny + gya(cos ¢ — cosP)].
The remaining components of the matrix M are determined by the w-symmetry. In
the further calculations of this chapter we shall use (3.1), possessing large symmetry.

Later we use the relations obtained at the second stage, when additionally the remaining
relations (2.11), (2.12) are taken into account. The relations given below are obtained.

My = peos + (1 — p)cos ¥ + i[eysing + figsind],

Mi; = (1 — p)cosy + pcost) + i[esssing + fizsin],

(3.2) My = appsing + bypsinyy + nil[a]z sin + by;sin ],
M3y = azgsin + by sint) + %[am sin + bygsin ],
M3 = ay3sin + by3sint) + ¢3(cos — cos )
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A 1
(3.2) +1 [ - ;(au sin @ + by3sin ) + maeps(cos g — cosP)|
3

[cont.]

M,

@14 8in @ + bygsin ) + ¢y4(cos @ — cos )

1 . . ]
+ ¢ [E(a“ sin @ + bygsin ) — myey(cos p — cosP)|
4

o

My h[—(a,3'sinc,9 + by3sin ) + ¢13(cos p — cos )]

. 1
+ th [ — —(ay3sin@ + byzsinyP) — maep3(cos p — cos )| ,
ms N

Ms; = h[—(ajssing + bygsin ) + c14(cos p — cos 1))

. 1 ; ; ]
+ th [ — — (a4 8in @ + byysin ) — mycyg(cos @ — cos )| .
my J

In the next chapter we return to the calculation of the parameters @, ¥, ayy, byq, . ..
.y faa, provided the components of the matrix M are given in advance.

Here we assume that the 20 parameters p, h, my,..., ¢4 at the right-hand side of
(3.1) and (3.2) are given, and prove that the matrix defined by this relations for each
n satisfies the expected identity (2.2). Anticipating the results we note that not all the
parameters may be given in advance. There exist some relations between them, which
will be discussed later.

Calculate first the matrix M2. In accord with the above relations we obtain the real
and imaginary parts of the first component in the following form:

(33)  Re(M*) = [p* + h(cly + gf3 — ¢ls — giy))cos” ¢
+[(1 = p)* + h(cls + gis — ¢4 — giplcos’
+[—ef) + afy + ef; — h(afy + €y — afy — €fy)]sin’ ¢
+[= i+ 0L+ [z — h(bs + fiy — bl — fiy))sin ¢
+2[p(1 = p) = h(cls + g1y — iy — g1a)] cos cos Y
+2[—enfu + azbiz + ennfiz
+h(—ay3biz — ez fiz + arabis + €14 f14)]sinpsin e,
34 1m(ﬂ/ﬁ)u = [pen + h(—a13g13 + ci3e13 + a1ag1a — C1a€14)] 5in 290
+[(1 = p)fu + h(bi3gis — c13f13 — bragia + c1af14)]sin 29
+[pfir + A(=bi3913 + c13f13 + b1ag1a — c1af14)]2 cos @ sin
+[(1 = plen + h(ai3g13 — c13€13 — a1ag1a + €14€14)]2sin @ cos P .
Relations of similar structure are obtained for the remaining 15 components of M2
Quoting them here would take too much place. We prefer to give here only the full
system of relations between the parameters.

We expect that, independently of other parameters, ¢ and i) may be arbitrary. We are
guided here by the results for the 2 X 2 w-symmetric matrix discussed in [1]. We prove that
this does not lead to a contradiction. If we do not make this assumption the analysis is
more difficult. Moreover, we face then many trivial situations we prefer to avoid. Because
Re(M?);; must be identically equal (for each ¢ and %) to [pcos2¢ + (1 — p)cos 27], the

coefficients of cos i cos 1 and of sin ¢ sin ¢ must vanish, the coefficient of cos? ¢ must be
equal p, the coefficient of sin? ¢ must be equal —p, the coefficient of cos ¢ cos ) must be
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zero, and so on. The resulting set of equations may be divided into four groups. When
writing the equations we use the relations (2.9)-(2.11), provided this is not destroying the
symmetry of the notation. If the symmetry was destroyed, we would prefer not to take
them into account.

Exceptional position in the calculations has the equation

(3.5) p(1 = p) + gl—cis(1 + md) + cf,(1 + m))] = 0,

since it is essential not for one component of M only, but for all the diagonal elements.
The first group consists of 12 equations

(1-plen+he* =0, pfu+hf*n=0,
(1=p)fz+hf¥3=0, pes+he*ss=0,
(1-plap+ha*2 =0, pby+ hb*; =0,

(3:6) (1 — p)bas + hb*3, = 0, pass + ha*s3, =0,
(1—plep+he*p=0, pfa+hf*n=0,
(1—=p)fsa+hf¥3a=0, pess+he’sy=0,

where

e* 11 = apsea(ms + 1/ms) + aygera(my + 1/my),
1 = —bpscia(ms + 1/m3) — buscra(ma + 1/my),
€33 = apzeis(ms + 1/m3) — apgera(ms + 1/my) ,
f*33 = —bizeis(ms + 1/m3) + bigcra(mg + 1/my),
a*1n = —apen(l — my/m3) + aae(l — ma/my),
3.7) b*12 = bizcia(1 — ma/ma) — bcys(1 — m3/my),

a*3; = apzers(l + my/ms) — apaeis(l + ma/my),
b*3s = —biscra(l + ma/ms) + braciz(1 + ms/my),
e* 12 = aizcia(my + 1/m3) + aygeis(ms + 1/my),
f#u = —b|3C;4(m4 + 1/1713) = b14C13(7n3 + 1/m4),
e*34 = —apca(my — 1/m3) + aers(ms — 1/my)
f#34 = ()]3(’14(7714 - 1/7’713) . b14C13(7n3 - 1./7')’14) .
These relations close the first group of equations. Note that the internal (compare (2.3))
coefficients 11, 12, 33, 34 occupy other positions than the external coefficients 13, 14. The
equations of the first group express the internal coefficients by the external ones.
The second group expresses the external coefficients of sine by the external coefficients
of cosine and the internal coefficients
a3 + giz(en + e33) + cra(@2 — azg) + gra(erz — €34) = 0,
bis + gi3(— fur + f33) + cra(=bi2 + b3y) + gra(—=fra + f24) = 0,
(3.8) e13 + ci3(—en — €33) + gra(—ap — az) + cle + e34) =0,
fiz + eis(—fi1 — f33) + gra(—b12 — bas) + cralerz + €34) = 0,
ars + gra(en — e33) + ca(arz — @) + gis(erz + €31) =0,
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(3.8) bis + gra(=fur + f33) + ci3s(—=bia + b3g) + fis(—fiz — f2) = 0,
et €1 + cra(—en + €33) + gr3(—az — az) + ci3(erz —e3q) = 0,

fia = cualfin = f33) + g13(bia + b3a) + cia(—fiz + f34) = 0.
The third group consists of 4 inhomogeneous and 2 homogeneous equations

—el, +al, +el, + hP = —p,
(3.9) _f2121+b§z+f§2+th= =il =)
—ejtay ey +hP=—(1-p),
—fL b+ fA+ AP = —p,
(3.10) —enfu+anbp +epfip+hPs =0,
—€33f33 + a3absa + €34 f5a + WP = 0,
where
P=PF= —af3 - eﬁ +al, + €y,
(3.11) Py=Py=—b— A+ 0%+ f3,

Ps = Py = —ai3bis — e13fi3 + aiabis + e1afua -
Finally we have the fourth group of relations

ap(fur + f33) + €1a(brz + bag) + ara(— fiz — f3)

+bis(en + e33) + fua + az) + ba(—e2 — e3) = 0,
ana(fir = f33) + e3(biz + bag) + aa(— frz + faa)

+bia(en — €3) + fia(arz + az) + bys(—e2 + €34) = 0,

eis(—fur = f33) + ara(—biz + b3a) + €ra(— frz = f3d)
+ fis(—en — e33) + bu(—ann + asg) + fis(—€12 + €30) = 0,
era(—fu + f13) + ais(=bia + b3a) + ens(— fiz — f34)
+ fu(—en + e33) + ba(—apz + az) + fiz(—e12 —esq) = 0.
Further we show that the last four relations may be omitted in the calculations. Note
that the total number of equations is 31, and the total number of unknown parameters
is only 19. Therefore if the nontrivial solution exists, some equations are mutually de-
pendent. As it was mentioned above, not all the coefficients may be assumed arbitrarily.
There exists a set of free coeflicients that may be given in advance, the remaining coef-
ficients have to be calculated from the above equations. Because the equations are very
complex and mutually dependent, even the number of free coefficients may not be calcu-
lated from the number of unknowns and the number of equations. Again the task seems
to be extremely difficult. The physics suggests that the number of independent parameters
equals nine, since one cell is defined by nine numbers (1.16). The only possibility is to try
one choice, and it if fails try another. Obviously most of the proposed sets of independent
parameters will lead to contradiction, and this anticipation forces us to base again on the
numerical approach.
The previous equation and the next equation are separated by hundreds of hours spent
at the computer. We do not list the approaches that failed, discuss only the one leading
to M and satisfying the expected identity M?(p, ) = M (2¢,2¢).

(3.12)
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Assume that the following nine parameters:

¥, 11), p, ms, ka

3.13
( ) a3, ais, by, byg,

are given, and define
(3.14) ci3 = vk, ¢ =vku, kp=1.

The parameter p is assumed to be different from 0 and 1. For symmetry of the formulae
assume ky3 = 1. The degenerate cases p = 0 and p = 1 will be considered in the last
chapter. The parameter v will be determined later. Note that m, is not given and must
be calculated from the above system of equations, together with other parameters. Note
that the physical problem is governed by nine parameters, too (cf. (1.16)).

Define the new sixteen functions

Iy = 9136#11 + cga® iy + 9‘146#12, Ny = giad*5; — craa®sy — Gra€”* 34,
K; = —9136’#33 + C1ab#34 U !/146#34, N, = —guf#n - Cl4b#12 - 914f#34a
Ky = —cipe* i — fua® i + cue®n,  Ni = —ciad®s3 — fiaa®ss + crae®ss,
3.17) Ky= —epe’ s - f14b#34 + C14€#34, Ny = _Cl3f#11 - fldb#lz + Cl4f#341
' Ks = gue®* + ciza® iz + guise® iz, Ns = —guad®*s3 — ci3a*3 + grae*sa,
K¢ = 9146#33 25 6135#34 = 9136#34, Ng = —g'uf#n - Cub#lz - 913f#3a 5

K, = —6146#11 - flsfl#:z + 6136#127 N; = C'14('3#33 i f1301#34 o 6136#34 ,

Ky = —ciue®s3 + fisb*sa + cze®say Ny = craf* i1 + fisb* 1o — ciaf*.

where quantities marked by # are defined by (3.7).
It is easy to verify that for each p, h, m4 and v the identities are valid

(3.18) K;=N;, i1=12,...,8.
Take into account (3.6) to obtain g3e33 + ¢14b3s + gra€34 = —h K/ p, etc. The system
of equations (3.8) reduces now to the system
h h
a3 — Ky--=N,=0,
l-p P
h h
b3 — K,—-N,=0
(3.19) 13 1-p L2 » 2 )
h h
- Ky— —Ng=0
In 1— iy » 8

Due to Egs. (3.18) the above relations simplify to the eight relations
h

h
B L il e
pi-p " P p-p)

h h
— K5, = — K4,
gt R

ap K,
(3.20)

€13 =
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h h

3.20) i = o Big=
¢ ") C T
W= g fe = p(1 = p)

Calculate now the parameter h from (3.5) to obtain

1{6 3

Ky.

o p(1 —p)
(3.21) "= AR md + KR+ ]

Substitute this relation into each of the relations (3.19). Then they are identically
satisfied. The set of relations (3.8) therefore follows from the set (3.18) and the relation
(3.5).

Substitute now (3.13) and (3.15) into (3.7) and then calculate the coefficients ey, fi3,
fi2, €34 from (3.6). Substitution of the results shows that (3.12) is identically satisfied for
each h and v. This set of equations follows therefore from the set (3.6). From now on
we disregard (3.12).

Note that up to this point the parameters v, my have been arbitrary. Now we may de-
fine them to match the third group of equations (3.9). Before performing the calculations
introduce six new functions

L= —e* 12+ a* )t + €*?, L= —f* 7+ 0%7 + 47,
( Ly = —e*5? + a*3? + e*3?, Lo = —f* 57 + %37 + %37,
3.22)
Ls = —e* 11 f* 1+ a*b* o + e 2% 12,
Lo = —€* 535 + a*30b%3 + e f* 5.

where the quantities at the right-hand side are defined by (3.7). Note that the third set
of equations (3.9) reduce now to the following six equations:

h L h
— + hP, = -
(l_p)2 1 1 P,
h?
——=L;+hP,=-(1-p),
P
B2
—p—2L3+}LP3=—(1—'p),
(3.23) B2
——Lis+ hPy = —
1—pp 4t Ny P
h2
= L5+hP5=0,
p(l—p)
——hz—L +hPy =0
pi—p " . )

Substitution of (3.7) into the expressions (3.22) proves that for each v and my there is

(3.24) L] = L3, Lz — L4, Ls s L(,.
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Moreover, there is
Ly L, Ly _ Ls Ls Ly _ p(1—p)

3.25 loee o T Ty D

( ) P1 Pz P3 P4 P5 P(, h

Therefore the functions Ly, L, . .., Ls may be expressed as the product of p(1 — p)/h
and Py, P, ..., Ps. Substitute the expressions into (3.23). The last two relations are now

satisfied, and in the first four relations two pairs are identical. There remain two very
simple relations

(3.26) hPy = -p(1—p), hP,=-p(1—-p).

It follows that the remaining freedom of defining v and m4 must be used to obtain
P, = P,, not contradicting (3.21). From (3.11) and (3.21) follow the necessary relations

at,(1+ m3?) — al,(1+ m;*) = p(1 — p)/h,
(3.27) b1+ myY) = 3,1+ myY) =p(l—p)/h,

VK, (1 + m3) + kiy(1 + md)]) = p(1 — p)/h.
The first two equations after subtracting give the equation

(1+ m3?)(ady = bly) = (1 + my™)(aiy — b)),
leading to the following expression for the parameter my

(3.28) my = ifl + m;z)(a%3 — b%3) 1

2 2
afy — biy

The two first equations of (3.27) are now identidal. Together with the third one each of
them gives the equation

ady(1+mi?) — ady (1 + my?) = VR + md) + k(1 + md)],

which allows to calculate the last unknown parameter v

g a2, (1 + m3?) — a}(1 + m;?)

k2,(1 + m3) + k3,(1 + m3)
Now the equations (3.9), and the equivalent equations (3.23) are satisfied. Note that for
some data (3.13) the parameters my and v are real, and for other data they are imaginary

or complex.
Up to now we have proved that for arbitrary o and ¢ there is

(3.30) [M(p, &, pp))* = M (29,20, pp),
where pp stands for the whole set of constant parameters, pp = {h, m1, ma, M3, M4, €11,

fusaaz, bizy €z, - - €44 faa}-
There remains to prove the identity

(3.31) (M (e, %,pp)]" = M(np, 3, pp).

for arbitrary integer n. The proof by mathematical induction is straightforward. Assuming
that (3.31) holds for n we multiply M™, as given by (3.30), by M. Since the equations
must be satisfied for each  and 1, the coefficients of the trigonometric functions at both
sides of the resulting equation must be the same. The resulting equations are exactly the
equations (3.6), (3.8), (3.12). Since the calculated parameters satisfy them, the identity
(3.31) induces its validity for n + 1. This completes the proof of (3.31).

(3.29)
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Calculate now the complex-valued matrix M, as given by (2.4). All parameters are
known and each component of M may be expressed by the nine parameters

(3.32) @, ¥, h, ma, a3, @, bis, big, ci3fcia.

Tedious analytic calculations lead to the identity
(3.33) detM = 1.

Summarize now the results of the present chapter. The nine parameters (3.32) may
be given in advance. The formulae (3.28), (3.29) allow to calculate m4 and v and the
formula (3.14) allows to calculate ¢y3,¢)4. The value of h follows from (3.5). There
remains to calculate ey, fi1, - . -, €34, f3s from (3.6) and asy, bsy, . . ., g32, haz from (2.12).
Examination of (3.2) proves that all components of the transfer matrix A may now be
expressed by the nine parameters (3.13). The determinant of the resulting matrix equals 1.

Note that the transfer matrix M may be expressed either by the nine physical quanti-
ties (1.16) or the nine parameters (3.13). Either of the two possibilities may be used, when
constructing the transfer matrix. The second choice gives more insight into the mathe-
matical structure of M. The above relations did not allow to calculate the parameters
(2.13) and the coefficients of (2.4), provided M was known. The formulae allowing such
calculations are obtained in the next chapter.

We do not intend to discuss here the limiting and degenerate cases corresponding to
p— 0,p— 1,h — 0,m3 — 0,my — 0,m3 — mg, a4 — Fby4. This would consume
too much space. We shall give the analysis elsewhere. Here we mention only thatif p — 0
and h remains finite, then the only possibility corresponds to (2.3). If p — 0 and h — 0,
then the nontrivial matrix M is obtained. If m3 — my then h — 0 and v, ¢y3, 14 — 0.
If a1 — b4 then v, ez, €14 — 0.

4. Calculation of the parameters

In the previous chapter from the nine parameters given in advance the set of par-
ameters ¢, i, p,h,my, ay, ..., h;; has been calculated. This set could be used to cal-
culate effectively the complex-valued matrix M satisfying, for each integer n, the two
identities [M (¢, ¥)]" = M(np,ny),det M = 1. We shall show that M satisfies one
additional relation that was overlooked in the previous calculations.

In the present chapter we assume that all components of the matrix M are given in
advance, e.g. they are calculated from the physical data for the elementary cell. For this
M we will effectively calculate the parameters p, h, my, my, m3, my, dyy, €11, - - ., bsa. The
formulae are therefore essential for consideration of periodic systems of layers. The given
components of M possess the w-symmetry and satisfy the relation det M = 1. We shall
discover one additional relation that was not essential for the previous calculations. It was
shown in Secs. 2 and 3 how to calculate these parameters from the first five powers of
M. Now we know much more about the structure of M and shall deduce the parameters
from the first two powers only.

In order to simplify the formulae let us separate each component of M into the real
and imaginary parts,

(4.1) M;; = Rij + iI,'j.
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First we summarize some necessary results of Secs. 2 and 3. It has been proved that
the transfer matrix M/ may be represented in the following form:

Ry = pcosg + (1 — p)costp, I

Il

dyysing + ey sint),
. . 1 ; .
Ry = appsing + bipsin i, I, = —Jay;sinp + by sin ],
my

R33 = (1-p)eosp + peostp, Iz = dyzsing + exzsing,

1
R3q = az4sin @ + baysin 1, Ly = H‘[asa sin @ + b3 sin Y],
2
Ry3 = ay3sin i + by3sin ¥ + ¢q3(cos @ — cos ),
1
I3 = ——[ay3sin @ + byzsin ] + mscy3(cos p — cos ),
ms3
(4.2) . .
Ris = aygsin + bygsin ¢ + cy4(cos @ — cos ),

4 = —ni:[am sin ¢ + by48in Y] — mycyq(cos @ — cos ),
R3; = —h(ay3sing + byzsin) + heyz(cosp — cos ),

I = —mis(a]s sing + by3siny) — hmaeps(cos p — cos ),
R3; = —h(aygsing + bygsin ) + heya(cosp — cos ),

I3 = ~—7%(a14 sin + bygsiny) — hmgyey(cos p — cos i) .

The remaining components of M are determined by the w-symmetry.
From the above set of relations immediately follow the expressions for mq, ma,

Ry R
4.3 my = —=, my;= —.
(*+3) ' T, * T Iy

We pass to the calculation of the further three parameters h, ma, mq.
From (4.2) follow the relations

Ris+msliz=(1+ mg)clg,(cosgo — cos ),

(4.4) ¥
R3 — m3l3 = h(1 + m5)ci3(cos ¢ — cos ),
(4.5) m3Ryz — iz = (m3 + 1/m3)(a3sinp + byzsin ¥),
' msRs + I3 = —h(ms + 1/m3)(azsing + byzsiny),
(46) Rys — myliy = (14 mj)cra(cosp — cos ),
. Rs; — myls; = h(1 + m3)ea(cos o — cos ),
) maRig + Ly = (my + 1/my)(ayssing + bygsin ),

I

mgRay + I3 = —h(my + 1/my)(aasinp + byysinyd).
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The equations (4.4) and (4.5) lead to two relations
_ Ry —malyy _ msRs + I

Rz +mslis maRiy— i
Calculate now m3 from (4.8) to obtain

R3y — hR —I3 + hI
(4.9) g = ) 13 _ —dn 13

I31 + hliz R3 + hRy3

The last relation leads to the following expression for h2:
_ Ry + I

R+ 1
On the other hand, it is possible to perform parallel calculations basing on the components
M, and My;. From the equations (4.6), (4.7) we obtain two equations

(4.8) h

(4.10) h?

_ 3, — myls; " —myRy — I,

Riyy—maliy maRis + 1y '
and to further relations parallel to (4.10)

—Ry + hR —I3; — hl,
(4.12) —re 32 1 _ —1x 14

—I3 + hlyy B3 + hRyy
These relations lead to the expression for h? other than that in (4.10)
2 R+ 1 '
Ry + I,

Therefore there must exist one additional relation between the components of M, namely
Ry +14 _ RL+ 15,
Rh+1Ih R+ I
Taking into account the symmetries of M, the above relation may be expressed by the
complex-valued components of A, namely

(4.15) MaMyuMy My = MizMyuM3 My, .

It may be verified that the transition matrix M calculated from (1.11) satisfies in fact the
above relation.

Let us now pass to the calculation of p. Subtraction of the appropriate expressions of
Eq. (4.2) leads to the relations

& Ry — Ra3 = (2p — 1)(cos ¢ — cos P),
(4.16) Rz + maliz = (1 + m3)epa(cos p — cos ),
Rig—mylyy = (1 + mﬁ)cu(coscp — cos ).

(4.11) h

(4.13)

(4.14)

After eliminating the trigonometric functions we obtain

s = (2p—1) Ry3 + malys
“17) ‘ (1+ md)(Ry — Ry)’
¢ =(p—1) Rys — malys

(1+ m)(Ry — Rx)
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Our purpose is to calculate p. After determining the parameter p, these relations will be
used as formulae for ¢;3, ¢14. Now Eq. (3.5) derived in the previous chapter can be used.
We write here this equation in a slightly different form

(4.18) p(l —p)—h(1+ mg)cf3 + h(1 + mi)c%4 =0.

Substitute into this equation the coeffients ¢3, ¢14 as given by Eq. (4.17). The following
quadratic equation for p is obtained

(4.19) @U-1Dp!—@U-1)p+U=0,

where the function U is given by the relation

(4.20) I = h (B + maliy)? i (Rys — mylys)?
(Ru =) R33)2 1+ ’I’Tlg 1+ m%

Other equivalent expression for the function U may be obtained after substitution of / as
given by Eq. (4.9), in the first product, and has given by Eq. (4.10); in the second product
of Eq. (4.18),

(Baa — malia)(Ray — malzy) — (Riz + malis)(Ray — mals1)

U =
(1 + md)(Ru — Rs) (1 + m3)(Ri1 — Ras)
The solution of the quadratic equation (4.19) is
1 1
4.21 =t —
(4.21) B

There remains to calculate the parameters ¢ and ¥. From Eq. (4.2) follow the two
equations

pRiy—(1-p)Rsz =(2p—1)cosp,
pRyz— (1= p)Ry = (2p—1)cos 3.

Because p is already known, there is

(4.22)

PRy — (1 - p)Rs

(p = arccos 5 1 .
p —
(4.23)
- pRy; — (1 —p)Ry
Y = arccos -1 .

It may be checked that the change of the sign in Eq. (4.21) corresponds to the exchange
between  and 1. Because this is not essential for the representation of M, we decide
to use in Eq. (2.21) the upper + sign only. Note that for some M given in advance the
parameters ¢, ¢ may be complex.

The above calculations show that a part of the parameters may be calculated witifout
squaring the matrix M. Now we must calculate the remaining parameters. Note that
because the values of h, p, ms, my are already known, Egs. (4.17) are in fact the formulae
for ¢y3, ¢14. The above remark applies therefore to ¢;3, ¢4, too. The exceptional position
of Eq. (3.5) has been again stressed by the fact that its validity may be established at the
level of M, and not at the level of M?.

There remain the coefficients of the sine function. Note that the coefficients of sine
appear in all expressions (4.2) as the sum of two terms (a;; sin + b;; sin ). Therefore
a;j, bi; can not be calculated without calculating the second power of M. If we calculate
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M?, then e.g. the system of equations for ey, fi; reads
(4.24) 61']Sinip+f“'5in’lji=Tl, Tl =ImM:1,
ensin2pe + fiysin2y =715, T, =Im M;,,

and has the solution

e = %[T] sin 2t¢p — T sin 9],

(4.25) )

fu = E[_Tl sin2p + T3 sin ],
where
(4.26) £ = sin psin2¢ — sin 2 siny .

Exactly the same structure possess the remaining equations for a;j, b;;, €;;, fi;. In order
to save space we give only the resulting formulae

€33 = -él-[T_g sin 27,1? - T4 sin lb], T3 =Im M33, T4 = Im M323,

(4.27) :
fin= Z[—T3 sin 2¢ + Tysin @],
1
ap; = Z[Tj sin 2’(17 = Tf, sin ’l!)}, T5 = Re Mlz, T(, = Re Mlzz ,
(4.28) X
b]z = Z[-—Tssimlga + T6 sin (,9] 5
aAyg = %[1’7 sin 2'¢ — Ta sin ?,/)], T7 = Re M34, Tg = Re M324,
(4.29) 1
by, = E[_T7 sin2¢ + Tysin ],
1 . .
a3 = E[Tl) sin 290 — Tyysin ],
1
(430) b13 = E[—T&; sin 2‘,9 + 171“ sin kp],
Re M3 — Im My3/ms Re M} — Im M3 /m;
T‘) = —7 3 Tl(l = ) ]
1+ mg 1+ my
| ;
ayy = E[F”sm 2¢p — Ty siny],
1
(431) bl4 = E[—T“ sin 2(,9 + T]Z sin Q] s
- REAJH'FIHIA!H/TTL; ReA1124+ImM124/m4
Iy = , Thn= .

1+ m;! 1+ m;?
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The above relations close the formulae necessary to calculate the parameters ¢, ¥, a;;, . . .

.., hi; appearing in Eq. (2.1) and express them in terms of M. In practice, from the
physical parameters (1.16) we calculate M, and then evaluate the mathematical par-
ameters (2.2).
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Plane problem for the steady heat conduction of material
with circular inclusions

V. V. MITYUSHEV (SLUPSK)

THE METHOD of functional equations for boundary R-value problem is proposed, the latter being
considered as a plane problem for the steady heat conduction of composite material. The simplest
version of the method has been suggested in [1].

1. Introduction

LET US CONSIDER the mutually disjoint circles Dy = {z € C,|z — ax| < 7} (k =
0,1, ...,n) on the complex plane C. Let D = C\ UJ_, Dy, the point z = 0 belongs to D.
We shall consider steady heat conduction in the complex plane C, when D, Dy, ..., D,
are occupied by materials with the thermal conductivities A, Ay, ..., A, (> 0), respectively,
contact between materials being perfect. Let us assume that we have sources of heat in
the domain D only. Let f(z) be a complex potential of the sources [2]. It means that the
known function f(z) is analytic in all Dy. As an example, if we have sources at z = 0,
z = o0, then f(z) = Inz, where the branch of logarithm is fixed in such a way that the
cut belongs to D.

In order to determine the temperature function we find the harmonic functions u(z),
uy(z), ..., un(2) in D, Dy, ..., D, respectively, according to the boundary conditions

0 Ouy

u
t) = t A— = Ap— - = =  ateqiTly
u(t) = ux(t), = Larwa |t —ax| = re,k=0,1,...,n

where J/0n is a normal derivative. The function u(z) has the same singularities as f(z).
This problem is equivalent to the following boundary R-value problem [2]:

(1.1) B(t) = i (t) + oxpr(t) — f(1), |t — ak| =7y,
where g 1= (A — Ag)(A+ Ax)~!, the unknown functions ¢(z), ¢y(2), . . .» Pn(2) are ana-
lytic in D, Dy, ..., D,, respectively, and continuously differentiable in D, Dy, ..., Dy.

The harmonic and analytic functions are related by the identities u(2) = Re ¢(z), uk(z) =
2MA + Ap) T Re ¢pi(2). The problem (1.1) is of the so-called elliptic type [3, 4] because
|ox| < 1. That notation will help us essentially to solve the problem (1.1).

In [1, 2, 5] the problem (1.1) has been reduced to the following system of functional
equations:

n
(1.2) $k(2) = D oml@m(z3) = Bm@3)] + f(2) + #(0) — ki (0F),
nh
|z —ax| <r, k=0,1,...,n,
where ¢y (z) are unknown functions. Here zj := 71/(z — ax) + ax — is inversion with
respect to the circumference |z —ax| = ry. For a example, the point 0} := 74 (—ax) + ax.
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Let us denote the sequence of inversions with respect to the circumferences with numbers
k],kz,...,k‘m by

Zk b _goooky 15 (3;m_,...k,)2m .
There are no equal neighbour numbers in the sequence £y, ka, ..., k,,. Also, we have
LA W i
(13) 8(2) = 2~y [m(zn) — 6m(05)] + #(0), 2 € D.

m=()
G. M. GOLUZIN [1] has solved the system (1.2) by the method of successive approximations
under special assumptions. His result has been developed in [2, 5-8]. In this paper we
prove convergence of the method of successive approximations in general situation and
get a solution of Eg. (1.1) in analytic form.

2. Solution of the system of functional equations

Let us suppose that the given functions gx(z) are analytic in |z — ax| < 7% and
continuously differentiable in |z — ax| < re(k =0,1,...,n).

THEOREM 1. The system of functional equations
L -
(2.1 Yi(z) = Z om¥m(zn) + gx(2), |2—ax| <re, k=0,1,...,n,

m=l()
m#k

has the solution

22)  ¥r(2) = [9x6(2) — 9O + Y ok,l9x,(ZF) — 98,07

ky=0
ky #k
n n
+ Y Y ok 0k9k (2R k) — 9 (OF)] + -+ ck
kl =() kzzﬁ
ki #k ky#ky
© n n n
= Z Z Z Z 9k1@kz"'9km6m[9km(z;m "'kl)_gkm(()’:m...klk)]-l'ck’

m=() k1=[) k2=[) kin =0
ki#k kagtky  km#Fkgnoy
where cj. are constants, & is the operator of complex conjugation. The series (2.2) converges
absolutely and uniformly in |z — ag| < rp.

Proof. Let us consider the Banach space C' which consists of functions continuous on
U ,0Dy. The norm || f|| = max maxsp, |f(t)|. Here 8Dy := {t € C, |t — ax| = ri}.
We denote by C'* the subspace of functions analytic in |z — ap| < e, fe CF
denotes that fx(z) = f(z) are analytic in |2 — ai| < 74 and continuous on |z — ai| <
r(k = 0,1,...,n). The functions ¥,,(z7,) are analytic in |z — ax| < 7k, where k is
fixed, m = 0,1,...,n, m # k. The function gx(2) is continuously differentiable. Hence
¥x(2) is continuously differentiable too. Set ¥i(z) = ¥}.(2); then

(2.3) Te(2) = Y om(Zn)Un(zy) + 9i(2), |7 —ak| < 7%
m=[)

m#k
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Let us rewrite Eq. (2.3) as the equation in C'*
V= AV + g

The operator A is compact in C'*, because A : C* — C* and A is compact in C as a
sum of compositions of the bounded operators

f&) = 1), f) = em(@) f(D

and the compact operator

f(f)—’f(fm)——f Y dr, -l =,

m

when k,m = 0,1,...,n, m # k. We shall prove that the spectral radius of A is less
than 1. This will mean the convergence of the method of successive approximations in
C'* [9]. We have to prove that if ¥ = AW, where the constant y satisfies the inequality
|n] <1, then ¥ = 0. Integrating ¥ = AV we obtain

n
(2.4) Uk(2) = 1 Y 0mWm(zn) + Vi, |2 — ak| < 7k,
m=()

m#k

where 7 are constants. We introduce the function
n
w(z) = p Z om¥m(z},),
it
which is analytic in D. From Eq. (2.4) we obtain the boundary R-value problem
w(t) = Pr(t) + poxr(t) — vk, |t — ax| = 7.

Using the inequality 1 > |pox| and the general theory 3, 4] we conclude that the last
problem, where 7, are fixed, has the solution depending on arbitrary additive constant.
In our case w(z) = const. Then ¥,(z) = ¥}(z) = 0. Therefore, convergence in C'* has
been proved. We can write the solution of the system (2.3)

f(2) = gD+ Y on @G + D D 0k 0k Gkl ) * -

k=0 kp=0 ky=0
ky#k ki #k ky#k
oo n n n
= Z Z Z Z legkz"'ka(ﬁmgkm(z;m...k,))’» |Z_“k| < 7rg.
m=0 ky=0 ky=0 ke =0
ko#k ky#ky km#km—1

That series converges uniformly in C'*. Hence it may be integrated term by term

(2.5)  ¥u(z) - ve(0F) = [ ¥(2)dz
0

=YY Y Y okek e kS 9k Chn k) — Ik 0% k)]

m=0 k=0 ky=0 km =0
ki #k ky#ky km#km_1
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Assume now that A, < A, ie. 0 < pgp < 1 for all k. Let us pick out p such that
0 < p < 1, and the constants

_1 (- -Ap)

B ONEOF M)+ A= Ax
which satisfy the inequalities Ay — Aex > 0 (K = 0,1,...,n). Then py = pup) where
A - (/\k = /\Ek)

A+ (A + Aeg)
obtain the series

o0 n n
D™ D ook, 0k B Gk G k) = Tk O k)]
m=0 k=0 ky=0

ki#k ky#ky

converging absolutely as a geometric series. This proves the theorem.

0< o) = < 1. If we substitute pp). instead of pj in Eq. (2.5), then we

3. Solution of the boundary R-value problem (1.1)

We return to the system (1.2). The functions ¢(z) have the form

o0 n n

G @D =3 Y. D omok -0k f R, k)~ FOF, k0] + ks
m=0 k;=0 ky=0
ky#k ky#ky

|z = ai| < 14,

where ¢ = ¢,(0;). From Eq. (1.3) we have

(B2 HD=D D D D D kO 0k 0k k)

m=0k=0 ky=0 ky=0 K =0
ki#k ko#k km#km_1

'f(‘)::m...klk)] +¢, z€D,
where ¢ = ¢(0). The problem (1.1) has the solution depending on an arbitrary additive

constant [3]. We assume ¢ to be that arbitrary constant. Substituting z = 07, in Eq. (3.1)
we obtain the values

Rk = [¢m(0%,,) — dm(0)],  k,m=0,1,...,n,k#m

(here we write m instead of k and inversely). Then, by substituting 2 = 0f in Eq. (1.2)
we have the R-linear algebraic system

ck+orck =c+ Ri, k=0,1,...,n,
where Ry = "7 _ 0m Rmk. After solving that system we obtain
) Reec tIme

(33) cp = Re Ry + —— Im Ry + . k=0,1,...,n
1+ o 1— o l+or 1-0k

So we have proved the following

THEOREM 2. The problem (1.1) has the solution (3.1), (3.2), (3.3) depending on the
arbitrary constant c.
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4. Concluding remarks

The series

o0 n n n
(4.1) DD D D kOO S, k)

m=0 k=0 ky=0 Ky =0

ki#k ka#ky Km #km—1
; . 1 )
can be divergent. For example, if f(z) = 1, 90,, = —(m = 0,1,...,n), we obtain
n

o0

; ‘ ; : 1
the divergent series E 1. It can be easily seen that if |p,,| < — then (4.1) converges
n
m=()

absolutely.
Let us consider the example when we have sources at = = 0 and z = co. Then
f(z) =Inz. Let p,, = p(m =0,1,...,n). Then the following relation is valid:

0 n n ZE " o™
Re ¢r(z) = In H H H O*—’"—'- +const, |z —ag| < 7k
m=() klf-l) k=0 knl"-klk

ki #k km#km_1
The function ¢(z) has an analogous form.
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Optimization problems in nonlinear systems
A. SZATKOWSKI (GDANSK)

AN OPZIMIZATION problem has been considered in the one-dimensional formulation on continua and
compact subsets of Banach spaces. This formulation has been found to be useful from the point of
view of synthesis of analog processor systems for optimal control. Stochastic modeling of hf/sical
systems, as well as mechanical automata and synthesis of electronic control systems are the ge ds of
possible applications of the results obtained.

1. Introduction

LET C BE A NONEMPTY PEANO CONTINUUM [6], where a nonempty, connected and locally-
connected compact subset of a Banach space is an example. Let 7 denote the interval
[0, 1] of the real line R. By the Hahn—Mazurkiewicz theorem [6], there exists a continuous
map Ce(+) 1 J 3t — (c(t) € C, which defines continuous surjection of the interval 7
onto C.

Let g(-) be a function defined on a Peano continuum C and with values in R. In a
number of considerations, one can analyse the given function ¢(-) by taking into consider-
ation the composite function g o (¢(-) of one variable ¢ in 7, where (¢(+) is a continuous
surjection of 7 onto C, as in the Hahn-Mazurkiewicz theorem.

The problem of estimating the global minimum value and the global maximum value
of the function, and the problem of selecting the points of global minimum and global
maximum in the domain of the function are the subject of these considerations. By
the Hahn-Mazurkiewicz theorem, the optimization problem considered admits the one-
dimensional formulation on continua.

Let g(-) be a continuous function defined on a Peano continuum C and having values
in R. For example, g(-) : B — R is a continuous function defined on a Banach space B,
and C is a nonempty, connected and locally-connected compact subset of B. Let (¢ (-) be
a continuous surjection of 7 onto C.

The value

Gmin|e £ min g(z) forzeC,
of the global minimum of the function g(-) on C, and the value

x| e = maxg(z) forz €C,

of the global maximum of the function g(-) on C, as well as the points in C, where the
function g(-) has the value of the global minimum or the value of the global maximum,
respectively (the Weierstrass theorem [6]), are now available as a result of the analysis of
the continuous function ¢ o (¢ () defined on the interval 7.

The following formulation is also considered.

Let g(-) : B — R be a (''-function defined on a Banach space B, and let W be a
nonempty and compact subset of B, where it has been assumed for the set W that there ex-
ists a continuous trajectory I(¢),t € R*, R* = [0, o0), which is enclosed and dense in W,
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clIm z(-) = W. Additionally, the trajectory assumed has to be continuously differentiable
for all ¢ in R*, except for a subset of isolated points [2]. The values gmin|w and gmz|w,
as well as the points in W where the function ¢(-) assumes the value of global minimum
or the value of global maximum on W, are now to be found as a result of the analysis of

the function g(-) = ¢ o T(+) defined on R™.

The integral equation formula has been proposed, such that the function obtained as
the unique solution of the appropriate equation reaches the limit value equal to gmin|w
(or the limit value equal to gmz|w, respectively), as { — oco. The equivalent differential
equation formula has been presented. The estimation theorem has been enclosed, where
the trajectories defined for ¢ € J are taken into consideration.

The optimization problem formulation which is the subject of this paper is important
for a number of fields of applications, e.g. in synthesis of systems of analog processors for
optimal control [3, 15], numerical continuous-time processing systems [15, 16], mechanical
automata [1], [10, 11], and stochastic modeling [9, 12]. Both deterministic [2, 5, 7, 8, 13,
14] and stochastic trajectories [4, 12, 16] have been taken into account.

2. A dynamical system for points of global minimum and global maximum of a function
identification

Let g(-) : B — R be a C'-function defined on a Banach space B. The problem of
estimating the global minimum value gmis|w and the global maximum value ggz|w of
the function ¢(-) on a compact and nonempty subset W of the space B is considered. The
problem of identifying the points from the following two sets is also considered:

Aming|lw = {2 € W : g(2) = gminlw} ,
and
Amzglw = {z € W: g(2) = gmlw } -
It is assumed for the subset W that there exists a continuous map z(-) : R* — B,
R* = [0, c0), which is continuously differentiable for all ¢ in R*, except for a subset of
isolated points, and which defines the trajectory Z(t), t € R, which is dense in W [2].
For the given C'-function ¢(:) and the trajectory Z(t),t € R, (1) denotes the right-
hand derivative of the function g(-) = g 0 2(+), at £ € R*.
Define the functions
. L) e E 11 Ly o) AT 8
2R3y —aw={g ¥
and
= ' — s JO fory<0,
a():Roy—ay = {1 Fopyrs .
The following theorem is valid.

THEOREM 1. Let g(-) : B — R be a C'-function defined on a Banach space B, and
let W be a nonempty and compact subset of B, where it has been assumed for W that there
exists a continuous trajectory T(t), t € R*, which is enclosed and dense in W and which is
continuously differentiable for all t in R™ [2], except for a subset of isolated points.

The following is satisfied, where g(-) = g o Z():
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1. The function ¢(-) defined as the unique solution of the integral equation
t

(2.1) s() = [ a(@(r) - $(r) - a(G(r) - §(r)dr + G(0)

0

reaches the limit value equal to gyiqw, as t — oc.
2. The function 1 (+) defined as the unique solution of the integral equation
t

(2.2) vty = [ @@Gr) - () - @@Gr) - Grdr + §o)

0

reaches the limit value equal to gamgw, as t — . (The derivative '§(t) is defined as the
right-hand derivative of the function g(-), at t € R*).00

The proof of the theorem has been omitted.

It is to be noted that the integral equation (2.1) is equivalent to the following nonau-
tonomous and discontinuous difterential equation [5]:

d¢’ | L <
(2.3) o = @@ - ¢) - ag®) - g(t), tERT,
with the initial condition given by

$(0) = g(0).

The integral equation (2.2) is equivalent to the following nonautonomous and discon-
tinuous difterential equation [5]:

( ; ;
.4 W =G0 - v -G - 5@, teR”,

with the initial condition given by
P(0) = §(0).

Assume now that the function g(-), a compact set W and the trajectory Z(t),t € R*
(such as it has been assumed in the Theorem 1) are given. The function ¢(-) is defined
by the integral expression (2.1) (¢(-) is the unique solution of the integral equation (2.1)).

Let ay(+) be the function

1 fory <0,
_%(')ZRBy*Qu(y)={U fOl'Z>0.

Define the function
T T RT — {0,1}: G(1) = a@(t) — &(1) - a(G(1)),
and let 7 , be the subset of R* given by
T,={teR":y@1) =1}
The following situations are possible:
i. T 4 is an empty set, which takes place iff (if and only if) Z(0) € Aming|w-

ii. 7, = R*, which takes place iff §(t) < 0 foreach t € R*. In that case, ¢(t) = G(t)
forallt € R*. The limit set £2(Z(-)) of the map Z(t),t € R*,[7, 8], is a subset of Aping|w,

(@) € Aming|w -
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iii. 7 , is a nonempty and proper subset of R*. The set 7 , is the set union of
some number of maximal intervals in R*, where ¢/ and t!' € [0, co], respectively, are the
values of ¢ which define, respectively, the begin and the end of the subsequent interval
considered, v being the ordinal number assigned to the subsequent (maximal) interval
enclosed in 7, [6]. Each of the considered (maximal) intervals in 7 4 is open at the
end, and it is open or closed at the begin.

Consider the case where the set of intervals becomes well-ordered for the well-order
that satisfies v’ < v"iff t, < ¢! ,.

Let k4 be the ordinal number of the (well-ordered) set of maximal intervals enclosed
in 7 5 [6].

If the ordinal number & , of the set of maximal intervals in 7, is finite, £ 4, > 1, and
Lgé < o0, then E(LEA) € Aging|we-

In an another case, if K, is equal to the ordinal number w of the set of natural
numbers [6], and if there is exactly one point @ € W where the function g(-) attains the
global minimum value in the compact set W, then limy_, o, Z(t}) = .

Let @y(-) be the function

. _ 0 fory <0,
a():R3y—au(y) = {1 for;;().

Define the function
77 ()R = {0,1} 1 77(1) = TG — v (1) - To(g()),
and let 7 4 be the subset of R* given by
Ta={teR*:g7@)=1}.

The following situations are possible:

j- T a is an empty set, which takes place iff 7(0) € Agmzqw -

ii- 7T A = R*, which takes place iff 3(1) > O foreacht € R*. In that case, (t) = g(t)
forall ¢ € R*. The limit set £2(Z(-)) of the map Z(),t € R, [7, 8], is a subset of Agzz,/w

12(Z()) C Amazg|w -

13- Taisa nonempty and proper subset of R*. The set T A is the union of some
number of maximal intervals in R*, where 7/, and 7!/ € [0, o], respectively, are the values
of t which define, respectively, the begin and the end of subsequent interval considered, v
being the ordinal number assigned to the subsequent (maximal) interval enclosed in 7 4
[6]. Each of the considered (maximal) intervals in T 4 is open at the end, and it is open
or closed at the begin.

Consider the case where the set of intervals becomes well-ordered for the well-order
that satisfies v’ < v" ift 7!, < 7! ,,.

Let K 4 be the ordinal number of the (well-ordered) set of maximal intervals enclosed
in T A [6].

If the ordinal number K 4 of the set of maximal intervals in 7, is finite, K4 > 1, and
f%’A < 00, then E(f;d) € Ammg|w-
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In an another case, if ¥, is equal to the ordinal number w of the set of natural
numbers [6], and if there is exactly one point T € W where the function g(-) attains the
global maximum value in the compact set W, then Alim Ity =7

¢ — 00

The following theorem is proposed, which concerns the approximate estimation (in

finite time) of the values gpinjw and gz w -

THEOREM 2. Let g(+) : B — R be a C'-function defined on a Banach space B and let
W be a nonempty and compact subset of B, where it has been assumed for W that for each
number o > 0 there exists a continuous trajectory 5 ,(t),t € J , which is enclosed in W and
satisfies the condition

(2.5) supinf{[|z’ — z"|| : 2’ € W, 2" € Im7,(-)} < 0.
I' I”

Additionally, the trajectory assumed has to be continuously differentiable for all t in 7 , except
for a subset of isolated points in 7.

The following theorem is valid.

1. The function ¢,(-) defined as the unique solution of the p-parametrized integral
equation

t
(26) (1) = [ a(@,(r) — ¢o(1)) - a(G(T)) - Go(T)dT + Go(0), tE T,
0
reaches the limit value equal to gminw, fort = 1 and o — 0.

2. The function v,(-) defined as the unique solution of the p-parametrized integral

equation
1

2.7) Yo(t) = fﬁ(?ig(T) = Pp(7)) - A(Gy(7)) - Go(T)dT +G,(0), te T,
0

reaches the limit value equal t0 gz w, for ¢ = 1 and o — 0.

Both in the expression (2.6) and in (2.7), 7,(t)(¢ € [J) is an arbitrarily chosen trajec-
tory, which is enclosed in W and satisfies (2.5). The trajectories are continuous on [ and
they are continuously differentiable for all ¢ € 7, except for a subset of isolated points
in 7. g,(-) is defined as the composition g o 7,(-).

The value of the right-hand derivative of the function g,(-) is taken for §g(t) at
t € [0,1), and the value of the left-hand derivative of g,(-) is taken for g,(t) at t = 1. 0

The proof of the theorem has been omitted.

It is to be noted that the integral equation (2.6) is equivalent to the following nonau-
tonomous and discontinuous differential equation [5]

g, e
2.8) T = 2@t~ 60) - a1 -G, (0, te T,
with the initial condition given by

$4(0) = G,(0).

The integral equation (2.7) is equivalent to the tollowing nonautonomous and discontin-
uous differential equation [5]

d ~ ~ ~
2.9) e = a0 - $0) - TGO - G0, €T,
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with the initial condition given by

$(0) = ,(0).

In the reference [15], the block diagram of an analog processor system for estimating
the global minimum value and the global maximum value of a function g(-) : R — R on
a compact subset of R has been designed. The formulas presented in the Theorems 1
and 2 have been applied.
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Homogenization of heterogeneous magnetoelastic medium
S. BYTNER and B. GAMBIN (WARSZAWA)

THE PROCEDURE of homogenization is used to obtain the homogenized system of field equations and
macroscopic constitutive laws of magnetoelasticity. The effective material properties are derived as
functions of microperiodic structure. The one-dimensional example of layered medium is calculated.

1. Introduction

DURING THE LAST two decades an increasing amount of research has been conducted to
develop methods and procedures for improving the description of macroproperties for
given micro-inhomogeneous structure of solid media. In the case of interaction between
different physical fields in solids, the problem of macrodescription is especially interest-
ing both from the theoretical and experimental point of view. The spectrum of physical
phenomena in coupled fields is discussed e.g. in [6, 7, 8]. The method used in this paper
called homogenization [1] consists on replacing the model of heterogeneous medium by
an equivalent homogeneous model. Equivalence is understood in the sense that the so-
lution of any initial boundary value problem for a heterogeneous body is “close” to the
solution of a related initial boundary value problem for the homogeneous body, the effec-
tive coefficients of which do not depend of microstructure. Homogenization was applied
previously by many authors to calculate macrobehaviour of thermoelastic field, piezoelec-
tricity in solids [3, 4], perfectly conducting solid [2], and many others. The example of
practical meaning of the method is shown in [5], where superconducting multifilamen-
tary composites in presence of a weak electromagnetic field is studied. The macroscopic
transverse conductivity describing the loss of energy dissipated in a matrix (fibres are su-
perconductors) is in agreement with experimental data. The more practical interest of
homogenization technique are eddy-current non-destructive tests for electromagnetoelas-
tic materials. In [10] the theoretical modelling of composite structure is based on the
model similar to the self-consistent model of matrix-inclusion composites, and even in
such a case interesting results are obtained. The method of homogenization is more
promising than the self-consistent scheme if the 2-dimensional examples are calculated.
In the present paper the heterogeneous, electrically conducting solid placed in an initial
strong magnetic field is considered. The body has a periodic structure, what means that all
the material coefficients: elastic constants, magnetic permeability, electric conductivity and
dielectric coefficients are periodic functions, with the same cell of periodicity. Our goal is
to obtain the macroscopic behaviour of such a microheterogeneous magnetoelastic solid.
By applying the theory of homogenization, the method of two-scale asymptotic expansion
is exploited. As a result, the homogenized system of field equations and constitutive laws
are obtained. All formulae include the solutions of so-called “problems on the cell”. The
semigroup theory is used to derive the effective electric conductivity and effective dielectric
constants. In the formulae for the coefficients mentioned above the integro-differential
operator appears. Similar effect was obtained in viscoelasticity [9]. The formulae obtained
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are formal and complicated. In order to illustrate the solutions, the two-layer structure is
assumed and calculations are done explicitly for the arbitrary anisotropic layers.

2. Basic equations of magnetoelasticity

We consider the heterogeneous, elastic solid with finite electric conductivity. Within
the limits of the phenomenological theory for “slowly” moving elastic bodies, i.e. with rela-
tivistic effects neglected, such a physical problem is governed by Maxwell equations, elas-
ticity equations and constitutive relations with appropriate couplings between the fields.

Under the assumption of strong initial magnetic induction and small deformations,
there will be only a slight change in the magnetic field vector with respect to the primary
field. In this connection we may write:

H=H()+h, B=Bﬂ+b,

where h and b are small magnitudes.

Using this relation and disregarding all combinations of small magnitudes higher than
linear, we obtain the following set of equations [7]:

Maxwell equations

roth=j+D,
tE = —k
(2.1) et
divh =0,
divD = pe,

elasticity equations
2.2) ot = divegradu+jxX By + P,
constitutive laws
i =nE +n(u X By),

(2.3) b =g,

D= E[E nr (ll X BU)] = %(u X H()),

z
=3
[}
b4
)

electric field,
electric induction,
magnetic field,
magnetic induction,
electric current,
elastic displacement,
elastic Hooke’s tensor,
magnetic permeability,
electric conductivity,
electric permeability,
Hy(z) initial magnetic field,

B, initial magnetic induction,

© mass density,
P body forces.

M3 F e merom
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The above equations are valid in domain B of the space E3. The fields u, h, E are
assumed to be known on the boundary of the domain occupied by the medium under con-
sideration. Besides, the homogeneous initial conditions for the time equal 0 are assumed.
It is the case when the motion of the material is caused by forces P acting inside.

The heterogeneous structure of the medium is given by the Y -periodic tensorial func-
tions of variable y = x/¢ satisfying the following conditions:

pij = pgis i€y > mlEf,
(2.4) mij =i M€ = 1€,
€ = €5y,  €;6€; 2 BlEP
for all £ € R3,
Cijkl = Cjikl = Cklij , Cijk[CijCkl > 74|C|2
for all ¢ € R® x R®.

where 7, 72, 73 and -4 are constans.
We look for the solutions of the form

he(x,t) = h'(x,y,t) + eh'(x,y,t) + ...,
(2.5) wi(x, 1) = uw'(x,y, 1) + eu' (x,y,t) + ...,
E°(x,t) = E'(x,y,t) + cE'(x,y, 1) + .. .,
where hi, u’, E! are y-periodic functions.
Substituting Egs. (2.5) to Egs. (2.1), (2.2) and assuming
a d 10
— a — t ——
(9.’17{ Bl‘i £ Byi
we obtain the hierarchy of equations:
at the order ¢ 2

(2.6) divy[e(y) grad, u"(x, y)] = 0.

It implies that u” does not depend on y and we have u'(x).
At the order ¢ 7! we have

rot, h’(x,y) = 0,
(2.7)

rot, E'(x,y) =0,

div, c(y) grad, u’(x) + div, c(y) grad, u'(x,y) = 0.
Equation (2.7); implies that
u'(x,y) = —x(y) grad, u’(2),

where x(y) is a solution of the problem on the cell
(2.8) divy[e(y) grad, x(y)] = — divy e(y).

At the order " we have
g 1
rot, h'(x, ) + rot, h'(x,y) = €E'(x,¥) — S[i'(2) x Hy(y)] + £(i x Bo)

+n[E’(x,y) + 1’ (x) X By,
(29) ot E'(x,y) + rot, E'(x,y) = —uh'(x,y),
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2.9 gii“ = div,(cgrad, u’) + div, (c grad,, u') + div,(c grad, u') + divy(c grad, v?)

[cont.]
+‘I’]EU X By + [T'](l.l” X B“)] X B“ + P.
Taking the mean value (-) on Y in Egs. (2.9); ; we obtain

. 1
(2.10) rot,(h") = (eE") + (e)(ii" x By) — ?“i“ x Hy) + (ME") + (n)(@° x By),
rot, (E*) = —(uh"),
where
(.) = f . dy
v

The terms rot, h!, rot, E' of Eqs. (2.9) have a zero mean value what we can see by
integrating by parts and taking into account the Y -periodicity. From the condition of

uniqueness of u? as a function of y we obtain the homogenized equation of elasticity
from Eq. (2.9)3

(2.11) (0)ii’ = div, " grad u’(x) + (j") x By + P,
where
(2.12) = (c- cgrad, x).

Now we proceed to obtain the homogenized constitutive laws. Let us consider the diver-
gence of Eqs. (2.1); 7

divD = —divj, divb = 0.
Using the asymptotic expansion (2.5) we obtain at the order ¢!

(2.13) divy {G[E“ + (ii0 X By)] — Cl—z[ii“ X H(,(y)]} . divy[n(Eﬂ g0 Bo)],

divy[uh"] = 0.
From Eq. (2.13); we have
div, b’ = 0.
Equations (2.7); ; imply that E” and h" have the form
E' — (E') = grad, @,
h” — (h’) = grad, ¥.
Functions ¢ and ¥ are Y -periodic. Substituting Eqs. (2.14) into Eq. (2.13) we have

div,, [(e% + n)((E") + grad, @)

(2.14)

1
(2.15) + div,[e(ii” x By)] — - div, [ii’ % Hy] + div,[n(@" x By)] = 0,

div, [u(grad, ¥ + (h")H] = 0.
Equations (2.15); contain = and ¢ as parameters. We have

div, (pgrad, ¥) = — div, w(h?)
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which implies

(2.16) v = x'(yI(h")],

where x!(y) is a solution of the equation on the cell

(2.17) divy[n(y) grad, x'(y)] = — divy n(y).
Then the mean values of h” and b" are related by

(2.18) (b”) = u*(n’),

where

(2.19) " = (u+ ngrad, x,(y)).

Equation (2.15), contains time derivative of E” and it will be solved by a different method.
We introduce the space

(2.20) Vy = {6;0 € Hi(RY), Y — per, (8) =0},
equipped with the scalar product

o® 00
2.21 )~ = e
(2.21) (.0)7, Yf 05555,

now Eq. (2.15); becomes

d
(2.22) B’_t{ J e((E") + grad, ®) grad, Ody
1
)
+ ! €(V[ X B()) gl’ady gdy — C_z Yj‘ (Vl) X H[)) gfﬂdy E)dy}

+ f n(v" x By)grad, Ody + [ n[(E’) + grad,, &] grad, fdy = 0,
Y Y

where v! = ", N

We then define the operator A (which is bounded and symmetric from Vy into itself)
and the elements f1, 7, f},j =1,2,3
0% 06

(A2,0)y = 1]%%(1y1

|
—
=

a0
(fi: 0, = ffij';d?/a

J
(2.23)
a8
(5,00, = ;fmja—yz_dyv
08
(f;,g)rfy = f”ijla—z

Using the above definitions, Eq. (2.22) is equivalent to

J 1
(2.24) (EU‘;(E?) & & fj!("" X By)j — gejklf;U(JLBol]

< m SE + ABE) -0, ey

Vy
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The unknown ¢ must of course satisfy the initial condition ¢(0) = 0. According to the
semigroup theory, the solution is:

(225) ¢ o _f ( ) f (Vn X Bl))g E]kif vk ol

t
+ fe-A“-s)f;[(E;?) + (V) x By);]ds — ; [ e A fiv] Bods,

0

where

BeAf-
If ¢(t) is known, E' is calculated from Eq. (2.14); and we have

1
0 1] 0 —-1,.0
Di = €;;E; + €;(v X By); — 2 SiklHim Vg Bom,

(2.26)

70 = ni B + 1i;(v" x By);.

Now we calculate the mean values of D and j!.
Finally we obtain the macroscopic constitutive laws in the form

11
(DY) = b;; E” + f d;. E" ds + b5 (v” X Bp); + f (lfj(v” x By);ds
0
(‘-l)‘ HB +e . I)B _it € "”Bd
—g Him EiklVp Dom pijgynlvn ol & fqijf_ynlun oldsS,
0

@27
t

(37) = bL(EY) + f Al (E)ds + b1, (v) x By); + f d;(v" x By)jds
0

t
1,
4 0 n 0
_C_zpijsjnwnBo; = ;2- f({,'_jfjnlvnBoldSs
0

where the homogenized coefficients have the following representation:

= (€ij — €rf}), = (mi; — 'mkakﬂ)
(2.28) = (ftkakfs Ag), (Thkdkf3 )
Pu (€irdr ), P,J = (nik0cf}),
= (eindrAfje=4t), = (nudkAffe™%), E=1t-s.

3. One-dimensional example of a layered medium

We assume that the medium possesses a layered structure. The periodic “cell” consists
of two different homogeneous but arbitrary anisotropic layers. It means that all material
coeflicients have the form
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o(y) = k(e + <,
n(y) = &(y)n] +n®,
e(y) = K(y)le] + €2,
u(y) = k(@[u + u®,

K(y) = 1 y € material with properties (1),
~ 1 0 y € material with properties (2),

[-1= 00 - (09,
(k(y)) = & volume fraction of material (1),
(1—-¢&) volume fraction of material (2),

y=,v,9), V=Y.

In order to obtain the ¢ we use Eq. (2.12) and under the assumptions made above we
get

i3}
(3.1) c‘?jkl =, (C:'jkl - cijZna_y'ngl)a

where y £ fulfil the equations

d d d

kl
—Cizn i Xo = —Ciak.
ay z‘ZZnay,)(n ay izkl

Integrating both sides of the above equations we have
Kl _ i
Cizzn - Xn = Cizkl + Siki,
dy

s;x; = const and it is determined from the condition of uniqueness of solution sz’ in the
class of periodic functions:

sikt = —(Czan) " (€TanCiam1)-
Then
4 kl ~1 —-1/,-1 \=1/ -1
?yxn [cp22n] [CPZH] - [CPZZH] (Cpns) (Cr22.sc?’3kl>'
Thus Eq. (3.1) reads as

el = (Cijrt) — (CijznlCpan) " epart) + (Cijan(epran) ™ Nepa) T (CraasCrakt)-

Finally, after calculations we get

(3.2) e = (cijm) — €1 - Oeizjsleplepam] + €1 - &)cizisleialeparil:

Analogically, we calculate

(3.3) pls = (i) = (paa(pa) ™ iag) + (k22) " )z )~ (pia(pa) ™)
and the final form is

(3.4) ul = (i) — €1 — Ol sl + €0 — (il iz

http://rcin.org.pl
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In order to obtain the effective coefficients in homogenized constitutive laws (2.27) we
solve (2.15);, which in the one-dimensional case has the form

17, 0 0P 10 0
3y (621'52 & 7)2:‘) [(E?) + ‘51'2(.)7; + (v x Bu)i] 20y 0t —(' x Hy), = 0.

Denoting

od
.Qi = (E:)) + 6,’28—?” + (V” X B())i
we have

J i 130

i— 41 |92 — Y% Hp), = 0.
3y (62 1 772) 20y 2 0)2
After integration with respect to y we get

€1 0 ?721) (3 7722) (623 3] 7723)
2+ | = 02
(622 ot en L ot * - . €2, Ot B €2 &

Ll ] a(t)
—_—— | H = —=,
c? at[czz(v X Ho); €2
We use the following form of the above equation
a 7122)
— + — |2 = B(t),
(5 + )@ = B
where
€ 0 nzl) (€z3 d 7723) 10 [ 0 ] a(t)
By=—|—=+—= ) - (= + =2+ = H
@) (622 at en) en 0t € c? Ot fzz(v Al

to get the solution

oP boomy
2= (E) + 5o+ 0" xBp = [ RO BGs)ds,
0
Taking the mean value over the cell

t
(Eg) + (V“ X B(])z = f (6 ("2 S)B(S)dS
0
and differentiating with respect to the time we have

J
a(Eg} + %(V” X By); = (B(t))

[<522>] { (E3) + t("”XBu)z
+

€ 0 4 M ((63_0_ @>Q>_ 1 0( T >}
< (622 ot fzz) Ql> TR 2Ot \ ex (v’ X Ho)2 ) .
Thus

(3.5) —j = ~(B8) ~ ¢ x By~ (B + (" x By

t t L7 P
+ [T BB + 00 x Byyds] - 2 e RTI(EY) + (0 x By ds
21

0 =00
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t n
(3.5) ~2LED) + (" x By + [ e BOTI(EY) + (v x By)s)ds]

[cont. €27 0

M2y 11
7] ¢ )(<E§]> + (V” X &,)3)(15 + C—ze—" [(V“ X H(})z
22

: 2 1\! 1
(t—s), 0 0
+ 2 5 H + ( — E
6" e (v 0)2] <€ > ( )

s
€2 |

22 €22

t t
Rt—s
+ f (t %) E dS} + (V X B())z fﬁ‘n(t )(VU X B())zdS
0

0

¢ n
+<€21> [(E") + (V" x By); + f 6_%(1—3)((‘9?) +vix B")lds]
€22

0

t n
+<’72‘> J e BB + (0 x Bds + (2) [(Eé’) + (v X By)s
pA

€2/

t m
+f TR et maie] + (2) [ BONED + o i
€22

0

1 -1 | B >] 1 L —221(:—3)< 1, > )
= A + 2 — (" x Hy), )ds.
C2<62ﬁ> €22 [( En(v x Ho), 2 fe (22(" )2 )ds

0

The constitutive laws have the form
Jd 1
(D) = (e B + (g )+ (ea)0” 5 B, = {0 x By,

0P
(32) = () (E) + (g ) + (1) x Bo)s.

Inserting Eq. (3.5) to the above equations and collecting the corresponding terms we get
the homogenized coeflicients

-1
€i2€25 1 €2i €25
i < U> €2 €22 €22 €22

dze' [dm 12’([23]
€i2€2) 2y € _nz
di(t — 5) = _< i2€n -2 s)> 3 < a% -2~ s))

€22 €22

=i —1
€ P 1 € 1 __m” -
+< 1 > <EZI>< Zle (22“ S)> +< > <n2]>< 216 fzz(t 5)>’
€2 9] €2 €2 €22 €22
1 =1 €75 _222(1_9)
df(t-“‘( > <_ =" ),
€22 €22
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€2€23 — € —"220_
it — 5) = +< 2623~ (¢~ s)> < uMas -t s)>

€22 €22

+<i>_’<fﬁ><‘“ B (5) () (2
€22 €22 €22 €22 €22 €22
€k _ 1 =t €2} 1
s=oa(Zat) - (5) (2o
pl] o [< CZZI & €22 €22 Ezzl ki
ok - Bt—s) I\ e _mrgoa\ /10
qij(t-s) = 5:2[( 2 (= S]Mk]]> = <—> <2—ke e (! )><ﬂ>],
522 €22 €2 €
e 1 —1 . .
1-m0- () (2 (2)(2).
€22 €2 €22 €2

= [d}), d}), d}3],
i =2 - ; _n "
d;’l(t —5) = _<77¢2€21€ T (t s)) B (772:77216 2t 5)>
€22 €272

-1 ] ) -1 ) -
SR EE ) N E )
€2 €2 € €22 €22 €22
I\ Vg _mpe
dne-s) = (=) (B E),
€22 €22

2623 T2y _na2
d?3 t—s) = _<7hz 23— s)> = <le17)23 i s)>
€2 €22

() (e E () ()
€22 €22 €22 €22 €22 €22 ’
y - (PR (L))
i e s 22BN =),
€22 €2 €22 €12
_m iy M2 1
q,](t —38) = b [( 772k A S)uk_;,]) = <—> <%e o 5)>< ;L;J.1>].
€22 €22 €22 €22

4. Conclusions

The homogenized set of equations combines the macrofields u’, (E") and (h"). Let us
stress that the zero-order terms in e-expansion series of the elecmc and magnetic fields
E’ and h" are rapidly fluctuating fields, i.e. they depend on microvariable y, contrary to
the pure dependence of displacement u on macrovariable x. In the effective relations
for mean values of the current (j') and electric induction (D") we obtain the integro-
differential terms (corresponding to the memory effects) which describe nonlocality in
time of the effective laws. This result is due to the dynamical character of couplings in
Eqs. (2.1)-(2.3). The operator A in the Eqgs. (2.24) is positive defined; then the kernels in
integral terms decay exponentially as ¢ tends to infinity and, consequently, the “memory”
vanishes exponentially.
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The initial static field H, generated in such a way that the constant static magnetic
induction By inside the body is produced, is responsible for the restrictions imposed on the
type of heterogeneities which can be treated by the applied method. Namely, taking into
account that rot Hy = 0 and Hy = u~!(2)By, the following conditions on the tensorial
field w=!(z) must be fulfiled:

€ijk0jty (@)Bu = 0.

One should take into account the above conditions when performing the numerical cal-
culations.
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Calculation of coefficients of a power series approximation
of a center manifold for nonlinear integro-differential
equations

J. GRZEDZINSKI (WARSZAWA)

A NUMERICAL ALGORITHM for center manifold reduction of integro-differential equations with kernel
of convolution type is presented. Approximation up to the desired order can be obtained provided
that derivatives of the transfer functions of the system of equations are known.

1. Introduction

THE PROBLEM dealt with in this paper is an integro-differential equation with the convolu-
tion-type kernel

d ()
ay  {G] =010+ [ 60D at+€)}d6 + {f@)},

where {z(t)} is an n-dimensional vector function of time, [D)] is a n X n matrix of real
numbers, [G(—©; )] is a square matrix of order n composed of given functions of time
which also depend on the parameter U/. The only nonlinear term is a vector function
{/(=)}.

Such an equation occurs frequently in many different fields of applied sciences, for
instance in the flutter analysis of flexible aircraft. In this case {z(t)} represents generalized
coordinates of the structure, all equal to zero at steady motion. The integral in Eq. (1.1)
represents unsteady aerodynamic forces and also reflects the history of motion. Elements
of the matrix [G/(—@; U)] are response functions corresponding to the impulsive changes
of generalized coordinates. The vector function { f(z)} describes nonlinear properties of
an aircraft structure. The parameter U/ denotes the flight velocity.

The aircraft flutter phenomenon occurs when the flight velocity exceeds certain critical
value changing the structural response to the shedding of vortices behind the aircraft body.
The structural response itself induces additional aerodynamic self-excited forces causing
loss of stability of the motion. It is known that there is a qualitative difference between
the behavior of the linear and nonlinear aircraft structure above the critical flutter speed.
In the linearized case loss of stability leads to oscillations the amplitude of which grows
very fast and an aircraft is usually destroyed in a very short period of time. If the structure
or aerodynamics is nonlinear then the finite amplitude limit-cycle oscillations take place.

The linearized second-order flutter equation exhibits loss of stability of a stationary
solution if a root of the characteristic equation crosses the imaginary axis. At this point
the matrix of the linear part of the corresponding set of first-order integro-differential
equation (1.1) has a complex-conjugate, pure imaginary pair of eigenvalues. Therefore,
the Hopf bifurcation of time-periodic solutions occurs in the nonlinear flutter system [1].
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The aim is to investigate the asymptotic stability of equilibrium solution {z(¢)} = 0 of
Eq. (1.1) in the neighbourhood of a critical bifurcation point. It is known that all bifur-
cating solutions tend asymptotically to a finite-dimensional attracting subspace — center
manifold [1]. The dimension of the center manifold is usually small and, therefore, it is
beneficial to reduce the initial dynamical system to that describing solutions lying in this
manifold.

The center manifold reduction and bifurcations for integro-differential equations have
been studied much less extensively than those problems for ordinary differential equations.
The difference between dealing with ordinary differential equations and integro-differen-
tial equations is crucial. In the first case all calculations are placed in the Euclidean
space while the second case involves two functional subspaces of initial conditions and
solutions. There is also a significant difference from the numerical point of view. Ordinary
differential equations allow for evaluation of a single iterative numerical scheme for both
the center manifold and the normal form reductions [7]. For integro-differential equations
these two steps must be separated.

HASSARD, KAZARINOFF and WAN [2], using previous results of CHAFEE [3] and LIMA
[4], gave an example of center manifold reduction and the Hopf bifurcation formulae
for a certain two-dimensional integro-differential equation of the type (1.1). They took
into account only the first term in a formal power series expansion for nonlinear function
{f(z)} and put a lot of effort going through very tedious algebraic calculations. For
that reason, their procedure cannot be straightforwardly extended to multi-dimensional
systems, neither they can account for higher nonlinear terms. However, the method is
general and can be used to build up an algorithm for numerical calculations instead of
forcing final algebraic formulae. Such an algorithm of center manifold reduction forms
the fundamental part of the asymptotic stability analysis and will be presented in the paper
after a brief outline of the method.

Equation (1.1) can be written in the form

1
(1.2 (G} = ey + @,
where the linear operator L is given by
0
(13) Lo{z} = (D=} + [ [G(-6:U)}{a(t + ©)}dE.

There exists one basic difficulty in a formal extension of the center manifold theorem,
and the Hopf bifurcation theory as well, worked out for ordinary differential equations,
to integro-differential equations. In order to solve Eq. (1.2) and initial vector-function
{2(@)}, describing the history of motion, must be given, continuous for every @ €
(—00,0]. Consequently, Eq. (1.2) defines a map from the space C~ of continuous vector-
functions over the interval (—o00, 0] onto the Euclidean space R™, parametrized by time ¢.
Thus, operator (1.3) describes a transformation between two distinct spaces and, therefore,
an eigenvalue problem for [ cannot be formulated (the point of bifurcation should be
defined by pure imaginary eigenvalues of the operator L [5]). The space C~ of initial
functions must satisfy some additional requirements, forming essentially conditions of
existence of improper integral in Eq. (1.3). These requirements are always satisfied
for any physical system, as well as the continuity condition imposed on initial functions.
Neither unbounded velocities nor infinite accelerations, generated by discontinuities, are
allowed in physical systems.
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2. Extended integro-differential equation

The idea of solving the above-mentioned difficulties consists of such an extension of
the definition of the operator L to have it acting in a single space C~. The extended
definition is given by [2]:

(2.1)
{dfj(@@)}’ for —-00 <O <0,

[D{z(0)} + f[G(—r;U)]{x(r)} dr, for @ =0,

L{z(©)} =

where the operand is a vector function {z(@)} € C~. Now the integro-differential

equation can be written as a mapping of the space C~ onto itself, with time ¢ as a

parameter:

dz(0)
dt

where the following notation has been applied:

z(0) = {a(t + O)},
) +p)0y for —o0< O <0,
Rz:(0) = {{f(z(t))}, for O =0.
For —oo < @ < 0 equation (2.2) gives the straightforward relation

d{z(t+ @)} d{z(t +0)}
dt = dé '

Equation (1.2) is obtained from Eq. (2.2) for any given time ¢ by putting ©® = 0. It means
that the space C~ of initial vector functions is always “the past” (history of motion). The
adjoint to the space C™ is the space C*, composed of continuous vector functions {(©@)}
defined over the interval [0, +o0) [3]. Any two functions from C~ and C* are involved
in a bilinear form (y, z):

(22) = Ll't(@) 1 th(O) 5

0 7
(y,2) = {FO)} {2} - [ [ {5 - m}TIG(=mU){e()} dédn,

—-00 ()
{z©)}ecC™, {wO)}ecC”,

where {...}7 denotes the transposed vector. This form will be called “outer product”.
The outer product allows for a formal definition of an adjoint operator L* by using the
relation (y, Lz) = (L*y, z):

dy(O)}
—{ de |’ for 0< @ < +00,

[D1T{y(0)} + _f] [G(—=7; U))T{y(-7)} dT, for @ =0.

2.3)

L*{y(©@)} =

Now an eigenvalue problem for the operator L can be formulated:

(2.4) L{p(@)} = Me(@)} .
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The form of an eigenfunction {@(@)} follows immediately from Egs. (2.1) and (2.4) by
taking —oo < @ < 0:

(2.5) {¢(@)} = {p}e*®.

The unknown vector {¢;} belongs to Euclidean space R™ and is given as an eigenvector
of the eigenvalue problem posed for @ = 0:

0
Moo} = [Di{ o} + ( f [G(—T;U)]‘fMdT) {eo}-

In the same way an eigenvalue problem for the adjoint operator L* can be formulated,

(2.6) L{$(@)} = A {¥(@)} .
Eigenvalues and eigenvectors of both problems satisfy the following relations:
(2.7) A=A (k) = du,

where 6y, is Kronecker’s symbol. It can be easily found, that if k # 1, then (¢, 1) = 0,
no matter what the value of the scalar product {#,(0)}7{¥,(0)} in R™ is, and that for
k = [ the following formula holds:

FOY (1N~ ZAED])  {#O) =1,

S=)\x
where [A(s; U)] is the matrix transfer function

(2.8) [A(s;U)] = f [G(—0;U)]e*® dO .

— 00

In general case the space C~ of initial functions is of infinite dimensions. If, however,
the elements of matrix [G(—@;U)] in Eq. (1.1), being functions of @, are solutions
to certain linear ordinary differential equations with constant coefficients of order not
exceeding p, then the space C~ is p-dimensional and the integro-differential equation
(1.1) can be reduced to a system of p ordinary differential equations.

3. Center manifold

If, for a certain critical value U, of a parameter U, there exists a set of m eigenvalues
Ak (m < n), such that

(3.1) Re(A) =0, for k=12,...,m,

then there exists an m-dimensional subspace M of an infinite-dimensional space of all
solutions to Eq. (2.2), called center manifold, containing all asymptotic solutions for ¢ —
00. The center manifold is locally attracting for solutions remaining sufficiently close to
the equilibrium solution {z} = 0. This is the most important property of the center
manifold, despite the fact that the area of attractivity is in general unknown. The aim
is to derive the equations for dynamical system restricted to the center manifold. These
equations will be obtained corresponding to Eq. (1.1), but the method works also for the
suspended system with the parameter U considered as an additional variable, satisfying
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the equation:

U
— =0.
dt

The suspended system allows for getting results valid in the neighbourhood of the critical
value U,.

An algorithm for center manifold reduction essentially outlines two properties of a
center manifold. First, the center manifold is invariant. This means that if the initial
function {z(t)} € M, for ¢t < 0, then also for t > 0 {z(¢)} € M. Second, the center
manifold is tangent to the m-dimensional linear subspace spanned by the eigenvectors
corresponding to the critical eigenvalues (3.1). The last property allows for a formal
splitting of the unknown vector function {z;(@)} on the center manifold into two parts:
3.2) {z:(©)} =Y =i(0{p;(@)} + {w(O,1)},

j=1
where {;(0)} are eigenvectors of Eq. (2.4) corresponding to the critical eigenvalues
Aj, {w(©,1)} is a still unknown vector function, and scalar functions z,(t) describe new

coordinates. At the bifurcation point [/ = U, all coordinates z;() are equal to zero. The
function (3.2) must be invariant which means, that

(3.3) {w(®,0)} = {w(z (1), ., zm (1), ©)} .

Moreover, function {w} must satisfy the following conditions at the bifurcation point
U=U.

0,...,0,6
(3.4) {w(0,...,0,0)} =0, {M}=O, 3=1,2, ..., m.
(3‘zj
For convenience, new coordinates z;(¢) are chosen such that
(35) z](t) . (¢7](@),Zt(@)>, ] = 1,2,...,m,

where {1;(0)} are eigenvectors of Eq. (2.6). Then, orthogonality conditions follow
immediately:

(36) (1,[)]'((')),10(21,. ...,Zm,Q)) = 07 :’ = 1,2,---,m-

It is worth noting that these orthogonality conditions involve the outer product (2.3) and
hold in the space C~ x C* (not in R™) and, therefore, cannot be used to reduce the
number of components of the vector {w}.

Equation (2.2) on the center manifold takes the form

(l[,.](@)’ dﬂ:g(@)/(“) = (lp](@)ﬂ L‘If(@) it Rl‘t(@)), ] = 132’ ey,
and, after applying Eqs. (3.2) and (3.6) and the following equalities:
(¥;(0),dz(@)/dt) = dz;(t)/dt, (;(@), Lzy(@)) = Ajz;(t),
(5(0), Rz (@) = {0} {fu},
where

{fo} = {f(x:(0))},

gives the system of m ordinary differential equations for new coordinates z;(1):

(3.7) dz;j(t)/dt = Ajzi(@t) + {€;O} {f}, i=12,...,m.
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These are no more integro-differential equations, however, they contain an unknown
vector function {w} as a part of the argument of { f,}:

m

{7} = (X 5000} + {wi,. . 2m,0)})

j=1
The function {w} plays a crucial role — it gives a condition to be satisfied by coordinates
Z1, -+ Zm, in order that solution {xt(O)} would remain in the center manifold all the
time. Essentially, the function {w} defines the center manifold.

The function {w} must satisfy certain differential equation which can be obtained

after substitution of {z;(©@)} of the form Eq. (3.2) into Eq. (2.2):

a» {G}-rw

- 2 (6O {fobpi(@)}, for —00 <@ <0,
J:
- zl({ﬁj(O)}T{ﬁ)}){w(O)} +{fe}, for ©=0.
J=
Equations (3.7) and (3.8) constitute a full set of n + m scalar equations which can be
solved for n components of the vector {w} and for m functions z;(¢). It is easy to check

that the right-hand side of Eq. (3.8) is always orthogonal to the set of functions {¢;(©)},
according to the outer product (2.3).

4. Center manifold reduction

The problem of practical solving of the set of Eqs. (3.7) and (3.8) remains still open.
Up to now, the only general method deals with formal power series expansions for vector
functions {w} and {f)}, with respect to variables z;.

It follows from the conditions (3.4) that the formal multi-variable Taylor series expan-
sion for the function {w} has to be of the form:

1) (W1 2 O)) = 3 ~[w, (@)},
pu2>2 4t

where each component of the vector {z#} is a product:

(4] = {0 i b,
m
with restrictions: Z,uj =pu, ;>0
j=1

The number of components of {2#} grows as y increases and is equal to the number
¢(i, m) of compositions of y into m parts

_(m+p-1
(4.2) c(p,m) = ( p-1 ) :
The coefficients of the series (4.1) are rectangular functional matrices [w u(Q)] composed
of n-component vectors {w,x(@)}:

(4.3) (W, (0)] = [Wu(O): ... wuk(O):. .. :wum(O)] .



CALCULATION OF COEFFICIENTS OF A POWER SERIES. . . 241

The number of columns of each matrix (4.3) is equal to ¢(y, m). Substitution of series
(4.1) into (3.2) gives a consistent power series expansion for the function {z,(©)} on the
center manifold:

(4.4 [2d@) = ¥ —[wa @),
pu>1 H-

where the first coefficient for ;¢ = 1 is a square matrix of order n built of eigenvectors

{#i(©)}:

(4.5) [w1(O)] = [@1(O):. . .:0k(O):. . .i0m(O)].

It is assumed that the power series expansion for the nonlinear function {f(z)} at the
right-hand side of Eq. (1.1) is known:

(4.6) U@} = Y A1),
v>2 "

where
n
{a¥} = [zt s 237 . &in}, Zvj =y, v;20.
=1

By setting @ = 0 and substituting Eq. (4.4) into Eq. (4.6) a corresponding power series
expansion can be obtained, with respect to variables z;(1)

(4.7) {f =3 ;},[ﬁm]{f«"‘}-
pz2

Substitution of Eqs. (4.1) and (4.7) into Eq. (3.8) leads to equations for coeflicients
[w,(@)]. Differentiation of Eq. (3.3) yields

{dw 5 ‘Z‘: Jw } dz;j

dt e BZJ' dt i
7=1

and, after substituting the derivatives of variables z; Eq. (3.7) on the center manifold,

results in

dw = Jw L T ow

{E} = Z/\j{gjf}zj 3 Z({%(O)} {f"}){ﬁ_zj} .
7=1 7=1

Differentiation of the series (4.1) term by term with respect to the variable z; yields

{gj} =% Bw @)z},

> !

where

{ij—éj} - {zlu'l sss Z;L_J_-ll . Z;J-l . Z;li;l i zr":lm} :

Now an expression for the derivative of {w} in the form of a series can be obtained:

d mo ‘ P
{d_t‘tu} = Z ;%[w“_((-))][A“]{Z'”} + Z({wj(())}j{f()})a—z Z —IT[wu(@)]{zu} :

u>2 J=1 I u>2 He
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where matrix [A,,] is a diagonal matrix of order c(u, m), given by Eq. (4.2), with elements

(A#)kk =Z/\j»u’j7 k= 1,2,:..;c(pym) 5
j=1
where numbers p; correspond to the k-th composition of p (the k-th component of the
vector {z#}). After substituting the above expression into Eq. (3.8) the final differential
equation for [w,(©)] is obtained:

48 Y —(w O)A,] - Liw,@){z"}
ux2
0, for —o00< O <0,
=) -«{ru(G)]{z”} it { —[fm,]{z }, for @=0,

u>2

where L[w,(©)] denotes a matrix with columns given by the operator L acting on columns
of the matrix [w,(@)]. The right-hand side series with coefficients [r,(@)] results from
differentiating and multiplying two series:

(4.9) Z—m(@)}{z"} Z({w (0)}T{fo})—z U(@)}{z“}

v22 >2

This is a relatively simple task to create a numerical scheme based on Eq. (4.9) for
calculating the elements of matrices [7,(@)], but it is very hard to find analytic formulae
for this purpose. The reason is that the analytical formula relating the given p-composition
to its position in the vector {z#} does not exist and, moreover, such a relation is not
unique [6].

It follows from comparison in Eq. (4.7) of the left and right-hand side terms of the
same order, that the value of u corresponding to the matrix [w,(€)] on the right-hand
side is always less than that on the left-hand side. Therefore, Eq. (4.7) can be solved
recursively for g = 1,2,..., and u = v. The unknown matrix [w,(@)] in the first step
(¢ = 2) depends on the known matrix [w;(@)] composed of eigenvectors of the operator
L Eq. (4.5). The first coefficient [ fi;] in the series (4.7) can be also calculated by using
only the matrix [w,(0)] (i.e. for & = 0).

In each consecutive step of the algorithm the following matrix equation has to be
solved for the functional matrix [w,(@)]:

(4.10)  [wu(O)[AL] = L[wn(O)] = [ru(O)] + { Unal, ;g: Z)DZ é 6 <0,

forp=12,3,...,.
Equation (4.10) can be rewritten for each column of [w,(@)] separately,

(4.11) Uk{'wﬂk(("))} . L{w#k‘(e)} {TLtk(Q)} + { [four], gg:- g)oi (i Sl

where consecutive compositions of y are numbered by an index k = 1,2,...,c(g, m)
(i.e. each Eq. (4.11) for a given k corresponds to a single composition of y). Hence, the
total of ¢(t, m) equations of the type Eq. (4.11) have to be solved in order to obtain one
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matrix [w,(@)]. The number o (corresponding to the k-th composition) is given by

m
ok = Z/\juj :
j=1

Both operators B{¢} = ox{¢} — L{¢} and L share the same eigenvectors. The eigen-
value problem for the operator B is of the form

B{p} = (ar — M},

what means that the eigenvalue of B is equal to o, — A. Consequently, if for a certain
k-th composition the following equality holds:

m
(4.12) Y Ajpj—A=0, for 1<I<m,
j=1

then the vector {w,x(@)} is not unique and the full solution to Eq. (4.11) contains as
a part the eigenvector {¢;(0)} corresponding to A;. The orthogonality conditions allow
for uniqueness of the full solution in this case.

Equation (4.11) must be solved in two stages. First, an ordinary differential equation
is solved

d
(4.13) or{wuk(0)} — E‘é{“’uk(g)} = {r.(@)},

derived from Egs. (4.11) and (2.1) in the interval —oco < @ < 0. It follows from Egs.
(4.9) and (4.5) that for 1 = 2 the right-hand side of Eq. (4.13) is a linear combination of
eigenvectors of the form Eq. (2.5). Moreover, the solution to Eq. (4.13) corresponding to
a given g affects the right-hand side of Eq. (4.13) for 11+ 1. Consequently, the right-hand
side of Eq. (4.13) is always of the form of a linear combination of elementary terms:

(4.14) {r(@)} = {ro}Ore’?,

where p > 0, and [ is a complex number equal either to g or to an eigenvalue of the
operator L. Therefore, it is sufficient to look only into a simple form of Eq. (4.13) with
the right-hand side given by Eq. (4.14):

(e)
(4.15) R e Q)]

where {w(?)(©)} denotes an elementary component of the solution.
The elementary solution is of the form

p !
ro}ef® #93} for o ,
(4.16) {w(c)(@)} = {ro} ]Z:u]!(a'— B)p—i+l k #F 0
,{rp}eﬁ@ zﬁ@pﬂ’ for oy = f.

The general solution to Eq. (4.15) is a sum of Eq. (4.16) and the solution {wx(©@)} to
be homogeneous equation corresponding to {r(@)} =0

{wi(@)} = {who}e’*®.
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The second stage of the algorithm consists in finding an unknown vector {wpg}. The
general solution to Eq. (4.13) is a sum of two vectors

(4.17) {wuk (@)} = {w(HO)} + {who}e™*?,

where {wﬂ(@)} is the full particular solution forming a linear combination of elementary

terms of the form Eq. (4.14) — this follows immediately from Eq. (4.16). Substitution of
the sum into Eq. (4.11) for @ = 0 yields the system of linear algebraic equations which
can be solved for the unknown vector {wpg}:

@.18)  (oull]1=[D]— [ [G(=r;U)e™s dr) {wh)

= {rueO} + {four} = ar{w2O)} + L{w,R(0)} .
It can be seen, after recalling the implicit form of the operator L in Eq. (2.1) that the
last term on the right-hand side of Eq. (4.18) contains integrals of the form
0

J(p,B) = f[G(—T;U)]Tpe'@TdT.

—00
These integrals can be rewritten as derivatives of the matrix transfer function [A] Eq. (2.8)
0

d
T = g5 | 1G0T = THAGI.

Equation (4.18) has a unique solution for every o, # A;, where A; can be any eigenvalue
of the operator L. However, if 0, = A;, then the matrix of the system of equations
is singular and solution is not unique. The term causing the lack of uniqueness is an
eigenvector of L corresponding to A:

{21(@)} = {pu}eM®.
In this case the right-hand side of Eq. (4.18) must be orthogonal (according to the scalar
product in R™) to the vector {1} = {¥1(0)}, where

{£1(©)}) = {Yu}er®
is the corresponding eigenvector of the adjoint operator L* (the property (2.7) has been
taken into account). It will be shown here that this condition is always satisfied.
Let {v(@)} stand for the right-hand side of Eq. (4.11):

{v(@)} = {rus(@)} + {[ﬁ, o, fﬁﬁ o= 0 o

It follows from Eqs. (3.6) and (3.8) that the following orthogonality condition holds:
(¥;(0),v(0)) =0, for j=1,2,....,m

Hence, by using the definition formula (2.3) of the outer product, the scalar product
(%uj, vo) in R™ can be written as

0 n
W) = [ [ %66 = MYTIG (= U){v(€)} dédn.

-0 ()
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The function {v(£)} in the integrand can be replaced by
{v(©} = or{w RO} - L{wR©)

for the reason that {w(rg(f)} is a particular solution to Eq. (4.11) for @ = 0, and the
scalar product is given gy

T

Wojsvo) = [ [ {B;€ = M} IG(=m ) or{w O} - L{w()O}) dedn.

-0

The above formula holds for all eigenfunctions {%;} (j = 1,2,...,m), in particular for
{11} corresponding to o = A;. Now the scalar product (1, by) can be calculated:

(Yot bo) = (o, v0) = (o, Mw'T2(0) — Lw)(0))

0 n .
= [ [ e -mTIGEmO{wii©)} = L{w(E)}) dé dn

—-o0 ()
~ (%o, Mw(0) = Lw()(0))
= —(¥(©), \w()(©) - Luw()(©)) =0,
where
{bo} = {7k} + {four} — M{w 020} + L{w)(0)}

denotes the right-hand side of Eq. (4.18). The final zero value of the scalar product
comes from the orthogonality of the vector

A{w(l@)} - L{w()(@)}

to the eigenvector {#,;(@)} and proves that Eq. (4.18) is always solvable. It means
that the condition (4.12), when fulfilled, does not cause the lack of uniqueness in the
center manifold reduction, contrary to the normal form reduction for systems of ordinary
differential equations [7]. Nevertheless, the problem of assuring uniqueness of the solution
for o, = A; during numerical calculations has to be solved. Let {w,(©)} be any of the
infinite number of solutions {w,x(@)} Eq. (4.17) corresponding to o, = A;. The general
solution {w (@)} to Eq. (4.11) must be orthogonal, according to the outer product (2.3),
to all eigenvectors {¢/;(@)} corresponding to bifurcation eigenvalues (3.1). Hence, the
general solution must be of the form

{wur(@)} = {wo (@)} + 3 aj{io;}e™®

j=1

0, for —00 < 0 <0,
+ { = Z Qﬂj{tp[)j}, for e =0.
j=1
i
From the orthogonality condition (¢;(@), w,x(@)) = 0 for i = 1,2,...,m, a system of

m linear algebraic equations can be obtained and solved for unknowns «,

Z QJ<U,'1(9), Q[J_jﬁ‘\‘@> _Z Cl/j(d»‘“i, Q‘ol)j) o _<‘¢i(@)1 u’0(6)>7 for = 17 21 sy TR
7=1 j=1
7#l

http://rcin.org.pl
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In order to calculate the coefficients of the system of equations the values of outer prod-
ucts (1(@), u¥(@)) have to be calculated, where {)(0)} is any eigenvector of adjoint
eigenproblem (2.6), and {u*)(@)} is a vector of the form:

{u®(©)} = {u}O*e?,
for k > 0, 3 # A*. For k = 0, after setting A* = X, formula (2.3) gives

— A - [A(A
(40), 1)) = () — (G AL
where [A(3)] and [A(A)] are matrix transfer functions (2.8) with arguments [ and A,
respectively. In particular case, for § = A,

1im ($(0),10©)) = () = ()| G2 )

For k # 0 formula (2.3) yields the relation:

: _dF (= 7lAB) - [AV)]
(¥(0),uM(@)) = ~ 5 ({?f)u}rﬁ_—/\{uu}) ;

that allows for deriving the recurrence formula for k > 0,

: L TdAR
(#(©),uO) = 5 (T [ L2 () + kwi©), - @n)

In the particular case, for § = A, the above formula reduces to

1 = r[dA*'(B)
m{%} [WJ;;:,\{HU}'

At this stage all formulae needed for center manifold reduction have been obtained.
The problem that still remains unsolved is the estimation of accuracy and validity range
induced by the method of power series expansions. This problem sometimes may be
crucial because power series expansions do not always converge. In numerical practice
all calculations refer to the finite number of terms of any series involved and, therefore,
it is better to consider them as a polynomial approximation rather than the Taylor series
expansion.

(¥(@),uP(@)) = -

lim
B—A

5. Numerical example

Up to now, there are no numerical results available for center manifold reduction of
the aircraft flutter equation. Therefore, in order to verify the algorithm a simple set of
two integro-differential equations investigated previously by HASSARD er al. [2] has been
chosen. The system is the following:

6.0 G} =010} + IGO0+ ©)}a6 + (f@)) + (h@))

where matrices [ D] and [G(—@; U)] are given by

_ 0 -1/p
[D]”[U_(B_l) 0/ L]
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U-6 o
(G(-6;U)) = | B-T2° :
0 0

with 3 and 7" being real numbers. The Taylor series expansion for the first nonlinear
vector { f(z)}, Eq. (4.6), reduces to the single term corresponding to v = 2:

7
U@ =50 2 g]{zlfz}.

T3

The second nonlinear vector {h(z)} is of the form:
[}
{h(2)} = Bar() [ [G(=0;1){z(t + ©)}dO),

and has not been included in Eq. (1.1). However, such nonlinear terms can be added
without any qualitative changes made in the algorithm. They affect only calculation of the
right-hand side of Eq. (4.10) in each consecutive step of the algorithm. After substituting
the series expansion (4.14) for {z(t + @)} on the center manifold, the following series
for {h(z)} is obtained:

{h(z)} = Ba1(1) Z f [G(=6; U)|[wu.(©)]dO{z"} .
,u)l
Each column {w,(@)} of the matrix [w,(©)], where k = 1,2, ..., ¢(u, m), can be only
of the elementary form

{wu(0)} = {wu }OTe*
with an integer number p > 0 and s being a complex imaginary number. Consequently,
all integrals can be carried out as follows:

) [;p
S 16-6:0)167e0a0 () = (1A {1}

where matrix [A(s)] is given by Eq. (2.8).

The above example is especially suitable for testing because the kernel [G(—@;U)]
is finite-dimensional; it follows that Eq. (5.1) can be reduced to the system of ordinary
differential equations and, therefore, the results of the algorithm can be compared with
results of other methods worked out for this kind of equations.

The system of ordinary differential equations corresponding to the integro-differential
equation (5.1) is following:

(l.’L']
dt
dil,‘z

dt
(5.2) i

dt
il
dt

—23(t)/B — 3(t) - U/B — &1(t) - z2(t) — a1 (t) - 23(1) - U,
o) U~ (B=1D+z(1) - z2()- 3,

$4(t) )

(1)) T? = z3(t)/T? — za(t) - 2/T
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and has been obtained after introducing two new variables z3 and 2,:

dz;

0
z3(t) = —(1/T?) f@eQ/Tzl(t+@)d@, zo(t) = —2.

—00
There exists one critical value U, of the parameter U,
2
B i

T+2TYB - 1)
corresponding to two complex conjugate pure imaginary eigenvalues (3.1) of the linear
operator L Eq. (2.1)

Al-:l-/T, )\2=—i/T.

In this case the center manifold is two-dimensional (/m = 2) and contains an asymptotic

system of reduced equations of the form Eq. (3.7), which can be written as a power
series

dz A O
{Z1= 14 N] e+ T,
n22
The presented algorithm of center manifold reduction, corresponding to

B=1001, T=0125 U, =16.011997,

gives the following values for the elements of the first seven matrices [d,,]:

" 0.00000  8.00000 0 2
Ll 0 0.00000 —s.oooom‘] {z;}’
[ 1.60146  3.20347i —1.60146 3.20347i 17 ( 22
[da){z*} = 0 0 {zlzz} ,
| —1.60146 —3.20347 1.60146  —3.20347i | 22
r—0.56110  0.08007i —0.40079 —0.40081i77 ( 23
L3 o | —0-40069  —0.40072i 0.08007 —0.56102i 222
[} = | 08007  0.56102i ~0.40069  0.40072i zhet [
L —0.40079  0.40081i —0.56110  —0.08007: ] 23
r0.12349  —0.10488: 0.15802  0.03585i77 ( =z}
0.47890  0.01985i 0.27152  0.39503: 2321
[da]{z*} = | 0.12846 —0.06426i 0.12846  0.06426¢ z%zg .
0.27152 —0.39503i 0.47890 —0.01985i 223
[0.15802 —0.03585i 0.12349  0.10488:] | 2
r—0.04440 0.04163i —0.05995 —0.01053i7% ( 23
—0.29168 0.14012i —0.28713  —0.14928i Z ]
da0s5) < | —0:26271 0.17039i —0.34411  —0.007601 2
[4sH="} = | _o.34411 0.00760i ~0.26271  —0.17039 2z (7
—0.28713  0.14928i —0.29168 —0.14012i iz
[ —0.05995 0.01053i —0.04440 —0.04163 2
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r0.02936  —0.02501 0.03763  0.00848i77 ( z¢
0.16004 —0.18080i 0.26747 —0.00054i #2)
0.22524 —0.18292i 0.31328 —0.04130i 2t
[de]{z°} = | 0.48793 —0.14352i 0.48793  0.14352i PER
0.31328  0.04130i 0.22524  0.18292i zizt
0.26747  0.00054i 0.16004  0.18080i 223
[0.03763  —0.00848i 0.02936  0.02501: ] 28
- —0.01959 0.02461 —0.03390  —0.00046i77 ( 2]
—0.06837 0.16610 ~0.19204 0.07969: 2zl
—0.21957 0.24556i —0.37570 0.08582i )
(d]{:7) = | 12024909 241.68046i —201.70191  402.364051 e
e —201.70191  —402.364054 120.24909  —241.68046i 7
—0.37570  —0.08582i ~0.21957  —0.24556i zz
—0.19204  —0.0796%i ~0.06837  —0.16610 7
L —0.03390 0.00046i —-0.01959  —0.02461¢] \ 2] )

The corresponding normal form obtained by iterative method of HSU and FAVRETTO [8]
based on nonlinear transformation of variables {2} — {Z} is given by

dZ
Ttl = (—0.00000 + 8.00000¢) - Z; + (—0.40069 — 1.46963:) - Z; Z,
+ (0.08277 — 0.50758i) - Z3 Z2 + (120.69879 + 241.09039:) - Z{ Z3 ,
dZ
d—t"" = (—0.00000 — 8.000007) - Z, + (—0.40069 + 1.469637) - Z| Z3

+ (0.08277 + 0.50758:) - Z2Z3 + (120.69879 — 241.09039:) - Z{ Z3 .

The same results are obtained after applying the iterative method [8] directly to the system
of ordinary differential equations (5.2).

The matrix transfer function (2.8) in the case of aircraft flutter is the aerodynamic
matrix used in linear flutter analysis and can be easily calculated by using well-known
numerical methods. However, the kernel [(7(—@; U)] is, in general, of infinite dimensions
and the integro-differential flutter equation cannot be replaced by a system of ordinary
differential equations. The only exception occurs when the elements of aerodynamic
matrix have been approximated by rational functions.

6. Concluding remarks

From the numerical point of view the most important is the fact that the method of
center manifold reduction does not require the calculation of response matrix [G'(—7; U)].
In explicit form only the matrix transfer function (2.8) appears, which is much easier
to calculate than the response matrix, especially for the pure imaginary values of the
argument. In certain problems also the derivatives of the matrix transfer function can be
calculated without employing numerical differentiation schemes. Such schemes, however,
may be necessary in order to obtain the power series expansion for the nonlinear part

{f(z)} of Eq. (1.1).
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Eigenfrequencies of a system of elastic layers
Z. WESOLOWSKI (WARSZAWA)

A HARMONIC WAVE propagates across the chain of elastic layers. The displacements of the ends
of the chain are equal zero. The characteristic determinant has been calculated and expressed
as a continued fraction. The eigenfrequencies may be calculated as the frequencies for which this
determinant equals zero. The probability density of the ratio of amplitudes for a random distribution
of layers has been derived. Numerical example has been given and discussed.

1. Homogeneous layers

THE SYSTEM of layers were dealt with in many papers, e.g. in [1]-[8]. In the present
paper we consider the random system of N different homogeneous elastic layers, Fig.
1. The situation is close to that considered in [9] and [10]. The layer situated between
Ty and k4 is identified by the natural number k, k = 1,2,3,..., N. The propagation
speed, density and thickness of the layer k are denoted by ¢y, oy and hy, respectively. In
the layer £, two sinusoidal waves of frequency w propagate, one of amplitude Ay in the
+x-direction, and the other of amplitude By in the —z-direction. The total displacement
in the layer £ is (Fig. 1)
(1.1) up = Ag exp{iw[t — (@ — 2x)/ck]} + Brexp{iw[t + (z — z1)/ck]},
where ¢ is time, 2 < 2 < 4. The displacement u; satisfies the equation of motion
(1.2) ci“k,zr = Ukt -
Physical displacement is the real part of the complex-valued function uk(z,t).

At both sides of the boundary between layers &k and k + 1 both the displacement and

the stress vector have the same values. This continuity leads to the following relation
between the wave amplitudes

Ak+l] [Ak]
. = M, :
(13) [Bkﬂ k| B
?k 9)(-! 9’02
c’( Ck-’ C’(az
* Kot X2 Xyo3

FiG. 1.
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where
_ | P Qk
(1-4) Mk - [Rk Sk:l 3
Py = S(1+ k) exp(—iay), .
2 Sk = ka
(1.5) ] i
Qi = 51— rp)explioy),  fu =,
(1.6) Q. = whk/ck,
(L.7) Kk = 0kCk/Ok+1Ck+1 5
(1.8) he = Tke1 — Tk

The transfer matrix My allows us to express the amplitudes Ayyq, Bgyy by the am-
plitudes Ay, By. The above results may be chained to express the amplitudes in the
N-th layer by the amplitudes in the first layer. The frequency w influences the trans-
fer matrix M via the functions a. The determinant of M does not depend on the
frequency w

(1.9) det My = Ky .

If there exists an access to the ends of the set of layers, then the displacement at the
beginning of the set may be given in advance as a function of time. The displacement
of the other end may then be calculated, taking into account total number of the layers,
their dimensions and elastic properties. In particular, the displacement of the beginning
of the system may be a harmonic function of arbitrary frequency w.

An entirely other situation arises if there is no access to the layers, e.g. if the system of
N layers is situated between two rigid walls. If the first and the last layers adhere to the
walls, no relative displacement between the walls and the ends of the system are allowed,
and the displacements of the ends of the system are zero. Only a discrete spectrum of
frequencies corresponds to a non-zero displacement field inside the layers. In this case
frequency w is not arbitrary, but must be calculated from the equations of motion. Such
frequencies are the eigenfrequencies of the system.

In this paper we consider the last situation only, when there exists no access to the
ends of the chain. The purpose of the analysis is calculation of the frequencies, for which
there exists a non-zero, time-dependent displacement field.

2. Chain of elastic layers

The considered system of N layers will be further called a chain. In accord with
notation (1.1), the boundary conditions u = 0 at the beginning and the end of the chain
may be expressed by the wave amplitudes

(21) A1+B; =0, Ans1 + By = 0.

Displacement of the beginning of the first layer is A; + By. The layer N + 1 is not present
in the system. The expression An4y + By is used, because it equals the displace-
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ment of the end of the layer N and simplifies the notation. Write now the system (1.4)
and (2.1) as the matrix equation for the wave amplitudes A;, By,..., Ax, Bn, ANi1,
BN+1

(2.2)

The non-trivial set of amplitudes Ay, By, ..., Any+1, By exists, if the determinant
A of the matrix in (2.2) equals zero. This determinant is a function of frequency w,
A = A(w). In order to calculate A(w), define for k = 1,2,..., N the following five
auxiliary determinants Dy, Fy, Fi, Gy, Hy

Qr -1
S 0 -1
Prvi Qe —1
5 Rivi Sksr O -1
2.3 = . )
( ) " Pk+2 Qk+2 =1 .
Py Qn -1
Ryn SN 0 -1
1 1
P -1
Ry 0 -1
Pk+l Qk+1 -1
B Rk+1 Sk+l 0 -1
24)  Ej = . :
) k Priz Qiez —1:
Py Qn -1
Rn Sy 0 -1
1 1

http://rcin.org.pl
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(2.5)

(2.6)

@.7)

Fp=

G =

Hk=

Ry,

—1
Qr -1
S, 0 -1
Pk+1 Qk+l 1
Riyi Sk 0 —1: i
Py OQn —1
Ry Sy 0 —1
|
Qk+l =
Sk+1 0 =il
Piv2 Qre2 —1
Rk+2 Sk+2 01 ’
Py QN -1
Ry Sy 0 =1
1 1
Qr+1 —1
Sker 0 =1
Pryz  Qiez -1
Rivz Skez 0 -1:
Py Qn -1
Ry Sy 0 -1
1 1

The elements not marked are equal zero. The determinants Dy, E, have the rank
2(N — k) + 3, the determinant I} has the rank 2(N — k) + 4, and the determinants G,
H . have the rank 2(NV — k) + 2. They differ only in the structure of the upper left corner.
Note that in the upper left corner of the determinant with suffix &, constants of the k-th
layer are situated. The following relations hold

(2.8)
(2.9)
(2.10)
(2.11)
(2.12)

Dy = QFyv1 + Gy,
Ey = PeFyyy + Hy,

Fy = Ey,
G = SkDgy1,
Hi = By Dyyr.

http://rcin.org.pl
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The functions F}., G, Hj may be eliminated from the above formulae. The resulting
recursive relations are

Di = PiDisy + QExnr,

Ey = kaﬂ + PrEgy .

They must be complemented by the values of Dy, Ej for some fixed k. Note that, in
accord with (2.3), (2.4), there is

(2.14) Dy=Pyn+Qn, En=Py+Qn.

Each Dy, F; may now be calculated.
We prove that the values of Fj and Dy for each index k are complex conjugate
numbers. Assume that for some & there is

(2.13)

(2.15) Ey =Dy
Then from Eqs. (2.13) it follows that this equality holds for k& + 1
(2.16) Ei41= Dy

The fact that, in accord with Eqs. (2.14), there is E = Dy, completes the proof of Eq.
(2.16).

Equations (2.13) may now be written as a single recursive formula
(2.17) Dy = PiDis1 + QrDisr -

The above calculations were performed in order to evaluate the determinant A. From
(2.2) follows the relation

(2.18) A=D;-FE,
which, after taking into account (2.16), reduces to the relation
(2.19) A=D,-D,=2iImD,.

It follows, that A(w) = 0, if Im Dy = 0. Obviously, D, is a function of w. The recursive
relations (2.13), or (2.17) allow us to calculate D,(w), and finally the roots w for which
A(w) = 0. Note that the boundary condition for the N -th layer was taken into account
already when calculating the determinants Dy, Ey. If A = 0, then also the boundary
condition for & = 1 is satisfied. If, for some frequency, A is not equal zero, then the
boundary condition for the N-th layer is satisfied, but the boundary condition for the first
layer is not. The only solution of (2.2) is then the trivial solution Ay = By = 0.

3. Eigenfrequencies of periodic structure

Especially simple relations would be obtained for the functions Pi, @ and the trans-
fer matrix M} independent of k. The situation, when all parameters of the layer are
independent of £ is trivial, since only one layer is present then. The other possibility
corresponds to ppc) being proportional to exp(k). This, however, is not acceptable for
large N. ’

The only interesting system with Py, Qx, M} independent of £ is the periodic system
of equal elementary cells. An elementary cell may consist of arbitrary number of different
elastic layers. In this case the transfer matrix M for one cell equals the product of transfer
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matrices for all layers of one cell. As the product of W-symmetric matrices, it possesses
the W-symmetry. If £ denotes the number of the cell (not the number of the layer, as in
the previous chapter), then all the above relations may be used. In this case P, @, R, S
are the components of the transfer matrix for one cell.

In the periodic system of layers the elastic moduli after passing one cell return to the
previous values. Due to this fact, one additional relation for the transfer matrix exists
[19], namely
(3.1) detM = PP-QQ =1.

Instead of Eq. (2.13) we face now the simple system
Dy =PDpyy + QEg+1,
32) k= PDiy QEx+1
Er =QDry + PErs,

where the coeflicients are independent of k. The solution of the above system is expected
in the following form

(33)  Di=Lpep{(N+1-ky)}, Eip=Lpep{(N+1- k),

where L p, L and 9 are the complex parameters to be calculated. Substitution into Egs.
(3.2) leads to the system of equations

(expiy — P)Lp — QLg =0,
—QLp + (expiyy — P)Lg = 0.
Since the determinant must be equal to zero, the following equation for 3 is obtained

(3.5) exp(2iy) — (P + P)exp(iv) + 1= 0.

expi) = Re P £ iy/1 — (Re P)?,
costh = Re P, sint = +4/1— (ReP)2.

For 1 — (Re P)? > 0 the parameter 1) is real-valued. There are two values of 1) satisfying
Eq. (3.5). We assume that sin i’ > 0, cos» = Re P. The other value is then —1).

Note that from (2.3) follows Dy = Py + Q. In accord with Egs. (3.2) (but not
from (2.3)) we may define

(3.4)

Its solution is

(3.6)

(3.7 Dy =Ena=1.
Since there are two roots, the expected formula (3.3) should be replaced by the formula
(3-8) Dy = Lpyexp{i(N + 1 = k)¢} + Lpyexp{—i(N + 1 — k)¢},

and an expression of analogous structure for Fy. Now the constants Lpy, L p; must be
calculated. In accord with (3.8) and the above mentioned values of Dy, Dpn4, there is

Lpr+Lp;=1,

3.9 o
S LpyespGe)+ Lpsemp(-19) = B+ Q.
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Elementary calculations lead to the following expressions for the complex-valued coeffi-
cients Lpi, Lps

Lp, = .1 [-ImP +1Im@Q +siny +i(— Re P — Re @ + cosv)],
2sin i
(3.10) i
Lp;= ——[ImP —ImQ@ +siny + i(Re P + Re Q — cos®)].
2sin )

The determinant A may now be calculated from Eqs. (3.8) and (2.19) to be given by the
formula
2i

sin Y

(3.11) A=

(—=ImP +Im@Q)sin N

4. Determinant expressed as continued fractions

The analysis presented in the second chapter allows us to calculate the determinant A
as the function of frequency w. Here the alternative approach to the calculation of A(w)
will be given.

Define the 2N + 2 complex-valued parameters
(4.1) siy=Dy, s3=FE, $83=Dy, sa=EFEy..., 8k1=Dy,
. sk = Fy, ..., s;nv-1 = D, sy = En, saN+1 = 1, SaN+2 = 1.
The last two relations were added in accordance with (3.7). Remember that we are
interested only in the value of s; and more exactly — ilthe value Im sy, cf. (2&.
Obviously, in accordance with (2.14) there is $;8y—1 = Py + Qn, 528 = Pv + On.
Basing on the relations (2.13) we construct now the relations between the variables (4.1),
trying to write them in a simple form. Substitution of Eqs. (4.1) into (2.13) gives

S2k—1 = PrSakar + QrS2k+2,

Sk = QiSak+1 + PrSakez -

The last equation connects the three successive Sp,, Sm+1, Sm+2 and possesses already
the desired structure. The first equation must be transformed. Substituting s34+ calcu-
lated from the second equation into the first equation we obtain a relation between three
successive s,,

(4.2)

PPy — QiQx

S2k+1 -
Py

Qr
4.3 Sy = — 82k +
( ) 2k—1 Pk 2k

After defining the new material functions

LY T el

Gy = 3 a2=Qh Q3 9oy
(4.4) Pz‘k o F; .
Qok—1 = P—Zk’ otk = Qg s v s an =Qn,
PP - Q1Q,
J[jl=l—lP—%’ 462=Pl)"'1
4.5) e St
PP — QrQx

Bak—1 = Bak = Pr,...,0n = PN,

Py ;
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the relations between the variables s,, may be written in the simple form
s1 =18 + Phis3
s2 = sy + 284

a3sq + 355

53
(4.6)

QpSks1 + PrSka2

Sk

SaN = aanSaN+1 + BanSaN ez -

Note that the last two relations of (4.1) give san 41 = San42 = 1. Divide the first equation
of (4.6) by s,. There follows

31 x 1
(4.7) ; = a; + JB|§ .
53

Calculate the ratio s;/s3 from the second equation of (4.6) and substitute into (4.7).
Repeating this procedure we obtain the finite continued fraction

1

S
48) — = +f :
52
g + 6271
az + /HB—
o

4t !

‘ an-1+ BN ——————
oo + BN

For 8,,/8m+1 we obtain the lower part of the above fraction starting with a,,. In
general for 1 < m < 2N there is

Sm
= ’Um )
Sm+1
1
,UWL = am + /BTTL 1
(4.9) Om+1 + Bm+

Qm42 + ﬁnn—l ;
1
arN + Ban

ﬁZNAl

Since a,n + oy = Py + Qn, the above formula allows to calculate v,,. In the
previous chapter we demonstrated that it is essential for the analysis to calculate sq. In
accord with the above notation, s; equals the product

(410) S = VY3 ... N -
In the case of large N it is easier to handle the equivalent logarithmic form of (4.10)

(4.11) logs; = logvy +logv; +logvy + ...+ logvan .
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5. Random distribution of layers

Above were discussed the chains with a distribution of cells or layers specified in
advance. In this chapter we consider the chain consisting of two different types of cells.
The distribution of cells is not deterministic, in particular it is not periodic. The chain
consists of NV cells. Therefore we face the random distribution of two different types of
cells over N places. The investigations are based on the excellent paper by H. Smith,
who considered a chain of interacting masses, [9]. Denote the two different kinds of cells
by @, 3. They are distributed over N places, e.g. {, e, 3,a,5,...,3,3,a}. The total
number of cells is fixed and equal N; the particular cells may be repeated several times
at different places. The transfer matrices for the two kinds of cells are, respectively,

T Py Qa 7 pr Pﬁ Q
(5.1) ﬂ]a—[Ra Sa]’ ﬂ[ﬁ—-[Rﬁ Sﬁ]'

The subscripts in the above relations are not the numbers of cells, as in (1.4), but the
types of cells. The probability that the place k is occupied by the cell of type o will be
denoted by pyo, and the probability, that the place % is occupied by the cell of type /3
will be denoted by pys. Obviously, pro + prs = 1. In the special case of homogeneous
distribution, the probability is independent of & and the index £ may be omitted, e.g.
Pka = Pa-

Consider a stastically large number of chains of N cells with random distribution of
the above two types of cells. The number of cells of type « differs from chain to chain.
The number of cells of type 3 equals N minus the number of cells of type a. Calculate
for each chain the NV complex-valued vectors

(5.2) [Ak+l]: Py Q'k]‘”[PB Qs] [Pz Qz][ﬂ Ql][l]
By Ry Sk Ry S| |R: S:|]| R S1)|-1)°
k =1,2,3,..., N. Each of the transfer matrices at the right-hand side equals either M,
or M. For each chain the vector [Ag, B] is, in general, a different function of frequency
w. Note that the vector [Ay, B] = [p, —p], p = const satisfies the boundary condition for
one end of the chain, since then A; + By = 0, and the displacement of that end equals
zero. Without loosing generality we may take p = 1. This was the motivation to take
[Ay, B1] = 1, —1 at the right-hand side of (5.2). The resulting vector at the left-hand side
satisfies the boundary condition for the other end, if the sum of its components equals
zero, Any1 + By = 0, since then the displacement of that end (end of the N-th cell
or beginning of the (N + 1)-th cell) equals zero.
Define the complex-valued parameter

(5.3) Zszlk/Bkv
The complex number z, uniquely defines a point z; on the = + iy plane. In accord with
(1.4), (1.5), the parameters z, and zy4, are connected by the relations
Ppzp + Qr _ Skzke1 — Qk
e “le = Ty s
Rizie + Sk —Rizpe + Py
The second relation is the inverse of the first one.
Concentrate the attention on a fixed place k. In the situation considered in this

chapter, the components Py, Q, Rk, Si of the transfer matrix My, are equal either to
Py, Qo Ko, So if the k-th cell is a cell of type a, or to Py, Qp, Rp, Sp, if the k-cell

(54) Zk+1 =
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is a cell of type (. For each chain, in general, z; has a different value, since the vector
[Ax By] is different for each chain. Define an arbitrary fixed surface dvy on the z + 1y
plane. For some chains the point 2y is situated inside dvy, for other — outside dvy. The
area of dvy will be denoted by dV}. Define the probability distribution of the points zj
over the plane z, y
number of chains for which z; € dvy
total number of chains

In order to derive the equations for wy(z)) assume, for the time being, that in all
chains the k-th place is occupied by a cell of the same type. Assume first that this place
is occupied by the cell of the type o, My = M,. Then, in accord with Eqgs. (5.4), k41
is a definite function of z;

Pozp + Qo SoZks1 —
(5.6) el PR e

Rozi + Sa —Rozpsr + Pa

Denote by dvy,; the surface into which the surface dvy is transformed by the above
function. The ratio of their areas is the modulus of the derivative dz,;/dz. It may be
expressed either by variable z, or by zx4

(5.5) wi(zx)dVy =

de+1 o Po:Sa - QorRa
de 5 (Razk + S(,)z
5:7) dVi | PaSa— QuRa

dVie1 | (—Razks1 + Pa)?
In the special case discussed now, when in each chain the k-th cell is of type a, the

transformation is not random, but deterministic. If the point 2y is situated inside (outside)
dvg, then the point z4 is situated inside (outside) dvi.,. Therefore the probability of
finding the point 24, inside the surface dvy 4 equals the probability of finding the point
z inside the surface dvi. Since the total probability equals the product of probability
density and the corresponding areas, the relation holds

Wie1(Zk41)dVi4r = wk(zk)dvk-
Since z; and 2z, are related by Egs. (5.6), and dV} and dV4, by Egs. (5.7), there is

PaSa = QaRa wk( Sazkﬂ = Qa ) )

("Razk+1 o+ 1)0r)2 "Ra2k+l Gt Pa
Note that zy. is in fact an independent variable. Further we omit the subscript k& + 1
and use z instead of zj,;. The relation between the probability densities wy and w4

has the form
PySo — QuRo i ( Saz = Qu )
(—Raz + Pal2| "\=Roz + P,/
The above calculations were performed under the assumption that at the k-th place a cell
of type a was situated. If at the k-th place the cell of type 3 was situated, analogous

formula would be obtained, namely
(28
A —Rgz + Pg .

PgSs— QsRs
(—Rpz + Pp)?

Actually the k-th place may be occupied either by M, with probability i, or by Mg

with probability pig, pxa + Pk = 1. The actual relation between wy4+1(2) and wg(2)

(5.8) Wi1(2p41) =

We1(2) =

wr41(2) = ‘
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( Sa2 — Qa )

wy

—Ryz + P,

PpSp = QpRp wk( Spz —Qp )
(—Rﬁz + Pﬁ)z —Rpz + Py '
Since in each realization there is A,/ B, = —1, cf. (5.2), therefore w,(#) is different

from zero only if 2 = —1. Taking into account that the integral over the whole plane
must be equal 1, we have

(5.10) wi(2) = 6(Rez + 1)6(Im 2),

where ¢ is Kronecker’s delta. Formula (5.9), together with Eq. (5.10), completely de-
termine the probability distribution w(z) for each k. As it was stressed above, if
An/Bn = —1, then the boundary condition at the end k = N of the chain is satis-
fied. The probability distribution of w;(—1) is of particular interest, since this probability
corresponds to the case of the boundary condition satisfied at the end k£ = 1 of the chain.

The argument z for which w;(z) is different from zero is the support p; of wy. The
support of w, is the point p; = —1. From (5.9) it follows that the support p; of wy(2)
consists of the two points pyy = (Sap1 — Qa)/(—Rapr + pa) and pyy = (Spp1 —
Qp)/(—Rpp1 + pg). The support of w(z) is, in turn, the set of four points p; into which
the two points py), P2(2) are transformed by the functions (5.4).

Concentrate attention on one particular realisation. The transition matrix M} with
components px, @k, Rk, Sk is known. The above discussion proves that the supports for
successive cells are connected by the relation

Skpx — Qk

—Ripr + px

Multiply both sides of the above relation by the conjugate expressions to obtain
PiSkpiPy — RiSkpr — pr@QiPy + Qi Ry

Rk QxprPi — RiSkpi — PeQuPy + PeSk

Take into account that p; = (—1,0), therefore the modulus of the complex number p;

reads therefore
Porsa - QQRCX
(—Raz + Py)?

(5.9)  wi+1(2) = Pka

+Pkp

(5.11) Pkl =

Pk+1Pk+1 =

equals 1, |p;| = 1. The numerator for k = 1 equals the denominator, and the conclusion
follows that p,p; = 1. Consequently psp; = PaPy = ... = Pk+1Pk+1 = 1, and for each k
there is

(5.12) x| = 1.

Therefore all points of the support are situated on the circle of a unit radius.

Now the chain consisting of two different kinds of randomly distributed layers will be
considered. The layers of type « are characterized by the propagation speed c,, mass
density p, and thickness h,. The layers of type 3 are characterized by the corresponding
data with subscript 3. It would be very inconvenient for the computations if the transfer
matrix (1.4) for the layer k& depended not only on the data for the layer k, but also upon
the mass density and propagation speed of the neighbouring layer & + 1. In order to
remove this inconveniency, simple additional calculations are necessary.

Let us add between every two layers, a virtual layer characterized by propagation
speed ¢, density p, and zero thickness. Equations (1.3)-(1.8) prove that such layers do
not influence the dynamics of the chain. Now the virtual layer and the layer of type «
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constitute a cell of type a. The transfer matrix M, for the cell of type o is a product
of the transfer matrix for the added virtual layer and the transfer matrix for the layer of

type o
(1422)ewms (1-20)ewed] 1422 1-2

_l_ Sy Sy S Sa
4 (1—S—a)e_i”%3 (l+S—a)e’-“’%&L T
Sy Sy So Sy
where s, = p,c,. After multiplication, the following components of the transfer matrix
for the cell of type a are obtained:

1 s ; . 1 . Sy )
(M = S (24224 3)emiot Ly Se o)ty

(5.13) M, =

(5.14) ‘; Svs i , 3y - By
S . h s S o
(Ma)12 = —(—Q = —U)e"’“’?ff + 7( ey ”)EME‘]‘ ,
4\sy  Sa 4 5, &

The remaining two components of M, are defined by the w-symmetry. In the notation
used in Eq. (5.11) we have

Py = (Mo, Qr=Ma)2, Ri=Myua, Si=Mu,

if the k-th cell is of type «. Note that the transfer matrix for the cell of type o defined

above does not depend on the propagation speed and density of the neighbouring cell

which is of type a or type 3. The components of the transfer matrix for the cell of type

(3 may be obtained by replacing in Eq. (5.14) the subscript a by 3. The transfer matrices

M, and M3 may now be shuffled to obtain the transfer matrix for the whole chain.
Define the set of real parameters ¢, by the relation

(5.15) exp(ipr) = pi -
The discrete set of ¢y, is monotonically increasing. Since oy is a discrete set and in the
definition (5.15) each branch of the inverse trigonometric functions is allowed, special care

must be taken at passing to another branch of the function. The proof of monotonicity is
based on the introduction of the continuous variable h

he=phpas "0 <<,

and replacement in Eq. (1.5), (1.6) of the discrete h; by h. Now the discrete My, My,
are replaced by continuous M () with M (0) = My, M(1) = My,,. The parameter
oy is replaced by the continuous parameter (1), and the discrete set py replaced by
continuous p(v). Only the values for h = hy are essential for the dynamics of the chain.
In accord with Egs. (5.12) and (5.13) we write
: Sk()pk — Qk(v)
= 1 = =

ik R AT

Values of these functions (corresponding either to a, or [3) are here not essential.
Note that ©(0) = ¢k, ©(1) = @k+. It may be proved that the derivative dg/dv is
positive and ¢ is a monotonically increasing function of #. We do not quote here the
proof since the expression for dy/dv is rather long, and the proof takes a lot of space.
The full proof will be published in [11]. The important final result is that the set of real
numbers ¢, is ordered

(5.17) 1 <P <Pz < ...,
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Let us now pass to the numerical example. Since we are here interested in qualitative
results only, we prefer to waste no space for definition of the dimensionless variables.
Assume in a certain fixed coordinate system
(5.18) ¢con=1, =2, c¢,=4, 0a=05=1, hy=hg=1w=1.
The calculations will be performed for the chain consisting of N = 200 cells. The
probabilities py, and pys are assumed to be independent of k and of the type of the
cell, therefore pyo = prg = 1/2. In accord with Egs. (5.9) and (5.10), the function wy
is zero everywhere, except for the 2™ separate points, into which the point z = —1 is

transformed by multiple application of Eqs. (5.4). It was proved in Eq. (5.12) that all
these points are situated on the circle of radius 1, centered at the point (0, 0).

Im z
0 Rez,
w=.085
FiG. 2.

Obviously it is possible to plot only a small fraction of the 22® points constituting
the support. Figure 2 contains about 4000 of them for the frequency w = .095. In
order to obtain a more clear picture, they were marked not on the circle of radius 1,
but at a small random distance from the unit circle. It is seen that, for the above data,
they are distributed non-homogeneously. Most of them are situated near the point (1,0),
slightly above the real axis. Figure 3 gives the points for w = .20. Again, the regions
of larger density of points are seen, but the distribution is more uniform. For very small
frequencies the regions of large density of points are well defined. For larger frequencies
the distribution is more uniform.

Let us now make an analysis of the above results. It is not intended to support it
by rigorous proofs, but let us treat it just as an explanation of the results. Assume first
Pka = 1, prp = 0. All cells are now of type a, and all subsequent zj are deterministic.
For w = .095 the first 30 points z; are shown on the diagram in Fig. 4. The smaller is
the frequency w, the smaller will be the distance between the points. Denote the angle
at which the point 2y is situated by @,k @ar > 0. To the point (—1,0) corresponds
a0 = 0. It has been proved above that angle (o, is a monotonically increasing function
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Imz

&=.80

FiG. 3.

Imz

Zo i Rez

z % 4
Z

FiG. 4.

of k; a diagram similar to that shown at Fig. 4 is obtained, if all cells are of type /3, Fig. 5.
The corresponding angles are @py. It is seen that for each k, we obtain ¢,k > @gk. In
this case the distances between the successive points are smaller than those at Fig. 4.
Produce now the diagram for one random distribution of cells of type « and type [3.
Denote the corresponding angles by ¢x. They are monotonically increasing functions of
k, Fig. 6. Obviously, the difference ¢, — px—; depends only on the type of the k-th cell.
If this is the cell of type a, then this difference is approximately equal to the difference
of angles @,k at Fig. 4, for this particular value of ¢ (not for the number k, but for
the value of ). This differences are exactly equal, if accidentally for some m equality
Yak = @m holds true. Analogous equality holds for the cell of type 3. The inequalities
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A Im z
o
7.4 0
Re z
Z’ — %
22' !
Zj'
2
FIG. 5.
Im z
%" Re z
?;
z
Z
2 z‘? . -
Z/' 25
FiG. 6.
follow,
(5.19) Pak 2 Pk 2 PPk -
Denote
1 = mod2m, - = mod 27,
(5.20) VaN = PaN VAN = @8N

0 S 'l,[’a}\{ < 271',

0 < N < 2m.

If the frequency w is small enough to satisfy the inequalities ¢, v < 27, @gn < 27, then
for all realisations the points 2 are situated in the sector gy < Y¥n < ¥4 n. For such
w no point is situated in the sector 0 < ' < tgx or in the sector ¥, n < ¥n < 27. In
this case the spectrum of points ¥ is perfectly localized in one sector between 3 and
Yqo. If, however, pon > @gn + 27, then the regions overlap and each ¢ is possible.

The points zy may than be situated at any point of the circle.

http://rcin.org.pl
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