1.7. — metody stochastyczne

Z. Kotulski, K. Sobczyk

NON-LOCAL DESCRIPTION OF POLLUTION
TRANSPORT IN RANDOM MEDIUM

34/1992

P 209=

WARSZAWA 1992



ISSN 0208-5658

Praca wplyngla do Redakcji dnia 77lipca 1992 r.

il

PAN

N a prawach rekopisu

Instytut Podstawowych Probleméw Techniki PAN

Naktad 100 egz. Ark.wyd., 1,0 Ark.druk. 1,5

Oddano do drukarni w listopadzie 1992 r,

Wydawnictﬁo Spdidzielcze Sp. z 0.0,
Warszawa, ul.Jasna 1

http://rcin.org.pl
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Kazimierz Sobczyk

Institute of Fundamental Technological Research

Non-Local Description of Pollution Transport in Random Medium

Abstract

In the paper the convection-diffusion equation with the velocity of the flow
being a random field is considered. For such a problem the effective equation for
the mean concentration is obtained. In general case it is non-local in space and
time. Some attempts of the localization of such an equation are undertaken. The

results are illustrated with numerical calculations.

1. Introduction.

In order to understand better the evolution of mass (solute, pollutant, efc.) in
complicated waterground formations the attention has been focused on the effects of
spatial heterogeneity of the medium in question; more specifically - on the spatial
variability in the advection velocity which, in turn, is primarily due to the
variability in hydraulic conductivity.

[t has been commonly accepted that a natural and promising way of quantifying
the effects of -this complicated heterogeneity consists in stochastic modeling of
basic hydraulic properties of porous media. In general, a real water conducting
medium is modelled by a stochastic medium, i.e., a medium whose basic properties
are described in terms of probability theory, or, more specifically, in terms of
random functions of position (cf. [1]). In the analysis of a solute transport in
porous media a random helerogeneity of the medium is most often accounted for by
assuming that the convection velocity u(r) in the convection-diffusion equation is

a random field, ie., in general, u=u(rty) where r=(x;x,x;), t is time and yel,
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where " is the sample space (or the space of elementary events with family of
random events and with probability defined on the elements of this family).

The governing equation for the random concentration field C(r,s;y) has the form:
_aC(g;!:Y) - [ D v C(r,ny) ] +u(r6y) v Clrpy) = 0 (1.1)

where the pore velocity u(r,;y) is assumed to be a given random field and matrix D
has only nonzero diagonal elements which usually are regarded to be constant. In
formulation of eq. (1.1) the porosity of the medium ¥ has been assumed to be
constant. The probabilistic properties of u(r,y) follow from the properties of
random field of hydraulic conductivity K(r,r;y) and the local relationship between
u and K specified by the Darcy law. The above model for nonreactive solute
transport have been investigated by a number of authors (cf.[2]).

One of the important questions is associated with representation of the ensemble
mean concentration <c(r,r;Y)> by "effective" equation. The existing efforts have
mainly been concentrated, however, with derivation from eq.(1.1) the "effective”

conveclion-diffusion equation of classical type (Fickian approximation), i.e.,

SO .y [ D, v <C(r iy)> ] + UV <C(rY)> = 0 (b2

where D,; and u,, are non-random constant quantities. Although a number of
serious attempts have been made to derive equation (1.2) from (1.1) consistently;
there are, however serious difficulties in providing the evidence that such Fickian
(or Gaussian) representation of <C(r,f;y)> can really be accepted (cf. [3]). It is
also not easy tlo specify a possible class of variable (deterministic or random)
coefficients in (1.1) for which equation (1.2) - (usually interpreted as describing
large-scale concentration) could be derived.

However, there are no sufficient reasons, why one should look for the equation
for <C(r,;y)> just in the form of (1.2). In general, the equation for <C(r.ty)>
should not be a priori restricted as its form is concemed. It can have, to some
extent, much more general form, e.g. differential, integral, differential-integral

elc.
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In this paper we wish to show that under some quite general assumptions the mean
concentration field <C(r,r;¥)> in stochastic porous medium is governed by a non-
local equation (differential-integral one). Only in some special cases it can be
"localized” to the differential equation. These special cases will be specified and
discussed along with the numerical illustration of the effects of non-locality and

the correlation of the medium properties on the mean concentration field.

2. General formulation.

Let us write down equation (1.1) in the following (symbolic) form:

Ly C=¢g 2.1

where L=L(y) is a linear differential operator with random coefficients and g is
non-random element. We are looking for an equation for the mean <C> of an unknown

random field, i.e., an equation of the form:

P<C> =g (2.2)

where the operator .#is delerministic and may be called an effective operator for a
given operator L(Y); of course 2% <L(y)> in general (by <[(y)> we mean the
operator L in which in the place of random coefficients occur their mean values).
Let us assume that the operator L(y) is invertible (for almost all yel) then
from (2.1) we have:
C=L'Yg (2.3)
Averaging gives

<C> = <L\()> g (2.4)

or



<Ly>! <C> = g. (2.5)
The above formal derivation shows that
F= <L\(y)>! (2.6)

Unfortunately, it is not easy to evaluate the inverse L(y) of random operator
L(y). To make the equation for the mean field efficient some restrictions
concerning the random operator L(Yy) have to be introduced. Let us assume that the
coefficients in operator L(y) have a small fluctuating part (characterized by a
small parameter €) so, L=L(Y,€).

The equation (2.1) can be wrillen as:
[Lo + eLy(y) + €:Myfy) + ] C =g (2.7)

For £=0 the operator L(y) reduces to a deterministic (mean) operator L, The terms
Ly(Y), Ly(Y), .. represent stochastic perturbations of L, It can be shown
(cf.[1], [4]) that the equation for mean <C> has the form:

{Lu + E<L (Y)> + &:1[<.Ll(~()>L6’<L,>-<L1L6'L,> + <L2(y)>]} <C> =g + O(g%) (2.8)

Equation (2.8) is the desired deterministic equation satisfied by the mean field
(up to the second order terms).

Let us assume that L(y) is the sum of non-random operator L, and a small
operator L,(y) with <L, (y)> = 0, ie. L(y) = L, + eL,(y); then we obtain from
eq.(2.8) the following equation for <C>:
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[Lo - el LyLy> ] <C> =g 2.9)

The above equation corresponds to the Bourret approximation in analysis of
stochastic wave propagation problems (cf.[1]). In what follows, we shall make use
of equation (2.9) to the case of the solute transport equation (1.1). Let us assume
that in equation (1.1) matrix D=D, is constant and that only u(r,4y) is random,
and that

u(r,ry) = up + euy(r.nY) (2.10)
In this case

L, = L DoV? + uy- v

at
@.11)
Li) = uy(r)-v
Ly = ” Gyrx'int’) fir) dr’ dr’ (2.12)

where Gy(ryr’;r,t’) is the Green function of operator L, So, equation (2.9) takes
the form (the dot denotes the scalar product of vectors in R3):

{aél - DoV + uy 9, } <C(r5y)> -

(2.13)
£2U<ul(r,1;y)-V,Gu(r-r’;r-s)u,(r’,s;y)-vr,><C(r',s;y)>dr'ds =0

If the random field u(r,;y) is spatially homogeneous and temporally stationary

then

<u,(r,ny) uf(r,sy)> = K(r-r'r-s) (2.14)



and equation (2.13) yields

{63, - DV + uy- 9, } <C(r,y)> -

(2.15)

3
3 EZH Z K(r-r' r-s) 5‘% Golr-r';i-s) 5;-,; <C(r's;y)> drids = 0

=1

The above differential-integral equation constitutes a non-local, first order
approximation of the mean concentration field in randomly heterogeneous medium. In
such a description the mean concentration at point r and time ¢ is affected by its
values at other distant points r’' and preceding time instants s. The scale of
random heterogeneity is quantified by the correlation radius (in time and space) of
random field u(r,5y).

If the random velocity field depends on spatial variable only (what is the most
common case in underground pollution transport) that is u(r,;;y)=u(r;y), then the

correlation function in equation (2.15) is K(r-r").

3. Analysis in one-dimensional case.

To make the analysis and results more transparent we restrict ourselves here to
one-dimensional transport problem. In this case equation (2.15) takes the form:

38 b 82 a Clxs
- + uy — b <C(xty)> =
a 0 an “o 5 Bt
(3.1)
! ®
aG(x-x" t1-5) 8<C(X’ ,5,Y)>
= g2 J I K(x-x"1-5) (5 ) x rs Ll dx’ ds,
0 ax ax
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’

where G(z,t), r=x-x', T=t-s is the Green function associated with the operator Ly=

2 D, i 2 that i
—_ - —_t Uy — at is
ar 0 ax? ¢ ox
-(z - uyt)?
Glz) = exp (@ - uwt” | (3.2)
2[Dg 4Dyt

The derivative of G(z,1) occurring in equation (3.1) is as follows

aG(z,t 1 (z - uy)?
(,} = {uo-i}exp u . (3.3)
& 4Dy Dyt 4Dyt

Equation (3.1), which is differential-integral with respect to two variables,

can be transformed 1o the following differential-integral equation:

<Clxty)> = J- Glx-x"t) Cofx') dx’ +

-0

! ©
+ ez_[ jG(.\‘d",H) dv' ds x (3.4)
0 o

8G(x'-x" 5-p) 8<C(x" p)>
(x"-x",5-p) (x"p) de”

K(x'-x",s-
P) ax’ ax”

dp.

X
S/ v
[SEE-

'
8

Equation (3.4) can be useful for determining the concentration for relatively small
t. For large r we must apply some other technique to calcﬁlale <C(x,t;Y)>. One
possibility is to apply the Fourier transform.

Let us remark that equation (3.1) in its integral part is of convolution type.

Therefore, making its Fourier transformation with respect to X, we obtain



relatively simple equation for C(k,t), where

k)= I <Clxty)> €k¥ dx =: F[C),

-0

where i is an imaginary unit number. Taking into account the relationships:

axn

F[—a:- C] = (-ik)» F[C]
Flfg] = FI) Flg)

equation (3.1) yields after transformation

t

@ikl (DK? - ikug) Clkyt) = -iek J' H(kt-s) Erkyr) ds
0

with the initial condition:
Eko) = Eok) = [ Cyx) & g
-t

and H(k,t-s) defined as:
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(3:7)

(3.8)



H(k,t-s) = J-eik\' K(x,t-s)

-

aG(x.t-
e o (3.9)
ax

Let us define:

DK - ikug)t
Sthi) = e (3.10)

Then the differential-integral equation can be transformed to the following

integral one:

t $
Clka) = Stha) Cofk) - ik [ Stkr-s) [ Hksp) Clkp) dp ds G.1D)
0 0

To obtain the density of concentration for a fixed instant of time ¢, we must
calculate  €(k,) from equation (3.11) and then determine its inverse Fourier

transform according to the known formula:
1 «©

<Cloty> = — | Cthe) ™ dk 3.12

(v = — [ Cky (3.12)

The application of the mostly effective fast Fourier transform algorithm can

make the above formulae useful for the particular problems of practical importance.

White-noise temporal variability.
In the idealized case, when temporal random variations are assumed to be
characterized by a white-noise, we can derive from the general non-local equation

(3.1) a common form of differential dispersion equation with some effective



dispersion. To show this let us assume that:

K(z1) = p(z) §(1) (3.13)

where 8(t) is a Dirac delta function. Then the integral part of the equation (3.1)

18!

I o
J- J» Kix-x' 1-5) aG(x-x" t-5) a<c(x ,’s,'y)> d ds =
ax ax
0 =
p T 8G(x-x' t-s) s<c(x’ 57Y)
x-x' t-5) 8<c(x',57y)>
= J- 8(t-5) I plx-x') ’ sl :TY dx’ ds =
ax ax
0 o
P aG(x-x"1,) a<c(x’ ;
= 1 I p(x-x')  lim (B 05 el ,’JYb dx' =
2 T—0 ax ax
(3.14)
1 . a<c(x’ 1)
255 J plx-x’') 8.(x-x") y dy’ =
1 a2<efxt; 1 -
- Yo <clxy)> + 3 0'(0) a<clxty)> _
2 ax? 2 ax
1 alecx,y)>
= - p(()) __L ,
2 ax2
where we used the relation:
aG(x-x',
O el LY ST (3.15)

T—90 ax
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which holds since G(z,1) is the Green function and for 1 tending to zero it
approaches 8(x-x’); 8, is the derivative of Dirac delta function (see [5]) and

p'(0) = 0 (3.16)

due to the symmetry p(x) = p(-x).
Therefore, equation (3.1) takes the form:

I
L

1 2 3
) [Do + = D(O)] — + Uy — +<Clxry)> =0 (3.17)
2 ax? ax

| @

This result coincides with that obtained in paper [6] for the turbulent diffusion
in incompressible fluid. The above equation represents a specific form of the
"effective” convection-diffusion, Fickian approximation (1.2)

Spatial variability of a medium.

Let us assume now that the velocity field u is independent of time i i.e.
u(x,ty) = u(x;y) and

u = ug + uy(xy)

(3.18)
<inyf(x;y)> =0

<uy(xoy)(x'y)> = Kix-x').

(3.19)

Then the equation (3.1) takes the following simplified form:
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a a2

— - Dy — + — r <C(x5Y)> =
a0 O el
(3.20)
{ o G ’ »
aG(x-x" t-s) 8
_ EzJ- J- Kix-x') (x-x"t-5) G<c(x ’SY)> dv' ds,
0 ax ax

An interesting question which arises is concemed with a possible localization
of the non-local equation (3.20). A spatial localization in such a case means that
an approximate equation arising from the original differential-integral one takes
the form in which <C(x.t;y)> as a function of x is subjected to differentiation
only. The conditions which make such a simplification of the problem (3.20) valid
are quite involved. It is required that the spatial radius of correlation is
relatively small comparing to other linear dimensions of the system in question, In
other words, the numerical values of the parameters in equation (3.20) must be
such, that we can replace the integral kernel by a function being the Dirac delta
in space. Taking into account the properties of the Green function G(zt) and
correlation function K(z) and assuming symmetry in x of the concentration function
<C(x,r;y)>, we deduce that the integral term in equation (3.20) should be
approximated of the following way (flx) is some test function):

aG(x-x" t-5)

P a
fx') de' = ern(r-s) 8(xx') — fix') dx’ (3.21)
dx 8x

=00

TK (e=x")

where, analogously to the results of paper [7]:

Foft-s) = _[ K(x) G(x,t-s) dx (3.22)

w

In such a case the approximate localized equation takes the following form:
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a<C(x,t;y)> 8:<C(x,1,Y)> a<C(x,t;Y)>
= DO + Uy =
at ax? ax
(3.23)
ar<C(x,5.y)>
(x,87Y) d

’

8x?

t
= g2 J F ol t-5)
0

4. Numerical illustration.

Consider the particular problem of the propagation of the unit pollution mass
which at the initial instant of time /=0 occupies some interval (-a,a), that is

C(x,0) =1 for x € (-a,a),
.1
Cx0) =0 otherwise,
and the correlation function K has the following exponential Gaussian form:
-afx-x'
Kx-x') = 0" e (4.2)
In this case equation for the mean concentration (3.4) takes the following form:
a - X + ugt -a-x+ ugt
<Clx,t;y)> = ¢ ) T
2Dyt 2Dyt
I »
+ g2 J- J-G(.\’—.r',l‘—s) dx’ ds x (4.3)
0 -
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- - x" dr
ax ax

-0

§ @
8G(x'-x" s-r) a<C(x"r;
) J I K1) (x'-x",5-r) 8<C(x",r;y)> e
0

where @ is the Gaussian probability distribution function.

Also equation (3.11) for the Fourier transform of the density of concentration
can be simplified. We can calculate Fourier transform (3.9) of the integral kernel
and the Fourier transform (3.8) of the initial condition of the transport equation.
The calculated transformations in this particular case are:

©

Hiks) = | % K(x) Gix-s) dx =
-0
(44)
O 20utyt-ik) (ik-Dgk?)t - oud?
= — exp
(l+4DOLx1)M 1 + 4Djou
and
" 2sin k
/| S a
Cok) = j Colr) €5 dx = -l-"rm (4.5)

00

and the differential-integral equation (3.11) for the spatial Fourier transform of

the averaged concentration density has the following form:

-(Dok2 - ikuglt

k) = ¢ 2.m;( ka i
(4.6)
t —(Dokz- ikug)(t-p) p
- J' e J‘ Wikp-s) E(sk) ds dp
0 0
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where

2tk +k2) ik-Dok2)t - 2
e (ik-Dok?)t - ot .
1 + 4Dyout

Wikt) = 4.7

n
(1+4D0ut)

The above obtained equations (4.3) and (4.6) can be used for numerical
discussion of the evolution of the concentration density in a random medium.
However, before we do this, let us study the non-random diffusion-convection
equation, that is such where both the diffusion coefficient D, and velocity u, are
constant. It is known that these two parameters quantify two qualitatively
different aspects of the transport process. Namely, D, describes the diffusion due
to atomic movement of the particles, guaranteeing mixing phases and tending the
process 1o equilibrium whereas 1, is responsible for the systematic movement of the
phases without mixing effects and graphically it is visualized as the systematic
movement of the maximal value of concentration (see Fig.1). In realistic systems
(in our case - in real ground water formations) dispersion due to heterogeneity of
the medium provides a significant contribution to the process (similarly as
turbulent diffusion (see [8])).

In this paper we take into account the effect of the randomness of the velocity
field u. It is seen that the random fluctuations of the velocity field, in average,
increase the effect analogous to molecular diffusion and leave the convection
diffusivity without change (see Fig.2, 3). The intensity of the changes strongly
depends on the length of the spatial radius of correlation (for the considered
correlation function proportional to 1/e) and it increases along with growth of the
radius (see fig.2, 3). Let us remark that for long time even in the system with a
small radius of correlation, the randomness of the velocity field has the
significant effect on the diffusivity.

As we observed, for fixed time ¢ the diffusion due to randomness of the velocity
ficld u has the character of the molecular diffusion with some modified diffusion
coefficient D. However, the numerical calculations show that this constant changes
in time (see Fig.4, 5). This fact coincides with the effect of the localization
performed in Section 3 of this paper, where equation (3.23) shows that effective
medium diffusion depends on time.

In the considered example, for the correlation function of the form (4.2), the

17

http://rcin.org.pl



required coefficient (3.22) is:

. 2 . _¢)2
Fults) = [ K(z) Gts) dz = e Bl (4.8)

ot 1+4Dy0(-5) 1+4Dg0t-5)

and the localized equation (3.23) for the concentration takes the following form:

a<Clx.t;y)> a2<C(x,y)> a<Clx,ty)>
- Dy + uy =

at ax? 3x
(4.9)

. a? - oug(t-s)? | 82<C(x,s5,Y)>
I S —_— ds.

= g? exp

o {1+aDyafr-s) 1+4Dqei(t-5) ax?

Figures 6,7 show the concentration density for the considered example,
calculated with the use of the approximate equation (4.9). It is seen, that even
for relatively long radius of correlation l/o this local approximation is quite
satisfactory and differs from the solution of the non-local equation very

slightly..
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