SOLUTION OF THE CATTANEO-VERNOTTE BIO-HEAT TRANSFER EQUATION BY MEANS OF THE DUAL RECIPROCITY METHOD

E. Majchrzak, G. Kałuża and J. Poteralska

Silesian University of Technology, Gliwice, Poland

1. Governing equations

According to the newest opinions the heat conduction proceeding in the biological tissue domain should be described by the hyperbolic equation (Cattaneo and Vernotte equation [1]) in order to take into account its nonhomogeneous inner structure. So, the following bio-heat transfer equation is considered

$$c\left(\tau \frac{\partial^2 T(x, t)}{\partial t^2} + \frac{\partial T(x, t)}{\partial t}\right) = \lambda \nabla^2 T(x, t) + Q(x, t) + \tau \frac{\partial Q(x, t)}{\partial t}$$

where c, λ denote the volumetric specific heat and thermal conductivity of tissue, Q(x, t) is the capacity of internal heat sources due to metabolism and blood perfusion, τ is the relaxation time (for biological tissue it is a value from the scope 20-35 s), T is the tissue temperature, x, t denote the spatial co-ordinates and time. The function Q(x, t) is equal to

$$Q(x, t) = G_B c_B \left[T_B - T(x, t) \right] + Q_m$$

where G_B is the blood perfusion rate, c_B is the volumetric specific heat of blood, T_B is the artery temperature and Q_m is the metabolic heat source. It should be pointed out that for $\tau = 0$ the equation reduces to the well-known Pennes bio-heat equation.

The equation is supplemented by the boundary conditions

$$x \in \Gamma_1$$
: $T(x, t) = T_b(x)$
 $x \in \Gamma_2$: $q(x, t+\tau) = -\lambda \mathbf{n} \cdot \nabla T(x, t) = q_b(x)$

and initial ones

$$t = 0$$
: $T(x, t) = T_0$, $\frac{\partial T(x, t)}{\partial t}\Big|_{t=0} = 0$

where Γ_1 , Γ_2 are the surfaces limiting the domain, $q(x, t + \tau)$ is the boundary heat flux, $T_b(x)$, $q_b(x)$ are the known boundary temperature and the boundary heat flux and T_0 is the known initial temperature of the biological tissue.

2. Dual reciprocity boundary element method

For transition $t^{f-1} \rightarrow t^f$ the standard boundary element method leads to the integral equation [2]

$$B(\xi)T(\xi,t^{f}) + \int_{\Gamma} T^{*}(\xi,x)q(x,t^{f})d\Gamma = \int_{\Gamma} q^{*}(\xi,x)T(x,t^{f})d\Gamma - \int_{\Omega} \left[(c+\tau G_{B}c_{B})\frac{\partial T(x,t)}{\partial t} + c\tau \frac{\partial^{2}T(x,t)}{\partial t^{2}} - G_{B}c_{B}\left[T_{B} - T(x,t)\right] - Q_{m} \right]_{t=t^{f}} T^{*}(\xi,x)d\Omega$$

where ξ is the observation point, $B(\xi) \in (0,1)$, $T^*(\xi, x)$ is the fundamental solution, $q(x, t^f) = -\lambda \partial T(x, t^f)/\partial n$ is the heat flux, $q^*(\xi, x) = -\lambda \partial T^*(\xi, x)/\partial n$.

In the dual reciprocity method the following approximation is proposed [2]

$$\left[\left(c+\tau G_{B} c_{B}\right) \frac{\partial T\left(x,t\right)}{\partial t}+c\tau \frac{\partial^{2} T\left(x,t\right)}{\partial t^{2}}-G_{B} c_{B} \left[T_{B}-T\left(x,t\right)\right]-Q_{m}\right]_{t=t^{f}}=\sum_{k=1}^{N+L} \lambda a_{k}\left(t^{f}\right) \nabla^{2} U_{k}\left(x\right)$$

where $a_k(t^f)$ are unknown coefficients, $P_k(x)$ are approximating functions fulfilling the equations

$$P_{\nu}(x) = \lambda \nabla^2 U_{\nu}(x)$$

and N + L corresponds to the total number of nodes, where N is the number of boundary nodes while L is the number of internal nodes. After the mathematical manipulations one obtains

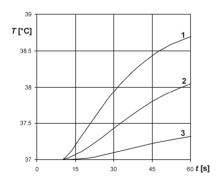
$$B(\xi)T(\xi,t^{f}) + \int_{\Gamma} T^{*}(\xi,x)q(x,t^{f})d\Gamma = \int_{\Gamma} q^{*}(\xi,x)T(x,t^{f})d\Gamma + \sum_{k=1}^{N+L} a_{k}(t^{f}) \left[B(\xi)U_{k}(\xi) + \int_{\Gamma} T^{*}(\xi,x)W_{k}(x)d\Gamma - \int_{\Gamma} q^{*}(\xi,x)U_{k}(x)d\Gamma \right]$$

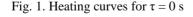
where $W_k(x) = -\lambda \mathbf{n} \cdot \nabla U_k(x)$. This equation is solved in numerical way.

3. Example of computations

The biological tissue domain of dimensions 0.01 m \times 0.01 m (L=0.01 [m]) has been considered. The initial temperature of tissue equals $T_0=37$ °C. On the boundary $x_1=0$, $0 \le x_2 \le L$ the Dirichlet condition in the form $T_b(x_2)=37+(50-T_0)x_2/L$ has been assumed, on the remaining part of the boundary the temperature $T_b=37$ °C can be accepted. The input data have been taken from [1]. The boundary has been divided into N=40 constant boundary elements, at the interior L=100 internal nodes have been distinguished. Time step: $\Delta t=10$ s.

In the Figures 1 and 2 the heating curves at three points (0.0035, 0.0035), (0.0055, 0.0055), (0.0075, 0.0075) from tissue domain for $\tau = 0$ s (Pennes equation) and $\tau = 20$ s (Cattaneo-Vernotte equation) are shown. The differences between the temperatures for these two models are visible.





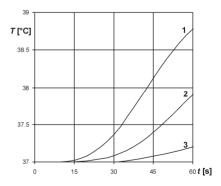


Fig. 2. Heating curves for $\tau = 20 \text{ s}$

4. References

- [1] J. Liu and L.X. Xu (2000). Boundary information based diagnostics on the thermal states of biological bodies, *Journal of Heat and Mass Transfer*, 43, 2827–2839.
- [2] P.W. Partridge, C.A. Brebbia, L.C. Wróbel (1992). *The dual reciprocity boundary element method*, CMP, London, New York.