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During the first step of the analyses, the overlapping surfaces of pin and box are brought into 

contact. This results in the von Mises stress distribution as shown in figure 2 a). The stress at the tip 
of the pin is a hoop stress of about 450 MPa.  

An additional external axial load is applied on the connection giving the stress distribution of 
figure 2 b). As can be expected from [1], the highest stress concentration is located at the root of the 
last engaged thread of the pin. This stress concentration is mainly caused by axial stress, while the 
stress state at the tip of the pin is caused by hoop stresses from make-up and opening between the 
threads of the pin and box.  

Figure 2. Stress distribution resulting from a) make-up, b) make-up + 200 MPa axial load. 
 
When the wall  thickness of the box is increased, the box becomes more rigid. This increases 

the hoop stresses in the pin. If on the other hand, the wall  thickness of the pin is increased, the 
acting hoop stress on the pin will  decrease while the hoop stress in the box will  increase. 

It can be seen in figure 2 b) that the box has an unthreaded extension at the left side. Due to a 
combination of hoop stress and bending of the extension, an additional stress concentration is 
introduced where it is connected to the threaded section of the box. When this extension is left out 
however, the opening between the threads under load increases together with the hoop stress in the 
pin, reducing the connection’s strength.  

It was observed that the opening between pin and box threads is significantly influenced by 
the coeff icient of friction between the threads. Since a larger opening will  decrease the static pull-
out strength of the connection, it is important to have accurate data of the coeff icient of friction. 
However, this data is generall y not present and can only be determined experimentall y.  

4. Conclusions  

A finite element analysis of a preloaded conical threaded connection is presented. Results are 
consistent with data known from literature. The strength of the connection depends on both 
geometrical and material properties. The coeff icient of friction between the threads should be 
determined experimentall y to predict the connection’s behavior accurately. 
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1. Introduction

Application of the fast multipole method (FMM [1]) reduces the complexity of the boundary

element method (BEM) analysis. Reference [2] gives a review on applications of the fast multipole

boundary element method (FMBEM) and directions of further research, which should be carried out.

Among others, a fast evaluation of domain integrals is mentioned. Reference [3] gives a comparison

of efficiency and accuracy of different methods applied to evaluation of such integrals, for both

Poisson and Helmholtz equations. Four methods were considered, namely: particular solution, dual

reciprocity, direct integration and multipole method [4]. It is shown, that the domain integration

methods are more efficient and provide better accuracy than the other ones, in spite of necessity

of discretization of the domain. In Reference [5] analysis of gradient materials by the BEM, using

the classical fundamental solutions of two-dimensional elasticity, is presented. The method requires

evaluation of domain integrals. Results of the analysis are compared to the ones obtained using

isoparametric finite element method (FEM). It is shown, that the BEM is more accurate than the FEM

in the cases of stress concentration and distorted internal cells (finite elements). In Reference [6]

a FMBEM application to analysis of elasto-plastic plates is presented. Linear or quadratic boundary

elements and constant triangle internal cells are used. In the present work, a FMBEM analysis of

elastic plates loaded by volume forces is presented. Here, quadratic boundary elements and quadratic

triangle internal cells are used.

2. Fast multipole boundary element method

The linear elasticity problem can be described using an integral equation. In this equation,

boundary and volume integrals occur, which are dependent on the fundamental solutions of Navier-

Lamé operator [7]. Boundary integrals depend also on boundary displacements and traction forces,

and the volume integral depends on a known field of body forces. The boundary of analysed structure

is discretized, and for each boundary node as the collocation point the integrals are evaluated. In order

to calculate the volume integrals, the domain of analysed body is discretized, using internal cells.

Thus, a linear system of algebraic equations is obtained. The conventional algorithm has complexity

O(N × (M + N)), where N is the number of boundary elements and M is the number of internal

cells. The complexity is reduced to O(N + M) by hierarchical grouping of influences coming from

integration points. A tree structure of clusters, containing groups of boundary elements and internal

cells is formed. The integrals evaluated for clusters located far enough from collocation points are

expanded into multipole series, near to integration points. The coefficients (multipole moments) of

the expansion are transformed by shifting the expansion points to larger clusters. The integrals are

also expanded near to collocation points (local expansion). The local moments are formed from the

multipole ones, and then the influences are distributed to smaller clusters, by shifting the expansion

points. Finally, the far-field terms of potentials are evaluated for each collocation points, using the

local moments. The near-field terms of potentials are calculated directly. The operations lead to

obtaining the matrix-vector products. The matrices are not built explicitly, so the system of equations

is solved iteratively. More details can be found in References [1, 2, 3, 6, 8].
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