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During the first step of the andyses, the overlapping surfaces of pin and box are broughtinto
contad. This results in the von Mises stressdistribution as shown in figure 2 a). The stressat thetip
of thepin is ahoop $ressof about450 MPa

An additiond externd axial load is applied on the connedion giving the stressdistribution of
figure 2 b). As can be expeded from [1], the highest stressconcentrationis locaed at theroot of the
last engaged threal of the pin. This stressconcentration is mainly caused by axia stress while the
stress state at the tip of the pin is caused by hoop stresses from make-up and opening between the
threads of the pin and box
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Figure 2. Sressdistribution resulting from @ make-up, b)make-up +200MPaaxia load.

When thewall thicknessof the box is increased, the box beames more rigid. This increases
the hoop stresses in the pin. If on the other hand, the wall thickness of the pin is increased, the
ading hoop $resson hepin will deaease while thehoop $ressin the box will increase.

It can beseen in figure 2 b) that the box has an unthreaded extenson at theleft side Dueto a
combinaion of hoop stress and bending of the extension, an additiond stress concentration is
introducel where it is conneted to the threaded sedion of the box. When this extensonis left out
however, the opaning between the threads unde load increases together with the hoopstressin the
pin, redudng the connedion’s strength.

It was observed tha the opening between pin and box threads is significantly influenced by
the codficient of friction between the threads Sincea larger opening will deaease the static pull-
out strength of the connedion, it is important to have acarate daa of the coefficient of friction.
However, this daais generaly not present and can only be determined experimentally.

4, Conclusions

A finite element andysis of a preloaded conicd threaded connedionis presented. Results are
congstent with daa known from literature. The strength of the conredion depends on both
geometricd and material propeties. The coefficient of friction between the threads should be
determined experimentally to predict the connedion’'s benavior acarately.
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1. Introduction

Application of the fast multipole method (FMM [1]) reduces the complexity of the boundary
element method (BEM) analysis. Reference [2] gives a review on applications of the fast multipole
boundary element method (FMBEM) and directions of further research, which should be carried out.
Among others, a fast evaluation of domain integrals is mentioned. Reference [3] gives a comparison
of efficiency and accuracy of different methods applied to evaluation of such integrals, for both
Poisson and Helmholtz equations. Four methods were considered, namely: particular solution, dual
reciprocity, direct integration and multipole method [4]. It is shown, that the domain integration
methods are more efficient and provide better accuracy than the other ones, in spite of necessity
of discretization of the domain. In Reference [5] analysis of gradient materials by the BEM, using
the classical fundamental solutions of two-dimensional elasticity, is presented. The method requires
evaluation of domain integrals. Results of the analysis are compared to the ones obtained using
isoparametric finite element method (FEM). It is shown, that the BEM is more accurate than the FEM
in the cases of stress concentration and distorted internal cells (finite elements). In Reference [6]
a FMBEM application to analysis of elasto-plastic plates is presented. Linear or quadratic boundary
elements and constant triangle internal cells are used. In the present work, a FMBEM analysis of
elastic plates loaded by volume forces is presented. Here, quadratic boundary elements and quadratic
triangle internal cells are used.

2. Fast multipole boundary element method

The linear elasticity problem can be described using an integral equation. In this equation,
boundary and volume integrals occur, which are dependent on the fundamental solutions of Navier-
Lamé operator [7]. Boundary integrals depend also on boundary displacements and traction forces,
and the volume integral depends on a known field of body forces. The boundary of analysed structure
is discretized, and for each boundary node as the collocation point the integrals are evaluated. In order
to calculate the volume integrals, the domain of analysed body is discretized, using internal cells.
Thus, a linear system of algebraic equations is obtained. The conventional algorithm has complexity
O(N x (M + N)), where N is the number of boundary elements and M is the number of internal
cells. The complexity is reduced to O(NN + M) by hierarchical grouping of influences coming from
integration points. A tree structure of clusters, containing groups of boundary elements and internal
cells is formed. The integrals evaluated for clusters located far enough from collocation points are
expanded into multipole series, near to integration points. The coefficients (multipole moments) of
the expansion are transformed by shifting the expansion points to larger clusters. The integrals are
also expanded near to collocation points (local expansion). The local moments are formed from the
multipole ones, and then the influences are distributed to smaller clusters, by shifting the expansion
points. Finally, the far-field terms of potentials are evaluated for each collocation points, using the
local moments. The near-field terms of potentials are calculated directly. The operations lead to
obtaining the matrix-vector products. The matrices are not built explicitly, so the system of equations
is solved iteratively. More details can be found in References [1, 2, 3, 6, 8].





