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 Toupin’s version of Saint-Venant’s principle in linear elasticity is generalized to the case of 
linear magnetoelasticity. That is, it is shown that, for a straight prismatic bar made a linear 
magnetoelastic material end loaded by a self-equilibrated system at one end only, the internal energy 
stored in the portion of the bar which is beyond a distance s from the loaded end decreases 
exponentially with the distance s.  

Mathematical versions of Saint-Venant’s principle in linear elasticity due to Sternberg, 
Knowles, Zanaboni, Robinson and Toupin have been discussed by Gurtin [1] in his monograph. 
Later developments of the principle for Laplace’s equation, isotropic, anisotropic, and composite 
plane elasticity, three-dimensional problems, nonlinear problems, and time-dependent problems are 
summarized in the review articles by Horgan and Knowles [2] and by Horgan [3]. In this paper we 
prove an analogue of Toupin’s version of Saint-Venant’s principle for linear magnetoelasticity. For 
a linear elastic homogeneous prismatic body of arbitrary length and cross-section loaded on one end 
only by an arbitrary system o self-equilibrated forces, Toupin [4] showed that the elastic energy U(s) 
stored in the part of the body which is beyond a distance s from the loaded end satisfies the 
inequality  
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The characteristic decay length )(lsc  depends upon the maximum and the minimum elastic 

moduli of the material  and the smallest nonzero characteristic frequency of free vibration of a slice 
of the cylinder of length l. Inequaliti es similar to (1) have been obtained by Batra [5] for linear 
elastic piezoelectric prismatic bodies and by Borrelli  & Patria [6] for a semi-infinite magnetoelastic 
cylinder on the asymptotic behaviour of the Dirichlet integral of the magnetic field and of the elastic 
energy. 
Here we consider a linear theory of magnetoelasticity (for infinitesimal strain) in which only the 
ponderomotive force remains non-linear in presence of a magnetic field . We assume that the elastic 
body is homogeneous, isotropic and electrically conducting [7], [8], [9], [10].  

Let the finite spatial region occupied by the magnetoelastic body be V, the boundary surface 
of V be S. the unit outward normal of S be in , and S be partitioned as 
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Physically, ΤSSu ,  are, respectively, parts of the boundary S on which mechanical displacements 

and tractions are prescribed. ES  is the part of S which is in contact with electrode, hence the 

tangential electric field vanishes on it, and BS   the parts of S on which the magnetic induction is 
prescribed. The governing equations and boundary conditions for static magnetoelasticity in 
rectangular Cartesian coordinates in SI units are: 
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where iu  is the mechanical displacement, ijt  the mechanical stress tensor, ijT  the Maxwell  stress 

tensor, ijε  the strain tensor, kE  the electric field vector, kD  the electric displacement vector, kH  

the magnetic field vector, kj  the current vector, kB  the magnetic induction vector, σµε ,,  the 

electromagnetic material constants, ij klc  the elastic moduli , ij kε  the permutation tensor, ijδ  the unit 

tensor, k∂  the spatial derivative, iu~  and jt~  are the prescribed boundary mechanical displacement 

and traction vectors. 
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