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1. General 

Our aim is to extend the Darcy law to a range of higher speeds of flow, and to derive   
a number of properties of such a flow.  First,  we note that the laminar flows occur for the large 
values of Reynolds number. Next, it is shown that  viscosity scaling for small  capillaries in a porous 
medium is not related to the Reynolds number, and the Darcy law, applicable not only to the 
stokesian seepage, is obtained using the Navier–Stokes equations for the steady case. Finall y, a non-
homogeneous porous medium, consisting of two different porous components is selected to show 
that for such a composite so called the Dykhne hypotheses are satisfied and a square root formula 
for   the effective permeabilit y is obtained.  

2. The laminar flow 

Consider  steady flow in a pipe of arbitrary cross-section, the same along the whole length of 
the pipe. Let  v denote the velocity, p – pressure, η - viscosity.  Moreover, let  t  denote the time and 
x – the position. We take the axis of the pipe as the x3  axis. The fluid velocity is along the x3  axis, 

and is a function of x 1  and x 2  only. We have 0/ =∂∂ tvi , v1=v 2 =0 and v ≡3 v.  Hence, the left-hand 

side of the Navier-Stokes equation vanishes.  If η  is constant then 0// 21 =∂∂=∂∂ xpxp  and  
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In general, fluid flow in a pipe crosses the threshold from laminar to turbulent flow when Reynolds 
number  R  reaches about 2000,  R=ρud /η;  ρ – the fluid density, u – the mean velocity over the 
pipe cross-section, and d – its mean diameter. For the water ( ρ =1 g/cm 3 , η  =0.01 g/cm s) flowing 
in a pipe with the diameter d =1mm we reach such value of  R  with the mean velocity  u=2m/s.  
Laminar flow has actuall y been observed even to Reynolds number R 00050≈ , what gives 
u=50m/s. The velocity of  blood in aorta (in pulsatile regime) is of the order  u=4 m/s. 

3. Scaling in laminar flow 

Let the cross-section of a pipe be an equilateral triangle of side a. We put 21, xyxx ==  and 

3xz = . The solution of the equation  (∗)  is 
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and  Q  denotes the discharge, it is the volume of fluid passing each second through the pipe. 
Next, we divide each side of cross-section into two equal parts, introduce into the parallel 

rigid walls  with infinitesimal thickness, and obtain four smaller pipes similar to the original one.  
After n such divisions Q t =Q/2 n2  and Q t  vanishes as number of divisions  n  goes to infinity.  To 

conserve the total discharge we should reduce the viscosity of fluid by factor 2ε , where  n2/1=ε .  
In realit y, instead of  η   it is the pressure gradient which scaled . 
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4. Homogenisation of stationary laminar flow in porous composite 

Consider stationary laminar flow in a porous medium of dimension L with periodic structure 
(elementary cell  with dimension l ) and introduce the fraction ε = l / L. According to an asymptotic 
development metod we put for the pressure pε  and  velocity  v ε  the expansions    

...),(),(),( )2(2)1()0( +++= yxpyxpyxpp εεε  ,...),(),(),( )2(2)1()0( +++= yxvyxvyxvv εεε    

where     y=x / ε ,  substitute to the laminar flow equation (* ), and compare terms at the same power 
of  ε.. Term with ε 1− provides  0/ 3

)0( =∂∂ yp  what means )()0()0( xpp = . To satisfy equation with 

power  0ε , we put      ( )xpyp ∂∂−= /)( )0()0( ξ        and    ( )xpyv ∂∂−= /)( )0()0( χ   where  χ  satisfies  
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After averaging the velocity over the elementary cell  we get the Darcy law 
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derived not from the Stokes  but from the Navier–Stokes equation for the steady laminar flow.  

5. Stationary flow in two-dimensional two-component porous composite 

The solid part of the system contains two overlapping domains of distinctly different 
permeabiliti es, K1  and K 2 . In geology, the low permeabilit y medium corresponds to block matrix 
with primary porosity, surrounded by fractures, and the high permeabilit y continuum corresponds to 
rock fractures (secondary porosity). In biology we observe, for example, pores of different size in 
plant tissues or in animal bones, cortical and trabecular. If such systems are planar and the 
following Dykhne assumptions are satisfied: (i) considered fields are 2-dimensional, (ii ) the flow is 
stationary and has the potential, (iii ) statistical symmetry and isotropy of the composite is assured, 
then the square root formula for the effective property holds.  

Define vector f as 2-dimensional gradient of pressure field,  αα xpf ∂−∂= /  where α = 1,2. 

The Darcy law has the form   αα fKv =   where  K  is a permeabilit y.  On the another hand, curl of  

f  as of the potential vector, vanishes, it is   02,11,2 =− ff    and the assumption that the flow is 

incompressible gives   0, =ααv  or   02,21,1 =+ ff .  Thus the conditions of Dykhne  are satisfied and  

21KKK eff = .  This is the formula for effective permeabilit y if the domains with permeabiliti es K1  

and K 2  are statisticall y equivalent.  It gives the effective values also in the case when the Hagen-
Poiseuill e flow and Darcy flow are mixed together.   
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