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1. Introduction 

The nonlinear theory of thermoelasticity of mixtures of two- or many-component solids was 
developed by Green and Steel [1]. A linear variant of this theory (the diffusion model) was 
proposed by Steel [2]. The theory of thermoelasticity of binary mixtures (the shift model) was 
constructed by Iesan [3]. In [1-3], the mixture components are assumed to have the same 
temperature value.  

The linear and nonlinear theory of thermoelasticity of binary mixtures with components 
having different temperature values were respectively constructed by Khoroshun and Soltanov [4] 
and Iesan [5]. Fundamental solutions of steady oscill ation (vibration) equations of the two-
temperature linear theory of mixtures are constructed in terms of elementary functions in [6]. 

In this paper, the boundary value problems (BVPs) of steady vibration of the two-temperature 
linear theory of thermoelasticity of binary mixtures are investigated by means of the boundary 
integral equation method (potential method [7, 8]). The Sommerfeld-Kupradze type radiation 
conditions are established. The uniqueness and existence theorems of solutions of the BVPs are 
proved using the potential method and the theory of multidimensional singular integral equations.  

2. Basic boundary value problems  

          The system of equations of steady vibration in the two-temperature linear theory of 
thermoelasticity of binary mixtures is written as [4, 5] 
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in (2) is the Sommerfeld-Kupradze type radiation conditions in the two-temperature theory of 
thermoelasticity of binary mixture. 
       Problem +

fI )( : Find a regular solution to system (1) for +Ω∈x  that satisfies the boundary 
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condition )()}({)(lim zfzUxU
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        Problem −
fI )( : Find a regular solution to system (1) for −Ω∈x  that satisfies the boundary 

condition  )()}({)(lim zfzUxU
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, where f  is the known vector function on S . 

4. Uniqueness and Existence Theorems 

        Theorem 1. Exterior BVP −
fI )(  admits at most one regular solution. 

       Theorem 2. Interior homogeneous BVP +
0)(I  has a non-trivial solution )0,0,,( wuU =   in the 

class of regular vectors, where the vector  ),( wuV =  is a solution to the system 
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the problems +
0)(I  and (3), (4) have the same eigenfrequencies. 

       Theorem 3.  If ν,2CS∈ , )(',1 SCf ν∈ , 1'0 ≤≤< νν , then a regular solution of the problem 
−
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),()1( gxZ  and ),()2( gxZ  are the single-layer and double-layer potentials, respectively, '
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