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AN ASYMPTOTIC APPROACH TO PROBLEMS OF SCATTERING
ACOUSTIC WAVESBY ELASTIC SHELLS

V. Kovalev
Moscow University of Management of Moscow Gover nment, Moscow, Russia

1. Scattering of stationay amudic waves by elastic shdls is condgdered. A procealure is
proposd for congrucing an approximate solution, based on matching the expansons for
different asymptotic models of the interadion of the shdl with the acoudic medium. In the
vicinities of zero frequency the refined Kirchhoff-Love theory of fluid-structure interadion
is applied [1]. This model takes into condderation transverse compresson of a shdl by a
fluid and some other phenomena In thevicinities thicknessresonance frequency longwave
high-frequency approximations are employed [2,3]. They describe small nunber resonance
of highe order Lamb waves. Outside the vicinities of zero frequency and thickness
resonance frequency vibrations of a shdl correspondto short-wave motions Here a flat
layer modd isused [2,3. It is shown for different paameters of materia in a shdl tha the
flat layer modd has overlap regionsboth the refined Kirchhdf- Love theory and the theories
asdated with longwave high-frequency approximations. A comparison of numericd daa
corresponding to asymptotic and exad solutionscylindricd and spheicd shdls shows tha
the proposd procedure is highly efficient.

2. Let the plane amudic wave p, = p, exp[—i(k{+ a)t)] be scatered either by a circular

cylindricd shdl or by a sphericd shdl. We introduce the following parameters
charaderizing the scatering process

k=plpy, B=clc(i=12), ys=c,/q, k=wlc.

Here ¢, and c,are the dilatation and distortion wave spedls in the material of the shdl,
respedively, p; isthemassdendty of theshell, ¢ isthesoundsped in thefluid, o isthe
mass densdty of the fluid, a is the circular frequency, p; is the presaure in the incddent
wave, py is a condant. The inddent presaure p; and the scattered presaure pg have to
satisfy the Helmholz equdion. In addition, the scattered presaure pg should obey the
radiation condition & infinity.

Let (r,0) becylindricd or sphericd coordinaes (the problem do not depend uponthe

axial coordinde in the case of a cylindiicd shdl and uponthe ange along parald in the
case of a spheicd shdl), the radius of the shdl beequd R, and the hdf-thickness of the

shdl beequd h. Theinddent presaure can be written as p, = pOZ E,(-)"f (kr)F,(8).
n=0

Herefor acylindricd shell E,=1, E, =2 (n21), f,=J,, g®=H®, F,@)=cosné,

N =n, J, isacylindiicd Bessl fundion of thefirst kind, H{" isaHankd fundion of the

first kind; for asphaicd shdl sphee E,=2n+1, f,=j,, g® =h® F_ (6)=F,(cosd),

n
N=n+12, j isasphaicd Beszl fundion of thefirst kind, h{Y isa sphericd Hankel
fundion of the first kind, P, is a Legendre polynomia. The solution for the scattered
presaure in the case of normal inddenceof the plane acudic wave has the form

(1) Ps = Po D En(-1)"Bog’ (kr)F(6)
n=0
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The coefficients B, have to be defined by solving the contad problems for the

equaionsdescribing the motion of the shdl. We introducethe relative half-thicknessof the
shdl 7 =h/R. Let uscondder threeapproximate modds mentioned ébove

The regionsin which the refined asymptotic modd and the modd based on clasdcd
Kirchhof--Love theory can be wusd ae limited by the inequdities

wR/cy <nt, wR/cy <</7_]/2, respedively [1]. Thus both of these theories describe
only the order Lamb-type waves S, and A, or the fluid-bom wave A. The relevant mode

nurbersliein theranges n<</™ and n << /7'3/2 for therefined asymptotic modd and the
Kirchhoff-Love theory, respedively.

The first modes of highe order Lamb-type waves correspond to long-wave high-
frequency vibrations of fluid-loaded shdls. There are two types of the longwave high-
frequency approximations [2,3]. The transverse approximation is to use in the vicinities of
thethicknessstretch resonancefrequendes. In thevicinities of thethicknessshea resonance
frequencies the tangential approximation should be used. The modd formulated aboveis

applicable only for the small values of the paameter n (n <</7‘1). But series (1) only

begin to convege when n~x~7n~", whae x=ka, i.e. solution contains short-wave
components as well. Consquently, when cdculating the scatered presaure usng formula
(2) the longwave high-frequency approximationsmugt be used together with theflat elastic
layer modd tha will beconddered bdow.

The flat elastic layer modd is developel in references [2,3]. The equaions for this

modd are valid unde following conditions 98/d¢ ~d/96 ~ wR/cy ~/7_1, i.e for shont-
wave motions of the shell. In this case the equaions of elasticity written in curvilinea
coordinaes can be replacal by thos in plane problem of elasticity presented in Cartesian
coordinaes, in doing so theradial coordinate is “frozen” on he mid-surfaceof ashdl.

The results of the synthesis of the form fundionin thefar field (r — ) in the case
of badkscatering (6 = 0) are presented in [2,3]. Here

2 BB (-D)"
n=0

The longwave high-frequency approximation is applied beginning with the first
thicknessresonancefrequency and only for n<10. Therest of series (2) is evaluaed by the
flat layer modd. A numericd analysis demongrates advantages of the chosen scheme. The
cdculations for different parameters of materia in a shdl and value paameter 7

(1/69<n<1/17) show that there exist overlap regions, therefore, the proposed method give

a posshility to describe both the resonance comporents of the partial modes and the
scatered presaure with high acaracy.

(2 p=G
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