
302 Selected Topics of Contemporary Solid Mechanics

CONTROLLABILITY FOR THIN LINEARLY ELASTIC SHELLS

G. Geymonat1, A. Münch2

1Laboratoire de Mécanique et de Génie Civil, Université de Montpellier II, UMR CNRS 5508, CC

048, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
2Laboratoire de Mathématiques, Université de Franche-Comté, UMR CNRS 6623,16,route de Gray,

25030 Besançon, France

Thanks to the pioneering works of J.L. Lions [1] there exists a general tool for the study of the the

exact controllability of a distributed system, in particular of various shell models. More precisely

let us suppose that it is possible to act on (at least) a part of the boundary of a thin, linearly elastic

and isotropic shell with suitable boundary conditions. Then null (or exact) controllability consists in

proving that starting from an arbitrary initial state it is possible to steer the shell to rest, by a proper

choice of the boundary control, in a finite time. The Hilbert Uniqueness Method (HUM) introduced

by J. L. Lions allows to find a control as a minimum of a functional (continuous and convex in a

suitable framework) whose coercivity is essentially reduced to the proof of a uniqueness result.

The summation convention is adopted, the greek indices take values in the set 1, 2 and the latin indices

in the set 1, 2, 3.

Let ω be a bounded connected domain in R
2 with boundary γ and let y = (yα) denote a generic point

of ω. Let θ ∈ C∞(ω; R3) be an injective mapping such that the vectors aα(y) := ∂αθ(y) form the

covariant basis of the tangent plane to the surface S := θ(ω) at the point θ(y) ; let a3(y) = a3(y) :=
a1(y)∧a2(y)

|a1(y)∧a2(y)|
be the unit normal vector to S. For any displacement field via

i expressed in terms of the

contravariant basis the deformed surface is ˜θ(v)(ω) where ˜θ : v = (vi) → θ + via
i. In the framework

of linearized theory small displacement v are considered. In the Koiter model the membrane and

flexural deformation energy are defined by the symmetric forms

(1) aM(u, v) =

∫

ω

aαβλµγαβ(u)γλµ(v)
√

ady

(2) aF (u, v) =

∫

ω

aαβλµραβ(u)ρλµ(v)
√

ady

where γαβ(u) and ραβ(u) are the linearized change of metric and of curvature tensors associated to u.

Let ǫ ≥ 0 a real parameter and let be Aǫ = AM + ǫ
2

3
AF the operator in H = L2(ω)3 associated to the

bilinear form

(3) aǫ(u, v) = aM(u, v) +
ǫ2

3
aF (u, v)

defined on a suitable subspace V of kinematically admissible displacements (as general references on

shell theory see e.g. [2], [3], [4]). Let us consider the evolution problem :

(4)











∂u
∂t

2 (y, t) + Aǫu(y, t) = 0, for y ∈ ω and t > 0

u(y, 0) = u0(y), ∂u
∂t

(y, 0) = u1(y) for y ∈ ω

Bu(y, t) = v(y, t) for y ∈ γ and t ≥ 0

where B is a suitable system of boundary conditions. The system is exactly controllable in time T if

given an initial data (u0, u1) it is possible to find a control v that can drive the system (4) to rest at

time T i.e.

u(y, T ) = 0,
∂u

∂t
(y, T ) = 0 for y ∈ ω
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In [5] it is for instance proved the exact controllability when the middle surface of the shell satisfies

a suitable condition (e.g. is not too far from a plane). It is natural to study the dependence of the

controllability time T on ǫ. Let us remark that when ǫ → 0 one has a singular perturbation problem ;

hence one can expect that the controllability time T (ǫ) → ∞. This can be proved in similar situations

(see e.g. [7]). Moreover one can prove in the case ǫ = 0 a non-controllability result [6] : there exist

some in initial data (u0, u1) such that the evolution system (4) is not exactly controllable.

In this paper we address the following problem :

In the case ǫ = 0 find a space of controllable initial data (u0, u1).

We will give some preliminary partial results obtained in a joint work with Farid Ammar-Khodja

and Arnaud Münch, [8]. The characterization of the controllable initial data depends on the study

of the spectral problem associated to the operator AM . This will be illustrated on the example of

hemispherical shells and on the example of an arch.
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