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RECOVERY OF DISPLACEMENT FIELDS FROM STRESS TENSOR FIELDS

IN SHELL THEORY
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Université Pierre et Marie Curie, Paris, France

The stresses and displacements arising in an elastic shell in response to applied forces are mod-

eled by a system of partial differential equations defined over a three-dimensional domain, represent-

ing the shell in its natural state (i.e., in absence of applied forces).

In the classical theory of shells, the displacement field is the primary unknown, while the stress

tensor field inside the shell is a secondary unknown, given in terms of the displacement field by the

constitutive law of the elastic material; see, e.g., Ciarlet [2]. By contrast, in the intrinsic theory of

shells, the stress tensor field is the primary unknown, while the displacement field is a secondary

unknown; see, e.g., Antman [1], Ciarlet et al. [3], Pietraszkiewicz et al. [6, 7], and Vallée [8]. One

of the principal problems arising in the intrinsic theory of shells is to show that the displacement field

can be recovered from the stress tensor field inside the shell. This presentation is dedicated to this

problem.

Consider an elastic shell which in absence of applied forces occupies a domain contained in

a thin neighborhood of a surface S = θ(ω), where ω ⊂ R
2 is a domain with a sufficiently smooth

boundary and θ : ω → R
3 is a sufficiently smooth immersion. Assume that the elastic material

constituting the shell is homogeneous and isotropic, hence characterized by its two Lamé constants

λ > 0 and µ > 0. Finally assume that the shell is subjected to applied forces and that the shell is free,

i.e., the displacement is not subjected to any boundary conditions.

As a mathematical model for this problem, we select the two-dimensional Koiter equations (see

Koiter [5]). According to this model, the stresses inside the shell are related to the infinitesimal change

of metric and change of curvature tensor fields of the surface S by a bijective linear function. As a

consequence, recovering a displacement field η : ω → R
3 from the stress tensor field inside the shell

amounts to recovering η from the infinitesimal change of metric and change of curvature tensor fields

of the surface S, defined in what follows by their respective covariant components γαβ and ραβ . Here

and in the sequel, Greek indices and exponents vary in the set {1, 2} and the summation convention

with respect to repeated indices and exponents is used.

Our main result is as follows (for details, see [4]). Assume that ω is simply connected. Let

(γαβ) and (ραβ) be two symmetric matrix fields with components γαβ ∈ L2(ω) and ραβ ∈ H−1(ω)
that satisfy the following compatibility conditions, which we shall call the “Saint Venant equations

on the surface S”, viz.,
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Then there exists a vector field η : ω → R
3 of class H1 such that the two fields (γαβ) and (ραβ)

are respectively the linearized change of metric and linearized change of curvature tensors associated

with the displacement field η, in the sense that

γαβ =
1

2
(∂αη · ∂βθ + ∂αθ · ∂βη) in ω,

ραβ = (∂αβη − Γν

αβ
∂νη) · a3 in ω.
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The functions γ
αβ|σ

and γ
αβ|στ

denote respectively the first and the second covariant derivatives of

the field (γαβ), Rν

·αστ
denotes the components of the Riemann curvature tensor of the surface S, bαβ

and bτ

σ
denote respectively the mixed components of the second fundamental form of the surface

S = θ(ω), and a3 :=
1

|∂1θ ∧ ∂2θ|
∂1θ ∧ ∂2θ.

The proof of this result furnishes an explicit algorithm for recovering the vector field η from

the matrix fields (γαβ) and (ραβ): one first solves the system
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where the unknowns are the antisymmetric matrix field (λαβ) and the vector field (λα) with compo-

nents λαβ ∈ L2(ω) and λα ∈ L2(ω); then one solves the system

∂αη = (γαβ + λαβ)aβ + λαa
3 in ω,

where {a1, a2, a3} is the dual of the basis {∂1θ, ∂2θ, a3}. The vector field η ∈ H1(ω; R3) found in

this fashion has the desired properties.

Note that the first system has solutions because the matrix fields (γαβ) and (ραβ) satisfy the

above Saint Venant equations on a surface and that the second system has solutions because the

matrix fields (γαβ) and (ραβ) are symmetric.

These results may be viewed as the infinitesimal versions of the reconstruction of a surface from

its fundamental forms, because the Saint Venant equations on a surface are nothing but the first order

part with respect to ε of the Gauss and Codazzi-Mainardi equations associated with the immersion

(θ + εη).
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