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1. Introduction 

Materials are rather complex systems described by a number of characteristic parameters 
(CPs), conservation laws and phenomenological equations, together with boundary and contact 
conditions. All  these relations are engaged to simulate the development of the material system, 
mostly under simplified conditions. The extraction of the time evolution of the CPs from the 
solution is often impossible. Therefore, we start with the Thermodynamic Extremal Principle 
(TEP), proposed by Onsager in 1931 for heat conduction and 1945 for diffusion, which allows a 
direct derivation of the evolution equations for CPs in the case of slow processes at elevated 
temperatures, e.g. diffusive processes, dealing with linear non-equilibrium thermodynamics. 

2. The Thermodynamical Extremal Pr inciple (TEP) 

The TEP is outlined shortly as following, for details see e.g. [1]. We have CPs denoted as 
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1,.... ,Nq q h& &  with h being the order homogeneity. This dissipation function Qh reflects the power 

generated by the evolution of the internal variables. We look now for a maximum of Qh constrained 
by 0hQ G+ =&  and the constraints 0, 1,...kC i m= = . The result are evolution equations for the iq&  as 
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It is interesting to note that the TEP may be equivalent to the minimization of 

( )1 1,... ; ,....N NG q q q q∆+& & &  with ∆  being a dissipation potential for a wide class of functions as shown 

by Hackl and Fischer [2], yielding for homogeneous functions hQ h∆= . 

3. Application of the TEP 

The first application of TEP is demonstrated on grain coarsening both with grain boundary 
motion and additionall y diffusion in the matrix in the case of coarsening of precipitates, for details 
see [3]. If the grain radii  are chosen as those parameters, the application of the TEP reproduces 
Hill ert’s classical evolution equations for the radii  of individual grains (multigrain concept). The 
observed or calculated ensemble of grains is usuall y classified by a grain radii  distribution function 
involving a certain number of parameters. A new concept [4] is now represented by the direct 
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application of the TEP to the radii  distribution function by derivation of the evolution equations for 
its parameters (distribution concept). The kinetics of systems with bimodal and different 
monomodal starting distribution functions are calculated by means of both multigrain and 
distribution concepts and the results of simulations are compared and discussed. The dissipation of 
the grain coarsening process is evaluated, and it is shown that the width of the distribution function 
decisively influences the coarsening kinetics. 

The second application deals with a chemicall y driven inelastic deformation in systems with 
non-ideal sources and sinks for vacancies. As thermodynamic forces generalized chemical 
potentials including both chemical and mechanical terms appear together with an evolution law for 
the vacancies, [5]. As a representative example the inelastic deformation state in a Fe-Mn-C 
bamboo-structured wire is demonstrated in dependence on the activity of sources and sinks for 
vacancies at dislocation jogs in the bulk. Sources and sinks for vacancies are supposed to be ideal at 
grain boundaries. Fig. 1 shows the axial strain along a wire with the dimension-free length 2 and 
two grain boundaries ( )0.5, 1.5x x= =  at a certain time instant for different jog densiti es 2Lρ ; 

details can be taken from [6]. 

 

Figure 1. Chemicall y driven longitudinal strain in a wire. 
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