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Dynamic response measurements are a very attractive form of damage detection tests since 
they can be made at a single point on the component and are independent of the position 
chosen. The aim of this paper is to present investigations, to enable the analysis of the 
influence of the fatigue cracks and delaminations on the dynamic characteristics of the con­
structions made of unidirectional composite materials. The method of modelling the crack 
or delamination presented in the paper enables an easy modification of the investigated ele­
ments according to their specific damage (oblique crack, two-side crack, inside crack, multiple 
delaminations, etc.). The numerical examples are in consistence with the known influence of 
the position and depth of the crack on the decrease of the natural bending frequencies of 
structures. Simultaneously, a strong influence of the material parameters on these changes 
has been observed, which does not exist in the case of isotropic materials. 

1. Introduction 

The use of composite materials in various construction elements has increased sub­
stantially over the past few years. These materials are particularly widely used in situa­
tions where a large strength-to-weight ratio is required. Similarly to isotropic materials, 
composite materials are subjected to various types of damage, mostly cracks and delam­
inations. These result in local changes of the stiffness of elements from such materials 
and consequently their dynamic characteristics are altered. This problem is well under­
stood in the case of construction elements made from isotropic materials, while data 
concerning the influence of fatigue cracks on the dynamics of composite construction 
elements are scarce in the available literature. 

The aim of the work presented in this paper is to analyse the influence of a fa­
tigue crack and delamination on the changes in the dynamics of structures made of 
composite materials. This problem has been solved by using the finite element method. 
The damaged part of the structures has been modelled by special finite elements with 
failures, while the undamaged parts have been represented by other, well known finite 
elements. The influence of material parameters (fibre angle and volume of the fibre) on 
the intensity of the changes is also investigated. 
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2. Cracked, unidirectional composite beam 

Damage models in composite structures have been studied extensively by many 
researchers. Krawczuk, Ostachowicz, and Zak proposed [I, 2) the formulation of a finite 
composite beam element with an open crack. The damaged part of the beam has been 
modelled by a special finite element with a crack (Fig. I), while the undamaged parts 
have been modelled using three-noded beam elements. The crack is placed in the middle 
of the element and remains open, its depth being a. The angle between the fibre and 
the axis of the element is a. The element has three nodes. Each of them has two degrees 
of freedom, in the form of transverse displacements and rotations. In paper [I] only 
the case of pure bending was considered. Assuming that there is no warping in the 
transverse cross-section of the element, the displacements on both sides of the element 
can be expressed by: 

{ 
Uxr(x,y) = -y</JI(x), 

Uyi(x,y) = vr(x), {

Ux2(x,y) = -y</J2(x), 

Uy2(x, y) = v2(x), 
(I) 

where cPi (i = I, 2) denotes rotation and Vi (i = I, 2) denotes transverse displacements. 
Transverse displacements Vi on both sides of the crack can be approximated by cu­
bic polynomials while the independent rotations </Ji can be approximated by quadratic 
polynomials [I, 2) . 

I 

L -L/2 ---r-->--------'L=/-=2'--------~ 

L-length 

H- thickness 
a- angle of fibers location 

B- width 
a- depth of the crack 

c,, c;- local coefficients of flexibility 

X 

FIGURE 1. A composite beam finite element with a transverse crack. 

By using the conditions in the nodes of the element and the conditions expressing 
consistency of displacements in the x and y directions, and the balance of forces and 
torque (2) we can formulate a stiffness matrix for the finite elements. 
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v1(0)=q1, 

c/>1(0)=q2, 

V1 (L/2) = Q3, 

c/>1 (L/2) = q4, 

v2(L) = Q5, 

c/>2(L) = Q6, 

Uxl (L/2) - Ux2(Lj2) = Cr u~l (L/2), 

u~ 1 (L/2) = u~2 (L/2), 

uyl(L/2) = uy2(L/2), 

u~ 1 (L/2) - u~2 (L/2) = C<J> u~1 (L/2), 

u~1 (L/2) = u~2 (L/2), 

u~~ (L/2) = u~~(L/2). 

(2) 

Values er and C<J> in Eqs. (2) represent the flexibility coefficients of the element in the 
crack. The flexibility coefficients of the element due to the appearance of the crack can 
be obtained from the Castigliano theorem i.e.: 

82U 
Cij=apiaPj' (3) 

where U is the additional elastic strain energy of the element caused by the crack, and 
Pi and Pj denote independent nodal forces of the finite element. We can calculate this 
additional elastic strain energy in the case of cracks existing in unidirectional composite 
materials (Nikpour and Dimarogonas, [3]) from the following formula: 

(4) 

where A is the surface of the crack, J(Ii and Kni (i, j = 1, 2, ... , n) are stress intensity 
factors for the i-th independent nodal force of the element, and D 1, D 12 , D2 are coef­
ficients depending on the material parameters (Nikpour, [4]). According to the results 
presented by Bao et al. [5] these factors may be written as: 

(5) 

where ai denotes the stress acting in the crack, a is the depth of the crack, H is the 
height of the element, Fji are correction factors, which consider the finite dimensions 
of the element and also properties of the material while Yj ( () is a correction function 
which takes into account the anisotropy of the material. Details of their formulation 
one cans find in [1]. 

3. Natural vibration of a cantilever composite beam with a crack 

Examples of numerical calculations showing the influence of crack parameters (depth 
and position) and material parameters (fibre volume fraction and fibre angle) on the 
changes of the frequency of natural bending vibrations were carried out for a cantilever 
beam, the geometrical dimensions of which are shown in Fig. 2. . 

It has been assumed that the beam is made of unidirectional composite material 
(graphite fibre-reinforced polyamide). Material parameters of the components, and rela­
tionships to calculate the gross material coefficients for the composite material analysed, 
are presented in Table 1. 
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FIGURE 2. Composite cantilever beam. 

TABLE 1. Properties of graphite fibre-reinforced polyamide composite 

Young's modulus [GPa) 
Poisson ratio 
Density [kg/m3] 

Matrix (epoxy resin) 

Em= 3.43 
1/m = 0.35 

rhom = 1250 

Fibres (graphite) 

EJ = 275.6 
1/j = 0.2 

Pt = 1900 

In Figs. 3-5 results are given showing the influence of the position and depth of 
the crack on the first three natural frequencies of the analysed beam. The beam was 
modelled by 10 finite elements. 

Numerical calculations have been carried out by assuming the overall volume of 
fibres to be 30% and the fibre angle to be 30° (measured between the geometric axis of 
the beam and the material's principal axes). 

FIGURE 3. First natural bending frequency 
versus depth and location of the crack. 

FIGURE 4. Second natural bending frequency 
versus depth and location of the crack. 
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FIGURE 5. Third natural bending frequency 
versus depth and location of the crack. 

FIGURE 6. First natural bending frequency 
versus angle and volume of fibres. 

In Fig. 6 the influence of material parameters on the first natural frequency is pre­
sented. The relative depth of the crack is 0.4 and the crack is located relatively at 0.25 
of the total beam length. 

4. Delaminated composite beam 

Delamination is one of the most important failure modes in laminated composite 
materials. Acquired during the manufacturing process, or produced by impact and other 
service hazards, delamination may greatly reduce the stiffness of the whole structure, 
thus influencing the vibration and stability characteristics. 

This chapter is devoted to the analysis of natural vibrations of a layered composite 
beam with a single delamination. The beam is modelled by beam finite elements with 
three nodes, and three degrees of freedom at each node. In the delaminated region, 
additional boundary conditions are applied. It is assumed that the delamination is 
open (i.e., damping caused by contact forces between the lower and upper parts can be 
neglected in the model due to its small influence on the changes of natural frequencies) 
and extends to the full width of the beam. 

In Fig. 7, a model of a delaminated part of the beam is presented (see Krawczuk, 
Ostachowicz, and Zak [6, 7]) The delaminated region is modelled by three beam finite 
elements which are connected at the delamination crack tip where additional boundary 
conditions are applied. The layers are located symmetrically with respect to the x- z 
plane. The element has three nodes with three degrees of freedom at each node i.e. 
axial displacement q1 , q4 , q7 , transverse displacement q3 , q6 , q9 , and the independent 
rotation q2 , q5 , q8 . It has also been assumed that the total number of degrees of freedom 
in the element is independent of the number of material layers. Neglecting warping, the 
displacements u and v within a layer can be expressed as: 

{ 

u(x, y) = u0 (x) - y cf>(x), 

v(x, y) = v0 (x), 
(6) 
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FIGURE 7. Delamination of a beam modelled by finite elements. 

where u0 (x) denotes the axial displacements, </J(x) the independent rotations, and v0 (x) 
the transverse displacements. The displacements and rotation in the element are clearly 
formulated in the paper [3]. 

In order to connect element I with elements If and III, the following boundary 
conditions are applied at the delamination crack tip: 

{ 

</J1 (X) = </J2 (X) = </J3 (X) , 

v~(x) = v~(x) = v~(x), { 
u~(x)- Y2 <P2(x) = ug(x), 

u~(x)- Y3 <jJ3(x) = u~(x), 
(7) 

where y2 and y3 denotes distances between the neutral axes of elements I-II and I-III, 
respectively (see Fig. 7). 

In the finite- element modelling the cubic polynomial in x was taken to approximate 
the bending displacement v0 (x), while for the axial displacement u0 (x), and the rotation 
<P(x), quadratic polynomials in x were taken. Moreover, it was assumed that the shear 
strain variation was linear, as proposed by Tessler and Dong [8]. The above conditions 
enable us the displacements and rotation in the element to be written in the form: 

\ 

u0 (x) = a1 + a2 x + a3 x 2
, 

<P (x) = a4 + a5 x + 3 a 9 x
2

, 

v0 ( x) = a6 + a7 x + as x2 + a9 x3, 

(8) 

Using these conditions at the nodes of the element the unknown coefficients, a1- a9 , 

can be easily determined as a function of the nodal displacements. Then the matrix of 
the shape functions for a single layer of the element can be calculated. 

The strains within a single material layer are given by the following formula: 

\ 

8u (x,y) 8u0 (x) 8<P (x) 
ex= ox = ox -y~, 

- 8u (x,y) 8v (x,y) - 8v0 (x) - .+. ( ) 
rxy - oy + 0 X - 0 X 'f' X . 

(9) 

The calculated constants, a1-a9 , and relations (8) and (9) allow the calculation of 
the strain-displacement matrix of the material layer and then from that the stiffness 
matrix of the material layer can be evaluated. The inertia matrix and the stiffness 
matrix for the whole element can be calculated using the formulae: 
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R R 

Me= LM1 = LPi I NTN dVj , (10) 
j-1 j-1 V; 

R R 

Ke = L Ki = L I BT DjB dVj, (11) 
j-1 j-1 V; 

where j is the number of the layer, R the global number of the layers in the element, 
Vj the volume of the j-th layer, and pi the density of the j-th layer while D i is the 
stress- strain relations matrix for the j-th layer. 

5. Natural vibration of a cantilever composite beam with a de­
lamination 

Numerical tests were performed for a cantilever beam presented in Fig. 8. The beam 
was manufactured from 24 layers of graphite-epoxy resin composite material (see Ta­
ble 1). The volume fraction of graphite fibres in the analysed beam remained constant 
at 20%. The angle of the fibres in the layers was ±45° . In each layer the fibres were 
located parallel to the axis of the beam (see Fig. 7). 

.J-r.:i tffi .... 
Q:J 

ctJt 'J:t:. 
ljj:P / X 

f. 

1:1~ / z I 
.z,.AJ 

t-1 

H = 25 

/! ~ 
1-r, "f-7. f-!'r-' L, 8 = 50 

z ( 1jJ .... t L = 600 

y 

FIGURE 8. Dimensions of the delaminated layered composite beam. 

In order to analyse the influence of the position of the delamination the beam was 
modelled by 18 finite elements, and the relative length of delamination was 6.25%. 

In Fig. 9, the influence is shown of the relative delamination position along the beam 
thickness on the first natural frequency. Figures 10- 11 show the influence of the relative 
delamination position in the x direction on the first and second natural frequency of 
the layered composite beam. 
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FIGURE 9. First natural bending frequency 
versus relative position of the delamination . 
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FIGURE 11. Second natural bending frequency 
versus relative position of the delamination . 
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FIGURE 10. First natural bending frequency 
versus relative position of the delamination. 

75.11 - -- - - ---- - -
I I 1 I 

711.11 

;_ 65.11 -t .. : .. ~ .. ~ . -: .. ~ . -~ -. :. -: .. : 
,.., 611.11 j .. ' . . -' . . ' .. . ' . . :. - '. .' .. .' .. '. ! J ' ' ' ' I ' ' ' ' 

~ 55.11 ~ · · : · - ~ • - ~ · ·: • • ~ • 

~ ~ ' 
] suo . . 

1 
z HU t : ~ 

.auu - , - -, - - r - , - - ., -

' I I I 

I I I I 

3511 .---rrr-~ I I I I I I I ~ 
11.11 Cl. I ll2 II.J II.J 11.5 11.6 U. 7 O.N tl9 1.1 

Kclativc length of the !lchtminauion (all.( 

FIGURE 12. First natural bending frequency 
versus relative length of the delamination. 

http://rcin.org.pl



DYNAMICS OF CRACKED AND DELAMINATED COMPOSITE MATERIAL STRUCTURES 117 

.WO.II -t. 
I . . . , 

J50.0 -t - • I - - - - - .- - - - - . ' • - ~ 

;[ l 
~ JOO.II -t- -:-- -:. -: 
~- j ! 25U.II -~ - - : - - ~ - - :- - ' - - J - - ~ - - ' - • -' - - '- - -

i ::: j·' ( : ; ' ' '-
z IOUO '- - J - L - ' - - -' - -

t I I I I I 

1 ' ' ' ' ' ' ' 
~).() --+ - -I - - J __ L __ I _ _ .J __ L _ _ I __ 

I 
1 

'l" I 
1 

r--j~--r---.---t-,..-t-.---r--.--ic-r-1 

o.o n.t 11.1 11.J o . ., n. ~ u.6 n.7 n.s u.9 1.11 
Rclalivc lcnj:lh of lhc llcl:uninalion lall.l 

FIGURE 13. Second natural bending frequency 
versus relative length of the delamination. 

6. Delaminated composite plate 
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FIGURE 14. First natural bending frequency 
versus relative position of the delamination. 

Figure 15 presents a way of modelling the delaminated region in a composite plate 
with a delamination. The delamination is modelled by three plate finite elements, and 
to connect them, additional boundary conditions are applied at the delamination front. 
The material layers in the elements are located symmetrically with respect to the x- y 
plane. Each element has eight nodes with five degrees of freedom. 

h 

L -length 
8 -width 
h - thickness 
a -an gle of reinforced fibre s 

FIGURE 15. The multilayer composite plate with delamination. 
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The axial displacements u, v and w in a single layer can be expressed by: 

l 
u (x, y, z) = u0 (x, y)- z cPx (x, y), 

v (x, y, z) = v0 (x, y)- z c/>y (x, y), 

w (x, y, z) = w0 (x, y), 

(12) 

where u0(x,y), v0(x,y), and w0(x,y) denote mid-plane displacements, while c/Jx(x,y) 
and c/>y(x, y) denote independent rotations. 

To approximate the axial mid-plane displacements and rotations biquadratic shape 
functions for the eight-node element have been used. 

The strains in a single material layer can be calculated from the following relations: 

0 a u0 a cPx 
Ex =Ex + z K,x = -a - z-a 

X X 
(13) 

The inertia and stiffness matrices for the whole element can be expressed as the 
sums of the inertia, or stiffness, matrices, of the various single layers: 

R R 

Me= LM1 = LPi J NTNd~, 
J=l J=l Vi 

(14) 

R R 

Ke = LK1 = L J BTDjBd~, 
J=l J=l Vi 

(15) 

where j is the number of the layers, R the total number of layers in the element, ~ 
the volume of the j-th layer, and Pi the density of the j-th layer, while Dj denotes the 
stress- strain relations matrix for the j-th layer. 

In order to connect the three elements depicted in Fig. 15, and to satisfy continuity 
of the displacements between these elements, the following boundary conditions were 
applied at the tip of the delamination: 

(16) 

where z2 and z3 denote distances between the neutral axes of elements 1-2 and 1-3, 
respectively (see Fig. 16). 

FIGURE 16. The multilayer composite plate with delamination. 
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7. Natural vibration of a cantilever composite plate with a de­
lamination 

The numerical tests were performed for a cantilever plate presented in Fig. 17. The 
plate was manufactured from 8 layers of graphite-epoxy resin composite material (see 
Table 2). The volume fraction of graphite fibres in the analysed beam remained constant 
in the range 20%. 

L length 
B width 
H thickness 
a delamination (length) 
L 1 delamination (middle point) 
h delamination (location between layers) 
a angle of reinforced fibres 

FIGURE 17. Dimensions of the delaminated layered composite plate. 
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0.6 

<> 

0.0 
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FEM calculation 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 
Relative delamination lenght a/L 

0.8 

FIGURE 18. Changes in the fundamental natural frequency in bending for the delaminated composite 
cantilever plate. 
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TABLE 2. Properties of glass fibre-reinforced epoxy composite 

Young's modulus [GPa] 
Kirchhoff modulus [GPa] 
Poisson ratio 
Density [kgjm3 ] 

Matrix (epoxy) 

Em= 3.43 
Gm= 1.27 
Vm = 0.35 
Pm= 1250 

Fibres (glass) 

E1 = 66.5 
c1 = 21.0 
Vj = 0.23 
Pt = 2250 

1.2 -.-------------------------------------------. 

0 . 8 

0.6 

experimental data 

FEM calculation 

0.' -r-------~--~----.-~~~~--~--~ 
0.0 0.1 0.2 0.3 0., 0.5 0.6 0.7 

Relative delamination lenght a/L 
0.8 

FIGURE 19. Changes in the second bending natural frequency of delaminated composite cantilever 
plates. 
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0.1 0.2 0.3 0., 0.5 0.6 0.7 
Relative delamination lenght a/L 

0.8 

FIGURE 20. Changes in the third bending natural frequency of delaminated composite cantilever 
plates. 
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Figure 18 shows the changes in the first bending frequency of the composite plate 
as a function of the delamination length. Figure 19 illustrates the changes in the second 
natural frequency, while in Fig. 20 the changes in the third natural frequency are de­
picted. From Figs.18- 20 it arises that the results obtained from numerical calculations 
are in agreement with the experimental investigation. 

8. Conclusions 

In this paper a number of typical models of cracked and delaminated structures have 
been described. There are many challenges in the development of models of structural 
stiffness loss due to damage. Typical ones are the ability to identify minor changes in 
the stiffness of composite structures. 

Based on the numerical and experimental results presented in the paper the following 
conclusions can be drawn: 

• delaminations in beams and plates result in a decrease in the natural bending 
frequencies, 

• the changes in natural frequencies are functions of the length of the delamination 
and also on the vibration mode, 

• when the size of the failure increases (i.e. the length of the delamination) the 
reduction in the natural frequencies also increases. 

Analytical methods to predict changes in the stiffness parameters are of dubious 
worth in more complex structures. The difficulties lie in the sort of restrictions described 
in detail in (9-13]. So far, FEM-based methods have been shown to be more realistic for 
applications to engineering constructions. 

Laboratory experiments are often conducted to ensure the validity of analytical and 
numerical models. Therefore, a large amount of verification work is still required in 
order to be able develop practical and effective stiffness detection methods confidently. 
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