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New approach to the damage identification problem based on analysis of perturbation of
elastic wave propagation is presented. The proposition is based on the use of pre-computed
time dependent, dynamic influence matrix describing structural response to locally generated
unit impulses. The global structural dynamic response can be decomposed on parts caused
by external excitation in undamaged structure and perturbations caused by the structural
defects. Assuming possible locations of all potential defects in advance, an optimisation
technique with analytically calculated gradients can be applied to solve the problem of the
most probable defects’ location. Theoretical background as well as numerical results are
presented.

Key words: damage identification, Virtual Distortion Method, inverse dynamic analysis.

1. Introduction

The damage detection systems based on array of piezoelectric transducers (Fig. 1)
sending and receiving strain waves are intensively discussed by researchers recently
[1, 2]. The signal-processing problem is the crucial point in this concept and the neural
network method is one proposition to develop a numerically efficient solver for this
problem [3].

The purpose of this paper is to propose an alternative approach to the inverse
dynamic analysis problem. Generalising so called VDM approach (VDM - Virtual Dis-
tortion Method [4]) on dynamic problems, a dynamic influence matrix concept will be
introduced. Pre-computing of the time dependent influence matrix D allows decomposi-
tion of the dynamic structural response on components caused by external excitation in
undamaged structure and components describing perturbations caused by the internal
defects. In the consequence, an analytical formulae for calculation of these perturbations
and the corresponding gradients can be derived (cf. VDM based gradient calculations
for non-linear static problem [5]). First formulation of this approach has been presented
in [6].

The physical meaning of so-called virtual distortions used in this paper are externally
induced strains (non-compatible in general, e.g. caused by piezoelectric transducers,
similarly to the effect of non-homogeneous heating). The compatible strains and self-
equilibrated stresses are structural responses for these distortions.
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FIGURE 1. Array of piezo-transducers.

2. Virtual Distortion Method (VDM)

All our further proceedings are based on so-called Virtual Distortion Method (VDM).
In this section the basic notions of the method as well as the method itself will be
explained.

For simplicity of the explanation, let us assume a very simple structure (see Fig.2)
consisting only of two bars welded together so that strains induced in one of them
cause strains in another. Young’s modulus and cross-section area for the left bar are:
E,, A3, and for the right one: E3, A}. Let us assume that the element number 1 has
been initially expanded. Strain €9 which corresponds to the expansion is called virtual
distortion and its influence for the structure can be considered as a result similar to the
effect of non-homogenous heating or as a lack-of-fit result.
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Ficure 2. Explaining diagram for the Virtual Distortion Method.
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Because of compatibility of the displacements we will get a prestressed structure
with residual strains e/ and associated self-equilibrated stresses of* (i = 1,2). These
strains and stresses are described by the following equations:

el =Y "Dyel,  of =E (Dij - bij)el. (1)
J J

Matrix D, used in the above formulae, is so-called influence matriz. It is fundamental
for all numerical computations in the VDM. The notion of the influence matrix will
be explained more thoroughly further, as well as its dynamic generalisation will be
introduced. Here suffice it to say that D;; element of the matrix determines strain in
member 7 of the structure caused by unit distortion e‘; = 1 applied in member j.

Now let us have the initial structure subjected to a load (Fig.2). We consider two
states of the structure: prestressed and loaded. Superposing those two states we obtain
so-called structure modelled by distortion. Strains and stresses which are present in that
structure are defined by the following formulae, where the influence matrix is used:

ei=er +ef =l + Z D;je$, (2)
J
L

Q
>y

0i=E;(e;—€)) = E; (ef +ef —¢€?) = Ejef +EZ el =ol +of. (3)

Here e, oF are components of strains and stresses caused by the load, while e®, off

are components caused by the distortion.

Independently, we introduce a modification in the left bar of the loaded structure.
This modification consists in a change of one of its structural parameters — for example
cross-section area or Young’s modulus. Now we demand that the modelled structure and
the modified structure are identical in the sense of equality of their fields of strains and
stresses. This means that introducing the virtual distortion in the left element is equal to
the modification of the area of its cross-section. To explain it completely let us consider
a particular case when €} = ¢;, which means that marked in Fig.2 displacement 9L
should be equal to displacement ¢; L (apparently, Fig. 2 presents the general case, where
the displacements are different). Assumed equality means that there are no stresses in
the left element (from Eq. (3) we obtain o; = 0), so it can be considered as non-existent.
We may say now that the left bar has vanished and in the modified structure its cross-
section area equals zero (4; = 0).

We have assumed notation that A} are initial values of the cross-section areas, while
A; are their modified values. Member axial forces adequate for (respectively) modelled
and modified structure are as follows:

Pl' = EiA; (Ei = 6?) ’ Pi = EiA,'Ei. (4)

Comparing these two equations we derive a formula for cross-section modification ex-
pressed by the virtual distortion:

ﬂi54=+- (5)
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Defined above is so-called modification parameter p;, which describes here a change of
the cross-section area of element i. We may define the parameter differently, e.g. as a
modification of Young’ modulus: u; = E;/E}, or a modification of member stiffness:
i = (EA);/(EA)f. In every case the relationship between the modification parameter
and the virtual distortion is the same as one presented in Eq. (5). We invert this equation
so that now, knowing the modification of a structural parameter, we may calculate the
virtual distortion which models its influence in the initial (i.e. unmodified) structure:

) = (1 - e (6)

Thus in the presented method we have the virtual distortions which we may use to model
a change in the structure (among other things: some modifications of its structural
parameters).

3. Influence matrix

The influence matrix introduced in the previous section forms numerical basis for
the VDM. We have mentioned that component D;; of the matrix determines strain in
structural element ¢ caused by unit distortion applied in element j. Thus, the influence
matrix is (generally) non-symmetric. For truss structures with n elements, its dimension
isn xn.

To compute one column of the influence matrix we must calculate responses in all
structural elements caused by a proper local load applied to one of them. And the load
(pair of forces in case of truss structures) must correspond to the unit-expansion of the
unbounded element (see Fig. 3, assuming that €} = 1).

B

Ficure 3. Influence of the unit distortion applied in one element.

Below two simple examples of influence matrices for two- and three-element trusses
are presented. The examples provide analytical formulae for the influence matrices —
obviously for real problems all calculations are to be performed numerically.
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3.1. Example of two-bar truss influence matrix

E, A P
S
E, A,

SOOI

Figure 4. Simple two-bar truss.

Figure 4 presents the already-considered truss composed from two elastic bars. As-
suming cross-section areas and Young’s moduli for the bars as (respectively): A;, As,
and E;, E,, we may easily determine member axial forces and then strains for the
structure loaded with force P:

E Ay EyA,

N=—"A p N 2% p 7

! E A, + E;As 2 E\ A + E;As ( )
P

— g = — 8

f1=e E\ A, + E2A, ®)

In this simple example applying pair of forces to a member is equivalent with the case,
where the load P has got the same value. And the force from the self-equilibrated pair
which causes unit expansion of free (i.e. unbounded) element i should be equal E;A;.

Thus, substituting P = E;A;, from Eq. (8) we obtain formula for the influence matrix
element:

E,’Ai
Dy = ——M—— 9
4 E\ A + E; A, ( )
The whole matrix is as follows:
E A Ey Ay
_ Ei1A; + E>As E]Al + Ey A,
b=\"Fa, E, A, (10)

E\A + EsAy FEi1A; + ExA,

In particular case when E; = FE,, the influence matrix for that simple two-bar truss
equals:

Ay As
_ A+ Ay AL+ A
p=|"M7¥ . (11)

Ar+A4Ay A+ A
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3.2. Example of three-bar truss influence matrix

(a)

GULLUUULLUUULRELKS

FiGure 5. Elastic three-bar truss.

Figure 5a presents a truss composed from three elastic bars. Let us assume that
structural stiffnesses of all the bars are equal, i.e.:

E1A1 = E2A2 = E3A3. (12)

For the load P applied as presented in Fig. 5b we achieve the following equations for
axial member forces:

cos?(a) 1

LA Ny=——+—_P
1+ 2cos®(a) 2T 1+2 cos3(a) (13)

N1 = N3 =
These formulae will be used to calculate elastic response (i.e. elastic strains) in the
structure for the unit distortion applied in element 2.
For the load applied like in Fig. 5c the axial member forces are as follows:

cos(a) 1

1+ 4cos®
R N3=_2+4c083(a)P.

"~ 244cos3(a) (14)

Ny Ny =

" 14 2cos3(a)”’

The analogous equations we achieve for the load P applied in the same node but along
the element 3.
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A unit distortion for the central bar we realize by applying to its ends pair of axial
forces E2 A2 (which would stretch the free element twice). And this is equivalent with
the case when P = E5 A, in Fig. 5b. Analogously a unit distortion for the left element is
realized in the case when P = F; 4, in Fig. 5c. But because of the structural stiffnesses
equality (14), we may assume in every case P = EA. The elastic response we achieve
calculating elastic strains in every element: €; = N;/(E;A;) = N;/(EA), (i = 1,2,3).

First column components of the structure influence matrix are D,; = €;, where ¢;
are strains calculated for the unit distortion applied to the element 1, i.e. for the load
P = E A applied as presented in Fig. 5c. The central column components are Dy; = ¢;,
where €; are calculated for the unit distortion applied to the element 2, i.e. for the load
P = EA applied as presented in Fig. 5b. Thus, using Egs. (13) and (14) the complete
influence matrix for the structure is determined:

1+4cos®(a) 2cos®(a) -1
= 2 2 2 .
5t 400 (a) cos(a) i cos(a) (15)
-1 2cos?(a) 1+4cos®(a)

4. Construction of time-dependent influence matrices

From now on, we will be dealing with dynamic analysis, so we need to introduce
a time factor into the VDM. Thus we assume that the virtual distortion depends on
time (as well as for example the corresponding load which may be used to realize
the distortion). This means that the corresponding influence matrix also will be time-
dependent, so we can say that it will be three dimensional matrix.

Any form of relationship can be composed from series of short impulses (see Fig. 6).
So we calculate influence matrix as a 3-dimensional matrix of dynamic responses ob-
tained for unit impulse excitations applied in time instant ¢ = 0 (Fig. 7). It is important
to notice that this impulse load we can simulate in initial velocity conditions of New-
mark’s integration. This means that in dynamic version of the VDM we do not need to
use a (time-dependent) external load to realize the effect of a time-dependent distorsion.
So to calculate a column of the time-dependent influence matrix we only need to solve
a dynamic problem of the structure without any external load but with some proper
initial conditions imposed on the adequate nodes. Having calculated all the columns of
the influence matrix D;;(t) which gathers the dynamic response for impulse excitations
imposed in time instant ¢ = 0, it appears that we should compute the following matrices
as well for the impulse excitations applied in the successive time instants t = 7 (Fig. 8),
but fortunately we do not need to do that, thanks to this obvious relationship:

DI(t) = 0 fort <, (16)
WY Dyt —7) fort>T,

where D;;(t) is the already calculated dynamic influence matrix. So for all our further
purposes we have only one time-dependent influence matrix computed for unit impulse
excitation applied at the beginning of the assumed time period.



456 J. HoLNICcKI-SzuLc and T.G. ZIELINSKI
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Ficure 6. Short impulses composing a relationship.
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Ficure 7. Unit impulse excitation applied at the beginning of the assumed time period.
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Ficure 8. Unit impulse excitation applied at time instant 7.
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5. Influence matrix based description of wave propagation

Let us describe the dynamic response of the strain increment Ae4(t) in the loca-
tion A and the time instance t as the superimposed response caused by impulses of
virtual distortions increments Ae’(r) generated in the locations a and the time in-
stances 7 (see for example Fig.9):

Aea(t) =YY Daalt—7) Aed(7), (17)
Tt a

where the dynamic, time dependent, influence matrix D 44(t — 7) describes the corre-
sponding dynamic response of the strain in location A and the time instance t, caused
by the unit impulse virtual distortions forced in the locations a and time instances
T < t. Note again that it is sufficient to compute only the matrix D 4,(t) which stores
the response for the appropriate unit impulse distortion forced in the initial time instant
7 = 0. The virtual distortion increments A9 () model excitations caused in locations
a by the piezoelectric transducers (activated by an applied current increment). In the
paper, we assume that small Greek subscripts () runs through all locations of wave-
generators while the capital ones (A) runs through locations of wave-receivers.

a=1,2 A=20
o) A)
2 4 6 8 10121416 18\20 22 24 26 28 30 32 34 36 38 40

ZaN PANZAN! '
1 35 7 9111315171921232527293133353739

NSNS

Ficure 9. Truss-cantilever structure.

The elements of the influence matrix D 4,(t) can be determined through the inte-
gration of the motion equations (e.g. using the Newmark’s method) computed for the
unit impulse excitation generated sequentially in the structural elements a. The unit
impulse excitation can be supplied in form of initial velocity conditions: v(0) = P At/m,
where P denotes, so called, compensative force corresponding to locally generated unit
virtual distortion impulse € = 1, At is the integration time step, and m is the mass
concentrated in the charged node of the loaded structural element a. Assuming (for
simplicity of presentation) a discrete truss structure model (Fig.9), we can describe
the transient function for the wave propagation generated in members o = 1,2 and
received in member A = 20. To this end it is necessary to determine, in advance,
the time dependent dynamic influence matrix D aq(t), where ¢ runs through all time
steps of the dynamic analysis: ¢t = (0,T). Generally, it is a three-dimensional matrix:
D gxaxt, although, in case of only one receiver we can consider it as the two-dimensional
(Axaxt—=>1x2x(T+1)=2x(T+1)). Having the influence matrix computed,
we can calculate the superposition (17), where A9 (7) describes (for the sequence of
7 instances) the shape of the excited signal. Then, we can achieve the form of the
strain in location A and the time period (0,T) by summing the strain increments for
all successive time instances ¢ € (0,T'):
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ea(t) =) Aea(r) =eat — 1) + Aea(t). (18)

T

In this way, the storage of the influence matrix D44(t), allows us to determine the
transient function (between locations o and A) for any shape of the excited signal.

6. VDM based damage influence description

Let us follow the influence matrix based approach described above to the damage
influence description. Three new, time dependent, influence matrices (D 4;(t), Dia(t),
D;;(t)) will be introduced. The method of computation of the matrices is similar to the
one described in the previous section.

In the case of any perturbation on elastic wave propagation caused by defects in
structural members i, between the locations « of the wave generator and the location
A of the wave observation, it is necessary to generalise the formula (17) adding the
component Ae£(t) related to the perturbation caused by these defects:

Ae4(t) = Aek(t) + Ack(2)

:Z ZDAa(t—T)Aeg(T)+ZDAi(t_T)AE?(T) , (19)

Tt a

where A€ (t) is the part of the strain increment caused by virtual distortion increments
A€ (t) modelling piezoelectric excitations, whereas Aef{(t) is the component caused by
virtual distortion increments Ae?(¢) simulating defects. From now on, we assume that
small Latin indices (i, j, k, [) runs through all presumed locations of possible defects.

The defect-simulating virtual distortion increment can be expressed by the following
formula which is dynamic generalization of the static Eq. (5):

Al (t) = (1 — mi) Aei(?). (20)

Here £;(t) denotes the strain in member ¢ and the time instance ¢, while p; = E;/E;
denotes the ratio of the damaged member Young’s modulus to the initial one. Therefore,
the parameter u; € (0,1) specifies the size of the defect in location i (actually pu; =1
means that there is no damage, while p; = 0 means that the member 7 is completely
damaged so that it can sustain no stresses). If we assume several possible-defect locations
¢ (eventually, all structural elements of the structure), we can agree that vector pu;
specifies also the distribution of these defects.

The above relation (20) comes from the more general formula (cf. Eq. (6), see [4]):

_Ei _et) —€(t) _ Aei(t) - Agl(t)
WEE = gl e

(21)

which applies virtual distortions to simulate material parameter modifications (or ma-
terial redistribution pu; = A;/A} etc.).

http://rcin.org.pl
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Now, let us substitute the strains Aeg;(t) in the formula (20) through the formula
analogous to equation (19):

Ag;(t) = Asi’“(t) + Aef(t)

=YD Dialt - 7) A (7) + Z Dij(t—1)A(r)| . (22)

Tt a

Here, similarly, increment Ael(t) is caused by the virtual distortion A9 (t), mod-
elling piezoelectric excitations, while increment Aef(t) is caused by the defect-simulating
virtual distortions AE?(t). Now, the following relation between the defect parameters
u; and the simulating this defect (in the time instance t) virtual distortion increment
Ae?(t) can be reached:

> (6 — (1= i) Di;(0)] Aed(t)
j

= (1= ) | DY Dialt—7)A(T) + D) Dij(t — 1) AY(r)| . (23)

Tt T<t j

Note that to achieve the above expression the following relation has been used:

Aek(t) = Z Z Dij(t — 1) Ae(7)

Tt

=Y Di;(0)A(t) + DY Dij(t — ) AY(r). (24)
J

T<t j

For the distinguished time instant ¢, the formula (23) represents a set of i equations
with j = i unknowns Ae(t). To obtain Ae9(t) for the entire time period (0, T'), we have
to solve (step by step) the set (23) for all successive time instances t € {(0,7T). How-
ever, it is highly important (for the computation cost) to notice that in our algorithm
D;;(0) = 0. Considering this, the system of equations (23) should be given in the simple
diagonal form:

Ad(t) = (1 =) | D Dialt —7) A(T) + )Y Dyt — 1) AY(r) |, (25)

<t a <t j

which needs only computation of the right hand side expressions.

Knowing the defect parameters p;, the step by step (for the sequence of time in-
stances t) determination of the increments Ae?(t) can be performed making use of the
formula (25). Then, knowing Ae?(7) for 7 € (0,t), the strain increments in the observed
location Ae4(t) can be calculated making use of the equation (19). Summing these in-
crements, like in the expression (18), we can determine the function of the strains e 4(t)
in location A and the time period (0, T).
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7. Damage identification technique

The inverse problem of damage identification requires determination of the defect
size and location (which are specified by the defect vector u;), knowing (from mea-
surements) the functions of the strain response Ae’¥(t) in locations A to the known
excitation Ae(7) generated in locations a. Therefore, the problem leads actually to
the determination of the vector p;, where that assumed in advance locations i should
allow every significant possibility of defect distribution.

Let us assume for the objective function f the sum of the following measures f4 of the
distance between the observed response Ef}f (t) in location A and the appropriate possible

response € 4(t), which depends on the defect-simulating virtual distortions Ae?(t, Wi):

F=3 =33 [da)’, (26)
A A t

da(t) =l (t) —ea(t) = (t) - [e4(t) + e4(2)]

=eil (1) = [Aeht) + AE®)]) =X ) - > > ZDA[,T—T)AE( "

t T T'ST

+ 3 Daj(r =) A )| (27)
J
The most probable defect identification leads to the minimisation problem min f,
with respect to the control parameters p;. To this end, the gradient approach can be
applied, with the following analytical gradient calculated from the formulae (26, 27):

3A€ (', i)

of
3ﬂk Z@ui__zzzd"‘(t) ZZZD/‘J T ,  (28)

TET/IST J

where the partial derivatives 8AE? /Ouk can be determined from the following systems
of equations obtained through differentiation of the formula (23):

Z [6;j — (1 = ps) Di5(0)]

OAEY(t, u)
Opk
0AeY(T,
= —5ik A&i(t) +(1 —Mi)ZZD,'j(t—T)———éé;—lﬂ. (29)

<t j

Actually, for the distinguished time instant ¢, we have got here k sets of equations,
where every set consists of ¢ linear equations with j unknowns (and of course i = j = k).
Finally, taking advantage of D;;(0) = 0 (see comment to Eq. (23)) we can simplify the
system (29) to the following diagonal form:

OAEY (¢, pu) 6A6 , (1)
o = Ok Aa®)+ (- p ) > Dt 8uk (30)

<t j
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The iterative algorithm for the multi-defect identification (cf. Table 1) requires cal-
culation from (25) and (30) the defect-simulating distortion increments Ae?(t) and their
gradients OAe?/du; , for each time step of the dynamic analysis. Making use of these
components, the objective function (26, 27) and its gradient (28) can be calculated.
Heaving and the gradient of the objective function determined, a modification of the
material redistribution can be proposed:

; (31)

where the step length A can be adjusted e.g. due to the steepest descent optimisation
strategy. Then, the calculation of the objective function and its gradient for the mod-
ified structure response can be performed in the next iteration. The cost of the initial
computation is related to the determination of the structural dynamic responses for the
unit impulses generated in all possible locations of the potential defects (the dynamic,
time dependent influence matrix).

8. Numerical algorithm

The presented analysis allowed us to construct a damage identification algorithm
based on the VDM. For the numerical efficiency purpose, several modifications to the
way of calculation of the formulae described above have been made. The whole algorithm
is presented in Table 1. Initial data for the algorithm are:

e distortion function which describes the excitation that causes the vibrations,

e transient function which should be obtained experimentally.

In the starting part of the algorithm influence matrices must be calculated and
some initial values for the defect vector p; must be assumed. Then, at every step of
the algorithm loop, we compute the gradient of the objective function and we use it to
modify the defect vector.

Apart from the initial computations: two Newmark’s integration processes for ex-
citations generated in locations a (D aq(t), Dia(t)) and j (D4;(t), Di;(t)), the main
numerical cost of the proposed damage identification approach is related to the compu-
tation of the sensitivity components for each iteration step. It can be checked that this
cost is due to accumulation of the (N + 1)® T2 /2 number of multiplications (calcula-
tion of the second components in formulas for the strain increments and derivatives of
these increments with respect to the u; modifications), where N denotes the number of
assumed possible defect locations and T denotes the number of assumed time steps in
dynamic analysis.

Estimations of the minimal numbers N and T necessary to reach the desired iden-
tification accuracy should be made before further applications of the proposed method.

9. Testing examples

Several simple testing examples have been performed to verify numerical operation
of the proposed technique.
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________________________

TabLE 1. The algorithm for the defect identification.

We have from measurements: £ (t), and excitation: AL (t).

Compute influence matrices: Daq(t), Dia(t), Dai(t), Di;(t)-
Determine A. Assume p; = 1.

Calculate: .
Aek(t) =" Daalt—7)Acd(r) and e4(t) =e4(t-1)+ Ack ().
7=0
t
Also calculate: AeF(t) = z Z Dig(t — 7) Aed(7).

=0 o

where: Ael(t—1) = Z Z D;;(t - T)AE?(T)~

=0 j

’—‘ Determine:  Aed(t) = (1 - ,ui)[AeiL(t) + Ael(t - 1)],
t—1

L

o

o

P

Calculate: AeR(t) = AeT(t—1) and Aei(t) = Ak (t) + AeR(2).

Also compute:
t
AcR(t) =YY Dai(t—7)Aed(r) and ef(t) =ef(t-1)+ Ak (t).
=0 1
Then calculate: e4(t) = €5(t) + €5(t) and da(t) =¥ (t) —ea(t).

oAL(t dNer(t—1
Determine: 8—6’(—) = —8; A (t) + (1 — i) 5:9‘(‘ ),
223 &
AeT(t — 1 aAe T
where: = ) Z ED” e ( )
=0 j Pk
Compute:
dAeR (¢ : aAE F) t 9eB(t -1 ARt
#()_ZZDAJ“ N 142 () ang PEA®) _ 0k —1) 0Aek(®)
Opur r=0 j Ok Opk O,
9eR(t)
Compute: _2Zd (t) EA( )
Then calculate: i = Z .af_A.
Opr T Opk

Check if H:—f ~0. YES [stop

i

NO

3 A

Modify defect vector, e.g.: p; = pi—

Opi
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9.1. Basic numerical test

First the proposed approach was tested on a classical problem of forced axial vibra-
tions of an elastic bar with a mass fixed to its end (Fig. 10a). It wasn’t supposed to be
a damage identification problem and the aim of the test was to compare three results:

e analytical solution,

e solution achieved from Newmark’s integration,

e solution obtained using the influence matrix (VDM approach).

(a) (b)

K=EA/L=2.110' N/m P
@?=K/M=210000 1/
S TR
Pty M=100kg  A_jcns? E\ P(t)=R, sin(2n/T)
) o Aslem R .
E=2.1 10" N/n? E: \/T
| L=1m | R

1.5 T T T T T T T T T
—— analytcal s olution
Newmark's integration

- VDM approach

0 J
0.5
t/T
-1y 100 time steps ! ‘ : . . >
05 06 07 08 09 1
1.5 —
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FiGuRE 11. Analytical and two numerical solutions of the problem of axial vibrations.
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For the simple bar loaded with sinusoidally time-dependent force P(t) (Fig. 10b) the
solutions reached through the three mentioned above paths are very close to each other
for the case of 100 time steps applied in numerical integrations (Fig. 11). Note that even
for 50 time steps the difference between the Newmark’s and the VDM approaches is
very small and it is remarquable that two numerical solutions are almost identical in
comparison with the analytical result.

9.2. Further numerical examples

Finally, two simple numerical examples were performed to test the algorithm. Both
the examples are sort of numerical experiments, where the transient function was de-
termined numerically.

A truss cantilever model presented in Fig. 12 was used to verify operation of the
proposed VDM based sensitivity analysis and the damage identification technique. It
was assumed that the piezoelectric transducers generating sinusoidal shape of excitation
had been located in members 1 and 2 (simultaneous extension of the same intensity
but the opposite sign are generated, see Fig.12). The piezoelectric sensor observing
wave propagation was located in member 20. Then, two simulation processes of wave
propagation were performed. The transient function was determined numerically for
two following cases:
first case: there is a defect in member 10. The size of the defect is 40%, which means

that the member’s stiffness is reduced to 60% of the initial undamaged value.

second case: there are defects of different size in the following elements:

element no.: ©= 8 9 10 11 12
defect size: 40% | 20% | 30% | 20% | 10%
defect parameter: u; = | 0.6 0.8 0.7 0.8 0.9

In the first example, the initial value for the defect vector was 1. Graph presented
in Fig.13 shows the gradient of the objective function in relationship to the defect
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NCEENG ®
2 468 10121416182022242628303234363840[>
N /V\ ] N
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o 717375 7 9 11131517 19212325 2729 31 33 35 37 39)%
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8 9 10 11 12
06 08 07 08 09

T @

FI1GURE 12. Truss-cantilever structure — two cases of defects.
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Ficure 13. Damage identification process — gradients of the objective function.
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Ficure 14. Damage identification process — the objective function.
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Ficure 16. Damage identification process — the defect parameters.
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parameter. As we can see the gradient is zero, when the defect parameter equals 0, 6.
Figure 14 shows the objective function — again, its value approaches zero for the valid
value p =0, 6.

In the second example, the initial values for all the components of the defect vector
were assumed as 1. Figures 15 and 16 present: the objective function, the components
of its gradient and the defect vector components. Again the objective function and its
gradient approach zero, while the defect intensities reach the proper values consistent
with the values assumed in the numerical experiment. Additionally we present below

Fig. 17 showing dynamic responses (transient functions) of the undamaged structure
and structure with defects.
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FIGURE 17. Responses of an ideal and damaged structure.

10. Final remarks, conclusions and further objectives

e New approach to the damage identification problem based on analysis of pertur-
bation of elastic wave propagation has been presented.

e The proposition is based on the use of pre-computed time dependent, dynamic
influence matrix describing structural response to locally generated unit impulses.
The global structural dynamic response can be decomposed on the following two
parts: the first one, caused by external excitation in undamaged structure and
the second (perturbing) one, caused by the structural defects (modelled through
so-called virtual distortions multiplied by the influence matrix).
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e This VDM (Virtual Distortion Method) based formulation allows numerically ef-
ficient, analytical gradient calculation (with respect to local defect/virtual distor-
tion intensity).

e Assuming possible locations of all potential defects in advance, an optimisation
technique with analytically calculated gradients has been applied to solve the
problem of the most probable defects’ location.

e The proposed numerical tool for the inverse non-linear, dynamic problem analysis
has been tested on the truss beam structure, identifying accurately five simulta-
neous defects with different intensities.

We think the VDM approach has a potential which allows to invent some new
techniques for solving some of the classical problems. We are going to develop and
improve the proposed method. Our further objectives are:

e Perform more tests using different multidimensional constrained nonlinear min-
imization procedures (cases with several wave-receivers and assuming more and
more structural elements to be damageable).

e Apply the method to plates (rectangular plate elements with in-plane forces).

e Solve the influence matrix size problem.

e Try to modify the proposed method for use in the modal approach (using Virtual
Distortions to deal with structure natural frequencies).
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