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The text below provides a brief introduction to modelling of complex, random 
material microstructures. It displays the basic principles and tools for the model­
ling and analysis of various types of micro-heterogeneous materials. In particular, 
it presents these results of random fields theory, which seem to be of prime impor­
tance for diverse applications. First, the random Poisson-type random fields are 
shortly discussed in order to indicate a potential tools for modelling of dispersed­
type random microstructures. Then, the basic classes of continuous random fields 
(scalar , vectorial, tensorial) are presented to show their usefulness in modelling 
both the random morphology and properties of micro-heterogeneous media. In the 
last part , some our new results are shortly announced on reconstruction of the 
probability distribution of the basic features of polycrystalline microstructures (cf. 
Sobczyk, Tr~bicki, Reconstruction of Random Material Microstructures: Patterns 
of Maximum Entropy, Probabilistic Eng. Mech., Vol. 18, Nr. 4, 1993) . 

Key words: microstructure, random fields, random polyhedral grain models Gibb­
sian ensembles, maximum entropy. 

1. Introduction: Complexity of material microstructure 

Each piece of material has its internal structure, i.e. a specific arrange­
ment of its morphological constituents along with their mutual relationships. 
The homogenous continuum (widely assumed in classical theories) is an ide­
alization only valid on a certain particular scale. Microscopic examination, 
at well above the atomic level, reveals heterogeneity. Metals are, actually, 
polycrystals, i.e. aggregates of an immense number of anisotropic crystals, 
a key element of polymer structure is its crystalline molecule. Also, soils, 
rocks, and ceramics are examples of materials with very complex structures. 

Although these heterogeneous media can be viewed differently in each of 
the examples given above, they share one common feature - the existence 
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FIGURE 1. Microstructures of actual materials (AISI TI5 tool steel and Zn-
0.55Cu-0.12Ti die cast), after [23]. 

of an underlying structure at a scale small compared to the characteristic 
dimensions of the material specimen. This underlying structure is normally 
called the microstructure (cf. [ 1] and Fig. 1 displaying the microstructures of 
some actual materials). 

There is no one aluminum, nor one steel. Depending on the thermome­
chanical processing history, the mechanical overall properties can be quite dif­
ferent. This is due to the fact that different processing histories yield different 
internal microstructures on various scales. Therefore, the basic paradigm indi­
cating the origin of overall properties of material is: processing history ~ mi­
crostructure ~ properties. 

It is clear that in order to obtain required macroscopic (engineering) 
properties (of the material in question) it is crucial to understand first ami­
crostructure. This microstructure is in turn a direct consequence (a "final" 
state) of the processing history. Probably, the best known example of the 
coupling of microstructure and properties is the Hall-Petch relation between 
the yield stress (ay) and the metallurgical grain size (d): ay rv 1/.fd. This 
empirical law clearly indicate that not only structures at atomic level (e.g. 
the lattice defects, vacancies) are important but so too are the geometric 
structures at the higher (but still - micro) level. Macroscopic material prop­
erties depend heavily on the internal constitution of materials at various 
scales (from nanometers to millimeters). The internal constituents have com­
plex geometry, their locations and orientations are usually nonuniform, and 
strong spatial correlation often exists among different types of features. Ano­
ther factor is the apparent randomness of actual material microstructures. 

From the point of view of material engineering and mechanics a question 
of a great importance is: how may the various microstructures within material 
be tailored so as to yield desired properties? 
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To make this challenging question really clear one has to understand first 
nature of true material microstructures. A way toward that end is mathemati­
cal characterization/modeling using the empirical data. The related problem 
consists in the reconstruction of random microstructural features on the basis 
of incomplete empirical information. 

In modeling of random microstructures an important issue is that the 
properties of a material as a whole are determined not only by the properties 
(physical, mechanical) of the constituents, but also by their morphology, i.e. 
by their topological (concerning shape) and metric properties. In reality the 
material morphology has its origin in the processing history of the material. 
For example, the complexity of microstructure in metals is strongly connected 
with the grain growth mechanisms (cf. [2]). Grain growth in a poly crystalline 
aggregate differs fundamentally from the growth of a mass of separate par­
ticles. For the size of the average grain in an aggregate to increase, it is 
necessary that some grains should decrease in size or disappear from the 
system. 

On the other hand, damage evolution and local fracture processes at lower 
scales are affected by the amount, size distribution and spatial arrangement 
of features at higher length scales and vice versa. For example (cf. [3]), for 
a typical microstructure of A356 cast alloy (an Al-Si-Mg base alloy) which 
contains nonuniformly distributed micropores an important damage mecha­
nism is gradual fracture and de bonding of silicon particles (of two order less 
magnitude than pores). The presence of micropores alters the local stress dis­
tribution around the Si particles, and affects the damage. However, the effe~t 
of micropores (on a higher length scale) on the damage evolution around Si 
particles depends on the volume fraction of micropores, their size distribu­
tion, and their spatial arrangement. 

Although computational micro-mechanics based modelling and simula­
tions of fracture has significant achievements, it usually ignores the com­
plex morphological details of real microstructures; most of the simulations 
are performed on the idealized microstructures (having, e.g. uniformly dis­
tributed monosized microstructural constituents of simple shapes). There­
fore, an important issue associated with complex material microstructures 
is: how to incorporate the true size, shape and orientation distribution and 
spatial arrangements of the microstructural elements/features (at different 
length scales) in FE-based simulations? 

Another question (considered in [4]) is as follows: what forms should the 
existing empirical equations (e. g. Hall- Petch relation) take if the more de­
tailed information about the grain/particle size and shape is to be taken into 
account? 
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One should also bear in mind, that the properties in 3-dimensions which 
we are interested in usually can not be measured directly. Most often they can 
be estimated from sectioned metallic samples, or projections of structure onto 
a screen or photographic plate. So, the serious question that arises is: how 
can we extract the necessary information about the true spatial features on the 
basis of data gathered from plane sections? Particles or grains of similar shape 
(in space) can produce quite heterogeneous profile shapes when randomly 
sectioned. 

Various problems associated with the above question have been carefully 
studied in stereology - the field of science comprising methods for inferring 
spatial structure from partial information, usually lower-dimensional data 
that are in the form of sections or projections of the structure of interest. In 
recent years the "basic stereological principles" and the associated formulae 
have gained much wider and rigorous treatment within stochastic geometry 
and geometrical/ spatial statistics (cf. [1], [5]). Another branch of mathema­
tics playing a fundamental role in microstructural modelling and in the ana­
lysis of various physical/ mechanical phenomena in random microstructures 
is the theory of random fields (cf. [ 1] and references therein). 

2. Dispersed-type random microstructures: random Poisson 
point fields 

In many situations we have to deal with a type of microstructure in 
which heterogeneity is distributed discretely and randomly. An example is 
a composite containing a random distribution of elements whose properties 
differ significantly from those of the surrounding material: these elements 
may be, for example, stress-free holes, pores, rigid inclusions and so forth. 

Modelling of such complicated geometrical patterns is a challenging prob­
lem. Although a dispersed phase usually consists of particles of finite size 
(a situation, drastically different from that in statistical theory of gasses 
where particles can be treated as ( dimensionless) points in the state space), 
it turns out that the random points fields can serve as an effective tool for 
building the models of microstructures with dispersed particles of other ran­
dom phase. The simplest and basic model for random point pattern in space 
is the Poisson random fields. 

2.1. Homogenous Poisson random field 

The Poisson random field is a generalization of the concept of the Poisson 
distribution (and the Poisson random process) to random events in space. 
Like the Poisson process it is the simplest and most common model for 
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random point fields in space. The homogeneous Poisson field characterizes the 
"complete" randomness or the absence of any structure in the point pattern; 
in mutually disjoint sets the numbers of points are statistically independent. 
For this reason, the Poisson field is often used as the null hypothesis in 
statistical inference. Let N(B) denote the random number of points contained 
in B, where B is a given bounded set in Rn 

Definition 1: A random point field is a homogeneous Poisson field if: 

{i) for any integer number k and for disjoint Borel sets, B 1 , ... , Bk, in Rn 
the random variables are statistically independent; 

{ii) the number N(B) of points in any Borel set B of finite measure m(B) 
has the Poisson probability distribution with parametr >..N(B) that is, 

P{N(B)=k}= [Am~~W exp(-Am(B)), k=O,l,... (2.1) 

where m( B) is the Lebesgue measure of B: it is the area of B when 
n = 2 and the volume of B for n ~ 3. The parameter)... is called the 
intensity of N and characterizes the mean density of points in B. 

Similarly to the case of the Poisson process (on the time axis), the points 
of the Poisson field are, for any bounded Borel set, uniformly and indepen­
dently distributed in B. 

It can be shown directly from (i), (ii) that the joint n-dimensional dis­
tribution of the homogeneous Poisson field (for mutually disjoint sets Bk, 
k = 0, 1, ... , n) is 

P{N(B1) = k1, ... , N(Bn) = kn} 

(>..m(BI))kl [>..m(BI)]kn [-' ~ (B )] . . . k 1 exp A L,.; m k 
k1! n· k=l 

(2.2) . 

Then clearly the emptiness (or the void) probability of the homogeneous 
Poisson process is 

LIB= P{N(B) = 0} = e->.m(B) (2.3) 

Let B will be a bounded set with measure m(B) such that the point r = 0 
belongs to B, then the following contact-distribution function (with respect 
to B) is defined as 

HB(q) = 1- LlqB = 1- P{N(qB) = 0}, q ~ 0, (2.4) 

where qB denotes the dilation of B by a factor q, that is qB = { qr :rE B}. 
If B is the unit ball, i.e. B = { r : lrl ~ 1 }, we get the spherical contact­
distribution function 

Hs(q) = 1- P{N(S(O, q) = 0} = 1- e->.anqn, (2.5) 
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where an is such that anqn = volume of the ball S (0, q) in Rn. For n = 2, 
Hs(q) = 1- exp( -A.1rq2). It is clear that Hs(q) is the distribution function 
of the distance from 0 to the nearest point of N. Because of the properties 
of the homogeneous Poisson field, the distance to the nearest point of the 
field N seen from an arbitrary location in space has the same distribution as 
the distance to the nearest neighbor of a randomly chosen point of the field 
(cf. [5]). This means that the nearest-neighbor distribution function D(q) is 
equal to Hs(q). Of course, the probability density hs(q) corresponding to 
(2.5) is 

(2.6) 

The mean and variance of (2.6) for the Poisson field on the plane (n = 2) 
are obtained by integration of q and q2 with respect to hs(q) with n = 2, 
an = 1r; the result is 

1 
(hs(q)) = 

2
JX, 

1 1 
varhs(q) =---. 

1r A. 4A. 
(2.7) 

The second order characteristics for the homogeneous Poisson process are 
especially simple, (cf. [5]) 

If B1 and B2 are disjoint, i.e. B 1 n B2 = 0 then 

varN(B) = 0, cov[N(Bl)N(B2)] = 0. 

If B1 and B2 are not disjoint, i.e. B1 n B2 -=f. 0, then 

and therefore 
cov [N(B1)N(B2)] = A.m(B1 n B2), 

var [N(B)] = A.m(B). 

(2.9) 

(2.11) 

The factorial moment measure a2(B1 x B2) for the homogeneous Poisson 
process is 

(2.12) 

Therefore, from equation (3.11) in [1] we obtain the second-order product 
density 

(2.13) 

An important question in modelling real random point patterns is: how 
can one recognize that a given point pattern has the features of complete 
spatial randomness as embodied in a homogeneous random Poisson field? 
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Various tests are known to characterize types of point patterns. Early studies 
were primarily concerned with comparing area (or quadrat) counts to those of 
a Poisson distribution. Usually, quadrats of random location and orientation 
are sampled, the number of points in the quadrats are counted and statistics 
derived and computed and then compared with the corresponding statistics 
of the homogeneous Poisson field. Departure indicates that the pattern is not 
completely spatially random. The degree of departure is usually quantified 
through the values of some parameters (cf. Cressie [6] and references therein). 
Of course, the reduction of complex point patterns to counts of the number of 
points in randomly positioned quadrats and to one-dimensional indices leads 
to a considerable loss of information; for example, there is no consideration 
of the relative positions of points within quadrats. 

Another type of statistic is based on distances between randomly sam­
pled points and other points in a region B of interest. For example, mean 
distances to the first, second, third, etc. nearest neighbors may be estimated 
and compared to the corresponding distances under complete spatial ran­
domness. Further insight into specific features of spatial random patterns 
can be gained by estimation and studying the pair-correlation function d( q) 
defined by (3.12) in [1]. 

Figure 2 shows two realizations of a homogeneous Poisson random field 
for 100 points on the unit circle. Note that on average the distribution is 
uniform but particular realizations may show some nonuniformity and even 
some clustering. 
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FIGURE 2. Two realizations of 100 points of a homogeneous poisson random field 
on the unit circle, after [lJ . 
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2.2. Inhomogeneous Poisson random field 

A natural generalization of the homogeneous Poisson field is a field which 
while still being Poissonian has the potential to characterize spatial random 
patterns with variable point density. The mean measure of an inhomogeneous 
Poisson field is not proportional to the Lebesgue measure of the set B , but 
it is a general intensity measure 11(B) defined as 

11(B) = .(N(B)) 

for any Borel set B. If 11 (B) is represented in the form 

11-(B) = J A(r)dr, 
B 

(2.14) 

(2.15) 

then the function ..\(r) is called the intensity function. If ..\(r) = ,.\ = a con­
stant, then we have a homogeneous Poisson field. 

Definition 2: A random point field N is an inhomogeneous Poisson fi eld 
with mean measure 11 if the number N(B) of points in a bounded Borel set 
B has a Poisson distribution 

P{ N(B) = k} = [M(~)]k e-M(B), k = 0, 1, ... (2.16) 

The covariance and variance measures of the inhomogeneous Poisson pro­
cess are, respectively 

cov [N(B1)N(B2)] = 11(B1 n B2) , 

var [N(B)] = 11(B). 
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FIGURE 3. Realization of an inhomogeneous poisson random field, after [1]. 

(2.17) 
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The product density (2(r1, r2) can be expressed in terms of the intensity fun­
ction -\(r). The probability that there is a point in each of two infinitesimally 
small regions (e.g. spheres) centered at r1 and r2 with volumes dV1 and dV2 
is equal to 

(2.18) 

A realization of an inhomogeneous Poisson field on the unit circle is shown in 
Fig.3. This assumes a radially symmetric intensity function -\(r,O) = -\(r) = 

1 - r. The decreasing radial intensity is evident in the sample. 

2.3. Doubly stochastic Poisson field 

A useful generalization of a Poisson random field is obtained by rando­
mizing the intensity measure, that is by assuming that the intensity measure 
is itself random. 

Definition 3: The random field N is a doubly stochastic Poisson field 
or Cox field with random intensity measure M if, conditional on M= f.-L, the 
field N is an inhomogeneous Poisson process with mean measure 1-l· 

The above definition implies that a Cox field originates from a two-step 
random mechanism; the first (global) mechanism is governed by a Poisson­
type distribution of points, whereas the second one is associated with ran­
domness of the intensity measure. In this sense a Cox process can be viewed 
as a composite (or subordinated) random point field. In the literature this 
field (or process, if it is considered on the time axis) is sometimes referred to 
as a Cox field directed by the random measure M. 

If the random intensity measure M of a doubly stochastic Poisson field 
N is distributed according to the probability distribution Q, then 

P{N(B) = k} = j [M(B)]k e-M(B)dQ = / [JH(B)]k e-M(B)) (2.19) 
k! \ k! Q. 

In practice, when the intensity of an inhomogeneous Poisson field is cha­
racterized by the intensity function ,\ ( r) , a Cox field is directed by the random 
function -\(r, 1). A wide class of Cox processes can be defined effectively by 
a random intensity function of the form 

(2.20) 

where -\o(!) is a non-negative random variable, and -\1(r) is a deterministic, 
non-negative function. 

A particular case of (2.20) when ,\1 (r) = 1 yields the so called mixed Pais­
son field which is regarded as a homogeneous Poisson field with randomized 
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FIGURE 4. Realization of a Cox pattern or doubly-stochastic poisson random 
field, after [ 1]. 

intensity, i.e. 

.A ( r, !') = .Ao ( !'). (2.21) 

It is clear that randomization of the intensity magnifies the overall ran­
domness of the field. Hence, the variance of a number of Cox points in 
a bounded set B will exceed the variance of the number of points in the 
corresponding homogeneous Poisson field. A number of authors have studied 
Cox random fields in the context of statistics of spatial data (cf. Diggle [,7] , 
Lotwick [8]). Figure 4 shows a realization of a plane Cox pattern or doubly 
stochastic Poisson random field. This was generated by simulating an inho­
mogeneous Poisson random field using the same intensity function as in Fig. 3 
(.A(r, B) = .A(r) = 1- r). The field was then "thinned" by keeping points with 
probability .A(r). 

2.4. Poisson cluster field 

If each point of a homogeneous Poisson field N is replaced by a cluster 
of points, random in number and scattered independently and with identical 
distribution, then we obtain a new random point field NcL · This Poisson­
induced field is called a Poisson cluster field or more often a Neyman-Scott 
field. 

The parent points (belonging to N) are not the points of the field NcL. 
The position of the k-th point of a cluster is characterized by a random 
vector Z, where Zi the components are identically and independently dis-
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tributed with probability density p(z). Most often it is assumed that the Zi 
are isotropic, and therefore it is sufficient to determine the density function 
p(r) of the distance of the points of NcL from the cluster center. 

Let us assume that the number of points per cluster has a Poisson distri­
bution with intensity J.L (the considered cluster field is a Cox field) and the 
points in the clusters are distributed uniformly and independently in the ball 
b(O, R). In this case (known as the Matern cluster field) the intensity of the 
field NcL is AcL = AJ.L. A detailed analysis of clustered fields can be found 
in an extensive literature (cf. [9], [10]); the problems of statistical inference 
for the Neyman-Scott processes are considered in the literature of spatial 
statistics. 

A possible extension of the Poisson cluster field is concerned with multiple 
clusters of points. Points in generation k are assumed to be produced by 
a Poisson cluster field from "parents" in the generation k - 1. It is rational 
to assume that the number of points ("offspring") of each parent is again 
governed by a Poisson distribution, and any discrete-type distribution may 
be used. 

Figure 5 illustrates a Poisson cluster pattern of points. The locations of 
the centers of the clusters is a set of points (call these the cluster-center 
points) which are a realization of a homogeneous Poisson random field on 
the unit circle. Each cluster is itself a realization of a homogeneous Poisson 
random field of ten points on a circle of radius 0.1 centered at a cluster-center 
point. 

+ ~-+t 

}ti + + 
+ + ++ 

++ + * :1-+ + 
+~+ 

FIGURE 5. Realization of a Cox pattern or doubly-stochastic poisson random 
field, after [1]. 
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2.5. Poisson hard-core field 

A hard-core point field is defined as a point field in which the points are 
not allowed to lie closer than at a certain specific distance. Let us denote 
this distance by h. It is clear that such fields may serve as possible models of 
a random distribution of non-overlapping spherical particles (of radius h/2) 
in space. 

Let N be a homogeneous Poisson field Rn in with intensity ,.\. The hard­
core field is formed by deleting all pairs of N points of that are separated 
by a distance of less than h. The remaining points form a spatial point field 
Nh which is called a Poisson hard-core field or the Matem hard-core model 
(Matern first described this type of field in 1960). This model is, in fact, 
produced by the operation of dependent thinning applied to the primary 
Poisson field N (cf. [ 1]). 

The probability Ph that an arbitrary point of N is retained (the so-called 
retaining probability of a "typical point" of N) in the operation of thinning 
is 

Ph= P{N[S(r, h)] = 0} = exp[-..\m(S(r, h))] = exp[-,.\anhn], (2.22) 

where an = nn/2 /f(1 + n/2) is the volume of the unit sphere in Rn. This 
means that for n = 2 (point pattern on the plane) Ph= exp[-2nh2

), and for 
n = 3 Ph= exp[-4..\nh3 /3). The intensity of the hard-core field Nh is 

(2.23) 

If h = 1 then the maximum intensity ,.\h is approximately 0.32 for a plane 
field, and 0.24 in the three-dimensional case. 

Hard-core rnodels are of great significance in many branches of physics and 
engineering. Random distributions of hard (i.e. non-overlapping) particles in 
R3 arise in practice whenever inclusions , i.e. chunks of another substance 
are embedded in the matrix of a "basic" substance. Problems concerned with 
random distributions of particles have attracted much attention in studies of 
the structure of liquids (cf. Rice and Gray [11]). 

3. Microstructural modeling via continuous random fields 

There exists a class of problems in modelling of random microstructures 
and in micromechanical analysis of real material media which can be treated 
with use of continuous random fields. The term "continuous" is used here 
to distinguish this type of mathematical constructs from those discussed in 
the previous sub-section (and associated with discrete events in space). We 
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mean here random functions of a spatial variable which - in general, but 
not necessarily - vary smoothly in space. 

Such random fields (under the appropriate assumptions) have been widely 
used in statistical turbulence theory (cf. [12]), in wave propagation in random 
media (cf. [13]) and in other fields. The possible realizations of such random 
fields, say X(r, 1), are hypersurfaces (surfaces, when rE R2 ). 

In order to give a rough idea about possible applications of random fields 
theory in modelling of complex heterogeneous material structures we mention 
briefly two problems. 

• It is clear that such single geometrical objects as particles, nonmetallic 
inclusions, pores, grains (and many other) are constituents of actual 
microstructures and can be regarded as sets in R3 . Most often these 
sets are random, i.e. such their features as shape, and size are ran­
dom. By the way, the theory of random sets has a long history and an 
extensive literature (cf. [5]). It is interesting to note that in the thir­
ties Kolmogorov already wrote on "regions ... whose shape depends on 
chance". Random sets can be characterized in various ways. A possible 
way of specifying random sets is through a section of a given continu­
ous random field X(r, ')'). If any random fields is cut on some level u 
and looked at from above, then the boundary of the slice traces the 
boundary of random set. More specifically, this random set is defined 
as: let D E R3 be a specific subset of R3 , then the excursion set of the 
field X ( r, 1) above the level u in D is the following random set 

Bu(D) ={rED: X(r, 1) ~ u}. 

Such random sets have recently been used for modelling of random 
composites (the interface between the phases is characterized as a level 
cut of some Gaussian random field). 

• Another natural application of continuous random fields is the cha­
racterization of the properties of the materials. For example, Young's 
modulus of microheterogeneous material is a random variable that de­
pents on spatial coordinates, i.e. it is a random field. Also, microstresses 
in random elastic solids are specified by (tensorial) random fields. In 
the investigation of contamination transport through underground for­
mations and rocks random fields play a fundamental role. 

In what follows we expound briefly the basic notions or random field 
theory and the associated modelling issues. 



http://rcin.org.pl

20 K. SOBCZYK 

3.1. Basic concepts 

In various applied problems one has to deal with quantities which are 
both random and dependent upon a parameter, and the "physical nature" 
of the parameter may be quite distinct in each particular situation. One of 
the best known examples of this type is Brownian motion; each coordinate 
of the Brownian particle is a random variable which changes in time. Such 
phenomena are modelled and studied using the theory of stochastic processes 
where families of random variables depending on a one-dimensional param­
eter (interpreted commonly as time) are considered. 

However, we often encounter phenomena in which random variables de­
pend on a multidimensional parameter. For example, the height of the surface 
of the sea, pollutant concentration in the ground, the velocity of a fluid par­
ticle in turbulent flow, Young's modulus of micro-heterogeneous materials 
are random variables that depend on spatial coordinates. To study such phe­
nomena one has to define and investigate random functions depending on an 
argument which is, in general, an element of n-dimensional Euclidean space 
Rn , where n = 1, 2, ... , N. Such functions X ( r) , r E Rn are termed random 
fields. When n = 1, we have a random field defined on RI. The theory of 
such fields completely coincides with the theory of stochastic processes. In 
what follows we will deal with situations where n ~ 2. The cases n = 3, 
i.e. random fields X(r) whose argument r = (xi, x2, x3) belongs to physical 
three-dimensional space R3 , and n = 4, i.e. random functions X(r, t) of r 
and t where t is regarded as time will be of special concern. 

Let D be a specified subset of n-dimensional space Rn or the space Rn 
itself. The points of D will be denoted by r = (xi, x2, ... , Xn)· 

Definition 4: A random field X(r) on D is a family of random variables 
{X r ( 'Y), r E D , 'Y E r} depending upon r E D and defined on the probability 
space (r, F, P). 

If random variables Xr('Y) forming a random field are for each r E D 
one-dimensional (scalar), i.e. their sample values are real numbers, then the 
random field is termed a scalar random field. If the random variables Xr('Y) 
are multidimensional (e.g. k-dimensional) then the random field is a vector 
random field. Such a field takes the form: 

In Sections 3.1 - 3.5 we will discuss exclusively scalar random fields. 
Definition 4 of a random field can equivalently be given as follows: a ran­

dom field X ( r) is a function which maps the index set D into the space S of 
random variables defined on (r, F, P). 
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Similarly to the case of stochastic processes, a random field is specified if 
for each finite set of r-values , say {r1, r2 , ... , rk} a joint distribution function 

(satisfying the consistency conditions) is given. The collection of these dis­
tributions is known as the family of finite dimensional distributions of the 
field X(r). The Kolmogorov theorem (cf. [14]) gives a necessary and sufficient 
condition for the existence of a random field when the family of functions 
Fr 1 , ... ,rk(xl, ... , Xk) is given. 

For every fixed elementary event 1 E r, X ( r , 1) is a deterministic function 
of r, defined for all r E D. This function x(r) = X(r, 1) for fixed 1 E r 
describes a fixed realization of the random field X(r). It is called a realization 
or sample function of the considered field. For example, if X(r, 1) describes 
the random surface of a road, then r = (x1, x2) and sample functions x(r) = 

X(r, 1) are for each 1 E r the actual surfaces of the considered class of roads. 
It is worth noting that a significant class of random fields can be defined 

explicitly by analytical functions of a spatial variable r E D and a collection 
of random variables [~1(1), ~2(1), ... , ~N(I)], that is 

(3.2) 

where g is a specified (deterministic) function or r and random variables ~i ( 1), 
i = 1, 2, ... , N. The probability distributions of X(r, 1) can be determined in 
terms of the joint probability distributions of the random variables ~i ( 1), i = 

1, 2, ... , N. For example, a random harmonic wave field can be represented as 

N 

X(r, 1) = L Ai(l) cos(k · r- wt) 
i=l 

where Ai ( 1) are random variables and k is the wave vector. 
The simplest and most basic characteristics of a random field are the 

mean, or average, and the covariance function. The mean is defined as 

mx(r) = E[X(r, 1)] = (X(r, 1)), (3.3) 

where averaging is performed with respect to 1 , i.e. with respect to the pro­
bability distribution Fr(x). The covariance function , 

where the overbar denotes the complex conjugate. For greater generality we 
have assumed that X(r,1) is a complex-valued field, i.e. X(r,1) = X1(r,1)+ 
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iX2(r, !), where X1 and X2 are real fields. In particular, when r1 = r2 = r 
we obtain the variance of the random field X ( r, 1') 

vx(r) = a~(r) = var X(r, 1') = IX(r, 1') - mx(r)l2. (3.5) 

From the linearity of the expected value operator, it follows that 

Kx(rl, r2) = ( X(r1, r)X(r2, !) ) - mx(ri)mx(r2)· (3.6) 

A random field X(r, 1') is called a second-order field if IX(r, 1')12 < oo. 
Without loss of generality we can assume that the random field under con­

sideration has a zero mean value. Then the second-order moment IX(r, 1')12 

is the variance and K x ( r 1, r2) is the correlation function of the field. Fur­
thermore, the Schwarz inequality implies that a second-order field always has 
a correlation function. Conversely, if there exists a finite Kx (r~, r2) defined 
on the product D x D, then Kx(r, r) = IX(r, 1)12 < oo. The properties of 
a random field expressed in terms of its second order moments are usually 
called second-order properties. Random variables with finite second order 
moments form a Hilbert space L 2(r, F, P). A second order random field can 
thus be regarded as a function defined on D C Rn and taking its values in 
L 2(r, F, P). This implies that convergence of random variables in a mean 
square sense (being equivalent to convergence in the £2-norm). is a very na­
tural mode of convergence in the theory of second-order random functions. 
This type of stochastic convergence also turns out to be very useful, since 
the basic properties of a random function defined in this way are analogous 
to the calculus of ordinary (deterministic) functions. 

As with stochastic processes, the covariance function Kx(r, r) of a ran­
dom field has the properties: 

a) Kx(r, r) = var X(r) ~ 0 

b) Kx(rl, r2) is a symmetric function, i.e. for all r~, r2 E D ~ Rn 

Kx(r~, r2) = Kx(r2, ri), (3.7) 

or in the case of real field 

c) every covariance function is non-negative definite, that is for arbitrary 
m, arbitrary finite sets of points r1, r2, .. . , rm belonging to Rn and 
arbitrary complex numbers z1, z2, ... , Zm 

N 

L Kx (ri, rj )ziZj 2: 0. (3.8) 
i,j=l 
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The properties a) and b) are clear from the definition. Property c) follows 
from the fact that the left hand side of (3.8) is equal to 

( t [X(r;)- mx(ri)]zi), 

which must be real and non-negative. The property (3.8) is , in fact, a cha­
racteristic property of the class of all covariance functions; that is for any 
function K(r1, r2) which is non-negative definite there always exists a ran­
dom field whose covariance coincides with K(r1, r2). 

Higher-order moments of random fields are defined similarly as in the 
case of stochastic processes. In general, a moment (or moment function) of 
order k = k1 + k2 + ... + km is defined as follows : 

mxik1 , .. . ,krn (r1, r2, ... , rm) = \ Xk 1 (r1) · Xk 2 (r2) · ... · Xkrn (rm) J. (3.9) 

In particular, when k = k1 = k2 = . . . = km = 1 we obtain the common 
moment function of order m. 

An important class of random fields is the class of Gaussian fields . They 
constitute a straightforward extension of Gaussian stochastic processes to 
the multidimensional parameter (argument) space. 

Definition 5: A random field X(r) is said to be Gaussian if all its finite­
dimensional probability distributions {3.1) are Gaussian. 

It is clear that all finite-dimensional probability distributions of a real­
valued Gaussian field have the exponential form, and they are completely 
determined by the mean mx(r) and covariance function Kx(rl, r2). Most of 
the explicit results both in the theory and the application of random fields 
have been obtained for Gaussian fields. 

3.2. Homogeneous random fields 

As in the case of a one-dimensional argument (i.e. in the analysis of 
stochastic processes), we distinguish various classes of random fields. Partic­
ularly important is the class of random fields which satisfy certain conditions 
of statistical homogeneity in space and can be regarded as a generalization 
of stationary stochastic processes. 

Definition 6: A random field X(r) is strictly homogeneous if for any 
set of points r1, r2, .. . , rk belonging to D and for any vector q such that 
r i + q E D, for i = 1, ... , k the following equality holds 

(3.10) 
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Therefore, the finite-dimensional distributions of a strictly homogeneous 
random field are invariant under translation of the points r1, r2, ... , r k by 
the vector q. This implies directly that the mean function mx(r) is constant 
and the covariance function Kx (r1 , r2) is a function of the difference of r1 
and r2 only. 

Definition 7: A random field is weakly homogeneous, if 

mx(r) = mx =constant, 

Kx(rl, r2) = Kx(rl- r2) = Kx(q), q = r1- r2, 

for arbitrary r1, r2 E D. 

(3.11) 

Weakly homogeneous random fields play a fundamental role in theory 
and applications and they are commonly called simply homogeneous random 
fields. One should notice that instead of 2n variables as arguments of cova­
riance function (the general case), the covariance function of a homogeneous 
field is a function of n variables only. Without loss of generality we will as­
sume that the mean value mx is zero (if this is not the case we can always 
consider a new field Y ( r) = X ( r) .- m x whose mean is zero). Denote by 
q1, q2, ... , qn the coordinates of the vector q. Then it follows from (3.11) that 
for real fields 

(3.12) 

Notice however, that, for example, Kx(-ql,q2, ... ,qn) # Kx(q1,q2, ... ,qn)· 
Again, as in the one-dimensional case, the covariance functions Kx ( q) of 

homogeneous fields in Rn belong to the class of positive definite functions of 
n variables and due to the Bochner theorem (if K x ( q) is continuous) they 
have the following representation 

Kx(q) = j ei(qk)dG(k), (3.13) 

Rn 

where k is the wave vector (spatial counterpart of the frequency), i.e. 
k = (k1,k2, ... ,kn), (q·k) = q1k1 +q2k2+ ... +qnkn and G(k) is a bounded, 
real-valued and nonnegative function. The function G(k) is called a spectral 
distribution function of the field X ( r). 

Concepts from the spectral representation of stationary stochastic pro­
cesses can be extended to homogeneous random fields. The role of har­
monic oscillations, eiwt, is played by plane waves, ei(kr), and the random 
function <P ( ~w) = <P ( [w1, w2]) = <P ( w2) - <P ( w1) is replaced by the function 
<P(~k) = <P([k, k + ~k]) = d<P(k), where ~k = ~k1 ... ~kn is a volume ele-



http://rcin.org.pl

RANDOM MATERIAL MICROSTRUCTURES: METHODICAL BACKGROUND 25 

ment of n-dimensional space Rn. Therefore, a spectral representation of a ho­
mogeneous random field X(r) takes the form (it is assumed that mx = 0), 

X(r) = j ei(kr)d<I>(q), (3.14) 

Rn 

where the integral is understood as a limit in the mean square sense of the 
appropriate integral sums, and <P(k) is the field with orthogonal increments 
with the properties 

(d<P(k)) = 0, 

( d<P(k')d<P(k")) = <5(k' - k")g(k')dk' dk"' (3.15) 

ld<P(k) 1

2 = dG(k) = g(k)dk ~ 0. 

It is evident that substitution of the representation (3.14) into the expression 
for the covariance function Kx ( q) yields formula (3.13). Indeed, 

Kx(q) = ( X(r)X(r + q)) = \ {! e-i(k, r)d<I>(kJ) j ei(k, (r+q))d<I>(k2)}) 

= JJ ei(k, q)+i[(k,-k,)·r] ( d<I>(kl)d<I>(k2)) . 

Since the increments of <P(k) are uncorrelated ( orthogonal) on non­
overlapping intervals of wave number k (cf. the second equation of (3.15)) 
the last 2n-fold integral reduces to the n-fold integral (3.13). 

Let us assume that the spectral distribution G(k) is absolutely continu­
ous. Then there exists a nonnegative function g(k) such that 

k1 kn 

G(k) = j ... j g(k)dk (3.16) 

-(X) -(X) 

The function g(k) is called the n-dimensional spectral density of a homo­
geneous random field X(r). Equation (3.16) means that almost everywhere 
(with respect to the Lebesgue measure in Rk) 

() ( ) 
anc(kl,k2,···,kn) 

g k = g kl' k2 ' ... ' kn = 8k1 8k2 ... 8kn . 

Therefore, the spectral representation of the correlation function (3.13) takes 
the form 

Kx(q) = j ei(q k)g(k)dnk, (3.17) 

Rn 
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where lflk = dk1dk2 ... dkn. The spectral density g(k), if it exists, can be 
obtained from the correlation function by use of the usual formula for the 
inversion of an n-dimensional Fourier integral, 

g(k) = (2~)n J ei(q·k)Kx(q)d"q. 
[ln 

(3.18) 

The spectral density g(k) of any homogeneous random field is a nonne­
gative function of the wave number k. Conversely, any non-negative inte­
grable function g(k) is the spectral density of some homogeneous random 
field. Therefore, any function K( q) having a Fourier transform which is eve­
rywhere non-negative, is a possible correlation function of a homogeneous 
random field. For example, the function 

Kx(q) = Kx(qt, ... , Qn) = a 2 exp( -n1IQ1I- ... - nnlqnl), 

Gi > 0, i = 1,2, ... ,n, a 2 > 0 (3.19) 

is the correlation function of a homogeneous random field in Rn; its Fourier 
transform (i.e. spectral density) g(k) takes the form 

(3.20) 

and is everywhere positive. 
Again, as in the case of stochastic processes, a notion of spatial white noise 

turns out to be useful. This is a random field (more exactly, a generalized 
random field) whose correlation function is defined as 

(3.21) 

where c5(qi) is the Dirac function, and c is a positive constant. Making use 
of equation (3.18), we obtain the constant spectral density corresponding to 
(3.21) 

c 
g~(k) = (27r)n ~ 0. (3.22) 

The spatial white noise field is a natural extension of an uncorrelated discrete 
parameter random field, i.e. a field defined for r E zn, where zn is the set 
of all points Rn with integer coordinates. The correlation function of such 
a field, say E(r) is 

KE(q) = {
1
' 

0, 

for q = 0 = (0, ... , 0), 

for q! 0. 
(3.23) 
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Remark 1. In applications we usually deal with real random fields. Then 
both the correlation function and the spectral density are symmetric func­
tions about the origin of Rn . In this case they are related via the Fourier 
cosine transform, i.e., 

Kx(q) = j cos(q · k)gx(k)dk, 
Rn 

gx(k) = (2!)n j cos(q · k)Kx(q)dq. 

(3.24) 

Rn 

3.3. Isotropic random fields 

3.3.1. Definition and spectral analysis. A special class of homogeneous 
random fields is the class of isotropic fields. 

Definition 8: A random field X(r) is isotropic in the narrow sense (or, 
strictly isotropic) if all its finite-dimensional distTibutions do not change un­
der arbitrary translation and rotation of points r1, r2, ... , rk around axes 
crossing the origin (of the coordinate system). 

Most common in theory and application are isotropic fields in a broad 
sense (or, weakly isotropic) which are simultaneously assumed to be homo­
geneous. 

Definition 9: A homogeneous random field X(r) is said to be isotropic in 
a broad sense, or simply isotropic if its covariance function Kx ( q) depends 
only on the length lql = q of the vector q and it does not depend on its 
direction, that is 

Kx(rl, r2) = Kx(q) = Kx(q), 

where q = r2- r1, q = lql = (qi + q~ + ... + q~) 1 12 . 

(3.25) 

Therefore, the covariance (and correlation) function of an isotropic ran­
dom field depends only on one scalar variable q = lql. This means that for 
an isotropic random field in Rn all directions in space are equivalent. 

Now we will discuss the implications of the isotropy property on the 
covariance and spectral density. Recall first the following identity 

7r 

J iqkcosO · n-2 ndn _ J(n-2)j2(qk) 
e Sill u u - ( qk )(n-2)/2 , (3.26) 

0 

where Jm(x) is the Bessel function of the first kind of order m. This function 
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is defined as follows 

- oo k (x/2)m+2k 
Jm(x)- L ( -1) k!f(m + k + 1) 

k=O 

(3.27) 

where r(x) is the gamma function. 
Therefore, we can now formulate the Bochner theorem for isotropic ran­

dom fields (cf. [1], [14]). 
A continuous function Kx(q), 0 ~ q < oo is the covariance function of 

an isotropic random field if and only if it has the representation 

00 

J J(n-2)/2 ( qk) 
Kx(q) = An-2 (qk)(n-2)/2 dG(k) (3.28) 

0 

where G(k) is a bounded, nondecreasing function of k and the constant An-2 
is the total surface area of Sn-2 - the ( n - 2) dimensional sphere in Rn. 

The representation of Kx(q) in the form (3.28) is called a spectral repre­
sentation of an n-dimensional correlation function. 

If the constant An-2 is shown explicitly then equation (3.28) takes the 
form 

00 

K ( ) = 2(n-2)12r (~) j J(n- 2)j2(qk) dG(k). (3.28a) 
X q 2 (qk)(n-2)/2 

0 

Now consider the spectral density of an isotropic random field. If the 
correlation function Kx(q) decreases rapidly enough as q ~ oo then the 
isotropic field X(r) will have a spectral density gx(k) which can be deter­
mined from the given correlation function by formula (3.18). However, since 
Kx(q) depends only on lql = q we can perform the integration with respect 
to angular variables (after transforming to spherical coordinates). As a result 
we obtain, gx(k) = gx(k), k = lkl and 

00 

1 J J(n-2)j2(qk) n-1 
gx(k) = (27r)n/2 (qk)(n-2)/2 q Kx(q)dq. (3.29) 

0 

The corresponding formula for the correlation function is 

00 

K ( ) = (2 )n/2 J J(n-2)j2(qk) kn-1 (k)dk 
X q 7r (qk)(n-2)/2 qx . (3.30) 

0 

The functions gx(k) and Kx(q) given above are called the n-dimensional 
spectral density and n-dimensional correlation function, respectively. 
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Remark 2. The reader will notice that, in contrast to the one­
dimensional case (stochastic processes) , the representation (3.30) of Kx(q) 
in terms of the spectral density gx(k) for n > 1 includes the additional factor 
kn-l and a different constant in front of the integral. This is due to the fact 
that in the multidimensional case 

k 

G(k) = J ... J dG(k) =An J l<n-lgx(~<)d~< , (3.31) 

lkl<k 0 

where An = 2( 1r )nf2 jr( n/2) is the total area of the unit sphere in Rn. 

3.3.2. Special cases. n = 2. If a random isotropic field is defined on the 
plane, that is r = (x1, x2), then in equations (3.28) through (3.30) one should 
taken= 2. 

Equations (3.29) and (3.30), that are found frequently in applications, 
take the form 

00 

gx(k) = 2~ j Jo(qk) qKx(q)dq, 

0 

00 

Kx(q) = 21r j Jo(qk)kgx(k)dk. 

0 

(3.32) 

(3.33) 

n = 3. In many applications random isotropic fields in the three­
dimensional space are of interest. In this particular case r (xi , x2, x3) 
and J(n-2)j2(qk) = J1;2(qk) where 

Then we get 

( 
2 ) 1/2 

J1;2(qk) = 1rx sinx. 

00 

1 J. gx(k) = 
2

1r2 k s1n(qk)qKx(q)dq, 

0 

00 

Kx(q) = ~ j sin(qk)kgx(k)dk. 

0 

(3.34) 

(3.35) 

The function gx(k) must be nonnegative. Therefore, the class of possible 
correlation functions of isotropic fields (defined in general by representation 
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(3.28)) is determined by the requirement that the integral (3.29) is nonnega­
tive for all k ~ 0. In the particular cases n = 2, n = 3, this condition refers 
to integrals (3.32) and (3.34), respectively. 

The 3-dimensional spectral density 9X ( k) is a basic characteristic of the 
isotropic field X ( r). However, statistical inference leading to estimation of 
9x(k) from observations of X(r) is difficult. Therefore, measurements of X(r) 
are very often taken at points along some straight line in R3 , e.g. at the 
points of the first coordinate axis; i.e. along X(x1, 0, 0). In this way we obtain 
a homogeneous random field on the straight line (i.e. a stationary process in 
the variable x1 having the correlation function Kx(q), where q = x~- x~. In 
particular, defining Kx(q) for q < 0 as Kx( -q) = Kx(q) we have 

+oo oo 

gx(k) = 2~ j e-ikqKx(q)dq = ~ j cos(kq)Kx(q)dq, (3.36) 

-oo 0 

+oo oo 

Kx(q) = j e-ikq9J(k)dk = 2 j cos(kq)gJ(k)dk. (3.37) 

-oo 0 

The function 91 ( k) is called the 1-dimensional spectral density (or 1-dimen­
sional spectrum) of the isotropic field X ( r). 

It is natural to inquire about the relationship between the !-dimensional 
spectrum and the 3-dimensional spectrum 9x ( k) of the given isotropic field. 

Differentiation of formula (3.36) with respect to k and comparison of the 
result with (3.34) yields 

1 d91 (k) 
9x(k) = 9x(k) = -

2
1rk ----;[k· (3.38) 

The above relation expresses the 3-dimensional spectral density 9X ( k) of the 
isotropic random field in terms of its !-dimensional spectral density 91(k). 
It is seen that if 91 (k) is non-negative, it does not imply that 9X (k) is non­
negative. This observation is a manifestation of the more general fact that 
a given function 9( k) of one variable k can be a spectral density of a homo­
geneous field on the straight line (of a stochastic process), but it may not be 
a spectral density of an isotropic field in n-dimensional space. An analogous 
assertion holds for the correlation functions . 

We now consider a few examples of correlation functions and the corres­
ponding spectral densities of isotropic random fields . 

1. The exponential correlation 

Kx(q) = Ce-aq, q = lql, q = r1- r2, (3.39) 

where C > 0, a > 0, q ~ 0. 
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In the case n = 1 the function given by (3.39) is one of the most 
common examples of a correlation function for stationary processes 
(where q = ITI = lt2- t11). This function is also a correlation function 
of an isotropic random field in Rn for any integer n. 
Using the identity: 

00 

J -ax J (k ) m+ld = 2a(2k)mr(m + 3/2) 
e m x x x 7rl/2 ( a2 + k2)m+3/2 ' 

0 

and equation (3.29) we obtain then-dimensional spectral density 

Car((n + 1)/2) 
gx(k) = 7r(n+l)/2(a2 + k2)(n+l)/2 ' 

which is nonnegative for any integer n. 
For n = 2, and n = 3 we have 

Ca 
gx(k) = 27r(a2 + k2)3/2 ' n = 2, 

Ca 
gx(k) = 7r2(a2 + k2)2 ' n = 3. 

The one-dimensional spectral density 91 ( k) is 

Ca 
9l(k) = 7r2(a2 + k2). 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

Of course, substituting equation (3.43) into (3.38) yields equation (3.42) 

2. The "exponential-Gaussian" correlation 

2 
Kx(q) = Ce-aq , C > 0, a> 0, q ~ 0. (3.44) 

In order to evaluate the n-dimensional spectral density via equation 
(3.29) the following equality is used 

00 

j e"'x' Jm(kx)xm+ldx = km(2x)-m-lexp(-k2/4a). 

0 

The result is 
c 2 

gx(k) = ( ) 12 exp( -k /4a). 2n 7rQ n 
(3.45) 

The above spectral density is everywhere positive for any n and a. 
It can also be obtained by use of the !-dimensional spectral density 
(corresponding to (3.44) and equation (3.38)). 
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3. The triangular correlation 

Kx(q) = {C(l- aq), q ~ 1/a 
0, q > 1/a 

(3.46) 

Using equation (3.36) yields the following (positive) expression for the 
!-dimensional spectral density 

(3.47) 

However, equation (3.38) implies that the 3-dimensional spectral den­
sity may also assume negative values. Therefore, (3.46), being a cor­
relation function on the line, cannot be a correlation function of an 
isotropic random field in R3 . It can be shown that the function defined 
in (3.47) cannot be an isotropic correlation function in the plane either. 

4. The "damped -oscillatory" correlation 

Kx(q) = Ce-aq coskoq, (3.48) 

where C > 0, a > 0, ko > 0, q ~ 0. It can be easily shown that the 
spectral density 91 (k) corresponding to (3.48) is 

Ca [ 1 1 l 91 (k) = 21r a2 + (k + k0) 2 + a 2 + (k- ko) 2 ' 
(3.49) 

or, in abbreviated form 

where A= Caj1r, a= a 2 - k5, b = (a2 + k5) 112 . 

Making use of equation (3.32) and evaluating the two-dimensional spec­
tral density 9x(k) corresponding to the correlation function (3.48) in­
dicates that this 9x(k) is nonnegative only if a ~ ko. Looking more 
carefully at the behavior of 91 (k) given by (3.49) with respect to k, it 
can be shown that 91 ( k) is monotonically nonincreasing on the posi­
tive half-axis k > 0 only if a ~ v'3k0 . Hence, equation (3.38) implies 
that 9x(k) will be nonnegative only for a~ VJko. Therefore, the fun­
ction given in (3.48) can be a two-dimensional correlation function of 
an isotropic field only if a ~ k0 , and it can be a three-dimensional 
correlation function only if a ~ VJko. 
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3.4. Vector-valued random fields 

3.4.1. Basic concepts. In the previous sections we discussed scalar ran­
dom fields, i.e. fields whose values for each rE D ~ Rn are one-dimensional 
random variables. However, in numerous applications there is a need for ana­
lyzing vectorial random fields. For example, the velocity field in a turbulent 
medium and the electromagnetic field propagating in a random medium are 
modeled as vectorial random fields. The theory of vector random fields (when 
both the arguments and values are multidimensional) is geometrically more 
complicated than the theory of scalar-valued random fields. The presentation 
below should be regarded as only an introduction to more systematic and 
advanced analysis of vector-valued random fields. 

Definition 10: A random field X(r) with vectorial values, that is a field 
of the form 

X(r) = [X1 (r), X2(r), ... , Xn(r)], rE D, (3.50) 

where Xi(r), i = 1, 2, ... , n are scalar random fields is called a vector-valued 
random field defined on the domain D ~ Rn. 

In general r = (x1, x2, ... , Xm); here we restrict ourselves to the most 
important case where r = (x1, x2, x3). 

As in the case of a scalar random field a complete probabilistic charac­
terization of a vector random field can be given by its finite-dimensional 
probability distributions. The simplest characteristics are mean value vector: 

mx(r) = (X(r)) = [mx1 (r), ... , mxn (r)], (3.51) 

and the covariance tensor Kx(rl, r2) with elements Kik(rl, r2) 

(3.52) 

i, k = 1, 2, ... , n. Of course, one can also consider the covariance tensors 
Kikl(rl, r2, r3) or in general, Ki1i2 . . . in (rb r2, ... , rn)· 

A vector-valued random field X(r) is said to be homogeneous if 

mx(r) = mx =constant, Kik(rb r2) = Kik(q), q = r2- r1 (3.53) 

for all i, k = 1, 2, ... , nand all possible r 1, r 2 from the domain of definition of 
X(r). In what follows we assume that mx = 0. Since all the component fields 
Xi(r), i = 1, 2, ... , n of the vectorial homogeneous X(r) are homogeneous 
scalar fields they have spectral representation of the form (3.13), whereas 
all the elements Kik(q) of the correlation tensor of the field X(r) can be 
represented as 

(3.54) 
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where Gik(q) = Gik(ki, ... , kn) are the cross-spectral distribution functions 
of the field X(r). 

3.4.2. Isotropic vector random fields. 

a. Definition 

Let us now consider the concept of an isotropic vector-valued random 
field. The simplest possible definition is as follows. The vector field X(r) is 
isotropic if its mean is constant and all the elements of the correlation matrix 
Kik(rb r2) depend only on the distance lr2 - rii between ri and r2, that is 

(3.55) 

It is clear that all component fields Xi(r) , i = 1, 2, ... , n of such a field are 
isotropic scalar fields, and that Xi(r) and Xj(r) , i f. j are jointly isotropic 
(or, isotropically correlated). The pressure and temperature fields of a tur­
bulent flow are commonly regarded as jointly isotropic. 

The concept of isotropy defined above is too restrictive and is not very 
useful in applications. It is thus necessary to more closely examine the concept 
of an isotropic vector random field. In the case of an isotropic scalar field , the 
correlation (X ( ri) X ( r2)) does not depend on the orientation of the vector 
q = r2 - ri. In the case of a vector-valued field the situation is different. 
Consider, for example, the element K u ( q) of the correlation matrix, that is 
Ku(q) = (X(ri)X(r2)). It is clear that here XI(rk) is a projection of the 
vector X(rk) on the XI axis. Assume that points ri and r2 lay along the 
XI axis. In this case K 11 ( q) characterizes the correlation of the longitudinal 
components (with respect to the vector q = r2 - ri) of the vector X. Now 
perform a 90° rotation of q about the point ri so that the vector r 2 -

ri will be parallel to the x2 axis. In this case X I ( ri) and X I ( r2) are still 
the projections of the vector X on the XI axis, however the vector q is 
now perpendicular to the XI axis and therefore K II ( q) characterizes the 
correlation of the transverse components (with respect to q) of the vector X . 
Hence, it is clear that if we wish to have an applicable concept of isotropy 
we should not require equality of K 11 ( q) in these two cases, since the mutual 
position (with respect to q) of the components XI(ri) and XI(r2) of the 
vector field has changed. 

The above reasoning indicates that in an isotropic vector random field 
each element Kik ( q) of the correlation tensor should depend on the direction 
of the vector q. Isotropy of a random vector field consists in the invariance 
of the probabilistic characteristics of the field X(r) whose components are 
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specified in the coordinate system rigidly connected with the observation 
points ri. A more rigorous definition follows. 

A vector-valued random field X(r) is called an isotropic field if the pro­
babilistic characteristics (probability distributions, or, in a broad sense, the 
elements of the correlation tensor) of the field for any fixed collection of 
points r1, r2, ... , rN are invariant under arbitrary parallel translations, rota­
tions and reflections of these points performed simultaneously with transla­
tion, rotation and reflection of the coordinate system with respect to which 
the components of the field X(r) are specified. 

Notice that since an isotropic vector field is homogeneous, its mean 
(X(r)) =m is a constant vector. However, due to isotropy this vector should 
be invariant under all possible rotations; therefore, it must be a zero vector. 

b. General form of correlation tensor 

An important problem is concerned with the general form of the correla­
tion tensor of vector isotropic random fields. In what follows we shall briefly 
discuss this problem (cf. [15] and also [1]). 

The function Kik ( q) is a tensor function of the vector q, which is invariant 
under all rotation and reflection transformations. In this case, for arbitrary 
unit vectors a and b, the quadratic form 

(3.56) 

is a scalar depending on three vectors ( q, a, b) and dependence on a and b 
is linear. Using the results of group invariant theory we conclude that the 
scalar K can be expressed in terms of the basic invariants of the vectors 
q, a, b, that is by and the scalar products ( q ·a) = qiai, ( q ·b) = qibi and 
(a· b) = aibi and (note that lal = lbl = 1). Therefore, the general form of 
the function K ( q, a, b) which depends linearly on a and b is 

(3.57) 

This means that the general form of the correlation tensor of an isotropic 
vector random field is 

(3.58) 

where A 1(q) and A2 (q) are real-valued functions of the scalar argument 
q = lql and 8ik is the unit, Kronecker's tensor. 

In the general case a tensor of second order has nine independent compo­
nents, and a symmetric tensor six components. Equation (3.58) shows that 
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the conditions of isotropy reduce the number of components of the corre­
lation tensor to two independent components. This is very important for 
application of the theory. 

Now direct the X3 axis of the basic coordinate system along the vector q, 
taken to be of unit length. In this case the components of q are [0, 0, 1]. 
Taking the indices in equation (3.58) equal to 1, 1; 2, 2; or 3, 3 we obtain 

Kn = K22 = A2, K33 =At+ A2. 

Hence, the transverse components K 11, K 22 are the same. Denote them by 
KN(q), i.e. KN(q) = Kn(q) = K22(q). The longitudinal component KL(q) 
is equal to A 1(q) + A2 (q). So equation (3.58) takes the form 

where ni are the components of the unit vector q/ q, and 

KL(q) = (XL(r)XL(r')), 

KN(q) = (XN(r)XN(r')), 

(3.59) 

(3.60) 

(3.61) 

and XL, XN, are the projections of the vector X onto a line along the direc­
tion of the vector q and on any line perpendicular to q, respectively. 

The function K L ( q) is called a longitudinal correlation function of the 
isotropic vector field X(r), whereas KN(q) is called its transversal correlation 
function. These two functions specify uniquely the correlation tensor Kik ( q). 

According to equation (3.59) the correlation tensor Kik(q) is specified if 
functions KL(q) and KN(q) are given. Since each of these functions is the 
correlation function of a homogeneous random field on a straight line ( K L ( q) 
on the line: x1 = x2 = 0 and KN(q) on any line in the plane X3 = 0) 
they are both of non-negative definite type and can be characterized by their 
spectral measures (longitudinal G L ( q) and transversal G N ( q), respectively). 
If the functions KL(q)and KN(q) decrease rapidly enough as q ~ oo, then 
the spectral distributions G L ( q) and G N ( q) can be characterized by their 
spectral densities. 

The results concerning isotropic vector random fields presented above 
simplify in situations when we know a priori that the field under conside­
ration is solenoidal (its divergence vanishes) or potential (it is a gradient of 
a scalar isotropic field). For such specific fields there exist simple relationships 
between longitudinal and transversal correlation functions and as a result the 
correlation tensor Kik ( q) is determined by only one scalar function. 

Consider first a homogeneous vector random field which is solenoidal, i.e. 

d. X( ) = ~ axi(r) = axi(r) = 0 IV r ~ a - a , 
i=l Xi Xi 

(3.62) 
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where r = (x1, x2 , x3) and in the last equality the summation convention is 
used which means that a repeated index implies summation over the range 
of the index. By definition, the components of the correlation tensor of X( t) 
with zero mean are 

(3.63) 

Differentiation of (3.63) with respect to the coordinates of r2 = (x2,1, x2,2, 
x2,3) and subsequent summation over the indices i , j = 1, 2, 3 accounting for 
(3.62) yields 

(3.64) 

Since differentiation of Kik with respect to the coordinates of r2 is equiva­
lent to differentiation with respect to q = r2 - r 1, the correlation tensor of 
a homogeneous solenoidal vector random field satisfies the conditions 

aKik(q) = O 
axi ' 

aKik(q) = O. 
O X k 

(3.65) 

If the field X(r) is isotropic , the components of the correlation tensor are 
represented by equation (3.59) where q = lql = lr2 - r1l· Substitution of 
(3.59) into (3.65) and making use of the following relations 

aq - a V 2 2 2 - xi --a - -a x l + x2 + x3 - - - ni, 
X i Xi q 

2 

q q ' 
onk 

ni-a = 0, 
Xi 

(where bi i = 3 and n? = 1) , yields the equation 

dKL 2 
-d-nk + (KL- KN)-nk = 0, 

q q 

which can be represented in either of two equivalent forms: 

(3.66) 

(3.67) 

(3.68) 

The above relation between KN(q) and KL(q) is known in statistical turbu­
lence theory as the Karman equation. An analogous relationship holds for 
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the longitudinal and transverse spectral densities of the solenoidal random 
field. 

Assume now that X(r) is a potential homogeneous random field, i.e. its 
components are of the form 

X ( ) 
= 8A(r) 

k r a ' Xk 
(3.69) 

where A(r) is a scalar random field with zero mean and correlation function 

(3.70) 

Differentiation of the above function with respect to the coordinates of r1 

and r2 gives 

(3. 71) 

Performing the differentiation of KA(q) as indicated in (3.71) with use of the 
relations (3.66) we obtain 

Kik(q) =- [d2 KA(q) - ~ dKA(q)] nink- ~ dKA(q) c5ik. 
dq2 q dq q dq 

(3.72) 

Comparison of the above expression for Kik ( q) with the general representa­
tion (3.59) of the correlation tensor of an isotropic field yields the following 
relationship between the longitudinal and transverse components of a poten­
tial isotropic random field 

(3.73) 

The above equation is associated with the names of Obukhov and Yaglom. 

3.5. Tensor-valued random fields 

In the investigation of solid media the need for analysis using tensor 
random fields often arises. For example, if a deformable solid is subjected to 
a random load, or if such a solid has randomly varying properties then the 
stress tensor Gij should be regarded as a tensor random field aij(r, 1). Such 
random fields can be analyzed along the same lines as shown in the previous 
section for vector random fields but, as one might expect, the analysis and 
the associated mathematical transformations are much more complicated. 
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Definition 11: A random field T(r), r E D ~ R 3 with tensorial values 
(of the second rank), that is a field of the form 

T(r, r) = {Tij(r, ,)}, rED, rE r, i, j = 1, 2, 3, (3.74) 

where Tij(r,T') for each (i,j) are scalar random fields is called a tensor­
valued random field defined on the domain D ~ R 3 . We assume here that 
such objects which obey all the usual transformation rules required by the 
definition of a second-order or second-rank tensor. 

A complete probabilistic characterization of a random tensor field T(r, r) 
is given if for each finite set of r-values, say {r1, ... ,rk}, k = 1, 2, ... , n, joint 
N · k-dimensional probability distributions of the random variables Tij(r, r) 
are specified, where Ndenotes the number of elements of the tensor T(r, r)· 
For an unsymmetric, second-order tensor N = 9, and for a symmetric, second 
order tensor (i.e. when Tij = Tji ) N = 6. 

As in all previous situations (scalar and vector fields) the simplest cha­
racteristic of the tensor random field T(r) is its mean value (T(r)), or in 
terms of components, (Tij(r)) = mij(r), i,j = 1, 2, 3. Define the fluctuation 
of T(r) as 

8(r) = T(r)- (T(r)), 

Bij(r) = Tij(r)- mij(r). 
(3. 75) 

An important characteristic of the tensor random field T(r) is its n-point 
moment function: 

(3.76) 

The moment defined in (3. 76) is a tensor-valued function of 3n independent 
variables x~, s = 1, 2, 3; k = 1, 2, 3. Another basic characteristic of a tensor­
valued random field T(r) is its correlation tensor: 

(3.77) 

If the tensor field T(r) has symmetric components, then Bij = Bji, and 

(3.78) 

We will now consider homogenous tensor fields. 

Definition 12: A random tensor field T(r) is said to be strictly homo­
geneous in R 3 if for any finite set of points {r1, r2, ... , rk} belonging to R 3 

and for any vector q E R 3 all the joint probability distributions of Tij (r) are 
invariant under the shift transformations 

r} = ri + q, i = 1, 2, ... , k. (3.79) 
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The above definition implies that the finite dimensional probability dis­
tributions of a strictly homogeneous tensor field depend only on the relative 
location of the points rk, k = 1, 2, ... , n, to each other but they do not 
depend on the absolute location of these points in space. The moment func­
tions (3. 76) depend in this case on ( n - 1) vectors which define the spatial 
configuration of points rk. Definition 12 also implies that: 

(T(r,')')) = m(r) = {mij(r)} =constant, 

Kijkl(rb r2) = Kijkl(q), q = r2- r1, 

where q == (qb Q2, Qa). 

(3.80) 

(3.81) 

Random tensor fields satisfying the invariance conditions ( 3.80), ( 3.81) 
are called weakly homogeneous tensor fields, and like weakly homogeneous 
vector fields, are of prime interest. A weakly homogeneous random tensor 
field is characterized by six constants mij and eighty-one functions Kijkl of 
three variables (q1, q2, qa). In the case when the tensor T is symmetric and 
the relations (3.78) hold, the number of functions Kijkl(Qb q2, qa) reduces to 
twenty-one. In addition, it can be shown that 

(3.82) 

Definition 13: A random tensor field T(r) = {Tij (r)} is isotropic in 
a narrow sense if it is strictly homogeneous and all its finite-dimensional 
distributions {in the coordinate system rigidly connected with the points 
r1, r2, .. . , rk) are invariant under rotations and reflections of the configu­
ration of points { r1, r2, ... , rk}. 

Isotropy restricts the class of tensor random fields as potential models 
of real physical fields, however it allows a more effective representation of 
the correlation tensor Kijkl(q). If the field T(r) is isotropic and, in addition, 
it has symmetric components satisfying (3. 78), (3.82) yields the following 
representation (cf. (16]) holds 

Kijkl(q) = a18ij8kl + a2(8ik8jl + 8il8jk) 

+ aa(qjqk8ii + QiQl8jk + QiQk8jl + QjQl8ik) 

+ a4 ( QiQj8kl + QkQl8ij )a5QiQjQkQl (3.83) 

where ai = ai(q), i = 1, 2, ... , 5, q2 = QjQj, and 8ik is the unit, second-rank 
Kronecker tensor. 

Analogous to the meaning of longitudinal and transverse components KL 
and KN of isotropic vector fields, the functions ai(q) here characterize the 
components of the correlation tensor Kijkl in specified directions. To see this, 
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define a coordinate system with the center at point r 1 and with the axis x1 

directed to the point r2 and denote the components of Kijkl in this system 
by Ki~kl and taking Kt = Kfut, K2 = KJ222 , K3 = Kit22 , K4 = Ki233 , 
K5 = Kf2t2, K6 = Ki323 we obtain from (3.83) 

Kt = at + 2a2 + 2q2(2a3 + a4) + q4a5, 

K2 = a1 + 2a2, K3 =at+ a4q2, K4 =at, 

K5 = a2 + a3q2, K6 = a2 . 

Additionally we have the relation 

(3.84) 

(3.85) 

Solving the above system of equations for the ai and then substituting the 
results into (3.83) with qifq = ni we obtain the representation: 

Kijkl(q) = K4(q)6ij6kl + K6(q)[6ik6jl + 6il6jk] 

+ [K5(q) - K5(q)][njnk6il + ninl6il + nink6jl + njnl6ik] 

+ [K3(q)- K4(q)][ninj6kl + nknl6ij] 

+[Kt (q) + K2(q)- 2K3(q)- 4K5(q)]ninjnknl. (3.86) 

Equation (3.86) can be regarded as the counterpart of the (3.59) for isotropic 
vector fields. 

4. Reconstruction of probability distribution of polycrys­
talline microstructures 

4.1. Statistical physics of Voronoi tessellations 

According to the spirit of classical statistical physics the phase probabi­
lity density should be selected in such a way that it "agrees" with external 
conditions of the system and empirical macroscopic information. A key role 
is played by the Gibbsian statistical ensembles. Each element of such an en­
semble "contributes" to realization of a required macrostate. For example, for 
the canonical ensemble (closed system with fixed N and V, exchanging the 
energy) the probability density of microscopic states is given by the following 
canonical Gibbs distribution 

1 ( E (p,q)) 
f (p, q) = Q ( (), V, N) exp - () , (4.1) 

where () is a parameter playing a role of temperature and Q, the statistical 
integral, is determined from the normalization condition for f (p, q). It is 
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interesting that the canonical distribution ( 4.1) can be obtained from maxi­
mization of the Shannon/Gibbs entropy under constraints representing the 
available information in the form of average energy of the system considered 
( (} is then the inverse of the Lagrange multiplier associated with the constraint 
of mean energy). This observation indicates how the underlying probability 
distributions of microscopic states can be constructed from "macroscopic" 
data. It is, therefore, tempting to extend this fruitful idea to more complex 
systems, such as random material microstructures. 

Various possible configurations of random tessellation aggregates are cha­
racterized by a number of parameters (topological and metric) of the con­
stituent polyhedral. These parameters (positive real numbers) denoted sym­
bolically as (X1, X2, ... , Xk) = X define a microstate of the system. The 
macrostates (or mesostates) are characterized by appropriate averaged val­
ues over microscopic states (and the correlations between them), which are 
integrals over the probability distribution of microscopic states. According 
to the spirit of classical statistical mechanics these averages, regarded as ob­
servables, will be used here as a prior information (constraints) on unknown 
probability distribution of microstates. Miles (cf. (19]) distinguishes seven 
quantities being the fundamental variables of random polyhedral tessella­
tions; namely X 1 = C - the number of corners (vertices), X 2 = E - the 
number of edges, X 3 = F - the number of faces (topological characteristics) 
and X4 = L- the total edge length, Xs =M - the length of orthogonal pro­
jection of a polyhedron onto an isotropic random line, X6 - the polyhedron 
area, X7 -the polyhedron volume (metric characteristics). 

Topological randomness of the aggregate means that (Xb X2, Xa) are 
random variables satisfying self-consistency relations. These variables are re­
lated to each other by the Euler formula 

C- E+F = 2, (4.2) 

for one isolated polyhedron, and for any subdivision of a domain into a finite 
number of polyhedrals (Moller (20]) 

C-E+F+N = 1, (4.3) 

where N is a number of polyhedrals (grains) in an aggregate; the above is 
valid irrespective of the number of edges connected at each corner (vertex). 

However, since the coordination number of the polyhedral aggregate 
Z = 4, i.e. four edges meet at each corner (vertex) and each edge connects 
two vertices, we have C = 2 (E/4), or E = 2C. Therefore, the topological 
shape state (Xb X2, Xa) is fully specified by only one characteristic, which 
is commonly taken as being the number of faces F . Metric characteristics 
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(X4 , .•• , X1) are independent of topological properties, and the grain volume 
V is regarded as the most informative one. 

4.2. Probability distribution of "sidedness" of grains 

As we have shown in the previous section, the main characteristic of a ran­
dom polyhedral aggregate is the sidedness of a randomly selected polyhedron, 
i.e. the number of its faces F. The problem concerns a possible probability 
distribution of F, which is a discrete random variable taking on the inte­
ger values k, where k = 4, 5, ... , K where K is the largest possible number 
of faces per grain in real grain aggregates. The probability distribution of 
interest is 

{ P} = {P4' ... 'p K} ' Pk ~ 0, L Pk = 1' 
k 

( 4.4) 

where Pk = P(F = k). The distribution {P} defines a distribution of the 
microscopic shape states. 

Let us assume that given data concerning the aggregate are in the form 
of average value of m functions Gr(k) (r = 1, 2, ... , m; m< K- 3) defined 
on the shape states { k}, that is 

K 

9r = (Gr (k)) = L GkPk , r = 1, 2, ... , m. (4.5) 
k=4 

The values of Gr (k) for various shapes k can characterize the appropriate 
physical/ mechanical observables (e.g. Young modulus, hardness, etc); analo­
gously to the energy in statistical physics, the quantities Gr depends on the 
microstates { k}. 

It is clear that information about the distribution P = {p4, ... ,PK} con­
tained in ( 4.4) and ( 4.5) is not sufficient to determine P exactly. In this 
situation we ask: which of many possible distributions satisfying (4.4), {4.5) 
is best suited to describe P? This is a problem of reconstructing P on the 
basis of incomplete information. According to the spirit of classical statisti­
cal mechanics ( Gibbsian ensembles) and the maximum entropy principle, the 
"most rational" approximation P* of P which satisfies ( 4.4) and ( 4.5) is that 
one which maximizes the Shannon/ Gibbs entropy. The variational method 
of Lagrange multipliers gives the result 

p* = {pk} = Z ~A) exp ( -AGk), k = 4, 5, ... , K, (4.6) 

where,\= [AI, ... , Am], G(k) = [G1(k), ... , Gm(k)], ,\Gk = A1G1(k) + ... 
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Z (,\) = L exp ( -AG(k)). (4.7) 
k 

The unknown Lagrange multipliers Ar , r = 1, ... , m are determined by 
substitution of (4.6) into constraints (4.5) , (4.4). This yields the following 
system of m equations 

a 
9r = ( Gr) = - a Ar ln Z (A), r = 1, .. . , m. (4.8) 

It is generally accepted on the basis of empirical studies (cf. K umar et 
al. (21]) that in real metallic and ceramic materials the number of faces F of 
polyhedral grains varies fron1 F = 4 to 36, i.e. K = 36, whereas the rnean ofF 
is around 14-15. On the other hand, the analysis within stochastic geometry 
has given for the Poisson-Voronoi tessellations (cf. Miles (19]) 

- 48n 
(F) = k = 2 + 

35 
= 15.5355. (4.9) 

It is clear · that our "canonical" shape distribution depends on the form of 
given data (since it has been constructed to be consistent with observables). 
If the data Gr(k) are such that r = 1, 2 and G1(k) = k, G2(k) = k2 then 
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FIGURE 6. Probability distribution of the number of faces in spatial P-V tessel­
lation. 
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91 = (k), 92 = (k2). In this case the shape distribution (4.6) is 

(4.10) 

Figure 6 shows distribution ( 4.10) for given 91 = 15.5431 and 92 = 252.71 
and its comparison with simulations of P-V tessellations by Kumar et al. 
[21]. If r = 1, 2 and G1 (k) = k, G2(k) = ln k then 91 = (k), 92 = (ln k), the 
shape distribution ( 4.6) is a "discretized" gamma distribution with parame­
ters a= 1/.X1, b = 1- A2. 

4.3. Probability distribution of grain volume 

Among the metric characteristics of grains in microstructural polyhedral 
aggregate the grain volume V is the most basic one. For example, the size 
of a regular polyhedral grain has been often characterized via the equivalent 
spherical diameter defined as 

( 4.11) 

where V is the actual volume of the grain. Having characterized the varia­
bility of V we can quantify (more properly than via stereological formulae) 
the grain size. The grain size of a polycrystalline solids has an important 
effect on its properties. The so called grain-size effect is commonly known. 
Many properties of materials such as the yield stress, ductility, hardness and 
fatigue limit show very pronounced and simple dependence on the grain size, 
namely (grain size)- 112 , cf. [4] and references therein. 

Let us assume, in general, that V is a continuous random variable and 
our available information about V is in the form of given few moments (Vr), 
r = 1, 2, ... , R. For some specific models the mean value and variance of V 
has been derived; however, to date no closed-form representation has been 
found for the probability distribution of V. This can be obtained by using 
the maximum entropy principle. Like in classical statistical mechanics this 
principle allows one to make unbiased estimate on the probability distribution 
of microscopic metric (here, volume) characteristic of our system when only 
certain averaged observables are known. Therefore, we are looking for the 
probability density f ( v) of the random polyhedral grain V which satisfies 
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the moment constraints and the normalization condition, i.e., 

00 

j vrf(v)dv=mr, r= 1, 2, ... ,R, 

0 
00 

j f(v)dv = 1, 

0 

and maximizes entropy functional 

H(f) =- j f(v)lnf(v)dv. 

The result is 

f*(v) = Cexp (- t.Xrvr), 

( 4.12) 

( 4.13) 

(4.14) 

where Ar, the Lagrange multipliers, and constant C are determined from 
the system of algebraic equations resulting from substitution of ( 4.14) into 
constraints ( 4.12). It has been shown (Gilbert [22]) that for P-V tessellation 
generated by the Poisson point field with intensity p we get 

300 
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.0 .E 
Cll 

:.0200 

g 
~150 
2 
0. 
C1.) 100 
E 
;::3 

0 > 50 

m1 =(V)= p- 1
, 

m2 = (V2
) = 1.180p-2

. 
(4.15) 
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FIGURE 7. The maximum entropy probability density of grain volume obtained 
for two first moments given and for different values of intensity of Poisson points. 



http://rcin.org.pl

RANDOM MATERIAL MICROSTRUCTURES: METHODICAL BACKGROUND 4 7 

Therefore, the most probable probability distribution satisfying ( 4.12) 
takes the form of the truncated normal distribution 

(4.16) 

5. Closing remarks 

Once the morphology and properties of a random microheterogeneous 
medium are described and its basic morphological parameters estimated, 
various physical phenomena taking place in it can then be investigated. The 
physical phenomena can be, for example, diffusion type processes, deforma­
tion due to mechanical forces and damage evolution, wave propagation, and 
so forth. Very often the physical phenomenon under consideration is gov­
erned by partial differential equations with coefficients which include the 
appropriate random fields. In the last decades a significant amount of atten­
tion has been devoted to the determination of the properties of solution of 
such stochastic differential equations (cf. [13, 17, 18]). 
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