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Assessing the reliability of randomly excited linear and nonlinear dynamical sys­
tems requires the estimation of transient and steady-state response quantities 
which occur with low probability. Although there are exact solutions available for 
a certain class of second or higher order nonlinear systems, these solutions are 
limited to the probability density of the system response in the stationary regime 
only. Moreover, for the more interesting problem of first-passage failure no exact 
solutions are known at all. The paper presents an efficient importance sampling 
approach to the Monte Carlo solution of first-passage problems. It is shown that 
an appropriate importance sampling density can be constructed utilizing "design 
point excitations" which are obtained by a procedure analogous to the first order 
reliability method (FORM). The presented approach can efficiently handle non­
white and non-stationary excitations, can be applied to a wide range of nonlinear 
problems, and yields high levels of confidence at very low numbers of samples. 

Key words: Random vibration, first-passage probability, Monte Carlo simulation, 
importance sampling, first order reliability method (FORM). 

1. Introduction 

Structural reliability analysis has historically been developed to deal with 
the analysis of time-invariant problems of random variables. Recent develop­
ments increasingly focus on aspects concerning the effect of random processes 
thus requiring the analysis of time-variant responses and consequently, time­
variant reliability. However, the number of mathematically exact solutions 
available for nonlinear dynamical systems under random excitations is still 
restricted to a narrow class of systems and to the knowledge of stationary 
probability densities or moments only [1, 2, 3]. For assessing the reliability of 
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a dynamical system most realistically, in addition to the probabilistic char­
acterization of the response at a certain time point, a reliability measure 
evolving over a time period is most instrumental. The latter can be achieved 
by utilizing the first-passage probability, i.e. the probability that the struc­
tural response exceeds a given failure boundary in a certain time interval for 
the first time. It is quite remarkable that up to now a closed-form solution for 
the first-passage problem does not exist, not even for single-degree-of-freedom 
linear systems. 

For being nevertheless able to assess the reliability of randomly excited 
dynamical systems, different approximate solution techniques have been pro­
posed, as e.g. cumulant-neglect closure, equivalent linearization or stochastic 
averaging [3, 4, 5, 6], which are applicable for both stationary and non­
stationary problems. Despite their indisputable merits, especially in problems 
involving the determination of moments of lower order, they lack sufficient 
accuracy in quantifying structural responses occurring with low probabil­
ity, as in the case of extreme load/response events, which are of paramount 
importance in the reliability assessment of engineering structures. The only 
solution technique not showing any of the above mentioned deficits is pre­
sumably Monte Carlo simulation. However, it is most often applied as a last 
resort only - due to numerical answers of supposedly limited accuracy or 
prohibitive computational costs. 

Whereas these drawbacks of the Monte Carlo simulation technique are 
an inherent characteristic of its crude form, this does not hold for variance 
reduction techniques [7, 8]. Although this fact is widely recognized for time­
invariant problems, for problems in random vibration the application of vari­
ance reduction techniques is still eschewed - despite different, technically 
sound methods proposed during the last years [9, 10, 11, 12]. The most ver­
satile variance reduction tecbnique appears to be importance sampling uti­
lizing the measure transformation method [13, 14, 15] based on Girsanov's 
theorem [16]. 

A different and at first sight much simpler approach are so called (multi­
level) splitting methods which can be traced back at least to [17]. These 
methods have been brought to a wider attention by [18] and [19]. Typical 
applications to civil engineering systems can be found e.g. in [20, 21]. In multi­
level splitting promising sample paths are split into sub-paths at intermediate 
levels to increase the number of observations of rare events. As has been 
reported as early as in [19], however, this procedure can result in general 
settings in an increase of the variance of the estimator. More precarious even 
is an "apparent bias" [22] in the estimator, when the levels for splitting are not 
chdsen consistently. Indeed, multi-level splitting requires for being effective 
that the splitting is performed along the most likely path leading to an out-
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crossing [22]. However, in this case a more effective sampling method like 
importance sampling can be used right from start. 

In the following we present an importance sampling procedure for ran­
domly excited dynamical systems. Starting by a system of lt6 stochastic 
differential equations modeling the dynamical response, we change, by ap­
plying Girsanov's theorem, the drift terms of these equations according to 
a minimization criterion for the variance of the respective estimators. These 
changes can be interpreted as (additional) control forces which allow to in­
fluence the sample paths in a predetermined way. The unlikeliness of the 
corresponding sample paths is taken into account by a correction process 
such that the final estimates become unbiased again. Although theoretically 
there exists a set of control forces which result in unbiased zero-variance es­
timators [15], these optimal control forces are in general not accessible (this 
would require the knowledge of the solution) and have to be replaced by 
sub-optimal ones. 

Such sub-optimal control forces - also called "design point excitations" -
can be constructed from an optimization problem analogous to the first order 
reliability method (FORM). Indeed, when utilizing a time discretization for 
solving the system of stochastic differential equations, the correspondence be­
tween the measure transformation method based on Girsanov's theorem and 
the importance sampling method utilizing finite dimensional probability dis­
tributions - as known from static problems- can be shown. In the latter case 
the design point excitations are simply the mean values of the importance 
sampling distribution. Moreover, recognizing the above mentioned correspon­
dence, the importance sampling concept can be straightforwardly extended 
to dynamical systems under excitations modeled by Poisson processes. The 
paper concludes with numerical examples of dynamical systems under white 
noise as well as Poisson-type excitations demonstrating the efficiency of the 
proposed importance sampling method. 

2. Importance sampling concept 

Let us assume that the dynamical response of a system at time t E [0, T] 
is described by a p-dimensional lt6 process X(t) = (X1 (t), X2(t), ... , Xp(t)) 
in terms of the stochastic differential equations (j = 1, 2, ... , p) 

dXj(t) = aj(X, t)dt + bj(X, t) dW(t), (2.1) 

with deterministic initial conditions 

(2.2) 
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and W(t) as a unit Wiener process. The following derivations can be extended 
without any restrictions to multiple Wiener processes. 

In reliability assessment of dynamical systems we are in general not in­
terested in an exact pathwise representation of X(t), but only in so called 
weak solutions of the form 

v = E[f(X, T)] , (2.3) 

whereby J(·) denotes some real-valued function and E[·] is the expected value. 
A typical example of a first-passage problem is to determine the probability 
that the j-th component of X(t) exceeds a given barrier Xc in the interval 
[0, T], i.e. 

v = E[ I( max Xj(t) > Xc)], 
O~t~T 

(2.4) 

with I(·) denoting an characteristic function that equals one if its argument 
is true, and zero otherwise. 

When we utilize Monte Carlo simulation to evaluate Eq. (2.3), v is re­
placed by its sample-mean formula [8] 

v = E[j(X, T)] = ]:_ t j(X(i), T) 
n i=l 

(2.5) 

where X(i) (t) denotes the i-th sample path of X(t) and n is the number of 
sample paths. The quantity v is an unbiased estimator of v with variance 

Var[v] = ~ Var[f(X, T)]. 
n 

(2.6) 

The square root of this variance - the so called root mean square error - can 
be conceived as an indicator of the accuracy of the Monte Carlo estimator. 
The main concern in Monte Carlo simulation, therefore, is to obtain an es­
timator with sufficiently small error. Whereas this can always be achieved 
by simply increasing the number n of sample paths, it is rarely a rewarding 
procedure, since - as can be seen from Eq. (2.6) - the root mean square error 
of the estimator is inversely proportional to the square root of the sample 
size n. Therefore a variance reduction technique like importance sampling 
becomes mandatory. 

Since evaluating v requires weak solutions of Eqs. (2.1) only, the measure 
transformation method, based on Girsanov's theorem [16, 24], can be applied. 
Instead of Eqs. (2.1), the stochastic differential equations (j = 1, 2, ... ,p) 

dXj(t) = aj(X, t)dt + bj(X, t)(u(X, t)dt + dW(t)), 

dY(t) = u(X, t)Y dW(t) 
(2.7) 
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are evaluated, augmented by the one-dimensional correction process Y(t) 
with initial conditions 

and Y(O) = 1. (2.8) 

respectively. In Eqs. (2. 7) the component u(X, t) can be interpreted as ( addi­
tional) control force which allow to influence the structural response. Under 
certain restrictions for u(X, t), which are usually met in practical applica­
tions [24], the functional v of Eq. (2.3) is evaluated according to Girsanov's 
theorem as 

v = E[f(X, T)] = E[Y(T)f(X, T)]. (2.9) 

In other words, the control u(X, t) will change the Ito process X(t) to X(t), 
whereas this "change" is taken into account by the Radon-Nikodym derivative 

[ 
{T - 1 {T - 2 l 

Y(T) = exp - Jo u(X, t)dW(t)- 2 Jo (u(X, t)) dt . (2.10) 

The functional v of Eq. (2.9) can be replaced again by its unbiased Monte 
Carlo estimator 

(2.11) 

Whereas the mean of the estimator in Eq. (2.11) is not influenced by the 
choice of the controls - this is exactly what Girsanov's theorem states -
the variance of the estimator is affected. Hence, by an appropriate choice of 
u(X, t), this control force can be utilized for reducing efficiently the variance 
of the estimator v. 

Thereby, an optimal control u* (X, t) is defined as that control for which 
E[(Y(T)f(X(T))) 2 ] becomes minimal. By solving the corresponding Hamil­
ton-Jacobi-Bellman equation the optimal control can be derived as [11, 13] 

*(X- ) = ~ bj(X, t) 8v (X- ) 
u ' t ~ - - ' t ' 

j=l v(X, t) 8Xj 
(2.12) 

whereby v(X, t) denotes the solution of Eq. (2.3) with initial conditions X(t) 
at timet. 

When utilizing this control u*(X, t) in Eqs. (2.7), v of Eq. (2.11) will be 
an unbiased zero-variance estimator of v, as can be shown by Ito's formula. 
Closer inspection of Eq. ( 2.12), however, reveals that in order to construct 
u*(X, t) the sought solution v has to be known in advance. Indeed, we not 
only have to know v for a single set of initial conditions x at time t = 0, but 
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we have to know V and its derivatives 8v I a xi for all values of t and X( t). 
This is a drawback typical for variance reduction techniques, which can be 
characterized as methods to utilize known information about a problem at 
hand. In other words, knowing the solution allows to construct a zero-variance 
estimator, but renders Monte Carlo simulation superfluous, whereas knowing 
nothing means also that no variance reduction can be achieved [8]. 

Nevertheless, Eq. (2.12) can still be utilized rewardingly for variance re­
duction as long as an approximation v for v is readily available. Then, instead 
of the optimal control force u*(X, t), the sub-optimal control force u(X, t) 
can be constructed. The resulting estimator of v will further on be unbiased, 
but now with variance [15] 

(2.13) 

As can be seen from Eq. (2.13), the difference between the two controls u(X, t) 
and u*(X, t) is integrated over time. From this follows that the variance can 
increase with time as long as the solutions v depend on the initial conditions. 
Moreover, choosing the controls u(X, t) without taking into account specific 
characteristics of the dynamical system under investigation can even result 
in an increase of the variance as compared to crude Monte Carlo simulation. 

Solving the stochastic differential Eqs. (2.1) numerically, these equations 
are replaced by discrete time approximations. Let us subdivide the interval 
.[0, T] into m sub-intervals, such that 

0 = to < t1 < ... < tk < tk+l = tk + l:::,.k < ... < tm = T, (2.14) 

whereby !:::,.k = tk+l- tk is the length of the sub-interval [tk, tk+l]· Therewith 
the stochastic differential Eqs. (2.1) can be written - e.g. in the form of the 
stochastic Euler scheme - as 

with !:::,.Wk = W(tk+l)- W(tk)· It should be noted that for the following it 
is not necessary to write Eq. (2.15) in form of the Euler scheme. Indeed, any 
other stochastic integration scheme (cf. [13]) can be utilized. Replacing the 
k- th increment of the Wiener process by 

(2.16) 

with (k being mutually independent standard normal random variates, the 
functional of Eq. (2.3) is approximated by 
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TIME-VARIANT RELIABILITY - COMPUTATIONAL APPROACHES... 15 
+oo +oo 

V = J {m-fold) J f(X, tm) cp(() d(, (2.17) 
-00 -00 

whereby <p( ·) is the m-dimensional joint density function of the standard 
normal random variates (. 

Describing now the boundary of the area which will be out-crossed by the 
It6 process X(tz) at time tz (with l = 1, 2, ... , m) as 

g(X(tz)) = g(X((o(tz), ... , (m-1(tz))) 

= g((o(tz), . .. , (m-1(tz)) = 0, 
(2.18) 

then the most likely excitation leading to an out-crossing of this boundary is 
defined by ((tz) = ((o(tz), ... , (m-1 (tz)) which minimizes 

[

m-1 ] 1/2 
f3(tz) = {; ((k(tz))2 (2.19) 

subject to 
g((o(tz), ... ,(m-1(tz)) = 0. (2.20) 

To solve Eq. (2.19) standard techniques from the first order reliability method 
can be applied (cf. [25, 26]). It should also. be emphasized that an analogous 
formulation is given in [27, 28) for determining the mean out-crossing rate of 
randomly excited systems. 

With the above given most likely excitation ((tz), equation (2.15) is mod­
ified in such a way that 

Xj(tk+1) = Xj(tk) + aj(x, tk)l:1k + bj(X, tk)(u(tk; tz)f1k + !:1Wk), (2.21) 

in which the above utilized control u(tk; tz) is defined by 

1 -
u(tk; tz) = ~ (k(tz) (k = 0, 1, . . . , m- 1; l = 1, 2, ... , m). (2.22) 

V f:1k 

Taking into account the unlikeliness of such a modification of equation (2.21), 
the functional of equation (2.17) is evaluated by the importance sampling 
integral [8] 

+oo +oo _ 

J J - <p(() - -
v = (m-fold) f(X, tz) -- h(()d(. 

h(() 
(2.23) 

-00 -00 

The importance sampling density h(() in equation (2 .23) is defined as follows 

h(() ex exp [-~I: ((k- (k(tz))2] . 
k=O 

(2.24) 

Therewith, the likelihood ratio is given by: 
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16 C. BUCHER and M. MACKE 

- [ m-1 ] ~(() - 1 2 
-- = exp - L (k(tt)(k- 2 ({J(tt)) 
h( () k=O 

(2.25) 

It should be noted that Eq. (2.25) is a discrete version of the Radon-Nikodym 
derivative given by Eq. (2.10). 

When determining the first-passage probability in the time interval [0, T] , 
there are - according to the time discretization - m most likely excitations 
leading to an out-crossing. Weighting these excitations by <I>( -{J(tt)), i.e. 
their probability of occurrence, results in the m-modal importance sampling 
density (23, 29] given by: 

(2.26) 

For linear systems the sampling density can be improved as proposed in (30] 
or (31]. However, these methods fail, in general, for nonlinear systems. 

3. Extension to Poisson processes 

Taking into account the above shown correspondence between the mea­
sure transformation method based on Girsanov's theorem and the importance 
sampling method utilizing finite dimensional probability distributions as in 
the case of Eqs. (2.25) and (2.26), the importance sampling concept can be 
straightforwardly extended to Poisson-type loadings of quite arbitrary distri­
bution type without recurring to an extension of Girsanov's theorem as done 
e.g. in (32]. Let us assume that the time-variant reliability of a structure or 
structural element can be determined from the weak solution of a system of 
differential equations (with j = 1, 2, ... , p) of type 

dYj(t)/dt = aJ(Y, t) IJ (w(t)), (3.1) 

where the external action (or load) w(t) is modeled as a random pulse train 
(Poisson process) of the form 

q 

w(t) = L wk <5(t- Tk)· (3.2) 
k=l 

In Eq. (3.2) the quantities W k are independent and identically distributed 
random variables obeying the cumulative probability distribution function 
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Fw('I/J), q is the number of random pulses arriving at random times Tk and 
5( ·) is the Dirac delta function. The arrival times Tk are defined by 

(3.3) 

where 8j, j = 1, ... , k, are the waiting times between consecutive pulses. The 
waiting times 8j are assumed to be independent and identically distributed 
random variables with cumulative probability distribution function Fe(B). 

In Eq. (3 .1) the functions aj(-) and l'j(·) describe, respectively, the state 
of the structure and the influence of external random actions w(t). Particular 
cases of Eq. ( 3.1) are random fatigue crack growth equations 

dA/dt = cg(A)(w(t))m, (3.4) 

whereby A denotes the crack length and c, m are material parameters [33], 
or the equation of motion of randomly excited oscillators 

dXj/dt = aj(X, t) + bj(X, t)w(t), (3.5) 

with aj(-) and bj(·) as drift and diffusion terms, respectively [3]. 
For convenience, the random variables wk and 8j are represented in terms 

of standard normal random variables (i· In fairly general situations this can 
be achieved utilizing the elementary transformation (with i = 1, 2, ... , q + k) 

and (3.6) 

respectively, whereby <I>(·) denotes the standard normal integral. Having rep­
resented the excitation process again by mutually independent normal ran­
dom variates Eqs. (2.19) and (2.20) can be invoked to determine the design 
point excitations. And, consequently, Eq. (2.26) can be utilized for impor­
tance sampling- as will be shown in the following examples among others. 

4. Numerical examples 

4.1. Linear oscillator 

The principle of the above outlined importance sampling procedure is 
demonstrated firstly for a linear oscillator, described by the non-dimensional 
equation of motion 

X(t) + 2r]X(t) + X(t) = ~~(t), X(O) = X(O) = 0, (4.1) 
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18 C. BUCHER and M. MACKE 

whereby ~(t) is a zero-mean Gaussian white noise with E[~(t)~(t+r)] = b(r) 
and 'fl = 0.05 is a viscous damping coefficient. In the following we want to 
estimate the probability that X ( t) crosses up the level Xc = 4 for the first 
time in the interval (0 ::; t::; T = 50), i.e. 

v(O, x) = E[I( max X(t) > Xc)]. 
OS,tS,T 

(4.2) 

For estimating v(O, x), Eq. (4.1) is written in form of the It6 stochastic dif­
ferential equations 

dX1(t) = X2dt, 

dX2(t) = ( -2TJX2- X1)dt + J4rl dW(t). 
(4.3) 

Utilizing an equidistant time discretization with step size !:1t = T /m, the 
k-th increment !:1Wk (with tk = k!:1t) of the Wiener process is replaced by 

(k=0,1, ... ,m-1), ( 4.4) 

whereby (k are standard normal random variates. Therewith, the response 
of the oscillator is given as 

m-1 

X(t) = L ~ (k h(t- kl:1t), 0 ::; t < ml:1t, (4.5) 
k=O 

with h(·) denoting the unit-impulse response function 

h(t) = _!_ exp ( -TJt) sin (wt), 
w 

w=~. (4.6) 

For determining the control force u(t; tz) for up-crossing the level Xc at 
time tl = ll:1t, the quantities Ck(tz) in 

m-1 

""" 1 -u(t; tz) = ~ r;:-;_ (k(tz)b(t- tk) 
k=O V f:1t 

(4.7) 

have to be chosen now in such a way that, on the one hand, X(t) reaches the 
level Xc at time tl, i.e. 

m-1 

Xc- L ~(k(tz)h(tl- tk) = 0 (4.8) 
k=O 

and, on the other hand, the ,8-index 

(4.9) 
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becomes minimal. As is well known from FORM, the solution to Eqs. ( 4.8) 
and ( 4.9), respectively, are 

(4.10) 

and 

Xc 

a(tz)' 
( 4.11) 

with a ( tz) denoting the standard deviation of the response X ( t) at time tz. 
Therewith, the control is given (in its continuous form) as 

_ -/4ri Xc 
u(t; tz) = 2 ( ) h(tz- t), 

a tz 
0 :S t < tz. ( 4.12) 

In Fig. 1 the control u( t; T) according to Eq. ( 4.12) for an up-crossing of 
the level Xc = 4 at timeT= 50 is displayed. In Fig. 2 a sample path of X(t) 
is compared with a sample path of X(t) utilizing this control. Only small 
differences in the trajectories can be observed until time t = 30. From there 
on, however, the control u(t; T) becomes dominant and excites the oscillator 
clearly in its resonant frequency such that x(t) crosses up the threshold Xc 

when approaching the end of the time interval. Moreover, by comparing the 
values of the control u( t ; T) for two times t1 = 1.2 and t2 = 1. 7 in Fig. 3, 

2 

1 

h 
....., 

~ 
0 0 
1-. ...., 
s:: 
0 

0 
-1 

-2 
0 10 20 30 40 50 

Timet 

FIGURE 1. Control u(t, T) of the linear oscillator for an up-crossing of the level Xc = 4 at 
timeT= 50. 
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\ I _, 

-5 
0 10 20 30 40 50 
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FIGURE 2. Sample paths of linear oscillator without and with control u(t; T) from Fig. 1 
(T =50, Xc = 4) . 
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r:.:-

.:.; 0 
1.7 1~ ..... 

~ 
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1-< 
~ 

.:::: 
-1 6.0 0 u 

-2 
-2 -1 0 2 

Control u(h = 1.2; T) 

FIGURE 3. Controls u(t1; T) and u(t2; T) with t 1 = 1.2 and t 2 = 1.7, respectively, for 
different up-crossing times T of the linear oscillator (xc = 4.0). 

it becomes evident from the elliptically inward spiraling form that , on the 
one hand, there exists a considerable dependency between the controls and , 
on the other hand, there is a manifest periodicity of the contributions of the 
controls in time, which diminishes with increasing distance from the chosen 
up-crossing time T. 
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In Fig. 4 the importance sampling estimators (n = 103 ) of the up-crossing 
probability of the threshold Xc = 4 are compared, respectively, with the re­
sults from crude Monte Carlo simulation (solid line, n = 106) and an approx­
imate solution from linear random vibration theory (dashed line). As can 
be seen, there is an excellent agreement between the estimators from impor­
tance sampling and crude Monte Carlo simulation for up-crossing probabili­
ties greater than 1.0 · 10-5 . Beyond this value, however, crude Monte Carlo 
simulation breaks down- despite the enormous sample size. The importance 
sampling procedure, on the other hand, is capable to provide estimates for 
any absolute value of the first-passage probability. Moreover, as indicated in 
Fig. 4 by the 99% confidence intervals (cf. [7]), in case of the importance 
sampling estimators there is only a small statistical error present which is 
indeed independent of the estimated absolute value - as should be expected 
from a variance reduction technique. 

10-2 

~ 
Crude MCS (n = 106

) 

··~ ~ Appr. solution 

10-1o 

0 10 20 30 40 50 

TimeT 

FIGURE 4. Importance sampling estimators ( •) and 99% confidence intervals (I) of the 
first-passage probability of the linear oscillator (n = 103

, Xc = 4). 

4.2. Linear oscillator under exponentially distributed random noise 

As next example we investigate again the linear single-degree-of-freedom 
oscillator, however, it is now subjected to exponentially distributed random 
noise, i.e. its dimensionless equation of motion is 

X(t) + 2'f]X(t) + X(t) = 'lj;(t), X(O) = X(O) = 0, (4.13) 
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where 7J = 0.05 is a viscous damping coefficient and 'lj;( t) is the forcing term 
assumed to be a random pulse train with an exponential probability density 
function with zero mean, i.e. 

F ( 'lj;) = 1 - exp [ - A -l ( 'lj; + A) J , (4.14) 

Assuming equidistant waiting times !J.t = 0.5 between consecutive pulses, 
we want to estimate the probability that the response X ( t) reaches or ex­
ceeds the limit Xc = 15 in the time interval 0 ~ t ~ T = 50. In Fig. 5 the 

6 

4 

2 

0 

0 10 20 30 40 50 

Timet 

FIGURE 5. Design point excitation 'If;* (t) for Xc = 15 and t = T. 

determined design point excitation 'lj;*(t) for an up-crossing of the level Xc at 
time T = 50 is depicted. As can be seen, the design point excitation shows 
an oscillatory as well as non-stationary behavior. In fact, utilizing the design 
point excitation the oscillator gets excited in its resonant frequency such that 
X ( t) up-crosses the level Xc at the end of the time interval - as can be seen 
from the corresponding response x*(t) shown in Fig. 6. 

In Fig. 7 the estimated first-passage probabilities utilizing the importance 
sampling method (n = 3 · 103) and the crude Monte Carlo simulation ap­
proach (solid line, n = 107) are compared for different levels Xc. There is 
again an excellent agreement of the results of the two approaches. This can 
also seen by the small statistical error as indicated by the 99 % confidence 
intervals, which demonstrates the general - i.e. independent of the size of 
the estimated quantity - applicability of the proposed importance sampling 
concept. 

http://rcin.org.pl



TIME- VARIANT RELIABILITY - COMPUTATIONAL APPROACHES. . . 23 

15 

10 
....-. ...., 
........... 
* 5 H 

<!) 
m 
~ 
0 
0. 0 m 
<!) 

0::: 

-5 

-10 
0 10 20 36 40 50 

Timet 

FIGURE 6. Response of linear oscillator due to design point excitation 'lj; * (t) from Fig. 5 
(T =50, Xc = 15) . 
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FIGURE 7. Importance sampling estimators ( •) and 99% confidence intervals (I) of the 
first-passage probability of the linear oscillator under exponentially distributed random 

noise(n = 3 · 103
, T = 50). 

4.3. Duffing oscillator 

Given is a Duffing oscillator under external white noise excitation ~(t) 
with E[~(t)~(t+T)] = 8(T), described by the dimensionless equation of motion 

X+ 2ryX +X+ c:X3 = j4:ry~(t), X(O) = X(O) = 0, (4.15) 
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whereby rJ = 0.05 denotes a viscous damping coefficient and c: is the degree 
of non-linearity. In Figs. 8 and 9, respectively, the control for an up-crossing 
of the level X c = 2 at time T = 50 and the influence of this control on the 
deflection X ( t) of the Duffing oscillator are depicted for a degree of non­
linearity c: = 1. As can be seen, the utilized control u( t ; T) results in a strong 
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FIGURE 8. Control u(t; T) of Duffing oscillator for an up-crossing of level Xc = 2 at time 
T =50 (c = 1) . 
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FIGURE 9. Sample paths of Duffing oscillator without and with control u(t; T) from 
Fig. 8 (T = 50, Xc = 2, c = 1) . 
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amplification of the response of the Duffing oscillator such that it crosses up 
the threshold Xc = 2 near the specified up-crossing time T. 

In Fig. 10 the importance sampling estimators (n = 103
) of the first up­

crossing probability are compared with the results from crude Monte Carlo 
simulation (solid line, n = 106) for the degree of non-linearity £ = 2. As can 
be seen, there is a very good agreement between the two different estima­
tors. Moreover, and maybe even more worthwhile to be pointed out, almost 
independent of the absolute value of the estimated first-passage probability, 
there exists a sufficient confidence in the importance sampling estimators as 
indicated by the 99% confidence intervals. 
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) 
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FIGURE 10. Importance sampling estimators ( •) and 99% confidence intervals (I) of 
first-passage probability of the Duffing oscillator (n = 103

, c = 2, Xc = 2). 

4.4. Oscillator with hysteretic restoring force 

Given is a hysteretic oscillator described by the non-dimensional equation 
of motion [34] 

X+ 2ryX + aX + (1- a)Z = y'2;So ~(t), 
Z = -,IXIZIZiv-l- /3XIZiv + AX, 

X(O) = X(O) = 0, 
Z(O) = 0. (4.16) 

whereby 17 denotes a viscous damping coefficient, a is the the post- to pre­
yielding stiffness ratio, ~(t) is a Gaussian white noise with E[~(t)~(t + 7)] 
= 6"(7), and v, ')', /3 and A are adjustable parameters to describe the hysteretic 
behavior. (In the following we choose 7J = 0.05, So = (16 1r)-1/ 2 , v = 1, 
r = /3 = 0.5, a= 0.05 and A= 1, respectively.) 
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In Figs. 11 and 12 the control u(t; T) for an up-crossing of the level 
Xc = 15 at time T = 50 and its influence on the restoring force-deformation 
relation is shown, respectively. As can be seen, the control results mainly in 
permanent deformations in the direction of the threshold Xc, with the major 
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FIGURE 11. Control u(t; T) of hysteretic oscillator for an up-crossing of the level Xc = 15 
at time T = 50. 
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FIGURE 12. Sample path of the restoring force-deformation relation for the hysteretic 
oscillator when utilizing the control u(t; T) from Fig. 11 for an up-crossing of the level 

Xc = 15 at time T = 50. 
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contribution from the last half-period of vibration. It should also be noted 
that the control for the hysteretic oscillator shows thereby a substantially 
different behavior as e.g. the control for the Duffing oscillator, reflecting the 
likewise different nature of the respective dynamic systems. 

In Fig. 13 the importance sampling estimators (n = 103
) are compared 

with the crude Monte Carlo simulation results (solid line, n = 106 ) . Again, 
there is an excellent agreement between the estimators for the strongly non­
linear behavior when utilizing the stiffness ratio a = 0.05 (a = 1 describes a 
linear system), which is also implicitly depicted by the small 99% confidence 
intervals (see Fig. 13) . 
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FIGURE 13. Importance sampling estimators ( •) and 99% confidence intervals (I) of 
first-passage probability of the hysteretic oscillator (n = 103

, Xc = 15) . 

4.5. Compound Poisson process 

As next example a so called compound Poisson process X ( t) is investi­
gated , i.e. 

q 

X(t) = L \I!kH(t- tk), X(O) = 0 ( 4.17) 
k=l 

where H(-) denotes the Heaviside step function with H(x) 1 for x 2:: 0 
and H ( x) = 0 otherwise. For the ease of presentation, we assume that the 
waiting times l:lt and, therewith, also the number q of random pulses are 
deterministic. The random pulses \I! k are exponentially distributed with cu­
mulative distribution function F('lj;) = 1- exp( -'1/J/ -\) . The probability that 
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the process X(t) up-crosses the level Xc in the time interval 0 ~ t ~ q!::l.t = T 
is given by 

q-1 k 
. ~ 

P(1nax X(t) >xc)=exp(-~j.\)~ 'kkl 
O<t<T ~A • 
-- k=O 

( 4.18) 

In the following we choose q = 50 and .\ = 5. 

TABLE 1. First-passage probability of compound Poisson process for the time interval 
0 ~ t ~ T = 50 (.A = 5). 

Importance sampling method 
Level Xc Exact solution 

E[I( max X(t) > Xc)] 
09:S50 

Mean square error 

250 4.8. w-1 4.3. w-1 8.6% 
300 8.4. w-2 7.8 . w-2 19.2% 
350 5.1 . w-3 3.8. w-3 25.0% 
400 1.3·10-4 1.4. w-4 34.3% 
450 1.6 . w-6 1.8. w-6 41.7% 
500 1.2. w-s 8.1 . w-9 33.3% 

Note: Number of samples for importance sampling is n = 3 · 103 . 

In Tab. 1 the importance sampling estimators of the first passage prob­
ability utilizing n = 3 · 103 sample functions are compared with the exact 
results for different up-crossing levels Xc. As can be seen, the importance sam­
pling results show a good agreement with the exact results, although there is 
still a considerable statistical error present. The reason therefore can be seen 
in the fact, that the first order reliability method provides a relatively poor 
approximation of the first passage probability in the present case. This can 
be easily visualized by considering the sum of two exponentially distributed 
random variables w1 and 'IJ!2, i.e., 

(4.19) 

Although this function is linear in original space, there is a quite significant 
non-linearity after transformation into standard normal space by means of 

( 4.20) 

This is seen from Fig. 14. Moreover, there is not one clearly distinguishable 
most likely combination of u 1 and u2 leading to the value of z = 10. This 
causes problems when determining the importance sampling density based 
on the design point as determined from the first order reliability method. 
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FIGURE 14. Contour of z = 'lj;1 + 1/J2 = 10 in standard normal space. 

4.6. Fatigue crack growth 

As a last example a massless, homogeneous, isotropic plate of width w = 
200 with a central crack of length 2a under uniform tension loading '11 ( t) 
defined as 

q 

'l!(t) = L 'llk<5(t- tk) (4.21) 
k=l 

is investigated. The dimensionless crack growth law is given as 

A(O) = ao ( 4.22) 

where ao = 3 is the initial crack length. The material parameters c and m 
governing the crack growth are chosen as c = 1 and m= 3, respectively. The 
random pulses '11 k are exponentially distributed with cumulative distribution 
function F('ljJ) = 1- exp(-'1/J/'A) (with)..= 0.0275). 

The original nonlinear Eq. ( 4.22) can be conveniently transformed into a 
linear equation by introducing a new variable z [35] 

a 

z = J ~~=) ( 4.23) 

ao 

leading to the differential equation 

da ( )m 
dz = f(a) = 'll(t) dt (4.24) 
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which is easily integrated. The relation between the physical crack length a 
and the transformed crack length z is depicted in Fig. 15. 

The first-passage probability that the crack length A(t) exceeds the crit­
ical crack length ac = 100 (corresponding to Zc = 0.15391) is calculated by 
importance sampling. Applying first order reliability analysis reveals that the 
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FIGURE 15. Transformation from physical crack length a to transformed crack length z . 
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FIGURE 16. Importance sampling estimators ( •) and 99% confidence intervals (I) of the 
first-passage probability of crack propagation (n = 3 · 103

, ac = 100) 

http://rcin.org.pl



TIME-VARIANT RELIABILITY- COMPUTATIONAL APPROACHES... 31 

design points have only one significantly non-zero coordinate. This indicates 
that only one random load at a time is most likely to cause failure. In Fig. 16 
the estimated first-passage probabilities are shown for the importance sam­
pling method ( n = 3 · 103 ) and the crude Monte Carlo simulation approach 
(solid line, n = 5 · 108). As can be seen, there is an excellent agreement 
between the two approaches. Inspecting the 99% confidence intervals shows 
that the efficiency of the importance sampling method is independent of the 
level of the first passage probability determined - as should be expected -
for a variance reduction technique. 

5. Concluding remarks 

A generally applicable importance sampling procedure for linear and non­
linear dynamical systems under random excitations has been presented. The 
procedure allows - at least theoretically -to construct optimal, i.e. unbiased 
zero-variance estimators of the system response. Nevertheless, by utilizing 
sub-optimal control forces constructed via the solution of an optimization 
problem analogous to the one from first order reliability method, the vari­
ance of the estimators can be decreased drastically as compared to crude 
Monte Carlo simulation. This is achieved by spending additional computa­
tional effort in the determination of a set of sub-optimal controls (or "design 
point excitations") which are utilized as importance sampling mean excita­
tions . While the effort required for the computation of these controls is not 
negligible, it is primarily dominated by the number of random variables used 
for the time-discretization of the random excitation process. This is due to 
the numerical gradient calculations required for the solution of the optimiza­
tion problem. In this form , it is acceptable for a sufficiently small number of 
random variables, i.e. in significantly non-stationary or transient situations. 
The number of analyses required is not influenced by the number of degrees 
of freedom of the system. On the other hand, in the stationary situation the 
determination of the design point e~citations turns out to be trivial for some 
cases. In these cases only one nonlinear dynamic analysis needs to be car­
ried out as shown in (36]. This means that for a wide range of problems the 
suggested approach can be considered to be extremely efficient. The advan­
tages become especially clear when considering the system response in the 
low-probability regions (distribution tails) which are not accessible to crude 
Monte Carlo simulation. Finally, it should be pointed out that due to the 
application of standard concepts from FORM it is fairly easy to incorporate 
randomness of system parameters (described e.g. in terms of random fields) 
into the analysis (see e.g. (28]) . 
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