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1. Introduction 
Modem engineering materials often display substantial heterogeneity in their properties at 

scales that are similar to those at which material damage initiates. Some examples are the variation 
of crystallographic orientation in polycrystalline metals and the elastic property mismatch between 
reinforcing particles/fibers and the matrix of composite materials. The efficient and safe use of 
these materials in demanding engineering applications such as aviation, space, and defense 
structures requires detailed understanding of the effect of these material heterogeneities on stress 
and strain fields developed under loading and the resulting effect on material service lifetimes. 

Engineering analysis of materials with strong spatial heterogeneity of material properties 
poses many significant challenges, among which are the randomness of the geometry, the very 
strong gradients present in the material property fields, and the large difference in scales between 
the smallest material constituents and the material volumes used in engineering applications. All of 
these challenges make the use of standard finite element analysis difficult and computationally 
expensive, often requiring very fine meshes, and, in the case of materials with random 
microstructures, expensive Monte Carlo simulation to provide statistics of the expected response. 

This presentation describes an alternative, approximate, method for the analysis of materials 
with spatially heterogeneous material properties that makes use of well-developed tools of pattern 
recognition and statistical learning. The objective is to develop a method that can predict, without 
solution of the governing equations of elasticity, the location of large elastic stress or strain 
concentration in a heterogeneous material subject to deterministic boundary conditions. 

2. Problem Statement 
Let D c Rn be a domain occupied by a material with spatially varying elastic properties 

C(x ), subject to Dirichlet or Neumann boundary conditions, or a combination of the two types. 
The boundary conditions generate a response r( x) in the material which can consists of the stress 
and strain fields a( x) and 8( x ). The critical regions of the material are those in which a condition 
of the type 

r( X) > ~hreshold 
is satisfied. That is, locations at which the material response exceeds a threshold value. Examples 
include conditions on the allowable maximum principal stress or strain, the maximum shearing 
stress, or any other combination of stress or strain values. Typically, such a condition would be 
associated with a criterion for the onset of damage in the material. The goal is to identify the 
critical regions that are defined by 
X E Dcritical if r( X)> ~hreshold. 

3. Methods 
The problem stated above is solved in an approximate fashion by detecting patterns in the 

material property fields that are associated with the criticality condition being met. The first step in 
the analysis is to identify such patterns through the analysis of a set of training data. These training 
data typically comprise a set of randomly generated microstructures for which the response field 
has been calculated using finite element analysis so that for each element of the training set the 
criticality can be determined. 
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The second step in the analysis consists of identifying patterns in the set of training samples 
in which the response is critical. This step can be accomplished by a variety of data mining 
techniques and the two used here are Principal Components Analysis and analysis by the Sobol' 
Decomposition. At the end of this stage of analysis a set of basis vectors are established that can be 
used to represent the spatially varying material properties of the material. 

Finally, using the training samples and the new basis vectors, classifiers are developed that 
predict, based on a projection of a random microstructure onto the new basis vectors, whether the 
particular microstructural configuration is likely to lead to critical material response that may in 
tum lead to damage initiation. The classifiers, either support vector machines or decision trees [ 1 ], 
can be implemented in a moving window algorithm to extract D criticat from D. The success of the 
approach can be evaluated by assessing the number of true positive, true negative, false positive, 
and false negative results. In an engineering context, false negative results, which falsely indicate 
safety, are non-conservative, and the classifiers can be trained to avoid such errors. 

4. Example Applications 
This presentation describes the application of the above methods to two example application 

problems. In both cases the criticality criterion is based on maximum principal stress/strain and the 
material is assumed to remain elastic when subject to uniaxial extension. The first example 
considers a two dimension fiber-reinforced composite material [2,3] and the second example 
considers a two dimension polycrystalline material in which the grains have varying 
crystallographic orientation [ 4]. Results in both cases are good, with high true positive and low 
false negative rates. Figure 1 shows an example result for the polycrystalline case, in which the 
classifier broadly predicts the locations at which the stress in the material is highly elevated. The 
black pixels indicate critical locations, and panel (b) shows the prediction while panel (c) shows the 
'exact' result obtained by finite element analysis. 

:· . . ... ::: .-.. . ·: 
:•. ·:· . ··: ·······ot· .:::· .. . ; . :· ::: ........ :·:: •....•. :· : .. ... ~ . • ••• •• • •••• • • • •• • ••• . ..... ·: : .. <A .. • ... ! • • • • 
• • • •• • • •• . . . . . . .. :· . . •; :··· ... :···: . . . . . . ....... . 

(a) ori entation (b) Prediction (c) Exact result 

Figure 1: Example classification of polycrystalline microstructure. Orientation variation produces elastic 
property variation (a), classifier predicts location of stress concentration (b), finite element analysis provides 
validation result for classifier prediction (c). 
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