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1. Introduction 
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Ancient masonry structures are often characterized by a chaotic distribution of stones in the 
walls. In other cases, the shape of the stones and their disposition are such that the structure is 
called quasi-periodic. In these circumstances, it has been recognised that the best way for defining 
the mechanic characteristics of the structure is the stochastic one, through the use of the random 
fields. In fact, the deterministic homogenization, often used for the classical periodic masonry 
structures, fails for chaotic and quasi-periodic masonry structures and the stochastic 
homogenization must be considered. In the literature, the stochastic homogenization is referred to 
the first order statistics, both for the mechanic properties and for the response quantities 
(displacements and internal forces). It can be applied by using some different approaches: the 
stochastic convergence approach [1], the polarization tensor approach coupled with the Hashin­
Shtrikman variational principle [2] and the concentration tensor approach coupled with the Eshelby 
equivalence principle. Some approaches in literature consider higher order statistics, but they 
cannot be considered as homogenization approaches. They are referred as Stochastic Finite Element 
(SFE) approaches; the most used are: the stochastic perturbation methods [3] and the series 
expansion approaches, among which the most known is the Karunen-Love series method coupled 
with the polynomial chaos approach [4]. 

In the present work a stochastic homogenization approach based on the second order statistics 
is presented. It is founded on the extension to the second order analyses of the Moving Window 
Method (MWM), that has been used in the first order stochastic homogenization approach [1,5]. In 
particular, the extensions of the Voigt and Reuss limits and of the Hill theorem will be considered. 

2. Basic formulation of the first order stochastic homogenization 

Under the assumptions of stochastic homogeneous and ergodic medium, the average elastic 
constitutive equation can be written as: 

where E[( )] indicates the mean of ( ), while O"ij, cij and Cijki are the stress, strain and stiffness 

tensors. The classical homogenization approach searches for that ideal materials for which the 
following relationship holds: 

(2) E[O"ij(x)]=CJ~/E[cij(x)] 

If the strains are assumed constant, cij ( x) = CJ0 >, then eq.'(l) gives 
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CJ~l being the Voigt interpretation of the homogenized stiffness tensor. On the contrary, if the 

stresses are assumed constant, a iJ ( x) = a~o) , then 

D iJkl being the point compliance tensor and C~~l the Reuss interpretation of the homogenized 

stiffness tensor. The Hill theorem ensures that jc~~l l ~ jc~~J I ~ jc~~l l, the equality sign being strictly 

verified only when the reference volume of the structure is infinite. 

For two finite reference volume n, < n 2 ' indicated with c~~;O;) and cg;n;) the average stiffness 

tensors obtained with constant strains and stresses, respectively, then it has been shown that the 
following fundamental relationship holds [6] : 

(5) 

This last relationship is fundamental in the estimation of the homogenized stiffness tensor in terms 
of mean values. An effective approach for the evaluation of c \a,O;) and c (b,O;) is the MWM yk/ ykl • 

3. Proposed approach 

The aim of the present work is the extension of the result summarized in the previous section 
to the second order statistics. This means that one will work in terms of the correlation function 

(6) Rb~J (x2 -x,) =E[ C iJkl (x,)Cmnpq (x2 )]-E[ C iJk' (x,)JE[ Cmnpq (x2 )] 
mnpq 

For example, in these terms, the homogenized stiffness tensor will be that tensor C~~}l satisfying 

the following relationship: 

(7) Rbal ( x2 - x1) = Rb~;hz)l ( x2 - x,) Ri~l ( x2 - x,) 
mnpq pq 

that is an extension of eq.(2). In a similar way, it will be shown as the results given into eqs(3-5) are 
extended to the second order statistics. 
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