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Soren R.K. Nielsen
Aalborg University, Aalborg, Denmark

u(0,t) u(L,t)

|- -
H N H
<+ 4 >
j /
z,w Ty—» Iyu
q1

y,v Q2

4" 4|,
L

Figure 1. Cable in static equilibrium configuration.

Cable systems are of great interest in a wide range of applications in civil engineering to
supply both support and stiffness to large structures. Typically, cables are used as support of cable-
stayed bridges, masts and TV-towers are characterized by a sag-tochord-length ratio below say
0.01, which means that the angular eigenfrequencies for the in-plane eigenvibrations w2, Wy,.. .,
and the out-of-plane eigenvibrations wi,ws,... are pairwise close. With reference to the
coordinate system defined in figure 1 the components of the support point motion in the y and z
directions merely introduce additive load terms in the modal equations of motion of the cable,
whereas the chord elongation u(L,t) —u(0,t) along the x-axis causes additional parametric
loading terms in the modal equations of motion, which may cause significant subharmonic and
superharmonic responses. The chord elongation is conveniently described by the following non-
dimensional parameter of the magnitude 1

M e(t) = %(u(L,t) —u(0,1))

where EA/L denotes the axial stiffness and H is the pre-stressing force. Even though the
excitation only affects the in-plane motion, stable out-of-plane displacements may be brought
forward by non-linear couplings in both harmonic, subharmonic and superharmonic responses.

When the chord elongation and hence €(t) is harmonically varying with the ep and the
angular frequencies ( stable stationary periodic motions exist for specific frequency ratios w/wi.
Figure 2a shows the trajectory of the midpoint of the cable for subharmonic response of order 2 for
w/wi =2, As seen, the in-plane modal coordinate go(t) is rather small and harmonically moving
with the same frequency as the excitation, whereas the out-of-plane coordinate g;(t) is large at
subharmonic resonance with a frequency equal to half the excitation frequency. The stable
trajectory is brought forward by a phase locking between the in-plane and out-of-plane components.
However, in reality the chord elongation is narrow banded stochastic rather than harmonic varying,
driven by the narrow-banded random response of the supported structure. In this case the
subharmonic response of the cable changes dramatically, qualitatively and quantitatively, no matter
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Figure 2. Subharmonic response of order 2. a) Harmonic varying chord elongation. b) Stochastic
chord elongation.

how small the bandwidth of the excitation is. As shown in figure 2b, the in-plane and the out-of-

plane components are coupled forming a elliptic like trajectory with slowly varying inclination and
magnitude of the semi-axes.

The response is defined as chaotic with probability one, if two realizations with close initial
values exposed to the same but arbitrary realization of the chord elongation process deviate
exponentially with time. The exponential growth rate is measured by the Lyapunov exponent,
which here is estimated numerically by the algorithm of Wolf et al. Chaotic behaviour occurs for
sufficiently large standard deviation of the excitation process. In the paper stochastic chaotic
response is investigated for subharmonic response of order two, and superharmonic response of the
orders 3/2 and 2. It is demonstrated by means of Monte Carlo simulation that in all the indicated
cases the tendency to stochastic chaotic behaviour is increased for increased standard deviation and
increased bandwidth of the excitation process is increased. Further, the magnitude of the out-of-
plane displacement is also dependent on the bandwidth, and ceases completely above a certain
critical bandwidth parameter. Finally, it is demonstrated that stochastic excitation processes with
the same auto-spectral density function, but different higher moments provide qualitatively identical
stochastic ordered and chaotic responses, i.e. the dramatic influence of the stochastic excitation on
the response is basically caused by the second order moments.
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