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1. Introduction

The problem of the stress distribution and mode of deformetion of
notched bars undergoing temsion is rather well elaborated for plane
strain and plane stress conditions only. For bars with intermediate
thickness, in which the truly three-dimensional state of stresses
occurs, thers arise such difficulties in the the;:retical analysis
that only the kinematical approach giving the upper bound on the
load factor is available.

If the bar is sufficiently thick the plane strain complete solu-
tion is available, provided the shoulder ratio c¢/h is sc large, that
the boundary of the extended slip line field liee entirely within
the contour of the bar [1]. If, however, the shoulder ratio is to
small thie complete sclution is still not known and only the upper
and lower bounds on the load factor may be obtained.

The problem on how thick a bar must be before a plane strain solu-

tion is appropriate for a V-nothed bar was experimentally investiga-
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ted by W.S. Zhukovsky [2,3] and W.N. Findley and D.C. Drucker [4].
The same probles for various rounded notches wae studied in authora
previous paper [5]. All experimental results demonstrate that the
limit load computed for perfectly plastic material has real signifi-
cance for ductile metale. The experiments bring out clearly that the
plane straia in a notched specimsn requires the thickness b of the
bar to be seversl timee larger than the width h in the narrowest
cross-section. i: was found, however, that the required A = b/h ratio
depends notably on the shaps of the noth.

In the present paper upper bounds on the load factors for notched
bars with intermediate thickness and small shoulder ratio are calcu-
lated and compared with experimental results. Two types of notches
are investigated, namely variocus rounded notches and rectangular not-
ches. Five sets of specimens of aluminium alloys were tested. It was
found that the yield point load generally coincides with its theore-
tical upper estimate. However, the influence of the notch geometry
and the ductility of the material is clearly visible,

2. Experimental technique

A universal hydraulic testing machine with ordinary pulling grips.
was used in all tests. In order to avoid the possible bending in the
xy-plane of specimens with large c/h ratio their fitting heads were
machined in the manner shown in Fig. 1.

Deformations were measured by means of a mechanical extensometer
with 0.01 mm division diel gesuge and length ranging from 40 mm to
60 mm depending on the shape of the notch and dimensions of the spe-
cimen. In order to minimize the effects of possible slight deviations
from symmetry, causing bending in the xsz-plane, two extensometers
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were applied on opposite surfaces z = ¥ b of the specimen as shown
in Fig. 1. Elongations were calculated as the mean value of readings -
of both extensometers. It was found that such measuring technique
assures good reproducibility of experimental results. The load-defor-
mation curves thus obtained display regular characteristics.

Dtpe:ﬂiné on the material of the bar and the shape of the notch
the load-elongation diagrame displayed different behaviour. Typical
cﬁrns ere shown in Fig. 2. The atraight initiel portion QA of each
curve corresponde to the fully elastic state of the bar. The slight
curvature of the disgram above A is connected with the growth of the
plastic zones, while the elastic central part of the narrowest cross-.
section assures small total elongation. Unrestricted plastic flow,
which should be identified with the yield pcint load, begins at the
plastic zones meet on the axis of symmetry. This moment is clearly
visible as the poin} B on the curve 1. However, often the moment in
which the entire cross section reaches fully plastic state is hardly
visible /see curves 2 and 3/. In such cases conventional definitions
of the yield point load were employed. If the fully plastic portion
of the diagram has slight curvature, the most convenient definition
of the yield point load is to identify it with the point B of inter-
section of the extrapolated smooth portion of the diagram as shown
on the curve 2. If, however, the curvature is considerable, as in the
case of the diagram 3, the yield point load has been identified with
the point B at which the tangent modulus reaches the value 0.3 tancC,
where ol is the angle which makes the initial straight portion of the
diegram with the elongation axis.

3. Theoretical upper bounds on the yield point load

Let P® denotes the unknown true value of the yield point load. An
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upper bound P, on P* mey be found bty equating the work done by P to
the internal dissipated energy for any kinematically edmissible defor-
mation mode, considered as plastic only [6].

The yield point load factor of the notched bar will be defined as
the ratio £ = P'/Po, where P, = Bkbh is the yield point load of the
smooth bar with constant cross-gection area 4bh. The upper bound on
T is equal to

fu = Pu/Poq /301/

Fig. 3 shows four different kinematically admissible mechanisms
of plastic collapse of a bar with circular notch. It is evident that
these collapse modes can be also applied to the upper bound estimate
of the yield point load of bars with another shapes of notches. All
formulas for upper bound on fu given in this and following asectiona
have been calculated by assuming the Tresca yield criterion.

Mechanism I represents the slip-line solution (71 for plane strain.
In plane strain conditions / A = b/h == oo/ it consitutes the complete
solution, provided the shoulder ratio 2 = c/h is so large that the
boundary of the extended slip-line field lies entirely within the
contour of the bar. It can be, however, easily verified that all kine-
matic conditions do not change if the shoulder ratio 2¢ = ¢/h is sma-
ller than required by the theory and if the A = b/h ratio is finite.
Thus the slip-line solution may be treated as kinematically sdmissi-
ble deformation mode for bars with intemdiata ¢/h and b/h ratioe,
giving for such bars an upper bound estimate on the unknown true value
of the yield point loed.

Mechanism II [8] contains a simple shear plane shaded in Fig. 3.
The upper part of the bar above this plane moves as a rigid body in
the direction parallel to the shear plane, while the lower part msy
be mssumed to be immovable. The lowest value of the upper bound on
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the yield point load is obtained if the shear plane makes an angle
of 45° with the axis of the bar. The upper bound on the load factor
is independent on the A = b/h ratio and is equal to.

el = 132, /3.2/
where ¢ = c/h. Formula /3.2/ is valid for all shapes of notch.
It will be shown later that /3.2/ gives the bast upper bound for
sufficiently large A and small ¥,

Mechanism III [9] consists in a eimple 45° discontinuous rigid
blocks motion as shown in Fig. 3. For majority of notch shapes, among
them for circuler and V-shaped notches this mechanism gives the fol-
lowing upper bound on f

£ = 4 I{-A. /3.3/

If, however, the narrowest part of the notsh is formed by two straight
lines parallel to the axis of the bar, as for example in the case of
a rectangular notch /Fig. 1/, and if 2e denotes the length of this
straight bottom part of the notch, the formula for the upper bound
takes the fora.

£1%x 4 +£Lﬁfééz. /3.4/

where [3 = e¢/h is a parameter depending on the length 2e.

Mechanism IV represents simple shearing along a discontinuity plane
making an angle of 45° with the axis of the bar. The shear plane is
shaded in Fig. 3. This mechanism gives the best lower bound on the
load factor for small A = b/h. Since the shear area depends on the
shape of the notbh the upper bound on the load factor fi[;v has to be
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computed for each particular notch.

Let us consider now an important case of notched bars approaching
to the plane strain conditions A 31 but heving small shoulder ratio
2€ = ¢/h. For such bars not only an upper bound on f given by mecha-
nism II may be obtained but alsc a lower bound from an appropriate
statically admiesible stresa fieid can be found. Lower bounds for a
rounded notch and a rectangular notch may be obtained from the fields
shown in Fig. 4. Let us consider a bar with rounded notch of a radius
a snd small shculder width ¢ /Fig. 4a/. We can always find such
redius a® of a circular nctch for which the extended slip-line field
calculated in the manner shown by Bishop [1] will lie entirely within
the contour of the bar considered of radius a and shoulder width c,
as shown in the figure. Thus assuming the material outside the slip-
line field to be stress-free we obtain the lower bound f; on the load
factor to be equal to the actual load factor of a bar with a notch of
a redius a®. The seme technique msy be applied for different shapes
of notches. Fig. 4b shows a bar with rectangular notch of length 2e
with inseribed slip-line field corresponding to another length 2e*.

4. Upper bounds for bars with a circular notch.

Let us consider now a bar with a circular notch of a radius a
/Fig. 5/. The shape of the notch is characterized by the parameter
4 = a/h. Thus the yield point load will be determined by three inde-
pendent parameters

0 /U=a/h/ seo, 0€/A=Db//< o=, 1% /H=c/h/<L°.
Depending on the values of these parameters the best upper bound on
the yield point load factor f will be furnished by one of the mecha-
nisms shown in Fig. 3. For a given value of the parameter M the

best kinematically admissible collapse mode will depend upon values



-lw

of both remaining parameters 3¢ and A . Fig. 5 shows in the J,A
plane regions corresponding to various collapse mechanisms for the
particular value M = 0.6. Similar diagrams may be easily obtained
for any arbitrary value of u. Thus all formulas given below will be
written for an arbitrary.

The region I correaponds to the slip-line mechanisms I, and in this
range of 2¢ and A the lowest upper bound on the load factor may be
calculated from Hills [7] formules

/1 +u/ N+ Y for U = 0.263,
£l = /4.1/

The upper bound on f in the region II, for which the mechanism II
ie appropriate, will be determined by /3.2/.

In the region III, where the mechanism III gives the lowest of the
upper bound, the formula /3.3/ for £, holds.

Much more complicated form take the formules for fu in the region
IV corresponding to the collapse mechanism IV. This region is divided
inte tbree subregions IVa, IVb end IVe. In each of these subregions
the expression for ru takes a different form, because the shaded area
in Fig. 3 cannot be described hy one general expression valid in all
three possible geometric configurations.

Thus in the field IVa we have

ftI}V& = 3 /i _g/ +!‘£[| + U/ ..q{,/]. /4.2/

The field IVb corresponds to the following upper bound

I‘i’b

2
fa x - ﬂ[‘mu

- pz arc °°3£1"V(2P + 1 =)k~ 1)_‘



-/1+ p-;WV/zp v 1= R//H-17 . /4.3/
In the fieid IVc we obtain

f‘I;"'-‘- =1+ M- é W.lz - )2 -gf are cos -h-&f-ﬁ--?‘-f . /4.4/

The equations of the linec ceparating all six regions in Fig. 5

are as follows

line equa“ion in the £, A coordinates / U is a parameter/
K=2/1+ /It + 5/ =1 for U = 0.26)
AB ¥
Jt=2/1.+%':-p/eqr/2-1-%/ -1 for [ < 0.26
) A =%[/1+lu/ W‘*,l;/"'] for W > 0.263
M%{‘g -F/gg'?z-i-%/] for | < 0.263
BD 3t=1+v-§:'}\
V2" 42 T,
% g AN - uh v pn -]
-
I
DE oo Am2plr s pn -/
A-2
EF }f:l-l-}.l
FH ' A=W
2 v
7t=3{—.1:—r{qr—€l—-}.lzarccos}l'W2‘u+1-Jf//}?-'l/—
EK
-/1+p-;e/'l//ap+1-a{//st-v]
FK 3f=1+H-VP2-/'12
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5. Upper bounds for bars with a rectangular notch

The analysis for bars with a rectangular notch /Fig. 6/ is much
simpler than in the previous case. The shape of the notch is characte-
rized by the parameter f3 = e/h. The yield point load depends upon
three independent parameters

0O=/p=e/M/=1, 0€E/A=b// =, 1</ =c/h/=s>,

Fig. 6 shows in the 3¢, A plane the regions in which particular
mechanisms of plastic collapse froa Fig. 3 give the lowest estimsms
on the yield point load factor. Each region is marked by a number
corresponding to the number of the respective mechanism. Fig. 6 is
drawn for a particular value of the parameter 3 = 0.24. For other
values of 3 the general picture of the diagram does not change, the
only difference being in the change of positions of the points B and D.
The trajectory of the point B is marked by deashed line. Small circles
show the positions of B for various values of 3. Point D moves along
the A -axis, its ordinate being A= .

In the field I the best upper bound is connected with the slip-line
mechanizm. In the contrary to the previously diacussed case of a cir-
cular notch, the value of the upper bound cannot be now expressed in
closed form, aince the plans atra.'_m solution can k3 obtained only
numerically. Diagram in Fig. 7 represents the yield point load factor
$/B/ obtained from the plane strain solution for different values of
the parameter (3 . Thus the value of the upper bound in the region I
is constant for a fixed

fa= PN, /5:1/

and may be obtained from Fig. 7.
The upper bound on £ in the field II, corresponding to the collapse
mode II, is determined by /3.2/.



In the field III, where the mechsnism III is appropriate, the best
upper bound can be calculated from /3.4/.

In the field IV, in which A<f3 , or in other words e >b, the
mechanisa IV gives obwiously t:v = 1.

The lines separating regions in Fig. 6 have the following equations
in the ¢, A coordinates

line AB 2 =29p/ -1,
line BC V2 /A- 8/ - aA[9(p- 1] = o,

line ED Jhn’?ﬁiiﬁf,

line DE A=p.
6. Experimental results for bars with circular notch

Two sets of specimens with circular notch were tested. In each set
the }l-mmur describing the shape of the notch had a constant
value. The parsmeter A = b/h was also constant in each set. The only
parsmeter varying in a particular set of specimens was the shoulder
ratio M= c/h.

Although the theoretical upper bound snalysis presented above
refers only to the yield point load, in the present experiments not
only the yield point loeds but also the ultimate loads were recorded,
because they can furnish valuable informations of great practical
importance.

Fig. 8 shows some of the initial portions of the nominal stress
versus elongations in 40 mm diegrams for the firast series of speci-
mens with a circular notch. The shape-parameter was equal [ = 0.6
and the thickness-parsmeter was A = 2, The material was the PA-1
aluninium alloy /according to polish standarts/, containing 1.0 ¢
1.6 % of mangsnese. Arrows indicate the average yield point stresses
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in the minimum section of the bar™.

The relation between the observed yield point average stress and
the ratio 2¢ is shown in Fig. 9 together with the theoretical curves.
The upper bound curve was obtained according to the solution presen-
ted in Fig. 5. It is readily seen that for A = 2 the best upper bound
on £ for bars with X<2.139 is given by the collapse mechanism II
and formula /3.2/. For X >2.139 the slip-line mechanism I is appro-
priate. For chosen value }J.= 0.6 the formula /4.1/ leads to £ = 1.570
in this range. Since both mechanisms I and II are valid also in the
plane strain conditions it seems to be interesting to compare experi-
mental results with the lower bound on f obtained for the plane strain
conditions in the manner shown in Fig. 4a. For 3 = 2.62 the lower
and upper bounds for plane strain coincide.

The experimental curve in Fig. 9 shows that the actual yield point
loads are alightly greater than the theoretical upper bounds calcu-
lated for Tresca yield criterion. The ultimate nominal streas Pln./Fo;
where F is the area of the narrowest cross-section of the bar, dis-
plays elso considerable increase with increasing value of the 2€ = ¢/h
ratio. It is interesting to note that for J¢>2.62 the ultimate stress
has almost constant value. The ratio of ultimate stresses for bare
with 2€ = 6 and 3= 1 /unnotched bar/ is equal to 1.37, while the
analogous theoretical value for yield point loads is £ = 1.57.

In the second series of specimens with circular notch all dimensions
were the same as in the first set except the thickness 2b = 10 mm.

Thus the thickness-width ratio was equal to A = b/h = 1. The mater-
jal was the PA-2 /2.0 + 2.8 % Hg, 0.2 + 0.4 % Mn/ aluminium alloy.

Fig. 10 shows the initial portions of the nominal stress versus
elongation in 40 mm diasgrams. The yield point loads were obtained in
the manner shown in Fig. 3 = curve 3. The relation between thus obta-
ined yield point nominal stress Ppl/ro and the shoulder ratio € = ¢/h

® A1l dimensions in figures are given in milimeters.
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is shown in Fig. 11. According to Fig. 5 the theoretical upper bounds
on f for bars with A =1 and 2 %1.707 will be defined by the
collapse mechanism II and formula /3.2/ as in the previous case. For
2¢ > 1,707, however, the collapse mechanism III and formula /3.3/ are
appropriate, from which the value £, = 1.354 was calculated. The
theoretical upper bounds are shown in Fig. 11 by deshed lines. As in
the previous case the actual yield poiat stresses are slightly gre-
ater than their theoretical upper estimates. The ultimate nominal
astress Pm/Fo curve displays similar behaviour as the yield point
atress Pplﬁ‘o curve. For M>2 the ultimate stress has almost constant
value, which is approximately 1.18 times larger than the ultimate
stress for an unnotched bar /2€ = 1/.

T. Experimental results for bara with rectanguler notch

Three sets of rectagularly notched specimens were tested. The
3 = e/h - parameter describing the shape of the notch was the seme
for all specimens belonging to one set. Each set of specimens was,
however, characterized by another value of . The paremeter A=Db/Mh
was also constent in each set. The only parameter varying in a parti-
cular set of specimens was the shoulder ratio 2£ = c¢/h.

In the first set all specimens were characterized by the parameters
A = 2.00 and J3 = 0.12. The material was PA-1 aluminium alloy.
Fig. 12 shows initial portions of some nominel stress - elongation
on the base 40 mm diagrams. The method by means of which the conven=-
tional yield point stresses were obtained is shown on each curve. The
best upper bound for J€=2.25 cen be obtained from the mechanism II.
For 2€>2.25 the upper bound connected with the mechanism III /see
Fig. 6/ is constent and has the value f = 1.64. Theoretical upper

bounds on yield point stresses calculated for various 2€ are repre-
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sented by dashed line in Fig. 13. The experimental yield point stres-
ses Pplfro are slightly greater than their theoretical upper estimates.
The ultimate average stresses Pnazﬁ'o also display considerable incre-
ase with increasing 2¢ for emall values of 3¢ and reach practically
constant value for 2= 3, the ratio of this maximum value to the
ultimate stress for an unnotched bar /2€ = 1/ being 1.42.

The mate:;ial used in the two last sets of specimens was the dura-
luminium PA-6, having much worse ductility than materials used in the
tests.

Fig. 14 shows initial portions of the nominal stress - elongation
diasgrams for some specimens characterized by ﬁ =0.08and A = 2.50
and various values of 2€. The experimental Pplno curve lies below
the theoretical upper estimates on the yield point load shown by the
dashed line in Fig. 15. Since three specimens were machined from
another stock of the material, the experimentel results for them are
marked by triangles. For J€>2.65 the upper bound on the yield point
load factor given by the collapse mechanism III is equal to £, = 1.85,
whille the experimental value calculated for 2€ = 9.6 is much smaller
and equals only 1.54. The ultimate nominal stresses me/Fo for large
3¢ are only 20 % larger than ultimate stresses for the smooth bar
/¥ =1/,

In thg last series of specimens the parameters j3 = 0.24 and
A = 5,00 have been choosen. The yield point stresses obtained from
the nominal stress - elongation diagreams /Fig. 16/ are also this case
' smaller than their theoretical upper estimates shown in Fig. 17 by
the dashed line., For 3¢ = 9.6 the actual yield point stresses are
1.65 times larger than analogous stresses for 3¢ = 1, while the
corresponding theoretical ratio obtained using the upper bound techni-
que is equal to 1.83. The ratio of ultimate nominal stresses mei‘o
for bars with € = 9.6 and 2€ = 1.0 has the value 1,38,
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8. Concluding remarks

Experimental results demonstrate that the sgresment between the
theoretical upper estimates of the yield point loads and their values
is quite satisfactory for aluminium alloys displaying good ductility.
For less ductile materials PA-6 /duraluminium as received/ the actual
yield point load is remarkably smaller then the theoretical estimate.
The difference between theoretical and experimental results for PA-6
alloy depends on the shape of the notch, being approximately 10 % for
S =0.24 and 17 % for f3 = 0.08.

It is interesting to note that the ultimate nominal stresses
Ppay/F, increase with increasing 3¢, until at a certain 2€ reach
their maximum value. For atill larger 2€ the ultimate stresses do
not change. The ratio of this maximum value of the ultimate stresses
and the ultimate stresses for a smooth bar /H = 1/ is for all tested
materials and shapes of the notch much smaller than the analogous
ratio for yield point nominal stresses. The less ductile is the mate-
rial and the sharpest is the notch the greater is the difference
between both ratioa.

References

1. J.F.W. Bishop, On the complete solution to problems of deformation
of a plastic-rigid material, J. Mech. Phys. Solids, vol. 2,

1953, pp. 43 - 53.

2. W.S. Zhukovsky, Deformations and stresses in plane notched bars,
/in Russian/, Problems of Strength in Machine Design - ser. 2,
Academy of Sciences USSR, Moscow 1959.

3. W.S. Zhukovsky,,Strength of plane notched bars with arbitrary
thickness, /in Russian/, Strength Analisis - ser, 9, Mashgiz,



4.

5e

8.

T.

9.

- 15 -

Moscow 1963, pp. 231 - 252.

¥W.N. Findley, D.C. Drucker, An experimental study of plane plastic
straining of notched bars, J. Appl. Mech., vol. 32, 1965, pp. 493-
=503.

W. Sscsepiriski, J. Miastkowski, Experimental analysis of plastic
yielding of notched bars, /in Polish/, Rozprawy Iniynierskie

vol. 13, 1965, pp. 637 - 652.

D.C. Drucker, H.J. Greenberg and W. Prager, Extended limit design
theorems for continous media, Q. Appl. Math. vol. 9, 1952,

pPp. 215 = 389,

R. Hill, The plsstic yielding of notched bars under tension,
Quart. J. Mech. Appl. Math. vol. 2, 1949, p. 40.

¥W. Prager, P.0G. Hodge, Theory of Perfectly Plastic Solids, J. Wiley
Inc., 1951, pp. 215 = 216.

D.C. Drucker, On obtaining plane strein or plane stress conditions
in plasticity, Proc. 2nd U.S. Nat. Congr. Appl. Mech.- 1954,

pPp. 485 - 488,



Y
/

| Gauge length

Fig1

P/,
kG/mm?

lana,=03 anx

by

Al [mm]
Fig 2







9 b1

s




A=b/h[N

|y A e
22+
R @
2 e 2h
B [
NI @
10 E 2
® [e
() — g
. ——————
05} F H
aﬂ K | 1 1 L [y L
10 12 14 16 18 20 22 24 26 28 30
o 2=c/h
Fig §
A=bh A M
o5 £ @ F-9(B)
% /,&;0 (B=e/h)
-~
4.0"“ F //
2h |, ﬁ-%/
- ; :
— [ praz - rajectory of the point B
c
E
1 1
40 45 S50

2=c/h



F=p(B)

—

15 \\
410 .\__— O
o Calculated points
a5
| i 1 1 1 1
0 02 04 06 g 10 12 14 16 B=e/h
Fig 7
P/Fy
k6/mm? | A=b/h=200  p=a/h=060  x=c/lvariable)
" Maerial: aluminium

ﬂ"ﬂoﬂ, PA1
. e (Al Mn1)

g 7 Elongation scale
Al mm
l 00

x=30 Iar-.?.{} 12:—14 x=12 12:—1*.0
UJ; o ol wF Peam




o

kG/mm?

&Tmm bound Fw- p!ane sirain bar

|
8 ]
| A=b/h=p0p |Material: aluminium alloy
o Experimental ,camru;i ~a/h=060 PA1 (Al Mn1)
9 |r
|
|
1 2 262 3 4 5 6
F g x-c/h
(g
Plfs
KGm® | A=bjh=100  B=a/h-060  a~c/h(vriable)
1% Material: aluminium =
alloy PA2
(AlMg3) 2b-1)

12

L Ll

W7 -

7
fe

Elongation scale
Al mm

Fig 10



P/k
k6/mm?

1%

pEEIFf
m —
2 2h=1)
= 2b=10
Pulh 5
0 T e
’RL r bound Por plane strain bar
6 Mat:aluminium alloy
A=b/h=100 PA2
"o Experimental points p=0/h=060 (Al Mg3)
2 -
| | 1 =8 L L
1 2 3 5 6 8 3 10
Fig 11 e
A=b/h=20 B=e/h=012 x=c/h (variable)
mmu agqm:mum
Bt
_d""’ 2
%




o]
KG/mm?
10 z /‘/- }
W7 Lower bound Por plane strain bar o
o Experimental poinls g b ;' !
Mat : aluminium g:g;ﬁ:ﬁf‘,_,ﬂ ] 2L %
(I_HUQ PA1 :E:
0 1 1 1 1 | | Nl
1 2 3 4 5 6 T 8 9 10
x=c/h
Fig 73
PR F :
kemm? [ A=b/h=25 B-e/h=008 %~=c/h (variable)
4azr Material: aluminium 3
i alloy PA6 i .
o ; - {Afd";ysMng § |22
) /A"O/ T
24 : .
gl
2 Elongation scale
12— Al(mm)
~ . | S—
s[[x=302 [x=204 Jx=133 Fa=121 f2=100 ¢

Fig 14



. \A/fo
7
2 (Lamr bound Ror plane strain bar
20
A o Experimental points
A=b/h=250 .
0 PB=e/h=008 Mat.: aluminium
alloy PA6
_l 1 | .
1 2 3 4 5 6 7
Fig 15
, _
Ke/mm T A~6/h=500  p-e/h=024 %=c/h(variable)
a m&'naf afunumwn i th=5
WrArs it &
0 PP fAICU MQ )
-
"l
12 [~ -
B Elongation scale
L Al {mm)
6 #=3M Jx=133 Jx=100 —
0 005

Fig 16




k6mm?

40

Fig 17

i
|
!
I Bax/Fo
= = bound ———
| e -
/ / A | Pulk
/ z 5" |
s ‘/ |
/)-/ Lower bound For plane strain bar -
y | 2h
o Experimental points | |
A=b/h=500 | o |®
p-e/h=024 1 L
| | Materval: aluminium alioy PA6
] ] - ! L] | ] | |
? 3 a 5 6 7 ] 9 10





