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ON MOTION OF THE ROTOR

IN FLEXIBLE NONLINEAR ZZARINGS

Agnieszka Muszyiiska

1. Introduction. llotion equations of the system.

The high speed rotors represent main and particularly impor-
tant part of the machines of the rotor type, which have most
various applications in technology. When ihe machines of this
type operate at high speeds considerable centrifugal forces
arise which can produce detrimental ané frequently even dange-
rous vibration of the whole machine system. Sesides the forced
vibration discussed above, rctors can be subjected the other
ones, caused by internal friction, nydrodynamic friction in
bearings, aerodynamic friction of medium, and in case of & cen-
trifuge caused by motion of liquid having free surface at the
tanx. Those vibrations are of the self-excited character and
the frequenties of them are near to freguency of the rotor
free vibration. To prevent vibration effectively it is neces-
sary to solve a lot of problems associated with the dynamics
of rotors. Because of complexity of these problems many simpli-
fying assumptions are introduced. For instance, instead of the
actual physical system, a certein mechanicel model is snalyzed.
Research, for which a great number of publications is devoted
followed two main directions : 1~ the rotating system is simu-
lated in the form of an elastic weightless shaft with a disec
attached to it /see for instance, publications by Dimentberg,
Grobov, Bolotin, Kushul [i - 5]/ ; 2- the system is simulated
in the form of a rigid shaft rotating in two flexible bearings



/see for instance, puolications by Xelson [6 - 8}/.
In the present work the subject of investigation is a rigid

0

unbalanced vertical rotor suoporis’ =2lastically. Tha rotor
carries 3 tank partly filled >y liquid./7i

presents the mass o7 compleis rotating system, without iaking

.1/. The mass il re-
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into account ths liguid mass. Th2 zass 2T 'n>alance is repre-

sented by @ , where @ &il. We assume that the listribution of
masses in the rotating system is symmeiric,so that two princi-
pal moments of inertia I are egual
mass W 1is equivalent o the action =T an external centrifugal
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force. The rotor is supnroried in tw

C

per bearing enables lateral displacements, whereas the lower
bearing allows to perform *the soherical motion. It is assumed,

)

that the resultants of slasticity forces 75, ©
plane 302 /the ¥ - axis is motionless, whereas the 2 - axis

as the symmetry axis of the rotor is »igzidly omnd to it/.

act in the
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Yoreover, these resuliants are assuzmed to be nonlinear. in ge-
neral, functions of the spring deformaticns

* +
Fg = w Fg(w) ) -,_I=§_
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where W, 5 are deformations »f upper and lower spring,
and F‘i will be

™

respectively. The ggsumpticns conceminz F
given below.

We assume further, that ihe system i3 subjected to the action
of damping moment Cké'& , depeniing linearly on angular veloci-
ty 8 of the OZ - axts, [9] .

In the case, when the cenirifuge tank is partly filled by
liquid with maass M, , moving liquid causes the force proportio-
nal to the rotor deflection velocity in the moving cocrdinules
system. Besides of, the rotor deflections cause the different
width of liquid layer in the tank walls and the different ores-
sure on the opposite tank walls [10] , Tiz. 2.

Under the assumption that the anglee =x , y of deflection
of the rotor Z - gxis Irom vertical position in two mutually
perpendicular planes are small, the fbllowing equatios of mo-

(§% ]
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tion of the rotating system have been derived

x+ (a+X)x +x [F(g’) + 'ZLO2] + ;Lwy + Xwy = - szsinwt,

71/ S,
Fr @+ +y [FQ) + 19 - fox - Kox =HW? wswt,

~ I
where Q& = _TZ - ratio of the axial and squatorial. mozment of
- .

o1
w

a
H = _'T'E - constant coafficient of the exciting force
due to the action >f unbalanced zass ;

W - angilar welocity 2f the rotor. This velocity is as-
sumed to be constant. It means that asny feedback Setwszen the
system and the source of anargy does not exist. Only steady sta-
tee are 'takgn into consileration ;

a = —=— - constant daxaping coefficient of orecession

vibraiizn of the roior ;
Sl
-4 ) i

o L%

£ =—=b —— . the s?fa2ct of liguid with Tree surface

S

120a 37 I
coefficient ;

¢ = the wilih of liguid layer ;

i . - 5 . . . 3

T, = damping coeffiient, devendenti fro:z liquil 7iscosiity;
oy

- ‘..1 "I 1 L 3 3 - ! =

} = —— = the liquid mass centrifugal force moment
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(o) = %[Lz Fylw) + s2 F (5) -k g 1] ,

w = L¢ ; = 353 )
with assumption that angles x , y are small. The remaining
notaticns are presented in Fig. 41 and Fig. 2, )
Yo gssume, that the functions Fa and E‘.ﬂ are of the class C'.
;5 gasrantees existence and uniqueness of solutions for the

<-Iferential zquations /1/ at all the points of the space
{'w<xs%s3y§<°¢1 O":\.-t<oo‘}‘



We snezll analyss the equations of motion /1/ for the following
type of the Punction F(g) , representing a linear combination
of elasticity forces and of gravity force. Namely, let the cons-
tante k*> 05 90> O be such, that for values of 9 not
sogller than @ the following inequalities are satisfied :

J o \
2/ F® -nwef > K, s F(s) ds >92—'?:J— y
0
Those assumptions mean that there exist certain rotor deflection,
such that elastic force in the bearings is greater than the gra-
vity force of the rotor.

2. Investigation of boundedness of solutions for the
equations of motion /1/.

The attempts to find the exact general solution for the sys-
tem of nonlinear differential gquations /1/ in a form which
would be convenient for the further physical discussion have
failed. In order to answer the fundamental, from the technical
point of view, questions we shall apply the method of qualitag-
tive analysis.

Onie of the fundamental problems is the boundedness of motion,
that is, the question whether the deflections of rotor from the
vertical line will increase infinitely in time, or they will not.



We introduce the auxiliary function V(x,x,y,y) with the
following properties : for svery arbitrary constant & there
exists in the space (x,}.,y,jr) the closed surface defined by

the equation
v ( X, x s 7 s &) = Q

and for two arbitrary constants Q, , 3, such, that Q,> 3, ,
the surface V = :.-2 lies inside the domain bounded by the sur-
face V = ?y » We determine the function V for every arbitra-
ry solution =x(t) , x(t) , y(t) , y(t) of the system /1/. If
v [x(t),y ®),x() ,y(t)] is a function decreasing in time t ,
then the solution =x(t) , x(t) , y(t) , 7(t) passes in the
space (x, X, ¥, 7) from the surface V = Q, in the direc-
tion of the sursace V = Q lying inside the previous one. It
means that the solution =x(t) , x(t) , y(t) , y(t) of the sys-
ten /1/ is bounded.

The function of the following form

\sz +-y2

‘T(x,:‘:,y,;}) =:.c2+5r2+2 s F(s) ds +5[xﬁ+
/3/ 0
. {(a + K)E
+y y) + (12 + 32){("————2 ) - ?@2}

pogsesses the properties mentioned above. £ is a constant,
which is chosen in such a way that the following inequalities
should be satisfied :

" . (a+xt .
¥ +fxx+ —— x>0 for x2+x2>0,
i . (@*rx)g ;
y2+£yy+—2—y270 for 32+y2>0.

It take place if



/4/ E < 2(avx) .
The function V , defined by the formula /3/ is positive defi-
nite for 211 x , X 5 ¥ . 3 , lying outside the sphere

2 2 2 2 2

L] L
% +x +5r2+y = ? +zc )
o

wnere

5

o}

= fo + + + - 2%
. ——2—[6 VE2+ (a+x)E -2 \l :

The number X > 0O is defined as followe : for the domain

f? < fo the:f:e exist a number ¥ > O such that F{g)? ?wz - R,
If Fler> rzw‘: for all .g , then V is positive definite

in the whole space {(x, ¥, ¥, ¥), provided thet /4/ holds
true. We take en erbitrary solution x(t) , x(t) , ¥(t) , y(t)

v

of the system /1/ and determine %—: slong this sclution :

y ~ iz .2 o o
Y RYC IR
25y frigh - a0 % ) bt

¥ coswt'} - Bw?¢ (% sinwt - y coswit) .
We shall determine s region inside which the function %’%
will be negative definite.

Taking into account /2/ for $ = $o sné arbitrary x , ¥ ,
and also for 5) < fo and

Vx°+35° > 2, ,

where

5 — 5 2 o
w[;u.E- 2%| +\’w2(jwt. - 23~) +2¢ x{2a - 2X-¢)
2 (2 a+2K-¢§)

& = S’oﬁ
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the function g_—% can be estimated as follows :

d—%\é(ﬁ-2&-2&)(&2+§2)+wgiﬁ-2&)(5cy-
5/ -xg'r) + 2 (2 Hw? 5:2+§'2 +Hw?E Esz"*yz-

2y ¥
- &(xz +y ) k 3
We choose such constant number & > 0 that for all x y X 3

¥ , ¥ not equal simultaneously to zero, the following inequa-
lities are satisfied :

(€ - 2a - z&)iz»«w(jia-zac)iy- € 5" <
< » S(i2+oty2) ]
€= 2 - 20 - e 2)ed - A5

/6/

£ - 6"(?2+de) ’

where ol is a certain constant.
The inequalities /6/ are satisfied when

§ <2—L-{ot(2a+2&-ﬁ) + £’ -
/17

| -\){oL(Ea-E&-E) - E,k’i‘2+c{w2(/1£-2x)2}-

To assure positivity of & , the following inequalities must
e satisfied :

/3/ sk(2x +2a-t) FEXT >0 ,



i1

- 2
79/ 4Ek*(25. +2£-E)-w2(}-kf-2&) > 0.

The inequality /8/ is satisfied in virtue of /4/. From /9/ we
obtein the following condition :

/10/ E1<E<£2

where
E = —————E-—-— *(x+ 25:~ z
W T | ) SRR

i

'S 2\]}:*[@1 +¥)2 " + (a4 Eﬂf&wzﬂ - wzﬂc‘?]l

for which, the following inequality must be satisfied :

/11/ (a+z;)2 k*+(a +&)Fﬁ'~w2-w2&2 2> 0 .

The condition /11/ is identical toc the condition of asymptoti-
cal stability of solutions of the linearized system /1/ /i.e.,
for the case F() -Nw? =xk" >0, H=z0/. The solu-

tions of the linearized system have the following form :

where

-1 ¢ T 2 (B2 (),

-
<

1*:=%\{1L4 - (2t K) 2]“ + i [5 dr2@rx) e

+fi2w2] +1sw2m[m—ta+mﬁ] , J=H;




(4%

o
1% r B20% - (a+ )2

Fron the condition

t:

-ty (o

we obtain at once the inequality /11/. Thus, in the case of
linearized system /1/, the solutions will be bounded and stable
orovided that the condition /1t/ is satisfied. It results from
the linear approximation that existence of the liquid with free
surface in the tank >f rotor /&K # 0/ may cause the instabili-
1y of vertical position of the device, i.e. unbounded time in-
crease of solutions of the motion equations. Since the assump-
tions on noniinear function E‘{g’) admits the form F(g)- =
= const , the condition /1'/ should be satisfied to assure the
soundedness of solutions for the system of nonlinear equations
FAT . -

If A 3 ' - %= /region of subcritical speeds, high gy-
roscopic coupli_r_‘;gj: “then the condition /11/ is always satisfied.

Ir }: { 1=*= /overcritical region/ then the ccndition
/11/ is satisfied only for a sufficiently strong damping

;3'\!}7.2@2 vAE - }”‘;we 2%

2/ a > K P
Wnen /12/ is satisfied, the fulfilling of condition /4/ is
guaranteed by /10/, because 82 £ 2(a + &) |, what is easy to
show.

It results from the above considerations, that the constant
§ should be chosen according to the expression /7/ =nd the
constant & according to /10/. Then the inequality /5/ cmn be
presented in virtue of /6/ as

1y S £ -p(abe -ﬁnsz) -z (Sz-2V21uY),



i3

vhere
z = 5:2'*3"2 .

We transform /13/ in the following way :

Esz 2 / Eﬂwz 2
v
g_té‘*g(f'&gﬁ) -8 ) *

52(.\.14 (52 + 40‘.)

2l & .

+

(=7]
=

The function T will be negative definite for all x , x g
y , y outside the region

o

o]

14/ oL (? -oLSE' ' s ) < 2l &

Summing up : 3in the region

éﬂwz)z [ EHWA\Z Rt (6% + 4d)
- 5

s e
T HL.:‘:V£E+4o=i i B
¢ > max | ¢, e s M ;
/15/
Bl \E? + 40
B \E bot | *
L] (] o
z > max 2y 2y s et b=z,
PR el !

/where € should be chosen from the intervel (£, , £,7,

the coefficient § -~ according to ihe inegualiity ::'T./, whereas
the coefficient ol should be chosen so gres:. as possible,

what resulte from /14/ /, the function V(x,,7,7} is positive
definite and its derivative %—‘-{ , determined with teking
into account /1/ is negative definite. Hence it results, that
the region /15/ containts the region of ultimeic boundedneses

of solutions for the system of differentisl equstions /1/. In
the course of time g1l solutions starting inside tie region /15/
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at t =0 do not outcome from this region, and those starting
outside /15/ tend to this region.

In the particular case, when H =0 and F(p) > rlma
for all values of ¢ , can prove, using the same arguments,
the asymptotic convergence of all solutions of equations /1/
and the asymptotic stability of the trivial solution x = X =
= y = y = D =

3. Periodic solutions of differential equations of motion.

The system of differantial equations of motion /1/ posses-
ses the periodic solution

z A sin(wt ¥ '@"’) 1

/16/

¥ - Acosiwt Y}

describing the precession vibration of the rotor, if the fol-
lowing algebraic relations are fulfilled :

N7/ A% !‘mz(r-ﬂ +F(Aﬂl' + A2w?% 8% = w24

wli =) - F(a) ’

where A - constant amplitude of the periodic motion, r -
phase Mshif‘t with respect to the phase of exciting force,
e g

Observe, that periodic solution /16/ existence /i.e. steady
rotor precession/ does not depend from the value of the coef-
ficient X /i.e. the same effect is obtained with empty or
fullfilled tank/.

We shall point out, that Eq. /17/ can possesses several so-
lutions 4, , 1 =1, 2, 3,..., depending on the form of func-
tion F(4) .

We shall rewrite =q. /17/ as follows :
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/18/ F(A) = T (1 —/JL) z VHizwﬂf - afw?

and seek for solution of this equation using the graphical method.
The functions of the left-hand side and the right-hand side of
Eq. /18/ will be plotted in plene with the sssumption that the
abscissa is proportional to a2 /Fig. 3/. As it is seen in the
figare, if the function F(A) is monotonic, there exist three,
two or one solutions of Eq. /18/ /one solution glways exists.
because the left-hand side of Eq. /17/ is & continuous function
of A =nd for A =0 it is equal to zero; as A4 —> O, the
left-hand side tends to infinity, the right-hend side of /18/
is constant positive/.

u!(r-,«u:‘/ -":']‘-;’-—-ﬂ'w‘

wit-pl

)‘.’

Fig. 3

If the function F(A) has enother form, there exist more
solutions of Eq. /18/, and even, there cen exist continuum set
of solutions within certain interval <4, , A,> /Fig. 4 and 5/.

We shall now consicer the so called resonanse curve, that is
the plot of the amplitude A of periodiec solution of /16/
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K2 A2 4 0
F+ui ) a7

| ]
| Hh? |
! a2 ! !
| - i e
2
2

7(0)

19

F‘ig. i ]‘ig' 5

versus the frequemcy of exciting force /which equals to the
frequency of periodic solution w /.

The function A(®W) 1is represented by Eq./17/. To simplify
reasoning we shall consider the second powers of these varia-
bles, that is 4%(w?) .

It follows from Eq. /17/ that if A =0 then W =0 ; if
W =0, then either A =0, or

/19/ F(4)

If Eq. /19/ possesses :1 solut:.ons and if F (0) # 0, then
the resonance curve 4 (w ) croases the A - axis at n + 1

points. 5
We shall calculate the derivative Q[A—ZJJ « It has the
following form : d(w
e d( 2, szrﬂa A.z(/u_ "{I - 242 FFA)(/\L-1J-A232
20

[wz (o -0+ A + A[ 2(p-1)+ F(A)J dF ., %2

Hence 1t is obvious, that
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2.
i—’d &) - 0 for 002

=0 A=0
a ' ’
£2
2(A2;=OO for w® =0, FA)=0, A#0, a0,
L

This means that in the origin of the coordinstes (co2 . Az) the
resonance curve is tangent to the coz - axis, whereas at the
points of intersection with A% - axis /if they exist/ it is
tangent to this axis. (2

We shall seek for the points at which —3:-;}) 0 . Putting
the numerator of expression /20/ equal to zgg;), after some trans-
Lormations we obtain :

2 2

i 2.7 (1 =n) = 4°

/21/ W o=

We transform Eq. /17/ into the following form :

/22/ w4[£2 (- 1)2 - Hz] + w2A2[32 + 2 F(A)(}.L - 1)] -
i

+a2r)2 = o.

The expression /21/ is substituted into /22/. After transfor-
mation we have @

2
=
: 2 2 2 4
4 H2[FA)|% - 4 A2 FA)a%(1 -p)+ & ] 0.
A2(1"f“)2 e [F)]? @ K
2
Hence it follows that dfh\z)‘] 0 for A=0, as it wos
shown previously, end thgi?')
as?) 2 H2 .
=0 for € #F ——— if
@ (-3

/23 4E[R(a)]2 - 4 &2 22(4 -p) F@) +a*a? = o,
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From snother point of view the left-hand side of Eq. /22/ is
a quadratic form with respect to wz + If the values of coef-
ficients in Eq. /22/ and the form of function F(4) are known,
then for every value of A the roots of this equation can be
calculated. There can exist either two or one real root, or
there is no real root at all. Proceeding in such a way and
changing the quantity 4 we can plot the exact resonance curve
in the plane (wz, AZ) .

Thus, we shall determine some general qualitative lines,
which are characteristic for the resonance curves defined as3
Proots™ of Eq. /22/.

We determine the discrimingnt of the expression on the left-
hand side of Eg. /22/:

/4 5 = A2 {4 22 [P(a)] 2 - 4 % A%(4 -/u) FA) + at A.2J :

Equating each other the expressions /23/ and /24/ we obtain,

» 2 ~r
that d%%) =0 1z §=0. Therefore, the quadratic equa-
alw
tion with respect t¢ w™ , has only one root, namely the ex-

pression /21/. If & { O, the real roots of Eq. /22/ do not

exist.
We transform Eq. /23/ /the left-hand side of this equation

is a quadratic form with respect to TF(4) /. We find the ex-
pression

o

; 2 72 ) 2
/25/ 25w =16,

where the notation is introduced

lo-p) w et fo-p2- 5,

i=1,2.

x ;(a%)

We shall seek for the solution of Eq. /25/ using a graphical
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nethod. These solutions are the points of intersections of the
curves described separately by expressions on two different si-
dse of /25/. The curve 9'(.1 A°  is one of the branches of the
hyperbola and it possesses the following asymptotes : horizon-
tal one
A al &
2(1 - /-u) ’

and ineclined one :

_ 2
= 2 - o
e iy = B (1-/&) ) 2(1-p)
5 52 o aX; (8%
At the point A% = ——— there is —5— .
(1 - w a(a?)

For i = 1 we obtain the lower branch of hyperbola, for 1 =
the upper branch /fig. 3 = provided, that 1 - & > 0 /.
In view of /23/ and /24/ we have /Fig. 6/ :

g =0 for points lying on the curve . i A2 s

5<0 for points lying inside the region bounded by curve

- R, a2

9 > O for points lying outside the region bounded by curve
N

Lra

$ 3
by
"
s

L

Fig, 6
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Next we analyze Bq. /22/. The free term of this expression
is positive everywhere. If the coefficients of w4 are posi-
tive, but the coefficients of w? are negative as well as
§ > 0, then Eq. /22/ possesses two solutions- w2(A2) of
the form :

pr—

> £2[2 FQ)(1 -/u.) -ae]t\lg
’ 2 [a°(1 - P - ] ,
vhere 0 dis expressed by /24/.
If the coefficient of b.)4 is positive and the coefficient
of W2 is non-negative, then solutions wz(az) of Eq. /22/

do not exist /because it should be w2>/ 0 /. If the coef-
ficient of 004 is negative, then there exists one solution

COQ(AE) :
2_&‘3[23'(&)(1-};)-:;12] V3
W - 2"—32 (T -/&.)2 _ H2] .

The last case takes place, if A2(1 -'}).)2 -H°{ 0, that is,
af

2
/27/ 2 —E
(-9 .
This is illustrated in Fig. 7. "2

In the region in which &22 a number of so-

(1= )2
lutions depends, as it was shown above,#on the sign of the
coefficient of W) > in /22/. For

78/ al + 2 PO - 1) £ O
and for 52> 0 there exist two solutions of /26/ if
A2 > —-3--—2- , or ome solution
(1 - /u)
P [F_@]z

i (1 -/u.) F@) - &°
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¥ o 52

if A —_—
(1 _1“‘}2

. Tor

a2+2F(A)(j1L-1)2

the real solutions of Eq. /22/ d0 not exist. The inequality
/28/ can be presented in the following form :

2 =2
2 H o
/29/ az F(_A) > m
) / 2 B2 2
and in the plane ( =5~ F(a) , 4 f} it presents the region
\oa

in vhich the solutions of Eq., /22/ czan exist ./Tgz. 3/.

\ LGl
\\ :

R
& 9 - " _

“ial:x
T
™

7 /
|4
k.
--——-—T——- —_———— o o -
|
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r
d 4y
e
-
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ISV S 5
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Fig. 7 Fig. 3

Now we ahall collect together in one plene the regions of
existence of solutions for Eq. /22/ resulting from the inequa-
lities /27/ and /29/ as well as from the relation /24/ /Fig. 9/.

Solving graphically Eq. /25/, changing apropriately the
argument 4 into A2 we are gble tg draw in Fig. 9 also the
plot representing the function 2 i F(&) From the analy-

ais carried out above it follows, tnat for the example of the
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function plotted in' TFig., 9 the resonance curve exists in the
e

intervais {0, U_H.).E.‘) , {22, A2> and in the first

interval there exists oﬁe solution 0)2(&2) , whereas in the

second interval two solutions (4)2@’&2 ) .

Xy

ay

- g : El B o
A r!w}'\_\\ \"'\ \\\"‘1‘ %
/? NANN \\‘\ \‘.L \}‘ \\
AN INNINS

In order to present the resonance curves in the plane
{¢s%, &%) for various forms of the function F(4) we shall
deal, at first, with the so called "skeleton curve".

We assume, that there exist two solutions wZ(Az) descri-
ped by the expression /26/. We shall consider the "skeleton
curve™ that is the curve in the plane (u2 " 32) with respect
tc which the branches of the resonance curve corresponding to
the solutions /26/ are located at the identical distances at
the segments which are paralell to the (.o2 - gxis. For this
purpose we put together the expressions /26/ /one with the
sim plus of s , the second one with the sign minus/. Thus,
ve decompose the obtained expression into two parts. So the
equation of the "skeleton curve" is :



ro
L

2[ y il
A 2?(.&)(1-“.}—aj
i wz B 9[&2 (1 = gy

or arter some transformation

/31/ 2 &* [(1 -}»)2- i; = 2?(&)(;-};;-32 ‘

/

We differentiate all terms of Eq. /31/ with respect % 42

/32/ 2 [(1 )U«)2 L;J -l-gwai_; = :‘ —_

Ir éa-qé-} < 0 /this take place, for instance, for soft
spring characteristics/, then the rignt-nand side of Eq. 32/
is negative provided that 1 = > C . lonsequently, the laft-
hand side sho‘.:lf" be negative, toon. We :cngider the intervsl

]
1

A D ———2 /gince for AT & ————= there sxists
(1 =) s [ - .u.,'!‘ .

/ 2 =
only one solution and ths notion >7 "sieléton surve™ is neaning-
less/. In this case, the expression in brackets in /22/ is po-
sitive. To ensure the pogitive sign of the left-hand side of

Aen
Al
/32/ it should be = & s Hence it follows that if

) 2(a?
< 0, then the "skslet:n surve' is the decreasing fimec~
tion of A
Ir d—-F{T“ > ¢ /hard springs/, then for the great rsiues

of 42 in the expression /30/ tas quantity in the numerator can
be neglected as compared with 2 F(a)il - u., , as wel.. as in
the denominator the quentity 42 in ﬂo:marison with 4% (I-u.‘L‘
The approximative equation of the "skelston curve" has the
form :

T
L~ ST

i
I

Hence it follows that for zreat values »f A< . if 'd X

U

l,
=
®

Y
¥
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the "skeleton curve” ig the increasing function of a2 |
We chall point out, that one of the solutions of /26/ poses-

ses the vertical asympiote

e

¢ = A

1 - m)?
B s |
= the numerator of the gresier

(1 = )2
root of /26/ is reduced to the constant quantity

Indeed, if AZ— .

() - ] B
L (1 -}i-)z '/”' ,P :

the denomingtor confines itself to zero, and therefore, for
one branch of the curve wz-—"oﬂ’ .

On the ground of the snalysis presented above, we are able
for various types of the fimction F(A) /for instance, for
those presented in Fig, 10/ to determine sppropristely the
resonance curves /Fig. 11/ .

Fig. i0



4

Af L

(f-ui2

25

il

N
¥): ,
_____ LA
0
f/’




26

Trie analysis can be performed analogously in wne case

1= < 0. We present here only the final results, that is,
!

the plois of the resonénce curves for some forms of the func-

tion F(A) /Fig. 12 end 13/.

Zi

!

(B

Fig. 12
,q" Aﬂ
. @
| !
| B
Ahommeees A=
| Pl
0 P o a prea
Fig. 13

&t the end, in the case | —}J- = 0 the following expression

ni -
2

(A%

H
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is the wmique solution 002(A2) of Eq. /22/.

If F(A) 4is a monotonic function, () is a monotonically
increasing function of 4% ad (OP—=o° as A2—> oo
/Fig. 14/.

Fig. 14

The analysis ziven above exhaust fully the oroblem cf har-
monical resonance 3tates for the solution of the system /1/.
It should be emphasized, that the solutions /16/ are the exact
solutions of the system /1/ and therefore, we obtain the reso-
nance curves without any approximations. It is of ccurse, very
aseful for practical spplications to kmow the gualitative pic-
ture of resonance curve which is achieved with aid of simpie
2xamination of location of the curve 2 32 a~? F(A) on the
diagram of regions of existence of separate forams of solutions
for Eq. /22/. If, for instance, the function F(A) /charac-
teristics of elasticity/ is given in the form of g plot /the
case frequently encountered in practice/, it is sufficient o
compare the plot of this function with the graph of existence
of the separate forms of solutions /Fig. 9/ and it is possible
to determine directly both the qualitative picture of the re-
sonance curve af vell as the value of greatest amplitude and
frequency for which it occurs, /the formula /21/ after subs:i-
tution A = Amax/‘ Further, it is possible to choose the spring
characteristics, that is, the function F(4) in such a way,
that in the conditions of operation with the welocity (J ,
the amplitude of forced vibration does not pass above the Fiven
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gaantity. From plots in Fig. 10 and 12 it is seen how the daun-
ping coefficients affect the resonance process. Lowering "e"
causes as if the compression of the scele of plot of the funciion
F(4) , therefore the curve 2 52 ¢ F(L) Dbeccmes less
abrupt. Its point of intersection with the curve (0%(A%) re-
moves itself leftwerds. This means, that the greestest amplitude
of forced vibration decreases. The changing of the coefficient
E gives invers effects.

Let us draw attention tc the case F (QJ = 1)2 2 c? ’
Eq. /1/ possesses then one, two or three periodic colmlons of
the type /16/ with different smplitudes corresponding tc the
given value of W /the cases 1, 2, 4, 5. 7, & 92 &anéd 10 in
Fig. 11/. This result is similar to those conclusions concer-

.y

ning the second order differential equation of ine Iuffing’s
type

e | N A ' q s - :
133/ x+ax+ VxZlex = Hsin &t

which describes the motion of a mechanicsl or electricsl srstex
with one degree of freedom. It is showm, for the above mentio-
ned equation, thst the resonance curves msy hsve the 1ile shame
as those im Fig. 11. However, it should be empnasied, trizt tre
results for Eq. /33/ were obtained by meny euters in the aporo-
ximative way, whereas in the present work, the results obteined
for the system /1/ are exact.

If the damping in the system /1/ ie¢ small and if the function
F(g) is increasing as well as if the principsl exial moment of
inertisa Iz is either less than or equal to the equatorial mo-
ment I /& 1/, then the amplitude A of forced vibration
can increase infinitely s W increases /ecases 2, 3, 6, G,
10 and 11 in Fig. 11/. Hence it follows, that if the amplitude
of the exciting force is proportionel to the second power cof
frequency W, for high speeds the stsbilizing factor, namely,
the coefficient of gyroscopirc coupling has the insignificent
infiuence. If g stronger demping exists in the system, then
the emplitude increases only to a certsin value as W incre-

-

ases.,
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The existence of several states of resonsnce was firat obser-
ved by lM.2. Kolowski for the case of single equation of the se-

cond order

2

/34/ Y+ax+xF) = HwCsinwt .

In the publication 5_11} the resonance curves were obtained for
the aprroximative solution of Eq. /34/ :

x = Asin(wtﬂ‘g“) + B ,

for a number of types of the function F(x) . The character of
resonance curves obtained by Kolowski on ground of the first
approximation are not different to those obtained for the esystem
/1/ with the aid of exact method.

4. Investigation of stability of periodic solutions /16/.

In view of existence of several periodic solutions it was
necessary to examine their stabiliiy. In order to investigate
the Liapunov’s stability of periodic solutions of the type /16/
for the system /1/ which possesses different amplitudes, we

shall write the system of equations under discussion in varia-
tions. Next, we shall analyze the stability of its solutions

[12] . Applying the trensformation
x = u + Adsin(wt+Y) ,
y = v - 4cos(Wt+y)
we obtain the linearized system of equations in variations [TB,
%]
a+(a+X)u+ [F(A) - @ QJM Asin(wt +))-

E dd?‘im[u sin((.u't + 3") - ¥ cos (L.-Jt +5-)-( +}Iu;r +

/35/ +Xwvy = 0



pr e lrtheev 10 - qel] - d ot gl

4 Fral
<A

[u sm(wt *X',- -V cos\u.lt + X')! - u.o)L -
-Xwu = ©

Tmig &e the system of homogenecus linegr egustios wiih perio-
dicsliy varisble ccefficients. For this system we have found
the soluiion :

w = e™ [, cos (Wt ¢y -ﬁzsin(_d.}téxi],

/36/ i y &Y - _ Cl
v = r—:-‘i_iii aint}.ut+3) * 25 coe (Wt + X4,

wpere the constiante m, C, , O, should be determined. Sub-
stituting /36/ inte /35/, afier some transformstion we obtain
the Zollowifig chnarscteristic equatién 1o Getermine m

2+ 2 (e +K) + ¥l 2(FE-2f s 2-2nyr 2 7)

4

(2502 + 4 5B 4 afc s ) [27) +
k2 -; {' E ‘, ;
s e r?"} +z2acf(i -0} + 2Kl - 1)} +
- R r
RIS JOS IR (}u- 1{] TI@.LF(A) +

L,_,-ZUJ--.'!)J = 0 .

+

131/

+

Egq. /37/ has four rocts I . If they are different, we
cbtain four indevendent solutione of .the system /35/ in the
form of /36/. Tneir linesr combination is the general solution.
However, we are interested only in the sign of the reel part
of the mocte z Getermines exporiential decressing of solu-
tioms /3¢/ and. in consecuence, the ssymptotic atab:l.lltv of
the sclutions /167 for the svsten /1/.
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W¥e shall apply the Hurwitz’s criterium [12] « After develo-
ping the corresponding determinants we find the following con-
ditions :

/38(': H+J~> 0 y

‘a # 1}[5‘@) - rlwz +(a+ &)2 " % ddFAQ)] :

. calf(f- 2+ X (R2-3f+3) > 0,
e 07 [70) - g+ ] o o)
;’43;'
224 \aw\)z iZ(ddFiﬂ)z e o
@+ 0% + W3- 2)? '
. EIRTI TN LR _Jg)[m) .
ny - _

p) J1
¥ u.:-;-_‘u' < 15 > 0 ’

which zuarantees, that the real parts of m are negstive. The
conditions /38/, /39/ snd /4C/ are fulfilled if the positive
dissipation exist in the system /a > O/, and if, for instance,
the function F(A) is non-decreasing, as well as it has non-
negative derivative for given 4., and if the condition /11/ is
fulfilled. The in=quality /41/ shows directly for which ampli-
tudes A the solutions /16/ are stable or unstsble. To verify
this we write Zq. /17/ in the following form :

d ¥ = ,’1 @)+ @ (- 1)2 + P az}Az = 22pt,

The functiorn D A’) has the following properties : @(0) =
P(a%)—>o0 , as a2—>C° , Since F(g) is a continuous

function, CD ( 4%) 1is also a continuous finction of the argument
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42, Hence it follows, thet there exist such a value a2 =3 §
for waicn ©(2) = H24 | If the function (A% is non-
monotonic, the greater gusntity of points for which Lp(kajs
= B2Q% can exist /Fig. 15/.

~—" ' :\-/
: ! .
i J I [
BT i i
¥ i i ' A 85 i
Fig. 1%
1 e T R ¥ I- -t = -."2‘
We srall differentiste the functior (P\A J
2
cCia - o <5 "
- 2
- s V7P o+ W ";p_.- 1_j-|“+ WE < -+
A - ! #
Lo
fee, ) ﬂ:\u} !rFf % <] '[)b"
- e’ + La° -1
v 3l RO Gt

Soaparing the eypression /41/ and /42/ we see, that the sclu-
tions wath ampitudes A, , I T 1, 2, 3,..., for which

a d(48)]
aa? Lc;:.aié °

/that is if the function C.lp (Az) at the poiat 4 =4, is
non-increasing” are unstable. For instence, in Fig. 15 the
solutions with amplituGes ;‘-:2 i Zi—i are unstable.

If there exist three periodic solutions of the type /16/
with different ammlitudes /this, as it was s3id above, can

take place/, them the solution with mean, as to quantity, am-
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plitude is unstable, whersas the two soq.uticna situated extre-
mely can be stable. This result of exact reasoning confirms “he
results obtained by other authors using approximative methods

(1, 15].

5. Conclusions.

Iz the present work the motion of the mechanical system
shown in Fig. 1 has been investigated on the ground of sanaly-
8is of differential equations /i/. The >oundedness of defle-
ctions of the rotar axis from the verticsl position zes deen
pointed out. It is proved, that if the sclutions of homogene-
ous linearized‘ differential equations system /'S “i.e., wnen
F(Q) = "> 0, A=0/ are ssymtoticaily stable, than ine
solutions of the nonlinear sysiem are Sounded amd are soming
to the certain definite domain of the ultimate boundedness.

In the paper [10] it is showed, that in the linear cass. the
effect of liquid at the tank znay cause the unlimital solutions
in the overcritica: domain, i.=. unlirited desiaction o7 the
centrifuge from the vertical position. ons can sbservs this in
practice. The centrifuzes with fanks 2illa8 with & smail. quan=-
tity of liquid can be subjscted =he dangerous vibration, with
amplitude much greater than in the case empty or fulfilled
tank, In the paper it is showed, that in the case of nonlinear
elastic characteristics of bearings such 2ffect aise can de
obtain.

It was demonstrated the existence at least of one deriodic
solution of the type /16/ with the frequency of tns exeiting
force. The existence of the solution /16 3ces not depend from
value of the coefficient X i.e. frcm existence liquid with
free surface in the tank. The relation between frequency and
amplitude of the forced vibraticn has been obtained. It follows
from these relgticns that for various frequencies of the exci-
ting force, that is, for various sngular velocities of the ro-
tor itself, the esmplitude of forced vibration changes monoto=-
nically only in certain renges of values of W /for fixed
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values of other parsmeters of the system/. In the defined
range of values there exist two, three or more states of the
steady vibration. The "jump phenomenon” is slso possible,
waich is known for Eq. /33/ of the Duffing’s type. The stabi-
1litv of the periodic vibration has been investigated. It is
rrecisely determined which periodic solutions ure stable and
waicrt are unstable. It should be noted that the phenomenon of
exristence of a number of stable steady states is only due to
tne action of the nonlinear elastic force of the bearings. In
tne case of full linearisation of motion equations, the rela-
tion amplitude - frequency has different character, namely,
the moduli of amnlitudes chenge /for the given frequency/ ae
we.. as the phenomenon of exristence of several smplitude for
¢ frequency does not appear. Designing the rciating syeter
£ such g kind, the constructor mey and should choose the
noriinesr elastic characteristic in such a way, thet for e
ven angalar velocity of operation the zmpiitude of detrimen-
12l precession vibration ¢f the roter shoull be sc smell, ac

po=sible,

Fineily, it should be noted, that Zg. /1/ mey be used %o
describe not only the system shown ir Fig. 1, dbut gisc nume-
m~oug other systems /more strictly, these are the egusiions

=7 small vibration/, for instence, the motion c? & massless
flexible shaft rotating in rigid bearings together with the
Sisc gttached eccentrically [2 , 15 , the mozior of some

gyroscople devices, gyroscopic stabilizers ané cthers.
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