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ON MOTION OF THE ROTOR 

m FLEXIBLE NONLTh"EAR BEA-1\INGS 

Agnie~zka Muszynska 

1. Introduction. MOtion equations of the system. 

The high speed rotors represer1t main and particularly impor-
. tant part of the machines of the rotor type, which have most 
various applications in technology. Wnen the maChines of this 
type operate at high speeds con~ioerable. centrifugal forces 
arise which can produce detrimental · an6 f:::-equentl~' even daw.ge­
rous vibration of the whole m&.chine system. 3eeides t."tJe forced 
vibration discussed above, rotors c~~ be subjected the other_ 
ones, caused by internal friction, hydrodynamic fridion in 
bearings, aerod~amic friction of :medium, Q.Ild in case of ¥ cen-

trifuge caused by motion of liquid having free surface at the 
ta.."lk. Those vibrations are of the self-excited character and 
the frequenties of them are near to freGuency of the rotor 
free vibration. To prevent vibration effectively it is neces­
sary to solve a lot of problems associated with the dynamics 
of rotors. Be.cause of complexity of these problems many simpli­
fying assumptions are introduced. For instance, instead of the 
actual physical system, a certa~ mechanical ~del is analyzed. 
ResearCh, for which a great number of publications is devoted 
followed two main directions : 1- the rotating system is simu­
lated in the form of an elastic weightless shaft with a disc 
attached to it /see for instance, publications by Dimentberg, 
Grobov, Bolotin, Kushul 11 - 5] I ; 2- the system is simulated 
in the form of a rigid shaft rotating in two flexible bearings 
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/see for instance, puolications '::Jy Kelson [6 - 8] /. 

In the presen-t; wor'l the subject of investigation is a rigid 

tmbalanced vertical rotor s~opor-:e :_~: ·=2.astically. The rotor 

carries a tank partly filled ~Y liquid. /?i .g. 1/. ':'l'le ;nass 1! re­

presents the m.ass :J:" complet :~ r0-:.:rtir1:; 3yste;:n, without taking 

into account the liquid xass. I'h3 ::1ass Jf 'JnJa2.3r.~.ce is repre­

sented by m ' where m« i~r. T,'{e assume that t..'"J.e distribution of 

masses in the rotating system is sy:nmetr1.c. so that b;o princi­

pal moments of inertia I are ~aual eac::;. )t::;.~r. Action of the 

mass m is equi-valent to t."-le .9.ction -;f 3r.. external cent.r·ifu;a:. 

force. The rotor is suppa rted ::..:: t·.vc flex:. tle ~~s:"in~s. Z.J.e up-

per bearing enables lateral :lisplacew.ent3, whereas the lov;er 

bearing allows to perform the s }b.erical :Jation. I: is assUDed, 

that the resul tants of elastici t;)r forces F; , F~ act LT'l tl1e 

plane ? OZ /the .~ - 9.Xis is motiJr .. less, 'l.thereas the Z - axis 
as the sym:netr;y axis of t.'1e rotor is :-i. ,~dly oo 1.md to it/. 

1breover, these res~lta~ts are qssumed to be ncnlLT'lear. in ge­
neral, functions of the spring deforma~ions 

= w F3 ( w) ~'r- ( ~ 1 
u -

where w , ? are deforillations 0f upper 3I1d lower spring, 

respecti velvv. The assW!lptions ~once!'!ling p "J 9!ld =~ r 'v'lill be 
::1 

given below. 

We asstlill.e further, that the system is s·J.)jected to the action 

of damping znoaent Ck ~ , ,jepeni::-.. g linearly on angular veloci-

t ("") .&> th 0,... • 1"'91 y u() OJ. e ...:.. - ax~s, L ~ • 
In the case, when the centrifuge tank is partly filled '::Jy 

liquid with mass M1 , moving liquid causes the force proportio­

nal to the rotor deflection velocity in the moving cc~rdirra~es 
system. Besides of, the rotor deflections eause the different 

vndth of liquid layer in the tank walls and the different pres­

sure on the opposite tank walls [1o] , F::.g. 2. 

Under the assumption that the angles x , y .Jf def1ection 

of the rotor Z - axis !'ram vertical position in two mutually 

perpendicular planes are s:nall, the following equatios of mo-
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tion of the rotating system have been derived 

/1/ 
x +(a +)::)i + x [F(~) + 7w~ + jwy + "f....wy =- Hw2sinwt, 

y +(a+ ~)y + y [FC~) + 1u.> 2j- jwx- :~wx = · H~.i coswt, 
.,.. 

,..J 

where /u. = ~z -... ratio of the axial and equatorial· moment of 

inertia; 

H = meR --y-- - constant coefficient of the exciting force 

due to the action Jf unaalanced ::ass ; 

W - angular vel-.:H:ity .Jf :ne rotor. This valocity is as-

sumed to be constant. It ;:neans :hat any feedback ':Jet;·~·een the 

system and the source o:f 2Ile!'g}'" does not exist. Only steady sta­

tee are taken i.."'lto consi:ieration ; 
n . 
"oJ. 

a = I~ - constan~ d~ing coefficient ~f precession 

vibrati~n of ·:he rotor ; 
1 3 t~. ~ 2 · 
,.., ..,.. -~., 

•

-r-.. -- :..>1 • 1 1 ""' - the ::ffect of liquid ·,·;i th f:-ee sur-:' ace 
121\h ~~ :: 

coef:!'icien t ; 

~~ - i;he ·.v-' .. ·i"7:h ,,f liquid layer ; 

'f 1 - ·ja;rr~i.""1; ::aeffi.:~ant, deDer:dent fr:;:.:: liqu::..i 7i3cosity; 
'l .f , 2 .... , ... , 

~ ~ ~ .... ' - ~he liquid ~a3s centrifugal ~~rce ~went 
;.. 

coefti.cient j 

' + y'-

~ (~) = ± l L 
2 

F3 lw) + s
2 

Fa ( ~) - t! 5 1 J 
·.v = L~ $ = Sf , 

with .sssumption t.."I-J.at angles x , y are smal.l. The remaining 

notations are presentad in Fig. 1 ~1d Fig. 2. 
Vc. s·,me th ... ..... ./:1. t• "r.\ d 1:' of' the cl,...,ss C: . _ as <..w. , .1.. a~. ~.ne ... me 1ons 4' 3 an ... E are _ ~· _,"" 

3 g~arantees existence and uniqueness of solutions for the 

. .: ... .::'ferential equations i1/ at all the :Joints of the space 

{-oe< x,x,y,j<oo, O~t(ooj. 

http://rcin.org.pl



7 

~le shall analyse the equations of :notio~ /i I for the following 

t3~e of the ~unction F(~) , representing a linear combination 

of ela5tici ty t ·orces and of gravity force. Namely, let the cons-

tants k * > 8 5
0
> 0 be such, that for values of ~ not 

smalle!' than g 
0 

the following inequalities are satisfied 

rs 
/2/ 

0 

2~ s F(s) ds > 0 J 
2 

.) 2 

Those assumptions mean that there exist certain rotor deflection, 

such that elastic :force in the bearings is greater than the gra­

vity force of the rotor. 

2. Investigation of boundedness of solutions for the 

equations of motion /1/. 

The attempts to find the exact gener·al solution for the sys­

tem of nonlinear differential t:~quations I 1/ in a form which 

~uld be convenient for the further physical discussion have 

failed. In order to answer the fundamental, from the technical 

point of view, questions we shall apply the method of qualita­

tive analysis. 

One of tr1e :funda:nental problems is the botmdedness of motion, 

that is, the question whether the deflections of rotor from -:he 

vertical line will increase infinitely in time, or they will not. 
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We introduce the au:dliary function TT(x,x,y,y) with the 

following properties for every arbitrary constant Q there 

exi~ts in the 8pace (x,x,y,y) the cloned surface defined by 

the equation 

v(x,x,y,y) = Q 

and for t vro arbit·rary constants Q1 , Q2 such, that Q1 > Q2 , 

the surfa ce V = Q
2 

lies L1side the domain botmded by the sur­

face V -~ = Q1 • We determine the function V for every arbi tra­
ry solution x(t) , x(t) , y(t) , y(t) of the system /i/. If 

V [x(t),y(t),x(t),y(t)1 is a function decreasing in tL:ne t, 

then the solution x(t) ' x(t) ' y(t) , j(t) passes in the 

space (x , x , y , y) from the surface V = Q1 in the direc­

tion Qf the suriace V = Q2 lying inside the previous one. It 

means that the solution x(t) , x(t) , y(t) ' y(t) of the sys­

tem /1/ is bounded. 

/J/ 

The :function of the following form 

Vx2+y2 

V (x,~1 y,j-) = X2 + Y2 + 2 j s F(s) 

0 

ds + E ( x i: + 

possesses the properties mentioned above. E is a constant, 

which is chosen in such a way that the following inequalities 

should be satisfied 

x2 + e. x x + 
(a + t)£ 

x
2 > 0 for x2 + x2 > o , 

2 

• 2 E, • (a + ~)£ 
y2 7 0 for y2 + y2 > 0 • y + y y + 

2 

It take place if 
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/4./ C.<. 2(a +cr.) 

Tb.e function V def'ined by the formula /3/ is positive defi-
., . 

ni te for all x , . x , y , J , lying outside the sphere 

where 

= go 
2 

!" 

= + ..,.2 
""o 

[ C + V E_ 2 
+ I (a + X)C - 2 k \ ] 

The number k > 0 is defined as followr::. : for the domain 
~ 2 -

~ < ~ · there exist a number k > 0 such that F (~_ )> hW - k. 
~ ,;0 2 - ( 
If F ( ~) > 7 w for all S , then V is positive definite 

in the whole space ( x , x , y , y ), provided that /4/ holds 

true. We take an arbitrary solution x(t) , x(t) , y(t) , y(t) 
of the system /1/ and determine S ¥ along this so1ution : 

dv \ :.'j ·2\ i,.J[ 
d t = (E. - 2 a - 2 t... j l :i~""" ~ y ) + W l .. ~ 

. 2 ' - y coswt) - Hw t (x si.r1Wt - y cos~t) 

We shall determine a region inside which the fu.nction 

~111 be negative definite. 

Ttaking into account /2/ f'or f ~ g 
0 

and arbitrary 

and also for f < ) 0 and 
.-----
V. 2 .. 2 

X + y > z1 

where 

?:: y-

d V 
n 
. . 
X ' y ' 
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the function d V 
d t can be estimated as follows 

We choose such constant number 0 > 0 th.-t for all x , i: , .. 
y , y not equal eimul taneously to zero, the following inequa-

lities ~e satisfied ! 

/6/ 

(_E. - 2a - 2 !) i:2 
+ w(f £ - 2~) x y - £ y~* < 

<- S(i2+~y2) 

( E - 2a - 2 ~) y2 
- W (f £ · - 2 ~) x y - C, x~ * < 

<( - b ( y2 + o( x2 ) 

where oL ie a certain constant. 
The inequalities /6/ are satisfied \vhen 

b ( ~ { o1.( 2 a + 21!. - £) + E k 11 
-

/7/ 

- ~ l ot..(2a - 2 6:. - 6) - E. kf + <{ ,,}Cj £- a) 
2

} • 

To assure positivi ty of ~ , the follo~:ring inequa lities must 

"Je satisfied : 

/8/ oL(2~ +2a-£) +(k*>o, 
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191 4E k"' ( 2 ~ + 2 " - £) - w 2 (j E - 2 ~ / > o • 

The inequality /8/ is satis~ied in virtue of /4/. From /9/ we 

obtain the following condition : 

/10/ t <.([< E 
1 2 

where 

E 
1 '2 

2 [ -= - 2w2 . . 2 k t4 ( ~ + a) + w 2 ~r 
}A + 4k* ' 

I 

+ 

~or which, the following inequality must be satisfied 

The condition /11/ is identical to the condition of asymptoti­
cal stability of solutions of the linearized system /1/ /i.e., 

. 2 ~ 
for t..'1e case F ( ~) - 7 w .: k > 0 , H : 0 I . The solu-
tions of the li...T'learized system hsve the following form : 

4 

X : L 
i = , 

where 

a+(r 
0 =---1' 2, J, 4 .... c. 

4 

y = L 
i = 1 

1 r * r :1 2 
- 2 "' [ . '* 2 w = 8 L4 k - \B. + ~) .:.J + r w~ s k + 2la + 6:.) + 
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8 

From the condition 

a + 0:., 
,.., 
/ 

+ i\/"'1 ,., ( 0 
- ~ f - \_J 

we obtain at once the inequality /11/. Thus, in t_he case of 

linearized system /1/, the solutions will be boun.ded and stable 

provided that the condition /11/ is satisfied. It results from 

the linear approximation that existence of the liquid wit-h free 

surface in the tank: :Jf rotor / ~r:. 'f 0/ may cause the instabili­

ty of' vertical position of the device, i.e. 1.U1bolli1ded time in­

crease of solutions of the motion equations. Since the assump­
tions on nonlinear t"\mction F (~) admits the for:n F (~} = 
= cons t , the condition /11/ should be satis:fied to assure t.1.e 

bo~1dedness of solutions f~r the system of nonlinear equations 
/1/. 

I:f }:;. .) 1 - :r ~ /region of' subcritical speeds, high gy-
, I -.,, ' 

roscopic coupling/~-then the c.ondi tion /11/ is always satisfied. 
;1:-

If ; ( 1 - ~ , /overcri tical region/ then the ccndition 
J ·;;.J.:.. 

/11/ is satisfied only for a sufficiently strJng damping 

/12/ 

When /12/ is satisfied, the :fulfilling of' condition /4/ id 

guaranteed by /1 O;~ because E 2 ~ 2 (a + ~) , what is easy to 

show·. 

It results from the above considerations, that the constwnt 

S should be chosen according to the expre~ . .sion /7 I c-:nd the 
constant t according to /10/. Then the inequality /5/ c~1n be 

pre~ented ~ virtue of /6/ as 
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where 

z = V ~2 + y2 

We transform /1 J/ in the following way 

2o<:.b 

The f\mction ~ ~ will be negative definite for all x , x 

y , y outside the region 

/14/ 

Summing up in the region 

r 
~ > max lJo 

/15/ 

r z. > m.ax l zo 

~r::;-_ H ,2 \ 2 't::. dk ', 

8 ) < 
,.. . / ':l I 

Ht...:•~ Yf..'- + 4d i 

= 
V2 cJ..£ -' 

H v.,;.2 \if.. 2 .... 40: 
i 
\ 

z1 
t 

! ! \i ') ' ,0. 1 ' t .. <>~ '-· --

x 
v 

H2 w 4 ( E 2 + 4cL) 

2ot c£ 

-?. 

.. 
:: z. 

/where E should be chosen from the inte:!"Va} ( t, , C 2/, 
the coef'ficient S - accordir~g to t he ineouali t;y f7/, whereas 
the coe:rficient o(, should be chosen so grea :. ~.~ e possible, 

what results from /14/ I, t.l1e :funct.ion V(x,:~~~r ~i<~ is positive 

d .p.; ..... t - . + - . . . a v :1 . • - • ""h t , . e.1 .... ul. e ana ~ .. s aerJ.vat.r;e rl t , oeterm:uH.-: e: wl --~· aKJ.ng 

into account /1/ is negative definite . Eence it results, thQt 
the region /15/ conta.D.1.ts the rcg;ion of u~ time:i:c boundedness 

of' solutiong for the system of diff\::r·entisl equa tions /1 I .. In 
the coursE~ of time ul solutions starting iiJ.Si.d E~ ti10 region /15/ 
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at t = 0 do not outcome from this region, and those starting 

outside /15/ tend to this regi0n. 
In the particular case, when .H : 0 and F (f) > ~ W 2 

for all values of f , can prove, using the same arguments, 
the asymptotic convergence of all solutions of' equations /1/ 

and the asymptotic stability of the trivial solution x =·i = 
=y=y=O. 

J. Periodic solutions of differential equations of motion. 

The system of differanti&l equations of' motion /1/ posses­
ses the periodic solution 

/16/ 
X = A. sin(t:ut + r) 

y 

describ~g the prece~sion vibration of the rotor, if' the fol­

lowing ugebraic relations are :f\llfilled :. 

/17/ A2 I w 2 c· ~- 1') + F(A,-1 
2 

+ A2w 2 
!S

2 = rr 2w4 
L I 'J 

t = 
aw 

arc tan --;:-------
w2 (1 -r) - F(A) 

where A - constant amplitude of the periodic motion, t: 
V 

phase shift with respect to the phase o"f exciting force, ,.., r = ~ -?. 
Observe, that periodic eolution /16/ exis~ence /i.e. steady 

rotor precession/ does not depend from the value of the coei'-

. ficient ~ /i.e. the same e:ffect is obtained with empty or 
fullfilled tank/. 

We shall point out, that Eq. /17/ can possesses several so­

lutions Ai, i = 1, 2, J, ••• , depending on the form of func­
tion F(A) .• 

We shall rewrite Eq. /17/ as follows : 
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/18/ F(A) 2 ( + V H2 
w4 2 2 = (_.U 1 -r) - -a w 

A2 

rund seek for solution of this equation using the graphical method. 

The functions of the left-hand side and the right-hand side of 

Eq. /18/ will be plotted in plane with the as~umption that the 

abscissa is proportional to A 2 /Fig. '31. As it is eeen in the 

figure, if the function F(A) is monotonic, there exist t.~ree, 
two or ·one solutions of Eq. /18/ /one solution always exists. 

because the left-hand side of Eq. /t7 I is ~a continuous function 

of A and for · A = 0 it is equal to zero; as A ~oo, the 

left-hand side tends to inf'inity, the right-hand side of /18/ 

is constant positive/. 

Fig. '3 

I:f the :f'lmction F(A) has another form, there exist more 
solutions of Eq. /18/, and even, there can exist continuum set 

of solutions within certain interval ·< A1 , A2) /Fig. 4 and 5/. 
We shall now consider the so called resonanse curve, that is 

the plot of the amplitude A of periodic solution of /16/ 

http://rcin.org.pl



.. 16 

rroJ 

Fig. 4- Fig. 5 

versus the fl'equency of exciting force /whi eh equals to the 

frequency of periodic solution W I. 
The function A ( 6J) is represented by Eq ./17 I. To si.mplify 

reasoning we shlall consider the !econd powers of these varia­

bles, that is A2 (w 2) 

It follows f'rom Eq. /17/ that if' A = 0 t.~en W = 0 ; if 

W = 0 , then either A = 0 , er 

/19/ F(.A) = 0. 

If Eq. /19/ possesses n solutions and if F(O) ~ 0, then 

the resonance curve .A2 (w 2) crosses the A2 - axis at n + 
points. 

We shall calculate the derivative d(A
2

) It has the 

following f'orm : d(vi) • 

Hence it is obvious, that 
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d(A2) 

a(w2) 
= 0 for w2 = 0 ' A = 0 , 

d(A2
J = 00 :for w2 = 0 ' F(A) = 0 , A ~O, a~ 0 • 

d(t.;/) 

This means that in the origin of the coordinates ( w 2 , A 2) the 

resonance curve is ta.Dgent to the w 2 - axis, wher eas at the 

points of intersection with A2 - axis /if they exist/ it is 

taJ1gen t to this axis. d (A 2.:J _ 
0 We shal::. seek for the points at whic..l). -- - • Putting 

d{f .... i) 
the numerator of expression /20/ equal to zero, after some trans-
~ormations we obtain 

/21/ 

We trans'form Eq. /17/ into the follmving form 

/22/ w4[A
2 (r- 1)2 

- H2] + w2A2[a2 + 2 F(A)f(- 1)] + 

+ A2 [r(A)1 2 = 0 • 

Tne e~~ression /21/ is substituted into /22/. After transfor­
mation we have : 

2 . . '.)~
2 

2 [ 4 H2[F(A)] 2 - 4 A2 F(A) a
2 (1 -r) + A2 a 4] 

A (1-( - H 
= o. 

a (A2) 
Hence it follows that ~)= 0 for A= 0 
sho·wn previously, and th~f'J ' 

e.s it \'rUs 

d(A2) = 0 for A2 ~ H2 
d~2J (1 - r)2 

if 

http://rcin.org.pl



18 

From. another point of view the left-hand side of Eq. /22/ is 

a quadr~tic form with respect to W 2 • If the values of coef­

ficients in Eq. /22/ and the :form of function F(A) are known, 

then for every value of A the roots of this equation can be 

calculated. There can exist either t~o or one real root, or 

there is no real root at all. Proceeding in such a way and 
chan~g the quantity A we can plot the exact resonQnce curVe 

in the plane (w2 , A2 ) • 

Th~, we shall determine some gene~al qualitative line:!, 

which are characteristic "for the resonance ctlrves defined a~ 
••roots" of Eq. /22/. 

We determine the discriminant of the expres$ion on the left­

h~d side of .Eq. 1221: 

Eqwting each other the expressions /23/ and /24/ we obtain, 
2 . 

that ill:) = 0 if b = 0 • Therefore, the quadratic equa-
d(<J2) 

tion with respect t~ w 2 , has only one root, namely the ex-
pression /2 1/. If o < 0 , the real roots of Eq. /2'2/ do not 

exist. 
We transform Eq. /23/ /the lef't-hand side of this equation 

is a quadratic for.n with respect to F(A) /. We find the ex­
pression 

/25/ 

~ere the notation is introduced 

We shall seek for the solution of Eq. /25/ us~g a graphical 
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method. Thes_e solutions are the points of intersections of the 

curves described separately by expressions on tr.vo different si­

des o:f /25/. The curve ~ i A 2 is one of the branches of the 

h~erbola rund it possesses the following asymptotes horizon-
tal one 

:3( a1 = 

and inclined one : 

!{, a2 = 

"2 __ H2 
A.t tb:e point A 2 

(1 - J..C) 
\ I 

there is 

2(1 · _/;..) 

d)(i (A2) 

d(A2) 
= CO • 

For i : 1 \'fe obtain +..he lower branch of hyperbola, for 1 = 
~'le upper branch /Fig. 6 - provided, that 1 - / > 0 I. 

In. view of /2'3/ and /24/ we hav·e /F:i.g. 6/ : 

S = 0 for points lying· 'n the curve JL i A 
2 

5 < 0 for oo in t! lying inside the region bounded by curve 
·£;· .. A2 

1. ,; > 0 for ooints 1 ~L"lg outside the region bounded by curve 
. - 2 J 

)(. i A 
.,,z 
7}1f'rAJ • 

bo 

_;Z i 

- Cr---- ----:-tJ . 
. I 

I 
H'l I 

Zlf-;J)r I 
l / 
I _/ .. 

Fig. 6 
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Next we analyze Eq. /22/. The free term of' this expression 

is positive everyNhere. If the coefficients of W 4 are posi­

tive, b~t the coefficients of vo 2 are negative as well as 
'"" 2 2) 6 > 0 , then Eq. /22/ possesses two solutions- w (A of 

the form : 

/26! 

,..., 

2 
wl 2 

' 

= A2 [2 F(A)( 1 - /"'") - ,,.2] ~ VI 
2 [A2(1 -;i - H

2J 

wne~e 5 is e~ressed by /24/. 
If' the coefficient of W 4 · is positive and the coefficient 

of liJ 2 is non-negative, then solutions W 2 (A. 2) of' Eq. /22./ 

do not exist /because it should be W 2 > 0 I. If the coef­
ficient of c.v 4 is negative, then there exists one solution 
(;.) 2(;.2) : 

w 2 = A2[2F(A)(l-J:) -a2] -fS 
2 lA 2 ( 1 -.f) 2 - H2} 

The last case takes place, if' A 2 ( 1 - r) 2 - H2 < 0 
if 

/27/ 

that i~, 

This is il~ustrated in Fig. 7. H2 

In the region in whi eh A 2 ~ (. . ·· 2 a number of' so-
t - r' 

~utions depends, as it was shovm above, on the sig1. of' the 

coefficient of w 2 in /22/. For 

/28/ 

"' 
&nd for S' ) 0 there e~st t~ solutions of /26/ if' 

2 H2 

A > Ct -r)2 
, or orre solution 

w2 = 
(1 - r) F (A) - a

2 
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i:f For 

a
2 

+ 2 P(A) (r - 1) ~ 0 

the real solutions of Eq. /22/ do not exist. The inequality 
/28/ can be presented in the following form 

1291 F(A) > 

and in the plane it presents the region 

in ·which the . solutions of Eq. /22/ :an axis-c / '?'!.g. 8/. 

2 

~~ T(A) 

Fig. 7 Fig. 3 

No~ ~~ ~hRll collect together in one plane the regions of 
existence of solutions for Eq. /22/ re~ulting from the inequa­

lities /711 and /29/ as well as :from the relation /24/ /Fig. 9/. 
Solving graphically Eq. /25/, Changing apropriately the 

argument A into A 2 we are able t~ draw in Fig. g also the 

plot representing the function 2 ~ F(A) • From the analy­
a 

sis carried out above it follows, that for the example of the 
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function plotted in. · 'fig~ g· · the resonance curve exists in the 

interval.~ ( o , H
2 

2 ) , (A~ , A.~) and in the first 
(l - }-) . . 2 2) 

intervQJ. there exists one solutJ..on W (A , whereas in the 

seC'ond interval tt.'O solutions U) 
2(A2) 

Fig. 9 

:tn o~der ·t:> p:resent the resonance curves t:n the plane 
( ~ 2. , A. 2) ro:r variou~ forms of the function F( A) we shaJ.l 

deal, at first, ~th the so called "ekeleton curve". 

'Ne assume, thst there exist two solutions w 2(A2) descri­

bec ~the expression /26/. We shall consider the "skeleton 
curve" tpa t is the curve in the plane ( w 2 , A 2) with respect 

to whi eh the branches of the resonance curve corresponding to 

the solutions /26/ are loc&ted at the identical distances at 
the segments which are paralell to the W 2 - axis. For this 

purpose we put together the expressions /26/ /one with the 
sigr- plus of! a ' the second one 'With the sign minus/. Thus, 
we decompose the obt2ined €A1Pression tnto two parts. So the 
equation of the nskeleton curve" is : 
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A2 [ 2 F(A) (1 
(02 /JO/ = 

2 r A2 (1 -
L 

or aiter some transformation 

/31/ 

- .v...) "' - a I 

I .J 
A q2 .i \~ 

A.-J -
~ 

2 F(A)(i -fA-)- a 2 
I 

VIe differentiate all terms ofEq. /J1/ with respect t·.) A.2 

/32/ 

I -t:t d F (A) < 0 ;·, . tak: .. "' . t -+' f+ ~ -e-r- tnls e pLace, !or ~s ance, _or so ~ 

spring characteristics/, then the rignt-hand side o:f Eq. /)21 

is negative provided that 1 - ;u.. > C • Sonsequently, the la::'t­

hand side should be negative, too. We :;c:J.!ider the iJl'te~;al 

A.
2 ., H2 ·; ·· :-!.:: 
./ ( '5 / since for A'- -~ there exists 

1 -
1
l..4. J ._ ; 1 - ,u.Y~ 

only one solution a."'ld tl:e notior: J: ... "akel~tor: ::urve" is :neanL"1g-

less/. In this case, t.~e expression in ~rackets L~ /)2/ is po-

si tive. To ensure the po~i tive sign of t..1te left-hand 3ide ;:,f 
~ . ...... -, .... \......... ,. . 
--. . -?· <. ~ Hence it follows t.L"lat i.f 

ddF~.(A)< 0_, then •.".h~_~;A_~ 1,:)--.le~ .. . · ~J, .. 
/32/ it should be 

A ~ _ • '"" o ·- _ _ ·:!u..r're '' is tl:. ~ decreasing f!J...'"l c-

tion of' A~ • 

If' d~.FiA) > 0 inard ~:s-prings/, then :for the great :rs.l.:.J.es 

of A2 in the expression /'30/ t~l.e quantity in t..'"le numerator em 

be neglected as compared vli th 2 F (.t) (1 - .u.) , as well as i.:"'l 
I ·'> .~ 

the denorn.L"'lator the quantity H2 in eompariso::1 with A"" ( 1 - .u.) c::. 

The approximative equation of the "9keleton curve" has the 

form : 

., F (AI 
("j ~ ~ --
..,_. : - _M. 

Henca it follows that for ~eat ~alues ~f A2 ~ F(A) 
,ifdT>-
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the nskeleton curve" is the increasing function of A2 • 
We shall point out, that one of the solutions o:f /26/ poses-

see ~~e vertical asymptote 

= 
2 H2 

the numerator o'f the greater 
1-J..l.. 

Indeedt if' A ~ ( ... )2 

root of /26/ is reduced to the constant quantity 

the denominator confines itself to zero, and there~ore, for .., 
one branch· of the curve W c;,. -- Oc::j • 

On the ground .of the analysis presented above, . we are able 
for various types of the f~ction F(A) /for instance, for 
th~se presented in Fig. 10/ to determine sppropriately the 
resonance cu..-ves /Fig. 11/ • 

Fig. I 0 
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f.:.-1e a1.1aJ..ysls can De performed analogously in tne case 
- M< :. . We present here only the f'inal results, that is, 

I 

the plots of the resonance curves for some f'orms of the fUnc-

tion FlAI /Fig. ! 2 and 1)/. 

Azt 

i 0 

? : • 
~H ffAli or, 

i 

I 
AJ~-------

' 1 ~ 

)~ur 

.At tne end, in the case 

= 

Fig. 12 

Fig. 1 J 

= 0 the following expression 

I ! " 
~. 2 e. 2 + A \1 A.'~ a 4 + 4 H 2 [ F (A)] 2 

H2 
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is t~e unique solution GJ 2(A2) o~ Eq. /22/. 
If F(A) is a monotonic fttpction, uo2 is 

increasing function of A 2 and w? ~ oo 

/Fig. 14/. 

i. 
I 

I I 

OL_, 
w 

Fig. 1 &. 

a monotonically 
as A2~ c::::::><::> 

lhe analysis given a.boye exhaust fully the problem o~ har­

~nical resonance atates for the solution of the system /1/. 
It should be emphasized, that the solution~ /16/ are the exact 
solutions of the system /1/ and therefore, we obtain the reso­
r:~.rlce curves without any approximations. It is of course, very 
·.J.~efu.l for practical applications to lmow the qualitative pj,c­
ture of resonance curve Which is achieved with aid of simple 
.::xaminati:)n of location of the curve 2 H2 a - 2 F(A) on tb.e 

diagram of regions of existence of separate for;ns ·:J:f solutions 
-tor Eq. /22/. If, for instance, the function F(A) /dlarac­

teristics of elasticity/ is given in the form of a plot /the 
case frequently encountered in practice/, it is suf'ficient ' to 
compare the plot of this function vri th the graph of' existence 
of the separate forms of solutions /Fig. 9/ and it is possible 
to determtne directly both the qualitative picture of the re­
sonance curve a.q vell as the value of greatest a.mpl,i tude a!'"'.d 
frequency :for which it occurs,· /the formula /21 I after subs :~i­
tution A= Amaxl. Further, it i! po~sible to choose the sprL~g 
characteristics, _that is, the function F(A) ir ... such a way, 
that in the conditions o~ operation with the velocity LJ , 
the amplitude of forced vibration does not pass above ~~e given 
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quantity. From plots in Fig.. 10 and 1 2 i:. is seen how the cla:n­

ping coefficients affect the resonance process. Lovrering "~~ ·· 

causes as if the compression of the scale of plot of' the fw""lction 

F(A) , therefore the cur~e 2 E2 a-2 F(A) becomes less 

abrupt. Its point of intersection 'l.'d th the Ctlr'/e w~ (A 2) r&­

moves itself leftwards. Ti1is mea~s, that tr!e greatest amplitude 

of ~orced vibration dec~eases. The changing of ths coe~ficient 

H gives invers eff'ects. 
( ' ,'\2 + c -~ 2 Let us draw attention to the case F SJ = Y J 

Eq. /i/ possesses then one, ~no or three periodic solutions o~ 

the type /16/ \\1 th different amplitudes corresnonding tc the 

given value of~ /the cases 1, 2, 4, 5. 7, e, 9 &ne TO ih 
fig. 11/. This result is similar to those c_oncl us ions conc-::r­

ning the second order differential equation of :ne ~~~:ing's 

type 

/JJ/ = E sin 

which descxibes the motion of a mechanic&: er electric&: syste~ 
v"'-itb one degree o:f :freedom. It is sho·wn, f'or the abovE. ~en"tio­

ned equation, th~t the resonance cun"'e~ ma~.-. ho:ve tbe li~e s.t..s.:.•c 

as those in Fig. 11. However, it shoul5. be emp!"' .. asied, t":'.c.t t t c 
results for 'Eq. /)J/ were obtaLYled by many eutors in the- ~ppro­

xima.tive way, lfhereas in the present work, the results obtainec 

for the system. /1/ are exact. 

If the damping in the system /1 I is small and if the f'unction 

F (~) is increasing as well as if' the principal axial moment of 

~ertia I is either less than or equal to the equatorial rrw-z 
ment I If' ~ 1/, then the amplitude A of force6 vibr~tion 
can increase infinitely as W increases /cases 2, 3, 6~ 9, 
10 and 11 in Fig. 1t/. Hence it follows, that :if the amplitude 

of the e:xci ting foxce is pr,portional to the ~econd p:)wer of 

frequency W , f'or high speeds the sta.bilizir1g factor~ namely, 

the coef'ficien t of gyros copi:c coupling has th; insimif'icant 

influence. If a stronger dam.ping exists in the s;ystem, t..'"len 

the amplitude increases only to a certain value as W incre­

ases. 
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The existence of several states of resonance was first obser­
ved by M. Z. Y..olowski for the case of single equation of~ the se­

cond order : 

/34/ 

In the publica t.ion [ 11] the resonance curves were obtained for 

the a pproximative solution of Eq. /34/ : 

x = A sin (wt + t) + B 

for a nurn.ber of types of the fUnction F(x:) • The character of 

resonance curves obtained by r-Dlowski on ground of the first 

aoproxi:nation are not different to those obtained for the system 

/1/ with the aid of exact method. 

4. Investigation o:f stability of periodic solutions /16/. 

~view of existence o:f several periodic solutions it was 
necessa~J to examine their stability. In order to investigate 
t he Liapt.mov' s stability of periodic solutions J:f the type /16/ 
for the system /1/ •Nhich possesses different amplitudes, we 
shall write the system of equations under discussion in varia­
tions. Next, we shall ~~alyze the stability of its solutions 

[12] • Applying the trans:form.ation 

sin (wt 
\ 

X = u + A + f) . 

y = V .A cos (Wt + t ) 

we obtaia the linearized system of equations in variations [rJ, 
14] 

~+(a+~)~+ [F(A)- ~W 2]u+ A sin(wt +,r} 

· ddFlA)[u sin(wt + r) - v cos(Wt +r)] + ;w; + 

/J5/ +-;..wv = 0 
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/3'i/ 
... \ • f. • ) 
v + (i + {l..iv .._ v L'Fi.,ft - '"7 w2 J - A CO! (wt _-+ Q). ·. 

"· 

T'~s ·ts the e;ystem af homcjgeneou.s line~ equE:tios Vc'i t!f. perio­

iiclil:i..y variable coeff'icients. For this system we have found 

tht: solution : 

mt 
[ c1 ' ,""< sin Lwt 11 

u :: e cos lWt +f) - v2 -+ 0~ 
/)6/ ... em-: c, sin (_wt r) ,.. :"w q 

V l + ... .... ., CCS ·l!· t .... t~-, ... c.. 

wnere the constant.e r:. C 1 _, Dz should be 6.eterrtineC.. Sub-

!ti tuting /36/ into 1351, &.fter some t:rans:forJ:Uation we obtain 
t..~e following char&cteri.stic equation 'tO determine lll • 

(" + ~)2 A'!<'f'j)l r . 
~) [ 2 F(~). + +A ~~ + m~(& + + G b. j . ( 

/)7/ d F(A )J 2. 
::> I. 

l'i } 2 ¥.w 2(r- 1)} ... A dr' + aw-u - + - + I.,. 
~ 

"" 
.-

'd 2 A ddFiAJ 
r 

..;. w" ,2 + i :F (1. ': + ( ... / lf- + LF(A) .+ 
I . 
L.. 

.., w 2 (f- - dJ :: 0 

Eq .. /171 .has f'o-:.:r roots ""'" • If "they are dif:ferent, we 
c bt&i.r.L i'cur· mdeuend.ent solutions of. th€ system /35/ L.~ the 

fo:r:-w of /36/. Tn.eir lL"rJ.es.r combination is the general solution. 
However, we are· interested onl:y ir... the sign of the· real. part 
of' -the rocts :;u deter!DL"'"!ee exponential deCreasing o-:f solu­

t:iona /'J6/ iir.C. iii consecuerice ~ the. asymptotic stability of' 
the scl~t~ons /lb/ :·o~ the sys"ten, /1/~ 
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'lie ~h8ll apply the Hundtz'e criterium [t2] • After develo­

ping the corresponding determinants we find the following con­

ditio~ 

/J8/ a + & > 0 

i39! 

/41/ 

:a + ! ) r F (A) - t1 W 2 + (a + ~) 2 + :\ d F (A)J 
' L l. · 2 dA 

+ 

, ~ 

- ·~-.}:_-+ 

(a + 3:) 2 ! 2 ( d d FiA)) 2 

·> 0 ' 
(~ + 1)..)2 + w2rf- 2)2 

:~~A ·; .+ W 2 0u..- l)] 2 +. 9.2W2 + A d dF lA) [F(A) + 

.l 
ql > 0 

...... . 

'.vhic.1. · guarantees~ -.;hat the real parts of . IIl are negative. The 
condi tiQns /38/ , /)9/ a."'ld /4-C / are fulfilled if the positive 

jissipation exist irr ·the system /a> O/, and if, for instance, 
·the function F(A) is non-decreasing, as tNell as it h~ non-

. negative derivati·.re for given A·, and if the. condition /11/ is 

fulfilled. The inequality /41/ shows directly for whiCh ampli­

tudes A :he solutions /16/ are stable or· unstable. To verify 
this we ~vrite Eq. /17/ in the following form : 

.l , . . \ 2\ '+' \A ) . 

The functior: 'i>(~2) has the following properties : cp(o) = 0, 
-.$ (A 2) __,... oc , as A 2 ~ oo • Since F (g) is a continuous 

function, ~ (A2) is also a continuous function of the argument 

http://rcin.org.pl



32 

,2 . .,.. . , h . t al ~ • nence 1t fo_lowa, ~at there eXL! such a v ue 

fo:r whic-n cp { i 2) : H2w4 • If the function ~(A. 2) 

monotonic, ~~e greater qu~tity of points for 'whicn 
= H2 w4 can exist /Fig. 15/. 

o: 

:F'ig .. 15 

Ws;; sn.al::. d.if':ferenti&te the :f'-l!"!Ctior 

= 

. ~ ,' ~ \ r - ") 
• A c :\.r. i ! F(A) + w.:.. Cp..· _ 

CT L 

., I 
1) t 

' J 

A2 = A2 
is non-
~ (A2).: 

Co:np&!':i::e -::1e e:tpression /IL 1/ and /42/ we see, that the sclu­

tior~s w1 tr. iin.p:i tu.des Ai , i = 1 , 2, 3, ••• , :fer which 

/ths:t is if' t!1e f'un ctior• at the poi~t A = A. is 
l 

non-inc!'easL.~g/ are unstable. For _ instance, in Fig. 15 the -solutionE \•vitn amplitudes .J.2 , ~i- 1 Q:I'e unstable. 

I:f ~ere exist three periodic solutions of the type /16/ 

wit.~ di.ff'erent arrml.i tudes /this, &S it was sQ.id above, can 

take place/, "L~er.L the solution with mean, e to quantity, am-
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pli tude is unstable, whereas the ~Ml solutions !1 tuated extrg­

mely can be 9table. This result or exac-c reaaoni=1g confirms ·~-::.e 

results obtai11ed by ot."ler authors using approximati7e !Ilethods 

[11 , 1'5 J . 
5. Conclusions. 

I£. the present work the motion of the mechani·cal sys'tem 

sho\v.n in Fig. 1 has been LLvestigated on the ground of analy­
sis of differen-tial ·equations /i /. ~e J()undadness of defle­

ctions of the . ~tor axis fro~ ~.e verti~&l ?OSition ~as been 
pointed out. It is proved, t~at if ~~e solutions of homogene~ 

ous lin:earized differential equations system /~ / /i.e.~ rit .. gn 

F (~) : k* > 0 , R :: 0 / are as:ymptctic~~ly stable, ~~an "±e 
solutions· or the nonlinear system are bo~dec .nd are ~oming 

to t1.e certain de:fini te domain of the ul ti!Uate ~undedness. 
In the paper [1 0] it is showed, that in the linear cas-a~ t-.1-e 

effect of' liquid ~t t.lJ.e ta.~ 11ay ca~se ~'le unlimi tee solutions 
in the oyercriti:al domain, i.e. unli::i ted de:.·:a~t:.o<. Jf t .... '"le 

centrifuge "from the vertical position. Jne .::ar.:. :;bse~r~ ±:.s i...'"i 

practice. The centrif'u.,ges wi t.h ~an.ks ::'il:ad with a s:nal.l. ~uan­

tity of' liquid can be S'..l~jected ~1.e dangerous ·.ribra--cion, •t.rith. 

amplitude muc...~ greater than in t..'"le case empty or · ±'.llfillec 

. tan'k. In the paper it is shower:, that in the case of .::onl~~ear 

elastic ~aracteristics of bearings su~~ effec~ also ~an oe 
.obtain. 

It Yras demonstrated the existence at least of ~ne :>erfodic. 

solution of the type /16/ with the frequency ·:>f t:1e exci tin:; 
force. The existence of the solution /16/ joes not jepend ~m 

v~ue o£ the coefficient ~ i.e. from existence l~quid w1~~ 
free surface in t..lJ.e tank. The relation betv;een frequency and 

~plitude o£ the forced vibration has been obtained. It follows 
from these relations ~1at for various frequencies o~ the exci­

ting :force, that ~ is, for various an@..llsr velocities o:f the ro­
tor itself, the mnplitude of forced vibration changes ~noto­
nicalJ.y only in certain ranges of values of W /for fixed 
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vaiues o~ other parameters of the system/. In the defined 

~enge of values there exist two, three or more states of the 
steady v~.bri'tion. The .. jump phenomenon" is also possible, 
vi:l.ict. is k:no'Nn for Eq. /331 of the Duffing's type. The st2bi­

li t:-<r_ of t"le periodic vibration has been investigated. It is 

precisely determined Which periodic solutions are stable and 

wh.ich ere unstable. It should be noted that the phenomenon of 

en~tence of a number of stable steady states is only due to 

tne action of the nonlinear elastic force of t.l1e bearings. ln 
tne case of full lL~earisation of motion equations, the rela­

tion amplitude .- frequency has different Character, na:nely. 

the moduli of amplitudes change /for the given frequency/ ae 
we:.:... as the phenomenon oi' er..istence of several a:mpli tude for 

Jne frequency does not appear. Designing the rct.:ating sycte.rr. 

·=' f' such 2 kind., t.t'le cons true tor may and shoulc cnoose the 
n.ar:lL""lear elastic ::haracteristic ii! such a wa.,y, th&t for a 

gi7eu oongular velocity of operation the ampiitude of detrinen­

:.~..l. precessi.c:: vibration c: tr.:.E: rote:- shoule. be se s!:lal:, as 

)JO<:! cri_ bl e. 

Fina.:Lly, it should be noteC.., t'tlat Eq. /1/ !!lay be -;1sed to 

des cri be no"t or>.l.J· "t.'"le sy·st:ell shovm ir_ Fig. 1 , :,u.t alsc num.e:­

::--~us vther syste:n8. /mare strict:2.y, tb.ese are the ea'...lai:ior..s 
::i sm.all vibration/, for instar..:.ce, thE. :notion c-:' ~ mass less 

flexible shaft rotating in rigid jearL~gs together with the 

d.::..s c attached eccentrically [2 , 15 j , t.~e :uo:ioL of some 

g;.-roscopic devices, gyroscopic stabilizers a.nd otf.!.ers. 
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