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ON THE OPERATIONAL PERTURBATION METHOD UF SOLUTION 
, 

OF THE VOLTERRA S NONLINEAR INTEGRAL EQUATIONS 

Zbign.iew Bychawski, Kazimierz Piszczek 

1 • Introduction 
In the domain. of the nonlinear mechanics of continu

ous media we often have to deal with nonlinear integral 
equations of the Volterra's type. Such equations appear for 
exemple, in the problems of nonlinear viscoelastici ty foun- . 
ded on the generalized Boltzmann's principle for hereditary 
processes, in the theory of nonlinear vibrations in the the
ory of automatic control and in the problems of nonlinear 
random processes. 

The general for.m of the Volterraps nonlinear integral 
equation of the second kind is 

t 

(1.1) s(t) = 2 e(t)+~ t[t,'t",s(t:l] d-r • 
. t 

0 

where s(t) is the function to be found, e\tl- a known fun
ction a-constant and f [ t, 't' 1 s (T>] - a known function of 
all its argUments t, 1:' ,s (-c). Let the upper limit of the 
integral ( 1 .1 ) be the time-variable, t

0 
denoting initial in

stant. We assume tbat the . known function e (t) is defined 
and co~tinuous in the time-interval (t

0
,oo) and also the 

known function f[ t, "t' ,str>} is defined and continuous with 
respect to all variables in the region of their variability 
given as being 

l1.2) -
. t0~t~co, t 0 $."t' ~ t, i ~s~ i 
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If we denote by kd and kg the lower and u~per bound of 
the func~ion f, respectively, then 

In addition, the function f [ t, 't ,s("t)) satisfies the con
dit-ion 

where o'"t' denotes the derivative with respect to variable "t' 

and 1\ is a positive constant. 
In the problems of mechanics as mentioned above the 

function f can be usually presented in ·the form with se- · 
parated variables 

/1.-5/ 

where 

/1.6/ 

The last representation has some physical meaning which we 
shall point out in considering certain application. · 

If we denote by Q the integral operator 
t 

/1.?/ Qg = ~ g('t)K(t,.t) d'1: _, 

to 

where the function K is its kernel, the Eq./1.1/ can be 
rewritten, for the mode of representing /1.5/ and /1.6/ in 

the ope~ational form 

/1.8/ [1 + QFts)J s = ae 
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We note that for the function E' · being identically 
equal unity 

(1.9) F(s) 5 1 , 

the Eq./1.8/ becomes linear 

(1.10) (1 + Q) s = ae • 

Thus, if the function F shows a small deviation from the 
constant value of unity then the physical process represen
ted by means of Eq./1.8/ can be regarded .as result of small 
nonlinear perturbation of the linear process as given by 
Eq./1.10/. In this way, the function E in the operator Q 
of Eq./1.8/ has the meaning of certain physical magnifying 
factor depending on the actUal value of the physical varia
ble s. On the other hand, the function F depends on the 
small physical constant fo which is responsible for the 
small perturbation of the linearity 

(1.11) 

In general, the mentioned above properties of the 
function E can be represented by the exponential function 
of the form 

(1.12) 

where s* is certain -fixed value of the variable s for 
which the ~g./1.8/ transforms into linear equation /1.10/. 

* Thus, accordizt~ to .l:!iq./1.12/ we have for s = s 

(1.13) 
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and the process considered is described by linear Eq./1.10/. 
For a > s~ ·t;he process is nonlinear in accordance with 
Eq./1.8/. 

In the following we shall deal with the integral equa
tion /1 • 8/ where the function F is o:t· the type /'I .12/. 

2. ~er~~bational development of the integral equation 

We present the function /1.12/ in the form o:r power 
series 

. 40 

F [ ~ s(-r:)J = .[ ~k sk-1 ('"t') 
k·i 

(2.1) 

where the coefficients pk are given by the equality 

(2.2) A 1 ~ k-1 ·( 11 ) I B k-1 
j""k = 1t1 r exp - r s 0 = ~k ( 

According to the development /2.1/ the equation ;~1.8/ 
may be written as follows 

(2.3) 

On the other hand, we develop the function s into 
power series of the small paramete~ ~ 

(~.4) 

where the coefficients bj are 

(2.5) 
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Introducing the series /2.4/ into Eq./2.1/ multiplied 
by s (T) we have 

/2.6i 

Here, the coefficients of the series /2.6/ can be found 
from the formulas 

so ;oe1 so ' 
s1 =~ s1 + ~2 52 

' /2.?/ 0 

s2 =at, 52 + 2 ~ 51 so + ~j s~ 

53 = oC1 s3 + oC2 
2 

s1 + 2 cl2 s2 so + 3 o( 3 s1 
2 .4 

so+o£4so 

................ ~ ................................ . 
where the constants ~ are given by the relation /2.2/ 

/2.8/ 

Introducing the series /2.4/ and /2.6/ into the Eq. 
/1.8/ we obtain finally the following condition 

/2.9/ 

From this condition we can find, for successive powers of 
the parameter fo , the coefficients of the development 
(2.4/. The condition /2.9/ corresponds to the recurrent 
system of linear integral equations with respect to the 
coefficients sk(~) 

/2.10/ /k=1 ,2, •••• / ' 

' 
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the first coeffi~1ents being given by the equation 

/2.11/ s + Qs = ae 
0 0 

3. Operational representation of the coefficients of the 
perturbational development 

We shall evaluate the coefficients of the perturbatio
nal development sk from the recurrent system /2.10/ and 
/2.11/. ~he last equation, when Eq./2.7/ is taken into ac
count, can be rewritten in the form 

/3.1/ { 1 + cC. 1 Q } s
0 

= ae • 

By appying the inverse operation we find from ~q./3.1/ 

/3.'d./ 

Accord~ng ~o ~he phys~cal interpretat~on of t~e pro
cess described by the Eq./1.8/ we assume /see Eq./1.7// 

/3.3/ 

and then the solu~ion /~.'d./ can be presented by means of the 
development of the inverse operator 

/j.4/ 

Here we have 

~ 

so = a.[, ( -1)1 c:l1 Qie 
i=O 

0 
Q g = 1 ' 

/3.5/ t t t 

Qmg = ~ ~ ... ~K(t,~m-2)K(rm-2'~m-3) ••• g(~m-2)dTm-2 d~m-j"•' 
.. t 0 t 0 t 0,'--------------' 

m m m 
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Where we should put 't _1 = ."t" • 

The first equation of the system /2.10/ can be written 

/3.6/ 

where ·accordiug to Eq./3.4/ 

/3.7/ 

Here denote 

m 

/3.8/ Sm = h .L ( 3k-m)Qke·~-k' 
k::1 

Putting the Eq./3.?/ into Eq./3.6/ and applying the 
inverse operation we calculate 

Oo 

/3.9/ s1 =(1 + cC1Q)-1 L,. ( -1) i+'!l~ ~a2Qgi • 
i=o 

After having developed the inverse operator the Eq./3.9/ 
becomes 

where 

n 

/3.11/ bu = L. ( -1 )n+1Qk( ~-k) • 
k=o 

The second equation of the system /2.10/ gives 

/3.12/ • 
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Introducing the development /~.4/ and ;;.·ao/ into Eq./.?.1~/ 
and applying the inverse operation we obta~ 

• 

After having carried out the indicated operations in Eq. 
/3.13/ we have 

Here denote 

l'(tl. 

/3.15/ q
0 

= e3 , Clm = !e L ( 4k-m} ( -1 )kQke·~-k , m ~1, 
k=1 

In t~e sam~ manner we can evaluate . the further coef
ficients of the development /2.4/ according to the desired 
accuracy of solution of the Eq./1.8/. 
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4. Free vibrations of a nonlinear system with one degree 
of freedom 

We shall point out that the problem of free nonlinear 
vibrations of a system wi'th one degree of freedom ~·educes to 
the solution of the Volterra~s nonlinear integral equation 
as given by Eq./1.8/. 

The problem as mentioned above is ror.mula~ed by the 
nonlinear dirferential equation of second order 

/4.1/ x ( t) + w-2:x: ( t) + fo w ~ [ x ( t) , i: ( t)] = o, 

or, in particular; when nonlinear term depends only on 
displacement x(t) 

;4.2/ 

In the Eqs./4.1/ and /4.2/ fo represents a small parameter 
for small perturbation of harmonic motion, ~ - frequency 
of vibrations in linear range, ~ and !tl - nonlinear func
tions depending on displacement and displacement rate ·and on 
displacement, respectively. 

Both differential equations can be presented in the 
for.m of equivalent integro-differential and integral equa
tions, respectively. Thus; Eq./4.1/ can be written as follows 

t 

/4.3/ x{t) = g(t)- ~ ~ · ~ [ x(-r), itc)JsinQ(t-7:) dT, 
to 

where 

g(t) = A cos <.0 t + B sin c,vt , 
/4.4/ 

A = x ( t 0 ) 1 B = ~ X (t 0 ) • 
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The second equation /4.2/ may ·be presented in the form 
t 

/4.5/ x(t) = g (t) - f' ) !!! [ x('t'J] sin cu( t-t}d <' • 

to 

By putting in the last e4uation 

/4.6/ 
'!£ [X (-c)]= x(r)F [X(<)]~ 

K ( t- T) = sin (,..) ( t- 't) ,. 

we can wrate instead of Eq./4.5/ 

t 

X (t) + ~ X ('t) F [X ('t)] K ( t- 't) d '!' = g l t) , 

to· 

/4.7/ 

or in operational for.m 

/4.8/ (1 + QF) X : g 

which is formally identical with Eq./1.8/. 
It is obvious that the more general integro-differen

tial equation /4.3/ may be also reduced to the analogous 
operational for.m /4.8/ if only the function ~ can be pre
sented as be~g 

./4.9/ 

The last representation must be always allowable since 
its physical significance, x ("t) being the physical effect 
of the process considered and P - magnjfying factor in 

nonlinear range depending on this very effect and its de-
rivative. 

Thus,. we conclude that the method of solution as given 
in § 3 may be applied to ·the problem ot nonlinear vibrations 
stated above. 
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5. Creep of viscoelastic material with small nonlinearity 

The equation /1.8/ may be interpreted as the relation 
between stress s and strain e for a _nonlinear viscoelas
tic material. If the function F is of the type /1.2/ then 
f9r sufficiently small p the process represented by Eq./1.8/ 
may be considered as elastic-creeping deformation under 
stress s(t) with small deviation rrom the linearity. In 

particular, s* denotes the value of limiting stress at the 
nonlinear range and the kernel of ~he operator K /1.?/ is 
~he rate of creep factor. 

We assume that at theinstant t
0 

the stress s(t) is 
applied which do not exceed significantly the limiting value 
s ~. Then the first coefficient of the development /2.4/ is 

constant and can be identified with the value of limiting 
stress 
/2.11/, 

/5.1/ 

s* = s 
0 

as bein the solution of linea~ equation 

Thus, the first coefficients s
0 

expresses the linear share 
of process in generally nonlinear process e In this case the 
linear process occurs under constant stress s

0 
and the 

~onlinearity is involved by the increase of stress over the 
limiting value. According to that the operator /1.7/ becomes 

/5.2/ Q(1) = ~ = ~ K(t-,;) d<:: 
to 

if we assume the kernel depending on the difference of its 
argUments. Then the Eq./5.1/ may be simpy written 

/5.3/ 
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or after developing /see Eq./3.4// 
00 

/5.4/ s
0 

= ae ·z: ( -1 )i oe.t <4 
i=o 

Introducing the operator /5.2/ into Eqs./'~.6/ and 
/3.12/ we obtain the ~urther coefficients, respectively , 

where the coefficient s
0 

is given by the series /5.4/ and 
its powers can be calculated by means of the following 
formula 

<10 

/5.7/ s~ = (as)n ·.z:(-1)i cw(.~ gi(n) , /n=2,;, ••• / • 
i=o 

Here denote 
m 

/5.8/ g0 {n)=1 , Sm(n)= ~ L, l k(n+1) -m] ~Sm-k(n) • 
k=1 

The val.ue of the expression in brackets of Eqs./5.5/ and 
/5.6/ is 

/5.9/ . (1 + ~ Q., )-1 = r. ( -1 )\t; Q1 

i=o 

Substituting the. formulas /5.?/ - /5.9/ into Eqs. 
/5.5/ .and /5.6/ we obtain, respectively , 

00 
2~. 

/5.10/ a1 = cS(ae) L-oC.~i , 
i=o 
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• 
/5.11/ r = "-'"' (-1)k+1 Qk+1 [ 2 ~2 P + ol. {3)] 

m L-. 2 m-k 3 Sm-k ' 
k::o 

lf we assume that the kernel of Eq./5.2/ is 

/5.12/ 

where 0 den()tes creep factor of the l~ear range, then 
Eq./5.2/ can be integrated giving 

/5.13/ 

since 0(0) = 0 • Thus, the solution for stress of the non
linear equation /1.8/, representing elasto-creeping defor
mation of viscoelastic material with small nonllneari ty, is 
expressed by the value of limiting stress s

0 
and creep 

factor of the linear range /5.13/ which defines the stress 
variability in time /relaxation process/. 

6. Final conclusion 

On the basic of our considerations and results obtain
ed with respect to the solution of the problem formulated 
above, we state what follows: 

If in the integ2:al equation /1.1/ the function e/t/ 
is given real fUnction defined and continuous in the interval 
t

0 
~ t < ao and the function f [ t, 7:, s ("t) J is a given 
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real function of the pair of points . t,~ which satisfJ
the cODditiona /1.2/, continuous . and aatistying Eq./1.4/ 
nth respect to the variable s, then f.or the representa
tion /1.5/ aDd tor tha 1nequali"t1 /3.31 the solution o:t 
Bq./1.1/ ia UDique and -gi.Ten b7 the series /2.4/. 
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