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ON THE OPERATIONAL PERTURBATION METHOD UF SOLUTION 
, 

OF THE VOLTERRA S NONLINEAR INTEGRAL EQUATIONS 

Zbign.iew Bychawski, Kazimierz Piszczek 

1 • Introduction 
In the domain. of the nonlinear mechanics of continu­

ous media we often have to deal with nonlinear integral 
equations of the Volterra's type. Such equations appear for 
exemple, in the problems of nonlinear viscoelastici ty foun- . 
ded on the generalized Boltzmann's principle for hereditary 
processes, in the theory of nonlinear vibrations in the the­
ory of automatic control and in the problems of nonlinear 
random processes. 

The general for.m of the Volterraps nonlinear integral 
equation of the second kind is 

t 

(1.1) s(t) = 2 e(t)+~ t[t,'t",s(t:l] d-r • 
. t 

0 

where s(t) is the function to be found, e\tl- a known fun­
ction a-constant and f [ t, 't' 1 s (T>] - a known function of 
all its argUments t, 1:' ,s (-c). Let the upper limit of the 
integral ( 1 .1 ) be the time-variable, t

0 
denoting initial in­

stant. We assume tbat the . known function e (t) is defined 
and co~tinuous in the time-interval (t

0
,oo) and also the 

known function f[ t, "t' ,str>} is defined and continuous with 
respect to all variables in the region of their variability 
given as being 

l1.2) -
. t0~t~co, t 0 $."t' ~ t, i ~s~ i 
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If we denote by kd and kg the lower and u~per bound of 
the func~ion f, respectively, then 

In addition, the function f [ t, 't ,s("t)) satisfies the con­
dit-ion 

where o'"t' denotes the derivative with respect to variable "t' 

and 1\ is a positive constant. 
In the problems of mechanics as mentioned above the 

function f can be usually presented in ·the form with se- · 
parated variables 

/1.-5/ 

where 

/1.6/ 

The last representation has some physical meaning which we 
shall point out in considering certain application. · 

If we denote by Q the integral operator 
t 

/1.?/ Qg = ~ g('t)K(t,.t) d'1: _, 

to 

where the function K is its kernel, the Eq./1.1/ can be 
rewritten, for the mode of representing /1.5/ and /1.6/ in 

the ope~ational form 

/1.8/ [1 + QFts)J s = ae 
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We note that for the function E' · being identically 
equal unity 

(1.9) F(s) 5 1 , 

the Eq./1.8/ becomes linear 

(1.10) (1 + Q) s = ae • 

Thus, if the function F shows a small deviation from the 
constant value of unity then the physical process represen­
ted by means of Eq./1.8/ can be regarded .as result of small 
nonlinear perturbation of the linear process as given by 
Eq./1.10/. In this way, the function E in the operator Q 
of Eq./1.8/ has the meaning of certain physical magnifying 
factor depending on the actUal value of the physical varia­
ble s. On the other hand, the function F depends on the 
small physical constant fo which is responsible for the 
small perturbation of the linearity 

(1.11) 

In general, the mentioned above properties of the 
function E can be represented by the exponential function 
of the form 

(1.12) 

where s* is certain -fixed value of the variable s for 
which the ~g./1.8/ transforms into linear equation /1.10/. 

* Thus, accordizt~ to .l:!iq./1.12/ we have for s = s 

(1.13) 
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and the process considered is described by linear Eq./1.10/. 
For a > s~ ·t;he process is nonlinear in accordance with 
Eq./1.8/. 

In the following we shall deal with the integral equa­
tion /1 • 8/ where the function F is o:t· the type /'I .12/. 

2. ~er~~bational development of the integral equation 

We present the function /1.12/ in the form o:r power 
series 

. 40 

F [ ~ s(-r:)J = .[ ~k sk-1 ('"t') 
k·i 

(2.1) 

where the coefficients pk are given by the equality 

(2.2) A 1 ~ k-1 ·( 11 ) I B k-1 
j""k = 1t1 r exp - r s 0 = ~k ( 

According to the development /2.1/ the equation ;~1.8/ 
may be written as follows 

(2.3) 

On the other hand, we develop the function s into 
power series of the small paramete~ ~ 

(~.4) 

where the coefficients bj are 

(2.5) 
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Introducing the series /2.4/ into Eq./2.1/ multiplied 
by s (T) we have 

/2.6i 

Here, the coefficients of the series /2.6/ can be found 
from the formulas 

so ;oe1 so ' 
s1 =~ s1 + ~2 52 

' /2.?/ 0 

s2 =at, 52 + 2 ~ 51 so + ~j s~ 

53 = oC1 s3 + oC2 
2 

s1 + 2 cl2 s2 so + 3 o( 3 s1 
2 .4 

so+o£4so 

................ ~ ................................ . 
where the constants ~ are given by the relation /2.2/ 

/2.8/ 

Introducing the series /2.4/ and /2.6/ into the Eq. 
/1.8/ we obtain finally the following condition 

/2.9/ 

From this condition we can find, for successive powers of 
the parameter fo , the coefficients of the development 
(2.4/. The condition /2.9/ corresponds to the recurrent 
system of linear integral equations with respect to the 
coefficients sk(~) 

/2.10/ /k=1 ,2, •••• / ' 

' 
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the first coeffi~1ents being given by the equation 

/2.11/ s + Qs = ae 
0 0 

3. Operational representation of the coefficients of the 
perturbational development 

We shall evaluate the coefficients of the perturbatio­
nal development sk from the recurrent system /2.10/ and 
/2.11/. ~he last equation, when Eq./2.7/ is taken into ac­
count, can be rewritten in the form 

/3.1/ { 1 + cC. 1 Q } s
0 

= ae • 

By appying the inverse operation we find from ~q./3.1/ 

/3.'d./ 

Accord~ng ~o ~he phys~cal interpretat~on of t~e pro­
cess described by the Eq./1.8/ we assume /see Eq./1.7// 

/3.3/ 

and then the solu~ion /~.'d./ can be presented by means of the 
development of the inverse operator 

/j.4/ 

Here we have 

~ 

so = a.[, ( -1)1 c:l1 Qie 
i=O 

0 
Q g = 1 ' 

/3.5/ t t t 

Qmg = ~ ~ ... ~K(t,~m-2)K(rm-2'~m-3) ••• g(~m-2)dTm-2 d~m-j"•' 
.. t 0 t 0 t 0,'--------------' 

m m m 
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Where we should put 't _1 = ."t" • 

The first equation of the system /2.10/ can be written 

/3.6/ 

where ·accordiug to Eq./3.4/ 

/3.7/ 

Here denote 

m 

/3.8/ Sm = h .L ( 3k-m)Qke·~-k' 
k::1 

Putting the Eq./3.?/ into Eq./3.6/ and applying the 
inverse operation we calculate 

Oo 

/3.9/ s1 =(1 + cC1Q)-1 L,. ( -1) i+'!l~ ~a2Qgi • 
i=o 

After having developed the inverse operator the Eq./3.9/ 
becomes 

where 

n 

/3.11/ bu = L. ( -1 )n+1Qk( ~-k) • 
k=o 

The second equation of the system /2.10/ gives 

/3.12/ • 
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Introducing the development /~.4/ and ;;.·ao/ into Eq./.?.1~/ 
and applying the inverse operation we obta~ 

• 

After having carried out the indicated operations in Eq. 
/3.13/ we have 

Here denote 

l'(tl. 

/3.15/ q
0 

= e3 , Clm = !e L ( 4k-m} ( -1 )kQke·~-k , m ~1, 
k=1 

In t~e sam~ manner we can evaluate . the further coef­
ficients of the development /2.4/ according to the desired 
accuracy of solution of the Eq./1.8/. 

http://rcin.org.pl



- 9 -

4. Free vibrations of a nonlinear system with one degree 
of freedom 

We shall point out that the problem of free nonlinear 
vibrations of a system wi'th one degree of freedom ~·educes to 
the solution of the Volterra~s nonlinear integral equation 
as given by Eq./1.8/. 

The problem as mentioned above is ror.mula~ed by the 
nonlinear dirferential equation of second order 

/4.1/ x ( t) + w-2:x: ( t) + fo w ~ [ x ( t) , i: ( t)] = o, 

or, in particular; when nonlinear term depends only on 
displacement x(t) 

;4.2/ 

In the Eqs./4.1/ and /4.2/ fo represents a small parameter 
for small perturbation of harmonic motion, ~ - frequency 
of vibrations in linear range, ~ and !tl - nonlinear func­
tions depending on displacement and displacement rate ·and on 
displacement, respectively. 

Both differential equations can be presented in the 
for.m of equivalent integro-differential and integral equa­
tions, respectively. Thus; Eq./4.1/ can be written as follows 

t 

/4.3/ x{t) = g(t)- ~ ~ · ~ [ x(-r), itc)JsinQ(t-7:) dT, 
to 

where 

g(t) = A cos <.0 t + B sin c,vt , 
/4.4/ 

A = x ( t 0 ) 1 B = ~ X (t 0 ) • 
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The second equation /4.2/ may ·be presented in the form 
t 

/4.5/ x(t) = g (t) - f' ) !!! [ x('t'J] sin cu( t-t}d <' • 

to 

By putting in the last e4uation 

/4.6/ 
'!£ [X (-c)]= x(r)F [X(<)]~ 

K ( t- T) = sin (,..) ( t- 't) ,. 

we can wrate instead of Eq./4.5/ 

t 

X (t) + ~ X ('t) F [X ('t)] K ( t- 't) d '!' = g l t) , 

to· 

/4.7/ 

or in operational for.m 

/4.8/ (1 + QF) X : g 

which is formally identical with Eq./1.8/. 
It is obvious that the more general integro-differen­

tial equation /4.3/ may be also reduced to the analogous 
operational for.m /4.8/ if only the function ~ can be pre­
sented as be~g 

./4.9/ 

The last representation must be always allowable since 
its physical significance, x ("t) being the physical effect 
of the process considered and P - magnjfying factor in 

nonlinear range depending on this very effect and its de-
rivative. 

Thus,. we conclude that the method of solution as given 
in § 3 may be applied to ·the problem ot nonlinear vibrations 
stated above. 

http://rcin.org.pl



- 11 -

5. Creep of viscoelastic material with small nonlinearity 

The equation /1.8/ may be interpreted as the relation 
between stress s and strain e for a _nonlinear viscoelas­
tic material. If the function F is of the type /1.2/ then 
f9r sufficiently small p the process represented by Eq./1.8/ 
may be considered as elastic-creeping deformation under 
stress s(t) with small deviation rrom the linearity. In 

particular, s* denotes the value of limiting stress at the 
nonlinear range and the kernel of ~he operator K /1.?/ is 
~he rate of creep factor. 

We assume that at theinstant t
0 

the stress s(t) is 
applied which do not exceed significantly the limiting value 
s ~. Then the first coefficient of the development /2.4/ is 

constant and can be identified with the value of limiting 
stress 
/2.11/, 

/5.1/ 

s* = s 
0 

as bein the solution of linea~ equation 

Thus, the first coefficients s
0 

expresses the linear share 
of process in generally nonlinear process e In this case the 
linear process occurs under constant stress s

0 
and the 

~onlinearity is involved by the increase of stress over the 
limiting value. According to that the operator /1.7/ becomes 

/5.2/ Q(1) = ~ = ~ K(t-,;) d<:: 
to 

if we assume the kernel depending on the difference of its 
argUments. Then the Eq./5.1/ may be simpy written 

/5.3/ 
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or after developing /see Eq./3.4// 
00 

/5.4/ s
0 

= ae ·z: ( -1 )i oe.t <4 
i=o 

Introducing the operator /5.2/ into Eqs./'~.6/ and 
/3.12/ we obtain the ~urther coefficients, respectively , 

where the coefficient s
0 

is given by the series /5.4/ and 
its powers can be calculated by means of the following 
formula 

<10 

/5.7/ s~ = (as)n ·.z:(-1)i cw(.~ gi(n) , /n=2,;, ••• / • 
i=o 

Here denote 
m 

/5.8/ g0 {n)=1 , Sm(n)= ~ L, l k(n+1) -m] ~Sm-k(n) • 
k=1 

The val.ue of the expression in brackets of Eqs./5.5/ and 
/5.6/ is 

/5.9/ . (1 + ~ Q., )-1 = r. ( -1 )\t; Q1 

i=o 

Substituting the. formulas /5.?/ - /5.9/ into Eqs. 
/5.5/ .and /5.6/ we obtain, respectively , 

00 
2~. 

/5.10/ a1 = cS(ae) L-oC.~i , 
i=o 
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• 
/5.11/ r = "-'"' (-1)k+1 Qk+1 [ 2 ~2 P + ol. {3)] 

m L-. 2 m-k 3 Sm-k ' 
k::o 

lf we assume that the kernel of Eq./5.2/ is 

/5.12/ 

where 0 den()tes creep factor of the l~ear range, then 
Eq./5.2/ can be integrated giving 

/5.13/ 

since 0(0) = 0 • Thus, the solution for stress of the non­
linear equation /1.8/, representing elasto-creeping defor­
mation of viscoelastic material with small nonllneari ty, is 
expressed by the value of limiting stress s

0 
and creep 

factor of the linear range /5.13/ which defines the stress 
variability in time /relaxation process/. 

6. Final conclusion 

On the basic of our considerations and results obtain­
ed with respect to the solution of the problem formulated 
above, we state what follows: 

If in the integ2:al equation /1.1/ the function e/t/ 
is given real fUnction defined and continuous in the interval 
t

0 
~ t < ao and the function f [ t, 7:, s ("t) J is a given 
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real function of the pair of points . t,~ which satisfJ­
the cODditiona /1.2/, continuous . and aatistying Eq./1.4/ 
nth respect to the variable s, then f.or the representa­
tion /1.5/ aDd tor tha 1nequali"t1 /3.31 the solution o:t 
Bq./1.1/ ia UDique and -gi.Ten b7 the series /2.4/. 
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