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ON THE OPERATIONAL PERTURBATION METHOD OF SOLUTION

L4
OF THE VOLTERRA S NONLINEAR INTEGRAL EQUATIONS

Zbigniew Bychawski, Kazimierz Piszczek

1. Introduction

In the domain of the nonlinear mechanics of continu-
ous media we often have to deal with nonlinear integral
equations of the Volterra‘s type. Such equations appear for
exemple, in the problems of nonlinear viscoelasticity foun-
ded on the generalized Boltzmann’s principle for hereditary
processes, in the theory of nonlinear vibrations in the the-
ory of automatic control and in the problems of nonlinear
random processes.

The general form of the Volterra’s nonlinear integral
equation of the second kigd is

(1.1) s(t) =2e(t) +S f[t,’r,a(z)] aT

%
where s(t) is the function to be found, elt)- a known fun-
ction a~-constant and £ [t,T,atr} - a known function of
all its arguments +t,7,s8(t). Let the upper limit of the
integral(1.1) be the time-veriable, t, denoting initial in-
stant., We assume that the known function e(t) is defined
and continuous in the time-interval (t_,%) and also the
known function f[t,t’,strﬂ is defined and continuous with
respect to all variables in the region of their veriability
given as being

0.2 tSt<o, S, ST <, BS8sEE .
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If we denote by kd and k_ the lower and upper bound of
the funcvion £, respectively, then

1.3/ 8<k skg<a ”

d

In addition, the function £ [t,7T,s(x)| satisfies the con-
dition

/.47 ‘f [t. 7,9, s-(-c)] £ [t, 7,928 m]|< x’azs (’c)-’afs('c} .

where 31 denotes the derivative with respect to variable T
and A is a positive constant.

In the problems of mechanics as mentioned above the
function £ can be usually presented in the form with se-
parated variables

1435/ £ [t,"r,s(‘t)] = -qsm]x(t,t) ;

where

/1.6/ ¢[s)=swf@E)] .

The last representation has some physical meaning which we
shall point out in considering certain application.
If we denote by Q the integral operator

t
1.9/ Q8 =g glr)K(t,z) dT
t

o

where the function K is its kernel, the Eq./1.1/ can be
rewritten, for the mode of representing /1.5/ and /1.6/ in
the operational form

/1.8/ [‘1 + QE(&)] 8 =ae .
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We note that Zor the function F being identically
equal unity

(1.9) F(s)y =1,
the Eq./1.8/ becomes linear
(1.10) (1+ Qs =ae.

Thus, if the function F shows a small deviation from the
constant value of unity then the physical process represen-
ted by means of Eq./1.8/ can be regarded as result of small
nonlinear perturbation of the linear process as given by
Eq./1.10/. In this way, the function F in the operator Q
of Eq./1.8/ has the meaning of certain physical magnifying
factor depending on the actual value of the physical varia-
ble s. On the other hand, the function F depends on the
small physical constant 5 wlich is responsible for the
small perturbation of the linearity

(1.11) F=F [p S(‘E)] .

In general, the mentioned above properties of the
function F can be represented by the exponential function
of the form

(1.12) F “5 8 (-n] - exp[p(s - a')] :

where s" is certain fixed value of the variable s for
which the Kg./1.8/ transforms into linear equation /1.10/.
Thus, accordin~ vo kqQ./1.12/ we have for s = g™

(1.13) F[ps]og =1 »



and the process considered is described by linear Eq./1.10/.
For 8 > s* the process is nonlinear in accordance with
Eq./1.8/.

In the following we shall deal with the integral equa-
tion /1.8/ where the function F 1is of the type /1.12/.

2. Perturbational development of the integral equation

We present the function /1.12/ in the form of power
series

. ]
. =
(2.1) F[IB s(‘c)] =é1 Fkak "(r) ,
where the coefficients ﬁ'k are given by the equality
(2.2) Py = %Pk"‘ exp (-}5 8) = £ [5"‘1 ;

According to the development /2.1/ the equation /1.8/
may be written as follows

D
(2.3) B+Zk=1Pstk=ae ‘

On the other hand, we develup the functicn s into
power series of the small parameter P

| ST a3l
(2.4) 8 (7)= b ’
%;1 3 P

where the coefficients bj are

(2.5) by (7) = })'1 844 o .
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Introducing the series /2.4/ into Eqg./2.1/ multiplied
by s(z) we have

/2.6/  s@F|pst)] =i py 85 =i Fzm 5, (7).
k=1

k=1

Here, the coefficients of the series /2.6/ can be found
from the formulas

2.7/

2 2. . .4
+e;C2 sq + 2&2 S5 5, + 5.{5 S so+o£,+s° "

§2=o(‘.1 8, + 2k 8, s + °‘~5So "
L,

where the constants oﬁ{ are given by the relation /2.2/

/2.8/ k:%!-exp(—j&s*) 5

Introducing the series /2.4/ and /2.6/ into the Eq.
/1.8/ we obtain finally the following condition

e

3-1 -
129 ; }’5 (sj-i*’ QE;}-’I ) = ae .

From this condition we can find, for successive powers of
the parameter [5 y the coerficients of the development -
/2.4/. The condition /2.9/ corresponds to the recurrent
system of linear integral equations with respect to the
coefficients sk(-z:)

/2.10/ sk + Q'.ék = 0' /k=1,2,..../ 'l



the first coefficients being given by the equation

/2.11/ S, + Qs, = ae .

3. Operational representation of the coefficients of the
perturbational development

We shall evaluate the coefficients of the perturbatio-
nal development s from the recurrent system /2.10/ and
/2.11/. he lLast equation, when Eq./2.7/ is taken into ac-
count, can be rewritten in the form

73.4/ (1+£Q)s, =ae .

By appying the inverse operation we find from kq./3.1/

/3.2/ S, = @ (1 +°C1Q)_1e .

According vo vhe physical interpretation of the pro-
cess described by the Eq./1.8/ we assume /see Eq./1.7//

/3.3/ |t @< 1,

and then the solution /5.2/ can be presented by means of the
development of the inverse operator

L]
/341 so=a> (N dle
i=0
Here we have
g =1,
/3.5/ §E &
m rr
Q8 =) J...gx (t ,'rm_a)x(-cm -a'Tm-a)"'g(Tm-a)d"’m-a ATy _gomes
toto tOL vl N J
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Where we should put 7 _, =7 .
The first equation of the system /2.10/ can be written

/3.6/ (1 + DC1Q) 8 = "Oczqsg ’

where accordiug to Eq./3.4/

00
/307/ B§ SZ (-1)1&,]‘- si L]

i=o
Here denote
m
/3.8/ g, = e2, 8y = %; Z (Bk-m)le.gm_k, m>1 .
k=1

Putting the Eq./3.7/ into Eq./3.6/ and applying the
inverse operation we calculate

/3.9 5y =(1 +Q)7 L( )t e,

After having developed the inverse operator the Egq./3.9/
becomes

oo S .
(a0 31=Z (1777 gt Z( Y] gy e o, Y L

1= i=o
where

/3.11/ no=) (<1)**¢%(ee, )
k=0

he second equation of the system /2.10/ gives

/3.12/ (1 +°c1Q,) 8, = =2£,Q8,8 - oC3QsZ .



Introducing the development /5.4/ and /3.10/ into Eq./5.1</
and applying the inverse operation we obbtain

/33/  sp=fi+yQ) {2&2(,2[ a8ty Z(-ﬂivc-ﬁ . ?__0‘ 1 i]

i=0

+.;C§Q{ Z(—-’l 1ocfl' Qie:l J .

After having carried out the indicated operations in Eq.
/3.13/ we have

/3.4/  sy=a® Z( Al g [ZJ-'&Q (2*%1* ‘*5‘11)]
i=o i=o - ‘
N
1=0
Here denote

Z( A en .

A,

/35/  q = &, q = Z(4k-m)(-1)kae.qm_k , m31,
k=1

= 2 (016 [ Qe B ppy + 45 9,))]

k=0

In the same manner we can evaluate the further coef-
ficients of the development /2.4/ according to the desired
accuracy of solution of the Eq./1.8/.



4. Free vibrations of a nonlinear system with one degree
of freedom

We shall point out that the problem of free nonlinear
vibrations of a system with one degree of freedom reduces to
the solution of the Volterra’s nonlinear integral equation
as given by Eq./1.8/.

The problem as mentioned above is rormulaced by the
nonlinear ditferential equation of second order

pas g Pl + potfz® i ®] = o,

or, in particular, when nonlinear term depends only on
displacement x(t)

4.2/ k) +x(t) +f.vca?![x(t)] =0.

In the Eqs./4.1/ and /4.2/ [5 represents a small parameter
for small perturbation of harmonic motion, & - frequency
of vibrations in linear range, $ and ¥ - nonlinear func-
tions depending on displacement and displacement rate and on
displacement, respectively. -
Both differential equations can be presented in the
form of equivalent integro-differential and integral equa-
tions, respectively. Thus, Eq./4.1/ can be written as follows

t

4.3/ x(t) = g(‘t)—[b S ) [x(’:}, :':fr:)] sinc.a(t-'r) it ,
%

where

g(t) = A cos Wt + B sin 0t ,
/4.48/

.&=1(t°) ’ B=(1Di&°) .
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The second equation /4.2/ may be presented in the form

t
/4.5/ x(t) = g(t) -[5 gk‘[x(t}] siuco(t-‘c)d‘z’ .
t

0
By putting in the last eguation

i ¥ [x(T)]= xt)F [z (‘C!]%

K (t-7)= sinw(t-7) ,

we can wrate instead of Eq./4.5/

t
/8.7/ x(t) + S x{‘c)F[x('E)]K(t-T)dT = g(t) ,

;.

or in operational form

/4.8/ (M+QF)x=g ,

which is formally identical with Eq./1.8/.

It is obvious that the more general integro-differen-
tial equation /4.3/ may be also reduced to the analogous
operational form /4.8/ if only the function ¢ can be pre-
gsented as being '

149/ $[xm, x@)] = xt) F[x(), x(1)].

The last representation must be always allowable since
its physical significance, x (1) being the physical effect
of the process considered and P - magnifying factor in
nonlinear range depending on this very effect and its de-
rivative. ‘ -

Thus, we conclude that the method of golution as given
in § 3 may be applied to -the problem of nonlinear vibrations
stated above.
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5. Creep of viscoelastic material with small nonlinearity

The equation /1.8/ may be interpreted as the relation
between stress s and strain e for a nonlinear viscoelas-
tic material. If the function F is of the type /1.2/ then
for sufficiently amall_ﬁ: the process represented by Eq./1.8/
may be considered as elastic-creeping deformation under
stress s(t) with small deviation tfrom the linearity. In
particular, s* denotes the value of Limiting stress at the
nonlinear range and the kernel or the operator K /1.7/ is
the rate of creep factor.

We assume that at the instant to the stress s(t) is
applied which do not exceed significantly the limiting value

s* , Then the first coefficient of the development /2.4/ is
constant and can be identified with the value of limiting
stress s¥ = s, @s bein the solution of linear equation
/2.141/,

/5:1/ 8, = (‘1+at‘..1 q)_1e g

Thus, the first coefficients 8, expresses the linear share
of process in generally nonlinear process. In this case the
linear process occurs under constant stress S, and the
nonlinearity is involved by the increase of stress over the
limiting value. According to that the operator /1.7/ becomes

/5:2/ Q1) = ¢ = § K(t-7)dT

%

if we assume the kernel depending on the difference of its
arguments. Then the Eq./5.1/ may be simpy written

~1
/5.3/ 8, = &8 (1 + oLy Q’I) ,
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or after developing /see Eq./3.4//

L0

/5.4/ 8, = ae'z (-1)5‘0:,3;' O,J1'

i=o

Introducing the operator /5.2/ into Eqs./3.6/ and
/3.12/ we obtain the further coefficients, respectively ,

/5.5/ s, = -otp 82 (1 4ty @) @

/5.6/ 8, = -sz (.1 +o£1Q,|)'1Q,I [ct3-2 af2(1 +r.{,| Q,l) = Q)

where the coefficient 8, is given by the series /5.4/ and
its powers can be calculated by means of the following
formula

/5.9 8y = (@) ) (-0F ] gy() 4 /0=2,3,000/

i=o

Here denote

m
/5:8/  gy(n)=1 , sm(n)=%Z[k(n+‘l)-m]03fsm_k(n> .
k=1 J .

The value of the expression in brackets of Egs./5.5/ and
/5.6/ is

/5.9/ 1+ @) = Z( et .

Substituting the formulas /5.7/ - /5.9/ into Egs.
/5.5/ and /5.6/ we obtain, respectively ,

/5.10/ 8, = o%(ae) Z,cj'hi 8, = (ae)3 i.céf Ty o

i=0 i=o



b = i("’ e k|
k=0

/517 x2S (0 M [2uBp L vty g 003)]
k=0

n
Py =2§;“a)k‘hm-k Q% A

1f we assume that the kernel of Eq./5.2/ is
/5.12/ K(t-7)= =9, C (t-7) ,

where C denotes creep factor of the linear range, then
Eq./5.2/ can be integrated giving

/5.13/ Q =c(t-1%) ,

since C(0) = 0 . Thus, the solution for stress of the non-
linear equation /1.8/, representing elasto-creeping defor-
mation of viscoelastic material with small nonlinearity, is
expressed by the value of limiting stress 8, and creep
factor of the linear range /5.13/ which defines the stress

variability in time /relaxation process/.
6. Final conclusion

On the basic of our considerations and results obtain-
ed with respect to the solution of the problem formulated
above, we state what follows:

If in the integral equation /1.1/ the function e/t/
is given real function defined and continuous in the interval
t,< t <o  and the function £ [t, %, s('z:)] is a given



real function of the pair of points +,T which satisfy
the conditions /1.2/, continuous and satisfying Eq./1.4/
with respect to the variable s, then for the representa-
tion /1.5/ and for ths inequality /3.3/ the solution of
Bq./1.1/ is unique and given by the series /2.4/.

(1]

(2]
[z

(4]
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