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'ON PHYSICAL FOUNDATIONS OF VISCOPLASTICITY™
Piotr PERZYNA /Warszawa/

1. Introduction

The basic object of the present paper is the discussion
of the physical foundations of the theory of thermo-visco-
plasticity. On the basis of thermodynamics of a rate sensi-
tive plastic material some special cases of the constitutive
equations are considered. It has been shown®™* that thermo-
dynamic theory of viscoplasticity for finite deformations
can be established within the framework of thermodynamics
with internal state variables.

The analysis of the basic assumptions of the theory of
viscoplasticity in the ]:ight of microdynamics of plastic
flow and the physical theory of thermally activated deform-
ations of metals are given. The constitutive equations for
viscoplasticity and inviscid plasticity are compared with
those predicted by thermally activated process’gx and are
discussed on the basis of dislocation theory of crystalline
metals™ =, Theoretical predictions are compared with ex=
perimental results for dynamic finite deformations of singlé

crystals®EEE g4 polycryatalsm‘._

% This paper has been prepared for the 12th Internation-
al Congress of Applied Mechanics, Stanford, Angust
26 - 31, 1968.
#% Cf. Perzyna and Wojno [1968, 28].
mex Vid. Seeger [1954, 30, 31], [1955, 32].
mooe Vid. Gilman [1965, 9], [1966, 10], [1967, 11].
meec Vid, Lindholm and Yeakley [1965, 18] for aluminium.
ssooece Vid, Hauser, Simmons and Dorn (1961, 12] for alumi-
nium; Marsh and Campbell [1963, 21] for mild steel;
Chiddister and Malvern [1963, 4] for aluminium; Lind-
holm [1964, 17] for aluminium, lead and copper; Lind-
holm [1967, 19] for aluminium; Campbell and Cooper
[1967, 3] for low-carbon steel.
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The theoretical predictions are also compared with
those experimental results which based on the measurement
of the average velocity of dislocations®,

These comparisons have shown that a hypothesis that
.the rate dependence in metals is due primarily to a ther-
mally eotivated process is valid for certain metals and
for certain ranges of strain rate only. This analysis has
indicated simultaneously that introduction of the nonlinear
function ¢(F) in the constitutive assumption and its
choice on the basis of experimental resulis may be treated
as a very well founded hypothesis,

The description of the strain-rate and temperature
history effecis on the behaviour of a material are discuss-
ed.

2. Thermodynamic theory of a rate sensitive plastic material

The conception of the description of a rate sensitive
plastic material as a material with internsi state vari-
ables has been presented in the previous papar!’. In this
theory no cenmection between the deformation tensor and
the inelastic deformation tensor has been postulated. The
deformation tensor § and temperature ¥ have been
essumed as thermodynamic state variables end the inelastic
deformation tensor ‘E as internal state variable. The
deformation tensor is implied by kinematics of the given
motion for a body 3 and the inelastioc deformation ten-
gor is determined by the solution of the initial value
problem for ordinary first order differential equation.,

The full aystem of the oonstitutive equationa for
a rate sensitive plastic material has the following

x Vid. Johnston and Gilman [1959, 13] for lithium fluoride
and Stein and Low [1960, 33] tor silicon-iron,
2x Vid. Perzypa and Wojno [19¢8, 28].
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» In order to define a thermodynamic process in 2 , which
is compatible with the condition for the balance of linear
momentum /Cauchy’s first lew of motion/

Div(ET) +g b =g,

and with,the balance of energy /the first law of thermo=-
dynamics/ '

—{r(TC) - qu ¢. (V¥ +-3'Q+3'Q)+(:,_T‘ =(,
/“here opersztor DW is computed with respect to the mater-
izl coordinntes 2; § Qa ig the mass density in the re-
ference configuration £ , the dot denotes the material
differentistion with respect to time t h is the body
force per unit mass anéd #4* the hest supply per unit mass
anéd unit time, f denotes the deformation gradient and Q
ie the right Cauchky-Green deformation tenmsor, =FTF i
it sufflces to vreccribe the seven functions {'x. T *f °ou
Q '? C} . These functions have following interpretahons.
The function of motion I(X '” determines the spatial
position occupied by the material point X at time t ,
which in the reference configuration X ~occupied the
positon X , i.e., ;:%(X__.t); TQ;'{) 18 the second
Piola-Kirchhoff stress tensor, ‘\I,(z"{) denotes the speci-
fic free energy per unit mass, %(x‘t) is the heat flux
vector per unit surface in the reference configuration R
'Z(x_ t) is the specific entropy, a'(x 'l) the local
absolute temperature and C(x ‘|:) is the inelastic deform-
gtion tensor.
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where ¥ . denotes the statical vield condition and is defin-

ed ag follows .
%(I) ‘3’,‘-9
/2.8/ ¥ Eeia -1,

if the isotropic work-hardening parameter @& is determin-
sd by

o =T, i)}

The functions f i l'j and L" are tensor functions. The
function é(?) is introduced to describe the influence
of the rste of deformation and the temperature on the yield
limit of a material. The symbol (é(?)) is «efined as fol-
lows

or FL0,
. () ={ 0 g ¥

$(F) ror F>0,

and ?(3) denotes a temperature dependent viscosity coefl-
ficient.

The equation /2.5/ poatu_l.ates that the rate of the in-
elastic deformation tensor ‘(-'._ is the function of the ex-
cess of 'stress over the static yield condition. This equa-.
tion yields to the rollowlng, dynamical yield criterion

oot 4e3, 350 ot 8T (e
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This relation describes the actual change of the yield sur-
face during the thermodynamic process. This change is caus-
ed by isotropic and anisotropic work-hardening effects and
by influence of the rate of inelastic deformation tensor
and temperature on the yield limit of a material.

Notice that the equation /2.5/ defines the inelastic de=-
formation temsor ‘'( .

To ensure the fﬁlfilment'of the thermodynamic poatulate’

[2.10/ -4 - ~7q+-—’ﬂ‘(T§)- 3 Y Grad Y 20,

GeV

the constitutive equations /2.1/ - /2.5/ should satisfy the
general dissipation inequality

/2.11/ tl‘[ﬁar_';Y(G.-?, C) C] ;% (C,¥ 6radY, C) Cradv<0,

In the case f(-ﬂ')-gno the dynamical yield criterion
/2.9/ yields

> {
/2.12/ 1(T,97C) ==,
the material loses its visecosity properties and behaves as

en elastic-plastic material. The plastic deformation tensor
?c is defined as followe™®

reasr T = A<k (4T 9, 43 M(T,Y,70),

where

x This inequality i1s implied by the Clausius-Duhem inequa-
1lity.
xx Vid, Perzyna and Wojno [1968, 28].
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Thus, the full system of constitutive equations for inviscid
theory of plasticity can be writien as follows™

- v =4(C, 3,70,

por T =20,2.4(6,9%)

o6l q=-2,9(¢,%.%)

/2.-19/ %" ia(g o, emd-ﬂ',"t_;),

/2.20/ = = A<t ﬁ)*r?),’ﬁ'»_{l(i, ¥,

Notice that the system /2.15/ = /2.20/ should satisfy the
‘thermodynamic postulate /2.10/.
For a rate sensitive plastic material by /2.2/ we have

x Vid. Perzyna end Wojno [1968. 28].
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After materisl differentiation of the equation /2.21/ we get
f2.22/ €= H(CYOITIK(EYOIETLIC,Y, O,

where

ﬂ.(g ,,3-,"(;') =[9(i‘(g’3,EC)]—q,
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Substitution of /2.5/ into /2.22/ gives™

e €= 8 (€ O[T TN T LYY

-

where

/2.25/ M* = K[M].

- -

Similarly, for an elastic-plastic material we can find
the result

j2.25/ £ =H(CATN T a.<+r(oi:[1‘;)0,ﬁwn@'\,’fskb(&,‘.@&

with

® This result may be cOmpared with the constitutive assump-
tion proposed in the previous paper of the present author

[1967, 27].



HOLET = (3, T (e,
e ML= KEYTOMCT, 9,
NURASE S (T W ES{(RAN )

The eguations /2.24/ and /2.26/ show that the assumption®
C=°C+ 1@ ig not in general. justified for finite
strain. The functions H and L depend on the internal
tensor E -

3. Dynemic nature ,0f plastic deformations

A modern theory of plastic flow must be based on micro=-
gcopic investigations, because plastic deformation changes
not only the external shape of a body but also its internal
structure. Another essential feature of plasticity is that
this theory must be intrinsically dynamical. Although plast=
ic flow gometimes appears to be time independent, this is
a result of particulzr combinations of circumstances and has
no fundamental signiricancei!. Since plastic flow ocours by
means 0f the motions of dislocation lines, the rate at which
it takes place depends on how fast the dislocations movs,
how ﬁany dislocations are moving in a given volume of mater-
ial and how much displacement is carried by each dislocation.
Dislocation theory .shows that the plastic strain rate is

/3] £ =& NbV,

® This assumption hes been introduced in the papaf [196?, 2ﬂ
and may be treated as a simplification,
xx Vid. Gilmen [1966, 10].
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where & is an orientation fector, N the mean density of

mobile dislocatioms, b is the displacement per dislocation
line which is caslled the Burgers vector and V  denotes the
mecan dislocation velocity.

It i3 generally acreed that the finite stress needed to
cause plastic flow is due to obstacles impeding the motion
of dislocations through a crystal’. It is convenient to divide
obstacles into two groups according to the distance over which
they interact with the glide dislocations:

1.  Those that possess long-range stress fields /of the
order of 10 atomic diemeters or greater/.

2. Those that possess short-range stress fields /i.e. of
less than about 10 atomic diameters/.

The energy regquired t0 overcome Ehe former type of
obstacle may ve so0 large that the thermal fluctuations can-
not assist the applied stress in the temperature range under
consideration. Thermsl zctivation thus plays no role in over-
coming these long-range obstacles, and they are termed ather-
izal obstacles.

Thermal fluctuations ccn aseist the applied stress in
overcoming short-rongoe obstacles, and they are termed thsrm-
al obatacles. It is these thevwsl Obstacles that are reenon-
sible for the dynamic aspocets of plastic deformation™=,

The mechaniem of overcoming the dislocation forest have
been developed theoreiically by Seeger [1354, 30, 31] and
[1955, 32].

~ In Seeger’s theory it was assumed that the forest is
distributed uniformly, and that the activation energy de-

® Cf. Conrad [1954, 5].

»x Common thermal obstacles or mechanisms in pure metals are
the Peierls-Nabarro stress, forest dislocations, the mo-
tion of jogs in screw dislocations, ‘crogss-glip of screw
dislocations, and climb of edge dislocations,
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creases linearly with increasing applied stress over the
whole process of intersection of dislocations.

Here, we shall not assume a priori the form of the va-
riation of activation enerzy with stress, but rather derive
relations by which it can be obtained from experimentally
observeble quantities /cf. Basinski [1959, 2]/.

When the deformation is controlled by e single thermally
activated process we have

/3.2/ V=V, exp[- U/k¥],

where U is the energy that must be supplied by a thermal
fluctuation for each successful activation, k denotes the
Boltzmann’s constant, and

/3.3/ Vo =AY,.

i? A is the ares swept out per activation and Y the
Debye” s frecuency.
The equations /3.1/ = /3.3/ eive

/s8/ - & =& NADY exp[-U[kJ].
Let us assume that

/3.5/ U= g[(T-T*"LY]

where t' is the back stress not surmontable by a thermal

fluctuation and L 1s the mean cord distance between neigh-

bouring points at which the dislocation is arrested.
Expansion of the function \f gives

o U= R t-T
/3.6/ 'f” S lht =3 )Lb-t- 2

""f 1% __{')- g O
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Let us denote by

/3.9 & m-dy palb=vlb U =¢o te)

the activation volume and the activation energy for inter-
gection at zero stress, respectively.

The linear approximation of Ec./3.4/ gives the Seeger’s
relation

. N
/3.6/ & =dNAbY egp[-%.‘. (v-Tv ks)v]

or

kY &
/3.9/ T=(T+ pg iy

v

In the case when the activation energy U is a nonlinear
function of stress the relation /3.4/ yields

fr10/ & =& WADY eapf-q[(T-T%Lb]/kY}

or

/3.1 ¢ Tt (1/Lb)tf1[k-7 ln (< NABY/)].

4. Discusgssion of experimental results

The effect 0f stress end temperature on dislocation velo-
city has -been determired by the etch-pif technique employed
by Johnston and Gilman [1959, 13]'on lithium fluoride and
Stein and Low [1960, 55] on silicon-iron. The results for
gilicon-iron are given in Fig.1. It is noted that approxima=-
tely siraight lines result when the logarithm of the velo-
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city V is plotted versus the logarithm of the applied
stress T . It suggests the power relationship between
diqlqcation velocity and stress. In general, the velocity
of dislocation motion was found to be a very sensitive func-
tion of stress. Different relationships between velocity
and stress have been .proposed by Johnston and Gilman [1959,
13], Gilman [1965, 9] and Stein and Low [1960, 33]. However,
since there does not exist a theoretical or physical inter-
pretation of these relationships, it seems more reasonable
to start with Eq./3.2/ /cf. Conrad [1964, 5]/.

Lindholm and Yeakley [1965, 18] investigated single
crystal and polycrystalline specimens of high purity alumi-
nium in compression at strain rates to 500 sec” using the
split Hopkinson pressure bar method. They obtained average
stresg-strain curves for the six orientations of single
crystal and similar curves for the polycrystalline material.
Activation volume as a function of strain can be computed
from the data obtair - i™. These results for the single and
polycrystalline specimens of high purity aluminium are given
in Fig.2. The most interesting feature of these curves is
that the activetion volume for the polycrystalline material
falls within the bounds and near the averaze of the sincgle
crystal data., This implies that the sanme thermally activated
mechanisms control the deformation in s :zle end polycrys-
tals and that the distributicn of the activation barriers
are essentia.ly the same in hoth nosas.

% From strain data at constaut temperature the activation
volume can be determined from the relation

. JonE o InE/E
v ekl ?’t—\a.m;t”g T,- % |y =279°K
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This is in agreement with the previous results presented
for aluminium at low tamperature’ and those of Conrad
[1954, 5] for iron and steel.

Hauser, Simmons and Dorn [1961, 12] presented the
atress-gtrain-strain rate properties of high purity alumi-
nium for 295, 194 and ??.4°K over strain rates from 2 to
12+40%sec™1, These exp.cimental results are recorded in
Figs.3-5. ' _ '

Marsh and Ceampbell [1955, 21] obtained results of
constant-stress tests on mild steel specimens of different.
‘mean ferrite grain sizes /cf. Figs.6 and 7/.

Chiddister and Malvern [1983, 4] investigated alumi-
nium specimens at strain rates from 300 to 2000 sec-1 at gix
temperatures from 30 to 55000. The stress strain rate curves
at each temperature were plotted on both semilogarithmic and
log-log coordinate gystems in order to evaluate the validify
of the logarithmic and the power flow laws. The semiloga-
rithmic curves are shown in Fig.8 and the log-log curves are
shown in Fig.9. ‘ :

Lindholm [1934, 1?] investigated three annealed face
centred cubic metals-lead,_alﬁminium and copper, both dyna-
mically and at lower strain rates to determine their rate
gensitivity. His results are plotted in Figs.10 - 12,

In order to assess the thermal dependence of the consti-
tutive relations Lindholm [1967, 19]' performed elevated
temperature tests for sluminium in tersion and compression.
These results are presented in plots of stress versus strain-
rate in Fig.13 and stress versus temperature in Fig.14.

Campbell and Cooper [195?, 5] described exparimenfal
resulte obtained in tensile tests on annealed low-carbon
steel at mean plastic strain rates in the range 1072 to
10%gec™! /ef. Fig.15/. -

® Of. Mitra and Dorn {1963, 22].
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Lindholm [196?, 19] presentsd experimental results
on the plastic flow of aluminium subject tc wide spectrum
of ldading conditions. This spectrum includes stress states
of pure compression, tension and torsion as well as combined
streas states. The rate of loading is varied to produce
strain-retes within the renge of 1072 sec™! to 10%sec” .

For cOmpression and tan8103 elevated temperatura data from
gpproximately 300 % to 700 % is obtained.

Figure 15 presents stress-strain curves for the alumi-
nium plotted in terms of the invariants®. Each curve is
obteined at constant temperature /294°K/ and strain rate.

In Figure 17, the data of Fig.16 and 2 large number of
additional tests is replotted to show the relation between
the streas and strain-rate invarients at constant strain
emplitude and temperature. According to the linearized theo-
ry /Seeger [1955, 32] /, this should be & linezr relation-
ship on the semi-logarithmic plot, The straight line through
the experimental points at each gtrain amnlitude is a best
least-squares fit. The standard estimate of error of the dgta.
about the mean is 5.4% for the lowest strain and less than
3% for the two higher strain amplitudes.

All the preceding Lindholm’s experimental data was
obtained with the -stress ratio, shear stress/tension stress,
and the rate of plastic deformation nearly constant. Several
tests of an exploratory nature ware performed by Lindholm
{1957, 19] to determine the muievinl response under sudden
changes in the direction or the rate ¢f loeding. These tests
indicate thet within the normal scattsr of the data, there
d0es not appear to be any matked evidence of the effect of
previous loading history, either rate or direction of load-
ing, on the subsequent material response.

Z The flagg on the points plotted in this and subsequent
figures indicate the diréctiOn of the principal stress
axes. The horizonial axis is tension to the right and com-
pression to the left, with the verticsl axis being pure

_ shear. Combined stress stztes lie between the tensiom and
shear axes.
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S. Comparisons and conclusions

Let us eompare the theoretical dynamical yield criterion
/2.9/ with the physical predictions based on thermally acti-
vated process /3.9/ end /3,11/. From this comparison it is
seen that the phenomenological yield criterion /2.9/ mey be
treated as a simple generalization to general stress state
and finite streins the phyeically justified relation /3,11/.
In this generalization i1t has been assumed that the influence
of the strain rate and the temperature on the yield limit is
desoribed by the nonlinear function (%) .

The oomparisons of theoreticael predictions with experiment-
el results showed that 8 hypothesis that the strain rate and
temperature dependence in metals is due primarily to a ther=
‘mally activated process described by the linearized relation
/3.9/ is velid for certein metals and for certain ranges of
strain rate only®. On the other hand the nonlinear relation
/3.11/ mey describe the strain rate and temperature phenomenon
in the entire range of strain rate™.

Thus, this analyeis indicated that the introduction of
the nonlinear function §(¥) in the constitutive equa-
tiops /2.1/ - /2.5/ and its choice on the basis of experi-
mental results may be treated as a very well founded hypo-
thesgis.

The differential equation /2.5/ shows that the present
theory of a rate sensitive plastic material takes into ac-
count the histbry of deformation and temperature. This is

® Cf. Alder and Phillips [1954, 1] , Chiddister and Mal-
vern [1963, 4] , Krefft, Sullivan and Tipper {1954, 14],
Lindholm ({1954, 17), [1967, 19], and Trozera, Sherby and
Dorn (1957, 35].

xx Cf, Campbell and Cooper [1967, 3], Hauser, Simmons and
Dorn (1981, 12], and Mersh and Campbell {1963, 21] .
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implied by the fact that to integrate the differential equa-
tion /2.5/ and to determine the actual value of the inelast-
ic deformation tensor "Q(i) at X in B , we must know
the initial value ‘E’ and full histories of the inelastic
deformation tensor ' , the deformation temsor [ and
temperature Y at 1. .

The constitutive equations /2.15/ - /2.20/ for an elast-
ic-plesﬁic material were obtained as a limit case of the -
gtrdn rate sensitive constitutive ecuations /2.1/ - /2.5/
ind therefore they describe the quasi-static behaviour of
a material.
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