ZDZISŁAW PAWŁOWSKI

OCENA WYTRZYMAŁOŚCI MATERIAŁÓW KRUCHYCH METODĄ ULTRADŹWIĘKOWĄ

WARSZAWA 1968

Instytut Podstawowych Problemów Techniki PAN

Nakład 100 egz, Ark.wyd.6,27. Ark.druk. 7,25 Oddano do drukarni w kwietniu 1968 r. Wydrukowano w kwietniu 1968 r. Nr. zom. 296/0.N-18

Cena z1.20.-

Warszawska Drukarnia Naukowa, Warszawa, ul.Śniadeckich 8

SPIS TREŚCI

1. WSTĘP	5
2. METODYKA BADAŃ	7
2.1. Próbki	7
2.2. Pomiary prędkości fal ultradźwiękowych	9
2.3. Pomiary tłumienia fal ultradźwiękowych	11
2.4. Pomiary własności mechanicznych	11
2.5. Analiza błędów pomiarowych	12
3. KRYTYCZNY PRZEGLĄD STANU ZAGADNIENIA	15
3.1. Zeliwo	15
3.2. Porcelana	24
3.3. Beton	27
3.4. Wnioski	29
4. OCENA WYTRZYMAŁOŚCI	30
4.1. Warunek wytężeniowy	30
4.2. Zredukowany moduł sprężystości	32
4.3. Kryterium wytrzymałościowe	35
5. WERYFIKACJA DOŚWIADCZALNA	40
5.1. Żeliwo	40
5.2. Porcelana	42
5.3. Beton	45
6. STATYSTYCZNA INTERPRETACIA WYNIKÓW BADAŃ	48
6.1. Regresia i tablice korelacyjne	48
6.2. Analiza rozkładów stat vstycznych	52
6.3. Ocena jednorodności	59
6.4. Korelacia metoda równych prawdopodob jeństw	62
6.5. Zastosowanie statystyki pozycyjnej	65
6.6 Analiza sekwencyina	67
7 DVSVIGIA WVNIKÓW I WNIOSKI	73
DODATEK A TRANSFORMACIA UKLADU WSDÓŁ PZEDNYCH	01
TABLICE	01
	00
LIIEKAIUKA	103

1. WSTĘP

Ocena mechanicznych własności materiałów metodami ultradźwięk kowymi stała się możliwa dzięki dużemu postępowi, jaki-mają one do zanotowania na odcinku badania struktury materiałów [11], [32], [33], [53], [54], stanu mechanicznego materiałów [36], [37], [42], badania zmian zachodzących w materiałe w wyniku działania pól elektrycznych i magnetycznych [55], bombardo wania cząstkami o wysokiej energii [53] itp. Możliwości badań ultradźwiękowych wyszły daleko poza wykrywanie wad makroskopowych. Obecnie realne stało się badanie dyslokacji, badanie oddziaływania dyslokacji z defektami punktowymi w monokryształach [9], [10], [12], [25], a także badanie zjawisk relaksacyjnych w ciałach polikrystalicznych [32], [42].

W sytuacji w której gromadzenie wyników doświadczalnych dokonuje się bardzo szybko i łatwo, istotną rzeczą staje się właściwa interpretacja wyników badań i powiązanie ich z fizycznymi właściwościami materiału. Jedną z bardzo obiecujących dziedzin jest stopniowe zastępowanie konwencjonalnych sposobów pomiaru mechanicznych własności materiałów jak wytrzymałość, twardość itp., za pomocą wskaźników uzyskiwanych przy zastosowaniu metod ultradźwiękowych.

W odniesieniu do materiałów kruchych*, takich jak żeliwo i beton

* Mówiąc o materiałach kruchych mamy tutaj na myśli takie materiały, które w próbie rozciągania lub ściskania w normalnej temperaturze zachowują się w sposób kruchy. Jest rzeczą znaną juz od dawna, że materiał kruchy w potocznym znaczeniu tego słowa można zmusić do przejawiania własności plastycznych. Podobnie materiał plastyczny w jednych warunkach okazać się może kruchy w innych warunkach. Zależy to głównie od trzech czynników a mianowicie stanu naprężenia, temperatury i prędkości odkształcenia. Odpowiednio dobrany zespół tych czynników, a zwłaszcza stan naprężenia decyduje o kruchym względnie plastycznym zachowaniu się danego materiału. podejmowane były w ostatnich latach próby oceny wytrzymałości na podstawie badań ultradźwiekowych. Opracowanie precyzyjnej metody nieniszczących badań własności wytrzymałościowych tych materiałów, a zwłaszcza żeliwa, ma pierwszorzędne znaczenie gospodarcze i techniczne. Zeliwo jest podstawowym materiałem konstrukcyjnym w budowie maszyn, beton w budownictwie lądowym i wodnym. Żeliwo produkowane jest od setek lat, a mimo to zagadnienie oceny niejednorodności i pomiaru własności wytrzymałościowych materiału odlewu czeka nadal na rozwiązanie. Bez szczegółowego rozpoznania i rozwiązania tego problemu trudno myśleć o postępie w konstrukcji i technologii. który ma zapewnić wyroby lekkie i pracujące niezawodnie. Ostatnio podejmowane były bardzo długotrwałe i kosztowne wysiłki dla wyznaniejednorodności własności wytrzymałościowych materiału czenia w odlewach żeliwnych za pomocą klasycznych metod badań niszczących [60]. Wydaje się, że badania nieniszczące stwarzają tutaj bez porównania dalej idące możliwości, aniżeli jakakolwiek klasyczna metoda badań niszczących.

W przypadku żeliwa można wyróżnić dwa zasadnicze kierunki badań nieniszczących. Pierwszy to próby powiązania wytrzymałości z prędkością fal ultradźwiękowych [2], [59] drugi to poszukiwanie korelacji między wytrzymałością i tłumieniem fal ultradźwiękowych [28], [29]. Pewną odmianą w stosunku do podanych tendencji jest sposób zaproponowany przez Collaud [7], zastosowany później, z pewną odmianą, przez Felix a [16], [17]. Sposób ten polega na poszukiwa niu korelacji między wytrzymałością i iloczynem prędkości fal ultradźwiękowych przez twardość Brinella.

Dla betonu podano szereg wzorów łączących wytrzymałość kostkową betonu na ściskanie z prędkością fal ultradźwiękowych, względnie z iloczynem prędkości fal ultradźwiękowych przez twardość wyznaczoną albo za pomocą młotka Poldi albo młotka Schmidta [3], [4], [5], [44], [49].

W odniesieniu do porcelany nie udało się znaleźć załeżności między wytrzymałością i prędkością względnie tłumieniem fal ultradźwiękowych. Rosnące zainteresowanie ceramicznymi materiałami ogniotrwałymi wysuwa pilną potrzebę dalszych badań na tym odcinku [61].

Wadą dotychczasowego sposobu podejścia do oceny wytrzymałości materiałów kruchych (żeliwo, poroelana, beton, materiały ogniotrwałe) jest to, że są to zależności empiryczne, nie oparte na teorii, która pozwoliłaby podać ogólny typ związku, wspólny dla wszystkich materiałów kruchych. Na podstawie wyników badań własnych, uzyskanych w odniesieniu do żeliwa i porcelany elektrotechnicznej, autor wykazuje w następnych rozdziałach, że dotychczasowe rozwiązania mają charakter ograniczony do poszczególnych gatunków materiału i ponieważ nie mają właściwego uzasadnienia fizycznego, nie mogą stanowić podstawy do znalezienia rozwiązania ogólnego.

Praca składa się z trzech części. W części pierwszej (rozdziały 2, 3) przeprowadzono, w oparoiu o wyniki badań własnych, krytyczną ocenę zaproponowanych do tej pory sposobów rozwiązania problemu oceny wytrzymałości niektórych materiałów kruchych na podstawie pomiarów prędkości, względnie tłumienia fał ultradźwiękowych. W części drugiej (rozdział 4) wyprowadzono, wychodząc z kryterium wytrzymałościowego teoretyczną zależność między wytrzymałością materiałów kruchych i wielkością charakteryzującą tak zwany zredukowany moduł sprężystości, wyrażony za pomocą parametrów akustycznych. Część trzecia (rozdziały 5, 6, 7) poświęcona jest doświadczalnej weryfikacji wyprowadzonej zależności teoretycznej w oparciu o wyniki badań blisko tysiąca próbek z żeliwa, porcelany i betonu.

2. METODYKA BADAN

2.1. Próbki

Próbki żeliwne pobierane były z prętów osobno lanych. Z każdego pręta wycięto dwie względnie trzy próbki, które numerowane były podwójnymi liczbami, pierwsza oznaczała numer wałka, druga numer próbki pobieranej z wałka. Schemat pobierania próbek podano na rysunku 1.

Z izolatorów porcelanowych o średnicy 76 mm wycięto, po zerwaniu, w pobliżu miejsca pęknięcia krążki o grubości 6mm. Pobrany krążek leżał o około 8 mm od miejsca przełomu. Próbki porcelanowe z masy B-6 wykonane były w postaci "ósemek" pokazanych na rysunku 2. Próbki betonu pobrano z badanych elementów względnie konstrukcji. Sposób pobierania opisano w pracach [15, 43]. Na ogół wycinano kostki sześcienne o wymiarach 10x10x10cm. Wytrzymałość dla kostek sześciennych przeliczano na równoważną wytrzymałość walców o średnicy 16 cm.

Rys.1. Schemat wycinania próbek żeliwnych z pręta osobno lanego

Rys. 2. Kształt próbek porcelanowych z masy B-6

2.2. Pomiary prędkości fal ultradźwiękowych

Predkość fal podłużnych w żeliwie i porcelanie wyznaczano przy częstotliwości 3-6 MHz. Dla niektórych próbek z żeliwa Żl 18 konieczne było zastosowanie częstotliwości 1,5 MHz i metody przepuszczania. Pomiaru dokonywano za pomocą cieczowej linii opóźniającej [18]. Prędkość wyznaczano ze wzoru

$$c_{\mathbf{x}} = c_{\mathbf{o}} \frac{l_{\mathbf{x}}}{l_{\mathbf{o}}}$$
(2.1)

gdzie c, – szukana prędkość w próbce

c, – prędkość w oleju w linii opóźniającej

 l_x, l_o – długość próbki i odległość głowicy od reflektora w linii opóźniającej.

Prędkość fal poprzecznych wyznaczono również za pomocą linii opóźniającej. Częstotliwość drgań przetwornika przy badaniu porcelany wynosiła 5 MHz, natomiast przy badaniu żeliwa 1 MHz. Przetworniki sprzęgano bezpośrednio z próbką za pomocą specjalnej cieczy zapewniającej przenoszenie fal poprzecznych.

Rys. 3. Zasada pomiaru prędkości w betonie

Prędkość jal podłużnych w betonie mierzono metodą przepuszczania za pomocą aparatu ultradźwiękowego typu BI-6. Zasadę pomiaru przedstawia rysunek 3. Czas przejścia przez próbkę albo odpowiednie miejsce w konstrukcji stanowi różnicę między czasem opóźnienia przez próbkę i osłony głowic oraz czasem przejścia przez osłony głowic. Prędkość wyznacza się ze wzoru [43]

$$c_{\mathbf{x}} = \frac{l_{\mathbf{x}}}{t_2 - t_1} \tag{2.2}$$

gdzie l_{x} – droga fal ultradźwiękowych w betonie

- t₂ czas przejścia fali ultradźwiękowej przez materiał i osłony głowic ultradźwiękowych
- t₁ czas przejścia przez osłony głowic ultradźwiękowych.

2.3. Pomiary tłumienia fal ultradźwiękowych

Tłumienie podłużnych względnie poprzecznych fal ultradźwiękowych mierzono za pomocą aparatu ultradźwiękowego typu DI-12 metodą echa. Wielkość osłabienia fali ultradźwiękowej w decybelach wyznaczano na podstawie różnicy wysokości dwóch kolejnych odbitych impulsów (tj. pierwszego i drugiego). W tym celu wykonano, dla odpowiedniego zakresu podstawy czasu, pomiary charakterystyki wzmacniacza aparatu ultradźwiekowego [45]. Na podstawie tej charakterystyki wyznaczono w decybelach poziom odpowiadający danej wysokości impulsu odbitego lub przechodzącego przez badaną próbkę. W praktyce pierwszy impuls odbity był ustalany zawsze na tej samej wysokości. Posługiwanie się charakterystyką wzmocnienia wyeliminowało błędy jakie powstają na skutek nieliniowości wzmocnienia w zależności od zasięgu i wysokości impulsu obserwowanego na ekranie. W przypadku żeliwa, gdy osłabienie fal ultradźwiękowych było bardzo duże, zaszła konieczność mierzenia tłumienia metodą przepuszczania. Tłumienie wyznaczano wtedy przez porównanie ze znaną wartością tłumienia w innych materiałach.

2.4. Pomiary własności mechanicznych

Wytrzymałość żeliwa na rozciąganie wyznaczano na uniwersalnej maszynie wytrzymałościowej f-y Schopper z napędem hydraulicznym. Zakres siłowy był tak dobierany, ażeby siła zrywająca była wyższa od 40% zakresu siłowego.

Próbki porcelanowe o kształcie "ósemek" zrywano na 10-tonowej maszynie wytrzymałościowej f-y Schopper z napędem mechanicznym, w specjalnych uchwytach, które miały zapewnić osiowość obciążenia próbki.

Izolatory porcelanowe o średnicy 76 mm zrywane były w specjalnym urządzeniu, które posiadało uchwyty do zamocowania kołpaków. Ponieważ kołpaki mają przeguby a sam izolator jest dostatecznie długi, przeto przy zrywaniu izolatorów niebezpieczeństwo nieosiowego obciążenia jest znacznie mniejsze niż w przypadku próbek porcelanowych.

Wytrzymalość betonu wyznaczono na uniwersalnej maszynie wytrzymałościowej f-y Schopper, o zakresie siłowym 50 ton [15], [43].

2.5. Analiza błędów pomiarowych

Dla oceny precyzji przeprowadzonych pomiarów prędkości fal ultradźwiękowych dokonano obliczenia następujących błędów: błędu prawdopodobnego pojedyńczego pomiaru, błędu prawdopodobnego wartości średniej, a dla funkcji wielu zmiennych błędu maksymalnego i błędu standardowego.

Błąd prawdopodobny pojedyńczego pomiaru dany jest równaniem

$$\sigma_{\mathbf{x}} = 0,6745 \ s = 0,6745 \sqrt{\frac{\Sigma (\mathbf{x}_{i} - \overline{\mathbf{x}})^{2}}{n-1}}$$
(2.3)

Przyjmuje się tutaj założenie, że prawdopodobieństwo wystąpienia błędu liczbowo różnego od σ_x wynosi $1-\alpha=0,5$. Prawdopodobieństwo *P*, że przedział ufności pokryje wartość σ_x spełnia warunek

$$P(|U| \le u) = \frac{1}{\sqrt{2\pi}} \int_{-u}^{+u} e^{-u^2/2} du = 1 - 2\Phi(-u)$$

Przyjmując poziom ujności 1-a = 0,5, czyli prawdopodobieństwo, że błąd będzie liczbowo mniejszy lub równy σ_x odczytujemy z tablic statystycznych dla rozkładu normalnego [52] wartość unormowanej zmiennej losowej u = 0,67449. Stąd gdy odchylenie standardowe wynosi s błąd prawdopodobny pojedyńczej obserwacji wyraża się iloczynem odchylenia standardowego pomnożonego przez $(u)_{\alpha=0.5}$ czyli

$$\sigma_{x} = 0,6745 \ s$$

Standardowe odchylenie s jest równe kwadratowemu pierwiastkowi z wariancji, która jest momentem centralnym rzędu drugiego i dla zmiennej losowej ξ typu ciągłego określony wzorem

$$D^{2}(\xi) = \mu_{2} = \int_{-\infty}^{+\infty} [x - E(\xi)]^{2} f(x) dx$$

Błąd prawdopodobny wartości średniej jest równy

$$\sigma = 0.6745 \frac{s}{\sqrt{n}} = 0.6745 \sqrt{\frac{\sum (x_i - \overline{x})^2}{n(n-1)}}$$
(2.4)

Błąd maksymalny funkcji wielu zmiennych wyznaczamy na podstawie różniczki zupełnej funkcji wielu zmiennych. Przyjmijmy, że funkcja wielu zmiennych

$$F(x_{i}) = F(x_{1}, x_{2}, x_{3} \dots x_{n})$$

ma dla małych zmian x_i różniczkę zupełną

$$\delta F(\mathbf{x}_{i}) = \sum_{i=1}^{n} \frac{\partial F_{i}}{\partial x_{i}} \delta x_{i}$$
(2.5)

Z tego wzoru wyznacza się bezpośrednio zmiany $F(x_i)$ wywołane małymi zmianami δx_i , lub też oblicza się maksymalną wartość liczbową błędu δF . W tym ostatnim przypadku znaki obieramy tak, ażeby poszczególne składniki wzoru miały wartość dodatnią. Jednakże prawdopodobieństwo aby wystąpiły tylko dodatnie błędy cząstkowe $\delta_x x_i$, dając w rezultacie maksymalny możliwy błąd funkcji F, jest bardzo małe. Dlatego bardziej właściwe jest rozpatrzenie rozkładu δF na podstawie znajomości rozkładów δx_i .

Błąd standardowy funkcji $F(x_i)$ jest równy

$$\sigma_{\rm F}^{2} = \sum_{\rm i} \left(\frac{\partial F}{\partial x_{\rm i}}\right)^{2} \sigma_{\rm i}^{2} = \left(\frac{\partial F}{\partial x_{\rm i}}\right)^{2} \sigma_{\rm i}^{2} + \left(\frac{\partial F}{\partial x_{\rm i}}\right)^{2} \sigma_{\rm i}^{2} + \dots + \left(\frac{\partial F}{\partial x_{\rm i}}\right)^{2} \sigma_{\rm n}^{2}$$
(2.6)

gdzie $\sigma_{\rm F}$ - błąd funkcji

 σ_i - błędy zmiennych niezależnych x_i funkcji $F(x_i)$

Dzieląc obie strony równania przez $F(x_i)$ otrzymujemy względny błąd standardowy funkcji

$$\left(\frac{\sigma_{\rm F}}{F}\right)^2 = \sum_{\rm i} a_{\rm i}^2 \left(\frac{\sigma_{\rm i}}{x_{\rm i}}\right)^2 = a_{\rm i}^2 \left(\frac{\sigma_{\rm 1}}{x_{\rm i}}\right)^2 + a_{\rm 2} \left(\frac{\sigma_{\rm 2}}{a_{\rm 2}}\right)^2 + \dots + a_{\rm n}^2 \left(\frac{\sigma_{\rm n}}{x_{\rm n}}\right)^2 (2.7)$$

W naszych pomiarach przy wyznaczaniu prędkości fal ultradźwiękowych za pomocą linii opóźniającej mamy

$$c_{\mathbf{x}} = c_{\mathbf{o}} \frac{l_{\mathbf{x}}}{l_{\mathbf{o}}}$$

gdzie c_o – prędkość fal ultradźwiękowych w cieczy linii opóźniającej

 l_{o} – odległość głowicy od reflektora w linii opóźniającej.

Pochodne cząstkowe są równe

$$\frac{\partial c_{\mathbf{x}}}{\partial c_{\mathbf{o}}} = \frac{l_{\mathbf{x}}}{l_{\mathbf{o}}} , \qquad \frac{\partial c_{\mathbf{x}}}{\partial l_{\mathbf{x}}} = \frac{c_{\mathbf{o}}}{l_{\mathbf{o}}} , \qquad \frac{\partial c_{\mathbf{x}}}{\partial l_{\mathbf{o}}} = -\frac{c_{\mathbf{o}}l_{\mathbf{x}}}{l_{\mathbf{o}}^2}$$

Wielkości wchodzące do wzoru na prędkość wyznaczone były z dokładnością

$$c_{o} = 1430 \pm 5 \text{ m/s}$$

 $l_{x} = 90 \pm 1 \text{ mm}$
 $l_{o} = 30 \pm 0.1 \text{ mm}$

Stąd błąd maksymalny

$$\delta c_{\mathbf{x}} = \left| \frac{90}{30} \right| \cdot \left| 5 \right| + \left| \frac{1430}{30} \right| 1 + \left| \frac{-1430 \cdot 90}{30 \cdot 30} \right| \cdot \left| 0, 1 \right| = 77 \text{ m/s}$$

a błąd standardowy

$$\sigma_{e_x} = 15^2 + 47, 6^2 + 14, 3^2 = 52, 3 \text{ m/s}$$

Procentowa wartość błędu względnego wyniesie dla błędu maksymalnego

$$\frac{\delta c_{x}}{c_{x}} \cdot 100\% = 0,35 + 1,11 + 0,33 = 1,79\%$$

i $\frac{\sigma_{c_{x}}}{c_{x}} = 1,21\%$ dla błędu standardowego.

3. KRYTYCZNY PRZEGLĄD STANU ZAGADNIENIA

3.1. Żeliwo

Podane w literaturze zależności ograniczają się w zasadzie do poszczególnych gatunków żeliwa, pochodzących z tej samej odlewni. Empirycznie ustalone związki nie mogą np. być rozszerzone na żeliwo sferoidalne. Przyczyną tego jest, jak już powiedziano, brak fizycznego uzasadnienia dla istnienia korelacji między wytrzymałością oraz prędkością fal ultradźwiękowych, tłumieniem fal ultradźwiękowych względnie twardością. Wskaźniki te są często zależne od wielu czynników, które nie zawsze mają bezpośredni wpływ na wytrzymałość.

Ten ograniczony charakter dotychczasowych sposobów oceny wytrzymałości żeliwa uwidacznia się szczególnie wyraźnie na podstawie wyników badań własnych przeprowadzonych na kilkuset próbkach, pochodzących z ośmiu gatunków żeliwa, wykonanych w trzech różnych odlewniach.

Dla przeprowadzenia porównań wykorzystano tutaj również wyniki badań Okręgowego Dozoru Technicznego w Warszawie na trzech gatunkach żeliwa pochodzących z jednej odlewni [11]. Tak więc podstawą do dokonania krytycznej analizy dotychczasowych rozwiązań i wysunięcia własnej koncepcji oceny wytrzymałości było 11 gatunków żeliwa, pochodzących z czterech odlewni. W tabeli 1 podano zestawienie badanych gatunków żeliwa wraz z zaobserwowanym rozstępem wytrzymałości tj. różnicą $R_{\rm rmax} - R_{\rm rmin}$ oraz ilością próbek danego gatunku żeliwa.

Na rysunku 4 przedstawiono dla niektórych z badanych gatunków żeliwa strukturę grafitu, a strukturę metalograficzną na rysunku 5. Z przedstawionych zdjęć metalograficznych wynika, że zdecydowane różnice w strukturze i rozłożeniu grafitu występują między Żl 18, grupą żeliw Żl22, Żl26, Żl30, oraz żeliwem ŻSF 10. Różnice w obrębie grupy żeliw Żl22, Żl26, Żl30 są stosunkowo niewielkie, co zresztą można również zauważyć przy porównaniu wytrzymałości na rozciąganie podanej w tabeli 2.

Na rysunkach 6-11 naniesiono punkty pomiarowe wukładzie współrzednych:

- a) wytrzymałość na rozciąganie $R_r prędkość podłużnych fal ultra$ $dźwiękowych <math>c_L$ (rys. 6, 7, 8),
- b) wytrzymałość na rozciąganie $R_{\rm r}$ prędkość poprzecznych fal ultradźwiękowych $c_{\rm T}$ (rys. 9),

Rys.4. Struktura grafitu żeliw Żl18, Żl22, Żl26, Żl30, ŻSF10 x100 repr. x~0,9

- c) wytrzymałość na rozciąganie $R_r tlumienie$ fal ultradźwiękowych a_L (rys. 10),
- d) wytrzymałość na rozciąganie $R_r iloczyn \ twardości \ H_B \ przez prędkość podłużnych <math>c_L$ fal ultradźwiękowych (rys. 11).

Ażeby jeszcze bardziej uwypuklić rozrzut wartości oraz to, że można mówić o zależnościach o ograniczonym znaczeniu przedstawiono na rysunkach 12-15 pola, w których mieszczą się punkty pomiarowe dla poszczególnych gatunków żeliwa.

Z przedstawionego na rysunkach 6-15 materiału doświadczalnego można wyciągnąć następujące wnioski:

W ograniczonym zakresie, dla żeliwa o wytrzymałości nie przekraczającej 30 kG/mm², można stwierdzić istnienie *zależności liniowej* między *wytrzymałością* i prędkością fal ultradźwiękowych. Wyniki pomiarowe z równym powodzeniem dają się przedstawić albo za pomocą zależności liniowej lub zależności nieliniowej (rys. 8). Linia wyrównawcza dla żeliw Żl15, Żl20, Żl25 przedstawia zależność liniową

$$R_{\rm r} = 15,92 + 1,25 \ c_{\rm L} \tag{3.1}$$

Rys. 5. Struktura osnowy metalicznej żeliw Ż118, Ż122, Ż126, Ż130, ŻSF10. Trawione 4%HNO₄ · x100, repr. x1

Rys. 6. Punkty pomiarowe w układzie $R_r - c_L$ dla żeliw z.odlewni A, B, D (390 próbek), zgrupowane w przedziałach o szerokości $\Delta R_r = 1 kG/mm^2$, $\Delta c_L = 100 m/s$. Liczby w poszczególnych polach oznaczają ilość próbek

Rys.7. Zależność R_r-c_L uzyskana dla żeliw z odlewni B metodą przegrupowania

Rys. 8. Linie wyrównujące punkty pomiarowe dla żeliw z odlewni A, B, D, w układzie $R_r - c_L$

Rys. 9. Punkty pomiarowe w układzie R_r-c_T dla żeliw Żl18, Żl22, Żl26, Żl30 z odlewni B oraz dla żeliwa ŻSF10

19

Rys. 10. Punkty pomiasowe w układzie $R_r - a_L$ dla żeliw z odlewni B i C

Rys.11. Punkty pomiarowe w układzie $R_r - c_L \cdot H_B$ dla żeliw z odlewni B i D. Liczby oznaczają ilość próbek

Rys.12. Zależności polowe R_r-c_L dla żeliw oraz dla porcelany. Linie łamane ograniczają pola w których znajdują się punkty pomiarowe

Rys.13. Zależności polowe R_r-c_T dlc żeliw z odlewni A, B, C oraz dla porcelany. Linie lamane ograniczają pola w których znajdują się punkty pomiarowe

Rys. 14. Zależności polowe $R_r-c_L^2$. H_B dla żeliw z odlewni A, B, C, D. Linie łamane ograniczapola w których znajdują się punkty pomiarowe.

Rys. 15. Zależności polowe $R_r - H_B$ dla żeliw z odlewni A, B, C, D. Linie łamane ograniczają pola w których znajdują się punkty pomiarowe.

lub nieliniową

$$R_{\rm r} = 5 + 0.52 \, \exp\left(0.000785 \, c_{\rm L}\right) \tag{3.2}$$

Jednakże z podanymi wynikami wyraźnie kontrastują wyniki uzyskane dla żeliw Żl18, Żl22, Żl26 i Żl30 wyrównane linią

$$R_r = 5 + 0.17 \exp(0.000956 c_L)$$
 (3.3)

Zastosowanie metody przegrupowania [24] wykazuje wyraźnie, że można wyróżnić dwie krzywe, przyczem wyniki dla żeliw pochodzących z tej samej odlewni, lecz odmiennego gatunku układają się wzdłuż dwóch różnych krzywych (rys. 7). Zachodzi tutaj sytuacja podobna jak w przypadku betonu [1]. Pewne gatunki betonu w których prędkość fal ultradźwiękowych jest mniejsza wykazują wytrzymałość większą od wytrzymałości innych gatunków o wyższej prędkości fal ultradźwiękowych. W tej sytuacji należałoby uciec się do przeprowadzenia badań wzorcujących przed przystąpieniem do pomiarów wytrzymałości metodą ultradźwiękową, tak jak to jest zalecane przy badaniach betonu [3,4,49]. Niedogodność, a w niektórych przypadkach niemożność wykonania takich badań staje się jasna, gdy chodzić będzie o ocenę wytrzymałości odlewów, z których nie można pobrać próbek, tak jak jest to często możliwe w konstrukcjach betonowych.

Wyniki uzyskane dla żeliw Zl18 – Żl30 nie dają się ektrapolować na żeliwo sferoidalne, które znamionuje się innym kształtem grafitu, znacznie wyższą, niemal dwukrotnie wytrzymałością, posiada jednak wspólną z innymi żeliwami cechę mianowicie tę, że pęka krucho w próbie rozciągania. Trudności w uzyskaniu jednej linii wyrównawczej dla wszystkich gatunków żeliwa widać wyraźnie z rysunków 6–9, 12. Podobnie przedstawia się sytuacja jeżeli chcemy znaleźć związek wytrzymałości z prędkością fal poprzecznych (rys. 9, 13).

Próby powiązania wytrzymałości z iloczynem prędkości przez twardość Brinella nie prowadzą do poprawy w stosunku do podanych poprzednio zależności (rys. 11, 14, 15). Zarówno badania własne jak też wyniki uzyskane dzięki uprzejmości Okręgowego Dozoru Technicznego w Warszawie [13] pokazują, że korelacja taka jest mniej dogodna aniżeli korelacja w stosunku do prędkości fal ultradźwiękowych. Zależność $R_r - c_L^2$. H_B jest nieliniowa i w żadnym wypadku nie da się ekstrapolować na żeliwo ŻSF10. Szczególnie wyraźnie wynika z rysunku 14, że ewentualna zależność w odniesieniu do iloczynu kwadratu prędkości przez twardość byłaby niejednoznaczna. Spowodowane to jest stosunkowo bardzo niską wartością twardości żeliwa ŻSF10 (rys. 15).

Próby powiązania tłumienia fal ultradźwiękowych z wytrzymałością nie stwarzają, jak to wynika z rysunku 12, szans precyzyjnego wyznaczenia wytrzymałości na rozciąganie. Na przykład nie widać większej różnicy w tłumieniu między żeliwem sferoidalnym o wytrzymałości ok. 53 kG/mm² i żeliwem o wytrzymałości ponad 20 kG/mm², mimo, że różnice w wytrzymałości są ogromne.

Jedyna rzecz która daje się ustalić w sposób niewątpliwy to duża różnica tłumienia między żeliwem o najniższych własnościach a pozos-

tałymi gatunkami żeliwa. Różnica w poziomie tłumienia wynosi około 1,5 dB/cm przy czym, należy tutaj nadmienić, że ten znaczny przyrost tłumienia, a właściwie osłabienia fal ultradźwiękowych, jest spowodowany silniejszym rozproszeniem fal ultradźwiękowych przez składniki strukturalne (grafit). Stwierdzenie powyższe dotyczące bardzo dużego tłumienia dla żeliwa o wytrzymałości rzędu 15 kG/mm² nie daje jednak podstawy do ilościowej oceny wytrzymałości w oparciu o pomiary ultradźwiękowe. Nie należało tego oczekiwać ponieważ tylko w dość sporadycznych przypadkach wytrzymałość na rozciąganie będzie się zmieniać wraz z tłumieniem fal ultradźwiękowych. Podobnie też twardość jest wskaźnikiem pewnych własności technologicznych i nie widać przyczyn dla których możnaby ją wiązać z wytrzymałością. Pewnym uzasadnieniem mogłoby być to, że twardość może być niekiedy uważana za odpowiednik modułu spreżystości, [46] jednakże, zależność taka jest daleka od ideału a trudność rozszerzenia zależności na żeliwo sferoidalne wyklucza możliwość istnienia tego rodżaju związku.

Największe szanse uzyskania *ilościowej oceny wytrzymałości* daje – oczywiście przy podanych powyżej zastrzeżeniach – odniesienie do *prędkości fal ultradźwiękowych*. Możliwość ograniczonego występowania takiej zależności uzasadnić można z fizycznego punktu widzenia tym, że zależność między naprężeniem i odkształceniem może być dla żeliwa uważana w pierwszym przybliżeniu za liniową. Stąd można wysnuć prosty, ale niezbyt ścisły wniosek, że wytrzymałość będzie się zmieniać proporcjonalnie do modułu sprężystości, a tym samym do prędkości względnie kwadratu prędkości fal ultradźwiękowych.

3.2. Porcelana

Badania własne przeprowadzono na dwóch gatunkach porcelany elektrotechnicznej. Pierwszą grupę stanowiły izolatory wysokonapięciowe o średnicy rdzenia 76 mm, drugą grupę próbki toczone o kształcie "ósemek", wykonane z masy B-6 (rys. 2).

Na rysunku 16 podano wykres w układzie siła zrywająca P – prędkość fal podłużnych $c_{\rm L}$ dla izolatorów, a na rysunku 17 dla obu gatunków porcelany odniesiono wytrzymałość na rozciąganie do prędkości podłużnych i poprzecznych fal ultradźwiękowych. Z obu przytoczonych rysunków widać wyraźnie, że nie można oczekiwać jakiejkolwiek zależności między wytrzymałością porcelany na rozciąganie a prędkości fal ultradźwiękowych. Pewna zależność wytrzymałości od prędkości

Rys.16. Wyniki pomiarowe dla izolatorów porcelanowych o średnicy 76 mm

poprzecznych fal ultradźwiękowych zarysowuje się tylko dla izolatorów (rys. 17). Podobnie przedstawia się sprawa z poszukiwaniem korelacji między *tłumieniem* podłużnych względnie poprzecznych fal ultradźwiękowych a *wytrzymałością*.

Istnieje natomiast bardzo wyraźny związek między wytrzymałością na rozciąganie a wyglądem przełomu. Na rysunku 18 przedstawiającym przełomy izolatorów podano pod każdym z nich numer izolatora, wartość prędkości fal podłużnych i siłę zrywającą w tonach. Na rysunku 18 widać wyraźnie, że im większa wartość siły zrywającej tym rzeźba powierzchni przełomu jest bardziej wyrazista. Okolica jądra pęknięcia, to jest punktu, z którego rozprzestrzenia się pęknięcie, jest bardzo niewielka i cała niemal powierzchnia przełomu tworzy bruzdy przypominające swoim wyglądem rzeźbę pozostawioną przez spływającą rzekę [20].

Rys. 17. Wyniki pomiarowe w układzie $R_r - c_L$ oraz $R_r - c_T$ dla izolatorów porcelanowych i próbek z masy B-6

Gładki obszar w okolicy jądra pęknięcia kruchego powiększa się coraz bardziej, gdy siła zrywająca izolator maleje. Identyczne ukształtowanie przełomów i związek z wytrzymałością obserwuje się dla próbek wykonanych z masy B-6 (rys. 19). Podobnie jak poprzednio pod każdym przełomem próbki podano na rysunku 19 kolejno numer próbki, wartość wytrzymałości na rozciąganie w kG/cm² oraz dodatkowo wartość iloczynu $c_{\rm L}$. $c_{\rm T}$, potrzebną przy późniejszych rozważaniach.

Szczególnie uderzającą rzeczą są duże różnice w prędkości fal podłużnych między poszczególnymi rodzajami porcelany, to jest między izolatorami i próbkami wykonanymi z masy B-6. Średnie wartości prędkości fal podłużnych i prędkości fal poprzecznych wynosiły

Rys. 18. Przelomy izolatorów porcelanowych

Rys. 19. Przelomy próbek porcelanowych z masy B-6

odpowiednio: dla izolatorów $c_{\rm T}$ = 3500 m/s, $c_{\rm L}$ = 5400 m/s a dla próbek z masy B-6 $c_{\rm T}$ = 3700 m/s i $c_{\rm L}$ = 6200 m/s (tab. 3).

Stwierdzony brak zależności wytrzymałości od prędkości fal ultradźwiękowych potwierdza jeszcze raz, że korelacje doświadczalne uzyskiwane przy żeliwie i betonie, zachowujących się w sposób kruchy w próbie rozciągania lub ściskania, są przypadkowe i nie mogą być przeniesione na inne materiały kruche.

3.3. Beton

Wytrzymałość betonu ocenia się obecnie drogą czysto empiryczną przez poszukiwanie związków o postaci [49]

$$R_{c} = a c_{L}^{n}$$
(3.4)

lub [44]

$$R_{\rm c} = k c_{\rm L}^4 \tag{3.5}$$

albo wreszcie [3]

$$R_{c} = A \left(a c_{L}^{2} + b c_{L} + C \right)$$
(3.6)

gdzie A współczynnik poprawkowy zawarty w granicach 0,5-1,5.

Dla zwykłego betonu stosowanego w kraju zależność według wzoru (3.6) przybiera postać [3]

$$R_{\rm c} = 24,34 c_{\rm L}^2 - 71,954 c_{\rm L} + 42,726 \tag{3.7}$$

Istnieją również próby uzależniania wytrzymałości betonu od prędkości i twardości wyznaczonej metodą dynamiczną za pomocą młotków typu Poldi lub Schmidta [5].

Wadą tych sposobów jest konieczność uprzedniego skalowania, to jest wyznaczania zależności wzorcowej dla danego zakładu produkcyjnego. Ta niedogodność szczególnie wyraźnie występuje wtedy gdy zachodzi konieczność zbadania wytrzymałości konstrukcji, której skład i pochodzenie betonu nie jest znane [15, 43, 49].

Opracowania statystyczne mające na celu ustalenie równań regresji i sprawdzenie przyjętych a priori rozkładów statystycznych pozwalają na uzyskanie, przy ocenie minimalnej wytrzymałości, tolerancji rzędu 10% na poziomie ufności 0,1. Niezbędne jest przy tym wykonanie pomiarów w 20 miejscach badanego elementu [3].

Rys. 20. Różne propozycje linii wyrównujących wyniki pomiarowe dla betonu w układzie współrzędnych $R_c - c_L$

Na rysunku 20 przedstawiono niektóre wyniki prac własnych [15, 43] oraz zaczerpniętę z prac obcych [1, 49]. Rysunek uzupełniono odpowiadającymi zależnościom według wzorów

$$R_{c} = c_{L}^{3,2}$$
, $R_{c} = c_{L}^{3,8}$
 $R_{c} = 24,34 \ c_{L}^{2} - 71,954 \ c_{L} + 42,726$
 $R_{c} = k \ c_{L}^{4}$

Jak widać z rysunków dowolność przyjęcia danego wzoru jest praktycznie całkowita. Nic nie przemawia za przyjęciem jednej z podanych zależności.

3.4. Wnioski

Przyczyny dużych rozrzutów stwierdzanych przy czysto empirycznym podejściu do oceny wytrzymałości autor tłumaczył w pracy [43] możliwością występowania różnych wartości odkształceń krytycznych.

Rys. 21. Schematyczne wykresy rozciągania dla materiałów kruchych. a) dla $\epsilon_{kr} = const$ większe wartości zerowego modułu sprężystości odpowiadają zawsze większej wytrzymałości, b) gdy ϵ_{kr} ma pewien rozkład statystyczny to większym wartościom zerowego modułu sprężystości mogą odpowiadać mniejsze wytrzymałości

Poglądowo tezę tę przedstawia rysunek 21. Z wykresów rozciągania lub ściskania dla materiałów kruchych, ściślej dla materiałów znajdującym się w *stanie kruchym* w próbie rozciągania względnie ściskania widać, że na ogół większym wartościom zerowego modułu sprężystości odpowiadają wyższe wytrzymałości. Zerowy moduł sprężystości może być z kolei uważany za proporcjonalny do kwadratu prędkości ultradźwiękowych fal podłużnych. Jak długo taka zależność jak na rysunku 21a jest słuszna, możemy się spodziewać dość dobrej korelacji. Może jednak zajść przypadek przedstawiony na rysunku 21b, gdzie, jak widać, niższym wartościom modułu sprężystości odpowiadać mogą, dzięki zdolności materiału do doznawania większych odkształceń, wyższe wartości wytrzymałości i na odwrót wyższym wartościom modułu niższe wartości wytrzymałości.

Próby korelacji omówione w punktach 3.1, 3,2, 3.3 potwierdzają, że punktem wyjścia do oceny wytrzymałości nie były przesłanki uzasadnione fizycznie. Nawet wprowadzenie statystycznych metod oceny nie może w sposób pewny dać odpowiedzi która z zależności jest słuszna, szczególnie wtedy, gdy zachodzi konieczność ekstrapolacji poza zakres obejmowany wynikami doświadczenia. Obok statystyki jako narzędzia należy bowiem wykorzystać tutaj maksimum wiedzy zawodowej z danej dziedziny.

Trudności w uzyskaniu ogólnego typu zależności w dotychczasowych poszukiwaniach można wytłumaczyć tym, że nie znana była fizyczna podstawa – jak to już podkreślono wielokrotnie – która sugerowałaby tę zależność. Podejścia dotychczasowe opierają się zasadniczo na milczącym przyjęciu liniowości między naprężeniem i odkształceniem a w dalszej konsekwencji stałej wartości odkształcenia krytyc znego przy pękaniu.

Zdaniem autora wspólną cechą wszystkich materiałów, zachowujących się w próbie rozciągania lub ściskania w sposób kruchy jest mechanizm zapoczątkowania i rozprzestrzenianie się pęknięcia. Ten właśnie moment stanowi punkt wyjścia do dalszych rozważań.

4. OCENA WYTRZ YMAŁOŚCI

4.1. Warunek wytężeniowy

Materiały kruche, takie jak żeliwo, porcelana i beton są materiałami niejednorodnymi. Wtrącenia grafitu w żeliwie, pory i pęcherze powietrzne w porcelanie, powodują powstawanie lokalnych spiętrzeń naprężeń, w związku z czym w miejscach tych następuje zapoczątkowanie pęknięcia, które jako pęknięcie kruche rozprzestrzenia się z dużą prędkością na cały przekrój. Możemy więc założyć, że w okolicy wtrąceń grafitowych w przypadku żeliwa, lub pęcherzy w przypadku porcelany, występuje trójosiowy stan naprężeń. Przyj mijmy dalej, że naprężenia promieniowe σ_r i naprężenia obwodowe σ_t związane są z naprężeniem osiowym σ_1 zależnościami

$$\sigma_{\mathbf{r}} = m_1 \sigma_1 \tag{4.1}$$
$$\sigma_{\mathbf{t}} = m_2 \sigma_1$$

przy czym $m_1 < 1$ i $m_2 < 1$ zależne jest od ostrości karbu*.

Dla trójosiowego stanu naprężeń określonego składowymi naprężeniami

$$\sigma_1$$
, $\sigma_r = m_1 \sigma_1$, $\sigma_t = m_2 \sigma_1$ (4.2)

mamy

$$\epsilon = \frac{1}{E} \left[\sigma_1 - \nu \left(\sigma_r + \sigma_t \right) \right] = \frac{\sigma_1}{E} \left[1 - \nu \left(m_1 + m_2 \right) \right] = \frac{\sigma_1}{E_r}$$
(4.3)

Dla stanu porównawczego, tj. dla jednoosiowego stanu naprężeń określonego naprężeniem σ_{red} otrzymujemy

$$\epsilon = \frac{\sigma_{\rm red}}{E} \tag{4.4}$$

Według hipotezy maksymalnego odkształcenia ϵ_{max} , która jest słuszna w zastosowaniu do kruchych stanów materiału powinien być spełniony warunek

^{*}Z warunku równowagi wynika, że naprężenia promieniowe na dnie karbu są równe zeru. Punkt największego wytężenia materiału może znajdować się na powierzchni karbu lub w jego bezpośrednim otoczeniu. Zależy to od rozkładu naprężeń promieniowych, obwodowych i podłużnych w obszarze przylegającym do dna karbu. Z tego powodu przyjęcie według wzoru (4.1) jest bardziej ogólne, aniżeli założenie, że punkt największego wytężenia znajduje się na dnie karbu i w konsekwencji $\sigma_r = 0$

$$\frac{\sigma_{\rm red}}{E} = \frac{\sigma_1}{E/[1 - \nu(m_1 + m_2)]} = \frac{\sigma_1}{E_{\rm r}}$$
(4.5)

Jeżeli w jednoosiowym stanie naprężeń $\sigma_{red} = \sigma_1$, wówczas dla spełnienia równości (4.5) moduł sprężystości E trzeba zastąpić wartością zredukowaną

$$E_{r} = \frac{E}{1 - \nu (m_{1} + m_{2})} \tag{4.6}$$

Wprowadzenie zredukowanego modułu sprężystości uwzględnia fakt, że pęknięcie powstaje w wyniku utworzenia się trójosiowego stanu naprężenia w okolicy karbu.

4.2. Zredukowany moduł sprężystości

Ażeby wyrazić zredukowany moduł sprężystości za pomocą prękości podłużnych $c_{\rm L}$ i poprzecznych $c_{\rm T}$ fal ultradźwiękowych do wzoru (4.6) wstawiamy

$$G = \frac{E}{2(1+\nu)}, \qquad \nu = \frac{E}{2G} - 1 = \frac{E-2G}{2G}$$
(4.7)

gdzie G oznacza moduł sprężystości poprzecznej. Stad

$$E_{r} = \frac{E}{1 - \nu (m_{1} + m_{2})} = \frac{E \cdot G}{G(1 + m_{1} + m_{2}) - \frac{E}{2} (m_{1} + m_{2})}$$
(4.8)

Dla przypadku w którym spiętrzenie naprężeń nie występuje, czyli dla $m_1 = m_2 = 0$ moduł zredukowany $E_r = E$.

Moduły sprężystości E i G oraz *liczba Poissona* ν związane są z prędkością fal ultradźwiękowych następującymi zależnościami [18]

$$E = \rho c_{\rm L}^{2} \frac{(1+\nu)(1-2\nu)}{1-\nu}$$
(4.9)

$$G = \rho c_{\rm T}^2 \tag{4.10}$$

$$\nu = \frac{1 - 2(c_{T/c_L})^2}{2 - 2(c_{T/c_L})^2} = \frac{1 - 2a^2}{2 - 2a^2}$$
(4.11)

gdzie $a = c_{T/c_L}$

Wstawiając te wyrażenia do wzoru (4.9) otrzymujemy po przekształceniach

$$E = \rho c_{\rm L}^2 \frac{\left(1 + \frac{1 - 2a^2}{2 - 2a^2}\right) \left(1 - 2\frac{1 - 2a}{2 - 2a^2}\right)}{1 - \frac{1 - 2a^2}{2 - 2a^2}} = \rho c_{\rm L}^2 \frac{(2 - 2a^2 + 1 - 2a^2)(2 - 2a^2 - 2 + 4a^2)}{2 - 2a^2 - 1 - 2a^2} = 0$$

$$= \rho c_{\mathbf{L}}^{2} (3 - 4a^{2}) \ 2a^{2} = \rho c_{\mathbf{L}}^{2} (6a^{2} - 8a^{4})$$

Zatem

$$E_{\rm r} = \frac{E \cdot G}{G(1+m_1+m_2) - \frac{E}{2}(m_1+m_2)} = \frac{\rho^2 c_{\rm L}^2 c_{\rm T}^2 (6a^2 - 8a^4)}{\rho c_{\rm T}^2 (1+m_1+m_2) - \frac{m_1+m_2}{2} \rho c_{\rm L}^2 (6a^2 - 8a^4)}$$

Dzieląc licznik i mianownik przez $\rho c_{L} \cdot c_{T}$ mamy

$$E_{\mathbf{r}} = \frac{\rho \cdot c_{\mathbf{L}} c_{\mathbf{T}}}{(1+m_{1}+m_{2}) \frac{c_{\mathbf{T}}}{c_{\mathbf{L}}} \frac{1}{6a^{2}-8a^{4}} - \frac{m_{1}+m_{2}}{2} \frac{c_{\mathbf{L}}}{c_{\mathbf{T}}}} = \rho \frac{c_{\mathbf{L}} c_{\mathbf{T}}}{(1+m_{1}+m_{2}) \frac{a}{6a^{2}-8a^{4}} - \frac{m_{1}+m_{2}}{2a}}$$

$$(4.12)$$

czyli

$$E_{\mathbf{r}} = \rho \, \frac{c_{\mathbf{L}} \, c_{\mathbf{T}}}{D} \tag{4.13}$$

33

Rys. 22. Wykres junkcji $D_1 = \frac{1-2(m_1+m_2)}{6a-8a^3}$ oraz $D_2 = \frac{4a^2(m_1+m_2)}{6a-8a^3}$ $dla \quad m_1 = m_2 = 0$ $dla \quad m_1 + m_2 = 1$

34

gdzie

$$D = (1 + m_1 + m_2) \frac{a}{6a^2 - 8a^4} - \frac{m_1 + m_2}{2a} \frac{1 - 2(m_1 + m_2) + 4a^2(m_1 + m_2)}{6a - 8a^3}$$
(4.14)

Wykres funkcji D(a) przedstawiono na rysunku 22. Wartości funkcji D(a) zmieniają się bardzo nieznacznie przy niewielkich zmianach stosunku $a = c_{T/c_L}$ leżącego w granicach a = 0,555. Różne wartości współczynników m_1 , m_2 występujących we wzorach (4.1), (4.2) powodują przesunięcie obu wykresów cząstkowych D_1 , D_2 składających się na wykres funkcji D(a), przyczem charakter zmian funkcji D(a)pozostaje nadal taki sam. Możemy zatem, zakładając również nieznaczne zmiany gęstości ρ przyjąć, że E_r jest proporcjonalne tylko do $c_1 \cdot c_T$ czyli

$$E_{\rm r} \sim c_{\rm L} c_{\rm T} \tag{4.15}$$

Oznacza to, że wartość E_r występująca we wzorze (4.13) da się wyrazić za pomocą iloczynu prędkości podłużnych i poprzecznych fal ultradźwiękowych. Przy podanych powyżej założeniach można więc iloczyn ten uważać, za reprezentujący zredukowany moduł sprężystości E_r .

Dla wartości $a = c_{T/c_L}$ odbiegających znacznie od wartości najczęściej występujących wpływ zmian funkcji D(a) na zredukowany moduł sprężystości można uwzględnić przez wprowadzenie odpowiedniego współczynnika poprawkowego przy iloczynie c_L, c_T .

4.3. Kryterium wytrzymałościowe

Materiały kruche, dla przykładu żeliwo, dają w próbie rozciągania wykres, który w pierwszym przybliżeniu można uważać za liniowy. Jeżeli założymy, że wartość odkształcenia krytycznego ϵ_{kr} przy którym następuje pęknięcie jest stała, wówczas obowiązywałaby ściśle zależność

$$R_{\rm r} = E_{\rm r} \cdot \epsilon_{\rm kr} \tag{4.16}$$

Jednakże ϵ_{kr} ma pewien rozkład statystyczny, zależny od gatunku materiału.
Zatem równanie (4.16) przyjmie bardziej prawidłową postać

$$R_{\rm r} = E_{\rm r} \ \epsilon_{\rm kr}(R_{\rm r}) \tag{4.17}$$

Zakładając teraz, że odkształcenie krytyczne jest liniową funkcją R_r mamy

$$\epsilon_{\mathbf{kr}}(R_{\mathbf{r}}) = \epsilon_{\mathbf{kr}\,\mathbf{min}} + nR_{\mathbf{r}} = \frac{R_{\mathbf{r}\,\mathbf{min}}}{E_{\mathbf{r}}} + nR_{\mathbf{r}} \tag{4.18}$$

a po podstawieniu do równania (4.17) otrzymujemy

$$R_{r} = E_{r} \left[\frac{R_{r \min}}{E_{r}} + n R_{r} \right]$$

$$R_{r} \left(1 - n E_{r} \right) = R_{r \min}$$

$$R_{r} = \frac{R_{r \min}}{1 - n E_{r}}$$
(4.19)

Jeżeli przyjmiemy współczynnik proporcjonalności we wzorze (4.19) :ówny $n = 1/E_{rmax}$, gdzie E_{rmax} oznacza maksymalną wartość zredukowanego modułu sprężystości, wówczas wyrażenie na R_r przekształci się do postaci

$$R_{r} = \frac{R_{r\min} \cdot \frac{1}{n}}{\frac{1}{n} - E_{r}} = \frac{R_{r\min} \cdot E_{r\max}}{E_{r\max} - E_{r}}$$
(4.20)

Wprowadzając dla uproszczenia zapisu oznaczenia

$$R_{\rm rmin} \cdot E_{\rm rmax} = A , \quad E_{\rm rmax} = B \tag{4.21}$$

otrzymujemy ostatecznie

$$R_r = \frac{A}{B - E_r} \tag{4.22}$$

Wielkości A i B we wzorze (4.22) mają ściśle określone znaczenie fizyczne. Wielkość A jest iloczynem minimalnej wytrzymałości przez maksymalną wartość zredukowanego modułu sprężystości, wielkość B to dla danego gatunku materiału maksymalna wartość zredukowanego modułu sprężystości. Ponieważ wszystkie wyrazy wchodzące do wzoru (4.22) zawierają zredukowany moduł sprężystości przeto wielkość E_r można zastąpić przez iloczyn $c_L \cdot c_T$ prędkości fal podłużnych przez prędkość fal poprzecznych. Przy takiej zmianie wielkość A będzie oznaczała fizycznie iloczyn minimalnej wytrzymałości na rozciąganie (lub ściskanie) przez maksymalną wartość iloczynu $c_L \cdot c_T$ a wielkość B maksymalną wartość iloczynu $c_I \cdot c_T$

Do tej samej zależności możemy dojść drogą zupełnie formalną przyjmując, że wytrzymałość na rozciąganie jest równa

$$R_r = a + b' \epsilon_{kr} \tag{4.23}$$

gdzie a, b' stałe.

Przyjmując z kolei, że odkształcenie krytyczne w chwili pęknięcia (na granicy wytrzymałości) jest proporcjonalne do R_r

$$\epsilon_{\mathbf{kr}} \sim R_{\mathbf{r}}$$
 (4.24)

otrz ymujemy

$$R_r = a + bR_r \tag{4.25}$$

a stad

$$R_{\mathbf{r}} = \frac{a}{1-b} \tag{4.26}$$

czyli zależność o identycznej budowie jak wzór (4.22) Z porównania wzorów (4.22) i (4.26) wynika, że

$$a = A/B$$
 i $b = E_{r/B}$ (4.27)

Możemy zatem uważać *a* za minimalną wytrzymałość na rozciąganie dla danego gatunku materiału, zaś *b* za unormowaną wielkość zredukowanego modułu sprężystości.

Ze wzoru (4.22) otrzymujemy z ależność

$$R_{\mathbf{r}}(B-E_{\mathbf{r}})=A, \qquad (4.28)$$

która może być uważana za kryterium wytrzymałościowe, mówiące, że iloczyn różnicy modułów sprężystości (maksymalnego i zmierzonego) przez wytrzymałość jest równy wartości stałej. Kryterium to można zastosować do wyznaczenia wielkości A na podstawie pomiarów doświadczalnych. Jeżeli dla danego gatunku materiału oszacuje się wartość maksymalnego modułu sprężystości to w oparciu o wykonane próby wytrzymałości na rozciąganie i pomiary prędkości obliczyć możemy dzięki zależności (4.28) wartość wielkości charakterystycznej A. W przypadku normalnego rozkładu wielkości A obliczenie wielkości charakteryzujących ten roz kład, a więc wartości średniej i standardowego odchylenia, dokonać można za pomocą metod statystyki pozycyjnej na podstawie tylko kilku prób (por. 6.5).

Gdy znane są dokładnie składniki strukturalne danego materiału to wielkości A i B można w przybliżeniu oszacować na drodze czystych rozważań teoretycznych. Na przykład dla żeliwa zakładając 4% zawartość grafitu oraz prędkość fal podłużnych i poprzecznych dla stali i grafitu odpowiednio równe 5940m/s i 3230m/s oraz 3500m/s i 1800m/s wyliczymy, że maksymalne możliwe prędkości w żeliwie powinny wynosić

$$c_{\text{L max}} = 0,96.5940 + 0,04.3230 \text{ [m/s]} = 5840 \text{ m/s}$$

 $c_{\text{L max}} = 0,96.3230 + 0,04.1800 \text{ [m/s]} = 3170 \text{ m/s}$

Stąd na maksymalną wartość zredukowanego modułu sprężystości otrzymamy

$$B = (c_L c_T)_{max} = 3,17.5,84.10^6 \text{m}^2/\text{s}^2 = 18,5.10^6 \text{m}^2/\text{s}^2$$

Podobnie oszacujemy wartość minimalnej wytrzymałości żeliwa. Przyjmując, że wytrzymałość osnowy metalicznej jest równa 35kG/mm² współczynnik spiętrzenia naprężeń (maksymalny) $a_{k mer} = 4$ a wielkości $m_1 = 0$, $m_2 = 0, 1$ otrzymamy

$$\sigma_1 = \sigma_{i_{\text{c}} \max}, \sigma_{s_{\text{r}}} = 4\sigma_{s_{\text{r}}}, \sigma_{r} = 0, \sigma_{t} = 0, 1\sigma_1$$

$$\sigma_{red} = \sigma_1 - \nu (\sigma_r + \sigma_t) = \sigma_{sr} (4 - 0, 3 \cdot 0, 1 \cdot 4) = 3,88 \sigma_{sr}$$

Kładąc $\sigma_{sr} = R_{r \min} z$ warunku wytrzymałościowego dostajemy

$$\sigma_{red} = 3,88 \ \sigma_{sr} = 3,88 \ R_{rmin} \le 35 \ kG/mm^2$$

$$R_{\rm r\,min} = \frac{35}{3,88} = 9 \,\rm kG/mm^2$$

Stad wielkości charakterystyczne dla żeliwa beda w przybliżeniu wynosiły

$$B = 18,5 \cdot 10^{6} \text{ m}^{2}/\text{s}^{2}$$

$$A = 18,5 \cdot 10^{6} \cdot 9 = 166 \cdot 10^{6} \frac{\text{m}^{2}}{\text{s}^{2}} \cdot \frac{\text{kG}}{\text{mm}^{2}}$$

Wartości te są dość bliskie tym, które otrzymano dla żeliw na podstawie analizy statystycznej kilkuset próbek (por. 5.1).

Doświadczalną weryfikację wyprowadzonej na drodze teoretycznej zależności łatwo dokonać, jeżeli wzór (4.22) doprowadzimy po prostych przekształceniach do postaci

$$(R_r \cdot B - A) = R_r E_r \tag{4.29}$$

Kładac

$$R_{r}E_{r} = \eta \tag{4.30}$$
$$R \cdot B - A = \xi$$

oraz

powinniśmy w układzie wspólrzędnych $\xi - \eta$ otrzymać linię prosta przechodzącą przez początek układu współrzędnych i nachyloną pod kątem 45° względem osi współrzędnych. Jeżeli równanie (4.22) jest słuszne dla dowolnego rodzaju materiału kruchego, to punkty pomiarowe uzyskane z doświadczenia powinny leżeć na tej prostej lub grupować sie wokół niej z pewnym rozrzutem.

Ten sam przebieg linii wyrównawczej, jedynie przesuniętej w prawo o wielkość A, powinniśmy otrzymać gdy na osi odciętych odmierzymy wielkość R. · B. Przedstawienie wzoru w tej postaci jest bardzo dogodne dla statystycznej interpretacji wyników uzyskanych z doświadczenia.

Wyniki badań można również przedstawić w innym układzie współrzędnych odmierzając np. E. na osi rzędnych i 1/R. na osi odciętych. Również w tym przypadku dla określonego rodzaju materiału otrzymamy linię prostą. Transformacja z układu współrzędnych x, y na układ współrzednych (1/x), y omówiona została w Dod atku A.

5.1. Żeliwo

Wyniki pomiarów akustycznych i mechanicznych parametrów badanych gatunków żeliwa podano w tabeli 2. Dla wszystkich próbek, dla których wykonano pomiary prędkości fal poprz ecznych przeprowadzono analizę korelacyjną (punkt 6.1) uzyskując równanie

$$R_{\rm r} = \frac{150}{18,75 - c_{\rm L}c_{\rm T}} \tag{5.1}$$

Współczynnik korelacji r= 0,9976 różni się bardzo nieznacznie od 1.

Rys. 23. Zależność R_rc_Lc_T-R_{rB} dla żeliwa. 8 gatunków (tabl.2)

Rys.24. Zależność $c_{L}c_{T}-1/R_{r}$ dla żeliwa (odlewnia A, B i C)

Na rysunku 23 naniesiono wartości uzyskane dla żeliw gatunków Żl18, Żl22, Żl26, Żl30 oraz ŻSF10, łącznie dla 313 próbek, przyczem dla 222 z nich były to wartości średnie wyznaczone z trzech próbek pochodzących z jednego wałka (żeliwa z odlewni B).

Na rysunku 24 przedstawiono punkty pomiarowe w układzie współrzędnych $c_{\rm L}c_{\rm T} - 1/R_{\rm r}$. W tym układzie współrzędnych punkty pomiarowe wyrównuje również linia prosta, zgodnie z teorią podaną w rozdziale 4. Punkty dla poszczególnych gatunków żeliwa zaznaczono oddzielnymi symbolami. Dokładniejsza analiza tego wykresu pokazuje, że pewne gatunki żeliw wykazują wyższą wytrzymałość przy tej samej wartości iloczynu $c_{\rm L}$. $c_{\rm T}$. Związane jest to z różnymi wartościami prędkości fal podłużnych dla poszczególnych gatunków żeliw, przy niewiele różniących się średnich wartościach wytrzymałości. Na skutek tych odchyleń wielkość charakterystyczna dla tych gatunków różni się nieco od A = 150 (por. tab. 2). Zagadnienie to będzie dyskutowane w punkcie 7.

5.2. Porcelana

Równanie korelacyjne przyjmuje tutaj postać

$$R_{\rm r} = \frac{10,24}{25 - c_{\rm L} c_{\rm T}} \tag{5.2}$$

Współczynnik korelacji jest bardzo wysoki i wynosi r=0,998. Zależność wynikającą z tego wzoru przedstawiono na rysunku 25. Dla porównania na rysunku 26 podano wykresy dla obu gatunków porcelany w układzie współrzędnych $R_r c_L - R_r$. Punkty pomiarowe są wyrównywane przez dwie różne proste (oddzielną dla izolatorow i o ddzielną dla próbek z masy B-6), które, jak pokazano na rysunku 26 w prawym dolnym rogu, przechodzą przez początek układu współrzędnych. Potwierdza to tezę, że nie ma żadnej korelacji między prędkością fal podłużnych i wytrzymałością na rozciąganie (por. Dodatek A). Jest to oczywiście dodatkowym potwierdzeniem wniosku podanego już w punkcie 3.2 przy omawianiu rysunków 16 i 17.

Szczegółowe wartości parametrów akustycznych i mechanicznych podano w tabeli 3 oddzielnie dla obu rodzajów masy ceramicznej. Rubryka 11 w tabeli 3 zawiera procentowe odchyłki między wartościami wytrzymałości wyznaczonymi doświadczal nie w próbie rozciągania oraz wartościami obliczonymi ze wzoru (5.2). Dla izolatorów maksymal-

 \therefore Rys. 25. Zależność $R_r c_L c_T - R_r$. B dla izolatorów porcelano wych i próbek porcelanowych z masy B-6 http://rcin.org.pl

na odchyłka procentowa wynosi 28,4%, średnia 14,2%. Natomiast w dwóch przypadkach dla próbek z masy B-6 otrzymano odchyłki wynoszące 97% i 80,5%. Jeżeli uwzględnimy przy obliczaniu średniego odchylenia procentowego dwie podane wyżej wartości, to średnia odchyłka wyniesie 31,5%, natomiast po odrzuceniu tych wartości tylko 21,9%.

Rys. 26. Zależność Rr. cL - R, dla próbek i izolatorów porcelanowych

Możliwość wystąpienia dużych przypadkowych odchyłek nie będzie żadnym zaskoczeniem skoro się zważy, że o ile wartości A i Bwyznaczone metodą statystyczną przedstawiają wartość średnią, są więc tzw. estymatorami najefektywniejszymi [19], to łączny błąd pomiaru wartości c_L i c_T może wynosić około 3-5%. Należy przy tym zwrócić uwagę, że błąd w ocenie prędkości odbija się znacznie silniej na ocenie wysokich wytrzymałości, aniżeli na ocenie wytrzymałości niskich. Wynika to bezpośrednio z budowy wzoru (4.22). Im mniejsza jest różnica między maksymalną (graniczną) wartością modułu zredukowanego dla danego gatunku materiału i wartością modułu zredukowanego danej próbki, tym silniej uwypuklają się błędy pomiarowe prędkości fal ultradźwiękowych. Np. 5% błąd przy wyznaczaniu $c_{\rm L}c_{\rm T}=24$ (w kierunku ujemnym) pociąga za sobą 54,5% błąd w ocenie wytrzymałości. Taki sam 5% błąd oznaczenia $c_{\rm L}c_{\rm T}=22$ prowadzi do błędu 24,2 w ocenie wytrzymałości. Spowodowane jest to tym, że błąd oceny prędkości kompleksowej, tj. iloczynu $c_{\rm L}.c_{\rm T}$ należy odnosić do różnicy a nie do samej wartości mierzonej.

Duże błędy popełnia się również przy wyznaczaniu wytrzymałości, gdzie nieuniknione odchylenia od osiowego obciążenia wprowadzają dodatkowe momenty zginające, które obniżają rzeczywistą wytrzymałość wyznaczaną w próbie rozciągania. Bardziej szczegółowa analiza tabeli 3 przekonuje o tym, że w tych przypadkach w których odchyłki procentowe były bardzo duże, to miały one prawie zawsze znak dodatni, co oznacza, że oszacowana wytrzymałość była większa od wytrzymałości wyznaczonej w próbie rozciągania. Niższa wartość wyznaczonej doświadczalnie wytrzymałości była w tych przypadkach spowodowana skrzywieniem próbki, niedokładnością zamocowania, lub najtrudniejszą do uniknięcia mimoosiowością obciążenia. Znaczenie mniejsze odchyłki dla iz olatorów porcelanowych są spowodowane tym, że mają one zakończenia z uchwytami przegubowymi. Poza tym, ze względu na większą długość izolatora w stosunku do próbki, wpływ mimoosiowego obciążenia jest bez porównania mniejszy.

5.3. Beton

W oparciu o analizę wyników badań własnych [15, 43] oraz danych zaczerpniętych z prac Brunarskiego i Sawczuka [49], Brunarskiego i Kijkowskiego [4], Akroyda i Jonesa [1] zbadano przydatność ogólnej zależności (4.22) do oceny wytrzymałości betonu metodą ultradźwiękową. Ze względu na to, że dla betonów nie dysponowano wynikami pomiaru prędkości fal poprzecznych, zamiast zredukowanego modułu sprężystości określonego iloczynem $c_L c_T$ wprowadzono c_L^2 . W tym przypadku należy się liczyć jedynie z tym, że wyniki dla różnych gatunków betonu będą wyrównywane przez różne linie*.

* Zależność względem c_{L}^{2} jest uzasadniona w przypadku gdy stosunek $a = c_{T/c_{L}} = \text{const}$

Wówczas mamy

 $c_{\mathbf{T}} = a c_{\mathbf{L}}$ or az $c_{\mathbf{T}}c_{\mathbf{L}} = a c_{\mathbf{L}}^{2}$

Dlaróżnych wartości a otrzymamy różne linie wyrównawcze.

Rys.27. Zależność $R_r c_L^2 - R_r$ dla wybranych gatunków betonu

46

http://rcin.org.pl

Wartości A i B zachowały zasadniczo swoje poprzednie znaczenie fizyczne. Graniczne wartości potrzebne do wyznaczenia wielkości A i B można znaleźć, stosując jak w przypadku żeliwa i porcelany, analizę regresji. Znacznie prościej wartości te wyznaczyć można wykreślnie. Wprowadzając punkty pomiarowe w układzie $R_r c_L^2 - R_r$ (rys. 27) kreślimy "na oko" linię wyrównawczą, a z odciętych na obu osiach wyliczamy wartości A i B (por: Dodatek A).

Na rysunku 27 zestawiono niektóre wyniki badań dla betonu zaczerpnięte z wymienionych poprzednio źródeł. W tabeli 4 podano procentowe odchylenia między rzeczywistymi wartościami, a wartościami wyliczonymi z wzoru

$$R_{c} = \frac{A_{1}}{B_{1} - c_{L}^{2}}$$
(5.3)

wynikającego z graficznej analizy wyników.

Sprawdzianem słuszności zastosowania zmodyfikowanego wzoru (4.22) jest wartość $A_1 = R_c (B - c_L^2)$. Okazuje się, że wartość ta zależy od gatunku betonu. Należało tego oczekiwać, ponieważ ocena na podstawie c_L^2 wymaga zachowania stałej wartości stosunku $a = c_T/c_L$. Nie można więc spodziewać się, wyznaczenia wielkości charakterystycznej A identycznej dla wszystkich gatunków materiału, tylko w oparciu o pomiar c_L .

Wartości A dla poszczególnych próbek betonowych oraz średnie wartości A dla poszczególnych grup betonów podano w tabeli 4. Dla większości przedstawionych w tabelach gatunków betonu wartość A jest bliska 1700. Odchylenia, czasami dość znaczne, występują w przypadku bardzo niskich wytrzymałości, co odpowiada najczęściej prędkościom fal ultradźwiękowych nie przekraczających 3250 m/s. Ponadto bardzo duże odchylenie zaobserwowano dla trzech próbek, dla których wyniki zaczerpnięto z pracy [1]. Wyniki te odbiegają od prostej wyrównawczej wykreślonej na rysunku 27. Jak już zaznaczono ten gatunek betonu wysokowytrzymałościowego odznacza się stosunkowo niską prędkością przy bardzo wysokiej wytrzymałości.

Szczególnie ciekawe jest porównanie wyników zaczerpniętych z pracy [15]. Próbki betonowe zostały pobrane z dwóch części komina wentylacyjnego. Próbki zaliczone do pierwszej partii wycięto z miejsc bardzo silnie skorodowanych. Druga partia próbek pochodziła z miejsc komina nie narażonych na działanie korozji. Wartości A dla próbek skorodowanych wynoszą w przybliżeniu 550 a dla próbek z miejsc zdrowych ok. 2500. Średnią wartość A dla określonego gatunku betonu wyznaczyć można na podstawie tylko kilku prób. Np. dla betonu wg [4] średnie wartości A trzech próbek statystycznych składających się z trzech wyników pobranych losowo z tabeli 4 wynosiły 1410, 1390, 1360 podczas gdy średnia wartość dla całego zbioru była równa 1395.

Ogromna zaleta podanego powyżej sposobu polega na tym, że dla uzyskania, względnie dla sprawdzenia, wielkości charakterystycznej A dla nieznanej marki betonu wystarcza w zasadzie minimalna ilość próbek (3-5 w porównaniu ż kilku dziesięcioma według dotychczasowych zaleceń). Ponadto ef ektywność oceny wielkości charakterystycznej A można znacznie podnieść stosując metody statystyki pozycyjnej. Dla zwykłych gatunków betonu można przyjmować wartości A = 1700 i B = 27.

Na podstawie analizy regresji dla 5 próbek z betonu wg [1] otrzymano A = 1554, B = 26,37. Dla tych samych próbek wielkości wyznaczone metodą wykreślną są równe A = 1600, B = 26,7. Taką dokładność można uznać w praktyce za całkowicie wystarczającą.

6. STATYSTYCZNA INTERPRETACJA WYNIKÓW BADAN

6.1. Regresja i tablice korelacyjne

Dla wyznaczenia liczbowych zależności wynikających z rozważań podanych w rozdziale 5 przeprowadzono statystyczną analizę wyników uzyskanych w doświadczeniach. Równania regresji obliczono dla żeliwa, porcelany oraz dla wybranej grupy próbek z betonu. Ze względu na dużą ilość próbek z żeliwa posłużono się przy wyznaczaniu regresji tablicą korelacyjną. Tok przeprowadzanych oblic zeń uwidoczniony jest w tabeli 5 gdzie przyjęto następujące oznaczenia:

suma wartości zmiennej losowej

$$S_{\mathbf{x}} = \sum_{i=1}^{n} \mathbf{x}_{i}$$

$$S_{\mathbf{y}} = \sum_{i=1}^{n} \mathbf{y}_{i}$$
(6-1)

suma kwadratów zmiennej losowej

$$SK_{\mathbf{x}} = \sum_{i=1}^{n} x_{i}^{2}$$

$$SK_{\mathbf{y}} = \sum_{i} y_{i}^{2}$$
(6.2)

suma kwadratów różnic

$$SKR_{x} = SK_{x} - S_{x}^{2}/n = \sum_{i} (x_{i} - \overline{x})^{2}$$

$$SKR_{y} = SK_{y} - S_{y}^{2}/n = \sum_{i} (y_{i} - \overline{y})^{2}$$
(6.3)

suma iloczynów

$$SI_{xy} = \sum_{i} x_{i} y_{i}$$
(6.4)

suma iloczynów różnic

$$SIR_{xy} = SI_{xy} - S_x S_y / n = \sum_i (x_i - \overline{x})(y_i - \overline{y})$$
(6.5)

współczynnik kierunkowy

$$b = SIR_{xy}/SKR_{x} \tag{6.6}$$

suma kwadratów różnic zmiennej losowej y przy ustalonej wartości zmiennej losowej \propto

$$SKR_{y/x} = SKR_{y} - b \cdot SIR_{xy} = SKR_{y} - \frac{SIR_{xy}^{2}}{SKR_{x}} = \sum_{i} (y_{i} - Y_{i})^{2}$$
 (6.7)

dla f = n - 2 stopni swobody

wariancja

$$s^2 = \frac{SKR_{y/x}}{j} \tag{6.8}$$

49

•

http://rcin.org.pl

Równanie linii regresji

$$Y = a + b(x - \bar{x})$$

$$a = \bar{y} = \frac{S_y}{n} , \quad \bar{x} = \frac{S_x}{n}$$
(6.9)

współczynnik korelacji

$$t = \frac{s_{xy}}{s_x \cdot s_y} = \frac{SIR_{xy}}{\sqrt{SKR_x \cdot SKR_y}}$$
(6.10)

wariancje wielkości a, b, Y występujących we wzorze liniowej regresji

$$s_{\mathbf{a}}^{2} = \frac{s^{2}}{n}$$
, $s_{\mathbf{b}}^{2} = \frac{s^{2}}{SKR_{\mathbf{x}}}$, $s_{\mathbf{y}}^{2} = s^{2} \left[\frac{1}{n} + \frac{(x - \overline{x})^{2}}{SKR_{\mathbf{x}}} \right] = s_{\mathbf{a}}^{2} + s_{\mathbf{b}}^{2} (x - \overline{x})^{2}$

(6.11)

Wszystkie gatunki żeliwa, dla których zmierzono prędkości c_L i c_P połączono w jeden wspólny zbiór i za pomocą tablicy korelacyjnej wyznaczono równanie regresji. W tym celu utworzono przedziały o szerokości 10 kGmm² m²s².10⁶ dla $R_r c_L c_T$ i szerokości 1 kGmm² dla R_r . Dla każdego pola utworzonego przez przecięcie się linii ograniczających przedziały wyznaczono ilość wyników leżących w poszczególnych polach. Pola ponumerowano przez wprowadzenie nowych współrzędnych pomocniczych. Oznaczają one pionowy i poziony numer przedziału. Tok wyliczeń i wyniki ostateczne uwidocznione są w tabeli 5.

Dla porcelany można było obliczyć równanie regresji w sposób podany w tabeli 6 ze względu na znacznie mniejszą ilość próbek. Gdy podobne obliczenia dokona się dla porcelany w odniesieniu do prędkości fal podłużnych otrzymujemy dwie niezależne linie proste z których jedna wyrównuje wyniki dla izolatorów o średnicy 76mm a druga dla próbek porcelanowych z masy B-6. Obie linie prze chodzą przez początek układu współrzędnych (rys. 26). Zgodnie z analizą przeprowadzoną w Dodatku A świadczy to o zupełnym braku jakiejkolwiek zależności między rozpatrywanymi zmiennymi losowymi. Dla poszczególnych gatunków materiału uzyskano następujące równania:

dla *želiwa*

$$Y = 149,6670 + 18,7453 \text{ x}$$

skąd dla $Y = R_r c_L c_T, \quad x = R_r$

$$R_{\rm r} = \frac{149,6670}{18,7453 - c_{\rm L}c_{\rm T}} \simeq \frac{150}{18,75 - c_{\rm L}c_{\rm T}}$$
(6.12)

$$(R_{\rm r} \le k {\rm G/mm^2}, c_{\rm L} c_{\rm T} \le 10^6 {\rm m^2/s^2})$$

dla porcelany

$$Y = -10,237 + 25,0307 \times$$

skąd dla $Y = R_r c_L c_T$, $x = R_r$

$$R_{r} = \frac{10,24}{25 - c_{L}c_{T}}$$
(6.13)

$$(R_r \ w \ kG/mm^2, \ c_L c_T \ w \ 10^6 \ m^2/s^2)$$

dla wybranej grupy próbek betono wych

$$R_{c} = \frac{1710}{27 - c_{L}^{2}}$$

$$(R_{c} \le kG/cm^{2}, c_{L}^{2} \le 10^{6} \text{ m}^{2}/\text{s}^{2})$$
(6.14)

Przedziały ufności dla poszczególnych wielkości występujących w równaniach regresji wyliczono ze wzorów

$$a - ts_{a} < a < a + ts_{a} \qquad f = n - 2$$

$$b - ts_{b} < \beta < b + ts_{b} \qquad f = n - 2$$

$$Y - ts_{v} < \eta < Y + ts_{v} \qquad f = n - 2$$

(6.15)

gdzie a, β, η – teoretyczne wartości oszacowań a, b, i Yt – wartość statystyki Studenta dla f = n-2 stopni swobody.

Wysoki współczynnik korelacji uzyskany we wszystkich trzech rozpatrywanych przypadkach potwierdza słuszność przesłanek, które stanowiły podstawę do wyprowadzenia *teoretycznej zależności* między wytrzymałością i parametrami charakteryzującymi rozchodzenie się jal ultradźwiękowych.

6.2. Analiza rozkładów statystycznych

Dla wyznaczenia prawdopodobieństwa występowania pewnej cechy oraz przedziałów ujności, koniecz na jest znajomość rozkładów statystycznych. Najczęściej stosowanymi modelami rozkładów jest rozkład wykładniczy

$$F(\mathbf{x}) = 1 - e^{-\left(\frac{\mathbf{x} - \mu}{\theta}\right)^{\mathbf{b}}}$$
(6.16)

oraz rozklad normalny

$$\Phi(x) = \int_{-\infty}^{x} \phi(x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{x} e^{-(x-a)^{2}/2} \sigma^{2} dx \qquad (6.17)$$

Bardziej dogodny w zastosowaniu jest, w wielu przypadkach, rozkład normalny, zwłaszcza wtedy gdy przy badaniu rozkładu nie interesujemy się rozkładem wartości ekstremalnych (skrajnych).

W modelu odpowiadającym rozkładowi normalnemu przyjęto następujące oznaczenia $\Phi(x)$ dystrybuanta zmiennej losowej X czyli prawdopodobieństwo $P(X \le \infty)$ że zmienna losowa X nie przekroczy ustalonej wartości x.

 $\phi(x)$ funkcja określająca wartość gęstości prawdopodobieństwa dla danej wartości x zmiennej losowej X.

a-wartość średnia (wartość oczekiwana) zmiennej losowej X

 σ - odchylenia standardowe

Prawdo podobieństwo, że zmienna losowa X nie przekroczy ustalonej wartości z możemy zapisać wzorem

$$\Phi(\mathbf{x}) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(\mathbf{x}-\mathbf{a})^2/2\sigma^2} d\mathbf{x} = P(X \leq \mathbf{x})$$
(6-18)

Wprowadzając statystykę

$$U = \frac{X - a}{\sigma}$$
(6.19)

zwaną zmienną losową unormowaną lub standaryzowaną, wzór 6.18 da się uprościć do postaci

$$\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{u^{2}}{2}} du$$
 (6.20)

Wprowadzenie zmiennej losowej unormowanej jest równoznaczne z przyjęciem że wartość średnia a = 0, a odchylenie standardowe jest równe $\sigma = 1$, co zapisujemy za pomocą symbolu $N(a, \sigma) = N(0, 1)$. Rozkład dwuparametrowy, jakim jest rozkład normalny zawierający jeden parametr położenia a drugi parametr skali może być przedstawiony w postaci [56]

$$P = F\left[(x-a)/\sigma\right]$$

Oznaczając przez G(P) funkcją odwrotną do funkcji F(x) otrzymujemy

$$X = \sigma G(P) + a$$

Jeżeli teraz wyniki pomiarowe wykreślimy nie w liniowym układzie P lecz w liniowym układzie G(P) wówczas punkty pomiarowe powinny grupować się wzdłuż linii prostej. Wykres sporządzony w ten sposób nosi nazwę wykresu prawdopodobieństwa.

Położenie punktów na osi prawdopodobieństwa określa się za pomocą jednego ze wzorów [6], [27], [56].

$$P_{i} = \frac{i}{n+1}$$

$$P_{i} = \frac{i - \frac{1}{2}}{n}$$

$$P_{i} = \frac{i - \frac{3}{8}}{n + \frac{1}{4}}$$
(6.21)

Wzór ostatni oparty na metodzie "niemal najlepszej estymacji liniowej" eliminuje pochylenie (skośność) prostej, wyrównującej w rozkładzie normalnym punkty pomiarowe [6].

Dla wyznaczenia przedziałów ujności dla wartości średniej oraz dla odchylenia standardowego zastępujemy teoretyczne wartości a, o przez wartość średnią w próbce x i odchylenie standardowe s w próbce zgodnie z wzorami:

wartość średnia

$$\overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} = \frac{1}{n} S_{\mathbf{x}}$$
(6.22)

wariancja w próbce

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n} \right] = \frac{1}{n-1} (SK - \frac{S^{2}}{n}) (6.23)$$

Przedziały ufności dla wartości średniej wyznaczamy ze wzoru

$$\overline{\mathbf{x}} \pm t_{\infty,\mathbf{r}} \cdot \frac{s}{\sqrt{n}} \tag{6.24}$$

co oznacza, że wartość średnia populacji generalnej będzie zawierać się w przedziale

$$\overline{x} - t_{\alpha, \mathbf{r}} \frac{s}{\sqrt{n}} < a < \overline{x} + t_{\alpha, \mathbf{r}} \frac{s}{\sqrt{n}}$$
(6.25)

gdzie t_{a.}, wartości statystyki t - Studenta dla poziomu istotności

 α i r = n - 1 stopniswobody

 α – poziom istotności, dla którego wyznaczamy przedział ufności dla wartości średniej a: przyjęty poziom istotności a oznacza że współczynnik ufności, czyli prawdopodo bieństwo, że przedział ufności pokrywa wartość średnią populacji generalnej, wynosi 1- α .

Dla wyznaczenia przedziałów ufności dla odchylenia standar dowego σ korzystamy z twierdzenia, że stosunek s^2/σ^2 ma rozkład X^2/r [27]. Stosowanie do tego przedziały ufności dla σ wyznacza się z nierówności

$$s^{2} \frac{r}{\overline{X}_{1-\infty}^{2}} < \sigma^{2} < s^{2} \frac{r}{\overline{X}_{\infty}^{2}} \qquad (6-26)$$

Tablice statystyczne [52] podają wartości statystyki X² dla ilości stopni swobody nie przekraczającej 30. Dla większej ilości stopni swobody średnia wartość odchylenia standardowego i jego wariancja będą w przybliżeniu równe [27]

Rys.28. Rozkłady statystyczne dla wytrzymałości na rozciąganie R_r i iloczynu prędkości c_Lc_T (wszystkie próbki)

$$m\{s\} = \sqrt{1 - \frac{1}{2f}} \sigma \cong \sigma$$

$$v\{s\} = \frac{\sigma^{2}}{2f}$$
(6.27)

Stąd możemy napisać dla określonego prawdopodo bieństwa P

$$s_{p} = \sigma \left(\sqrt{1 - \frac{1}{2j}} + \frac{u_{\mathbf{P}}}{\sqrt{2j}} \right)$$
(6.28)

gdzie u p wartość unormowanej zmiennej losowej rozkładu normalnego.

Przedziały ufności dla badanego rozkładu wyznaczamy za pomocą wzoru

$$\mathbf{x} = \mathbf{x} + u \, \sigma \tag{6.29}$$

przyczem dolne granice przedziału ufności otrzymujemy dodając dolne wartości σ pomnożone przez odpowiednie wartości u unormowanej zmiennej losowej dla określonej wartości prawdopodobieństwa. Dla otrzymania górnej granicy przedziału ufności wstawiamy górną wartość σ .

Na rysunkach 28, 29, przedstawiono rozkłady dla R_r , $c_L c_T$ i c_T/c_L dla wszystkich wartości uzyskanych przy badaniu żeliw z odlewni Ai B. Rozkłady te nie są normalne ponieważ nie udaje się wyrównać punktów uzyskanych z doświadczenia za pomocą jednej linii prostej. Jednakże rozkłady te można rozbić na składowe rozkłady normalne, tak jak pokazano na rysunku 30. Dla uzyskania przybliżonego charakteru zależności między wytrzymałością i prędkością $c_L c_T$ można zastosować w oparciu o wykresy wg rysunku 28, korelację metodą równego prawdopodobień stwa, omówioną w punkcie 6.4. Z charakteru rozkładów dla R_r i $c_L c_T$ wynika, że zależność między tymi wielkościami nie może być liniowa. Natomiast liniowości można się spodziewać w ograniczonych przedziałach, w których rozkład zmiennych losowych jest normalny (rys. 30). Rozkład wartości c_T/c_L (rys. 29) pokazuje, że w badanym zbiorze żeliw wartość c_T/c_L zmienia się w granicach 0,5 i 0,65.

Na rysunku 31 przedstawiono rozkład biędu procentowego w oszacowaniu wytrzymałości porcelany na podstawie wzoru (5.2). Ze względu to, że niektóre punkty leżą poza przedziałami ufności wyniki te można

Rys. 30. Rozbicie łącznego rozkładu dla R, na trzy rozkłady normalne

Rys.31. Rozkład blędu procentowego dla izolatorów i próbek porcelanowych

Rys. 32. Rozkład błędu procentowego $(\Delta R)_{C_L} \cdot c_T$ [%] dla wytrzymałości żeliwa wyznaczonej na podstaw ie pomiaru $c_L \cdot c_T$

odrzucić jako przypadkowe. Z rysunku łatwo odczytać, że błąd prawdopodobny zawiera się w granicach $\sim \pm 20\%$. Takie samo kryterium odrzucenia z badanego zbioru niektórych wyników można zastosować do żeliwa, dla którego obliczono wytrzymałość na podstawie pomiaru $c_{\rm L} c_{\rm T}$ (wzór 4.22) oraz na podstawie pomiaru $c_{\rm L}^2$ (rys. 32, 33).

Rys. 33. Rozkład błędu procentowego $\Delta R_{c_{L}^{2}}$ [%] dla wytrzymałości żeliwa wyznaczonej na podstawie pomiaru c_{L}^{2}

6.3. Ocena jednorodności

Zaobserwowanie dużych różnic w wytrzymałości mechanicznej izolatorów porcelanowych, przedstawionych w punkcie 3.2, nasunęło podejrzenie, że wyroby produkowane w różnych okresach czasu nie są jednorodne. Niejednorodność mogła na przykład powstać na skutek nieprzestrzegania technologii produkcji. Dla wyjaśnienia czy tego rodzaju różnice są związane z naturalnym rozrzutem własności materiału, czy też należy je przypisać odchyleniom w sposobie wytwarzania, pobrano z produkcji, w trzech kolejnych miesiącach, próbki

Rys. 34. Rozkłady prędkości w trzech próbkach statystycznych składających się z ok. 100 izolatorów każda

statystyczne o liczności około 100 sztuk izolatorów. Izolatory wybrano metodą losową posługując się przy losowaniu tablicami statystycznymi [52]. Jako wskaźnik charakteryzujący jednorodność wyrobu (izolatorów) przyjęto prędkość podłużnych fal ultradźwiękowych. Wiadomo, że prędkość podłużnych fal ultradźwiękowych jest wskaźnikiem stopnia wypalenia a tym samym porowatości [18] [47].

Zbiór wartości w pobranych probkach statystycznych uporządkowano według rosnących wartości prędkości. Dla zbadania charakteru rozkładu statystycznego przyjęto model odpowiadający rozkładowi normalnemu, przy czem położenie na osi prawdopodobieństwa obliczano ze wzoru P = i/n+1, gdzie i kolejny numer izolatora, n ilość izolatorów w rozpatrywanej próbce statystycznej. Wykresy prawdopodobieństwa przedstawiono na rysunku 34. Punkty pomiarowe wyrównuje w każdym z trzech przypadków linia prosta, można wiec uważać rozkłady za normalne w zakresie obejmowanym przez wyniki doświadczenia. W tabeli 7 przeprowadzono obliczenie parametrów rozkładu normalnego to jest wartości średniej i standardowego odchylenia. Wartości te można oczywiście wyliczyć z wykresów prawdopodobieństwa. Wartość średnią odczytujemy na poziomie prawdopodobieństwa P = 50%, a standardowe odchylenie jako różnice odciętych odpowiadających wartościom P = 50% i P = 16% lub między wartościami dla u = 0 i u = 1względnie u = -1 zaznaczonymi na rysunku 34 po prawej stronie na skali pionowej. Przedziały ufności wyznaczono zgodnie z wzorami (6.25), (6.26), (6.28), dla $\alpha = 0,1$ i dla rozkładu o parametrach $N(5408; 90,88) \cdot [a = 0, 1 \text{ oraz } r = 98, t_{\infty r} = 1,663 \cdot]$ Stad nieznana teoretyczna wartość średnia a rozkładu będzie się zawierać w przedziałach

$$5408 - 1,663 \frac{90,88}{\sqrt{99}} < a < 5408 + 1,663 \cdot \frac{90,88}{\sqrt{99}}$$

Przyjęty poziom istotności a=0,1 oznacza, że około 10% wyników może znaleźć się poza wyznaczonymi przedziałami ufności dla wartości średniej.

Przedziały ufności dla odchylenia standardowego σ wyznaczamy zgodnie ze wzorem (6.28).

Wykreślone w ten sposób przedziały ufności pokryły tylko obszar dla wyników wyrównanych przez prostą II. Natomiast część wyników związanych z prostą III nie mieści się w przedziale ufności. Ten wniosek potwierdza również test istotności przeprowadzony w tabeli 7. Różnicę między wartościami średnimi grupy I i grupy II możemy uznać za nieistotną ponieważ mieści się w 80% przedziałach ufności. Natomiast różnica między grupą II i III wykracza nawet poza 99% przedziały ufności. Wypływa stąd wniosek, że jednorodność produkcji w poszczególnych okresach ulegała nieznacznej zmianie.

6.4. Korelacja metodą równych prawdopodobieństw

W przypadku dużego rozrzutu można zastosować korelację meto dą przegrupowania dla uchwycenia kierunku i przybliżonej zależności. Sposób ten zaproponował Gatto [24] do opracowywania wyników badania materiału na zmęczenie. Niedogodnością tego sposobu jest to, że może on być zastosowany efektywnie przy większej ilości próbek, zwykle przekraczającej 30. Przy zbiorach o mniejszej liczności uzyskane wyniki mogą nasuwać pewne wątpliwości.

Sposób zaproponowany przez autora usuwa do pewnego stopnia tę niedogodność. Kolejność postępowania jest następująca. Na wykresie prawdopodobieństwa rysuje się rozkład obu zmiennych losowych dla których poszukujemy korelacji. Współrzędne poszukiwanej korelacji odczytuje się z wykresu prawdopodobieństwa dla identycznych wartości unormowanej zmiennej

$$U = \frac{x - a}{\sigma} \tag{6.30}$$

Gdy rozkłady obu zmiennych losowych są normalne wtedy poszukiwana zależność będzie prostoliniowa. Z (6.30) mamy bowiem

$$u_1\sigma_1 + a_1 = x_1$$
$$u_2\sigma_2 + a_2 = x_2$$

a stąd dla jednakowych wartości u

$$\mathbf{x}_1 = a_1 + \frac{\sigma_1}{\sigma_2} (\mathbf{x}_2 - a)$$

Przy małej ilości próbek wartości σ_i , a_i parametrów rozkładu normalnego można oszacować za pomocą *statystyki pozycyjnej*. Ponadto gdy rozkład zmiennej losowej nie jest normalny można sprowadzić go do rozkładu normalnego przez odpowiednią transformację [38].

Dla przykładu z tabeli 2 wybrano losowo wartości $c_{\rm L}c_{\rm T}$, $R_{\rm r}$, $1/R_{\rm r}$ dla dziewięciu próbek. Wyniki uporządkowano rosnąco dla $R_{\rm r}$ i $c_{\rm L}c_{\rm T}$ a malejąco dla $1/R_{\rm r}$ i wprowadzono na wykres prawdopodobieństwa (rys.35). Punkty wyrównano za pomocą linii poprowadzonych na oko, poczem odczytano wartości dla jednakowych prawdopodobieństw. Wartości te podano poniżej

CLCT	8,1	9,1	9,85	10,45	11,1	11,7	12,3	13,5
$1/R_r$	0,074	0,066	0,060	0,055	0,051	0,046	0,042	0,035
R _r	1 3, 2	15	17,5	18,5	20	22	23,5	28,5
c _L c _T	14	15	15,5					
$1/R_r$	0,032	0,0254	4 0,022	2				
R _r	31,5	39,25	45			390		

Punkty odpowiadające tym współrzędnym wprowadzono na wykres (rys. 36) na którym linie ciągłe oznaczają zależności wynikające ze wzoru 5.1 w układzie współrzędnych $R_r - c_L c_T$ oraz $1/R_r - c_L c_T$.

Rys.35. Rozkłady dla $c_L c_T$, $1/R_r$ i R_r dla kasowo pobrarej próbki statystycznej o liczności 9

63

http://rcin.org.pl

Rys. 36. Punkty uzyskane metodą równych prawdopodobieństw dla zależności $R_r - c_L c_T$ oraz $1/R_r - c_L c_T$. Linie ciągłe wyznaczono na podstawie wzoru $R_r = \frac{150}{18,75 - c_L c_T}$

64

http://rcin.org.pl

6.5. Zastosowanie statystyki pozycyjnej dla obliczenia parametrów rozkładu

W praktycznych zastosowaniach przedstawionej metody oceny wytrzymałości materiałów kruchych koniecznym może okazać się sprawdzenie czy wartość $A = R_r (B - c_L c_T)$ odbiega od wartości wyznaczonej za pomocą analizy regresji liniowej. Jak wynika z tabeli 2 tego rodzaju przypadki są możliwe, bądź to z powodu różnie w gestości materiału, względnie zmian stosunku c_T/c_L . Szczególnie ważne może to być przy kontroli betonu gdzie pobranie kilku próbek dla poznania gatunku materiału nie sprawia większej trudności. To samo dotyczyć może kontroli jakości żeliwa w odlewni, jeżeli zaszłyby okoliczości powodujące zmianę wielkości A.

Wartość A można ustalić za pomoca analizy sekwencyjnej weryfikując jedną hipotezę w stosuku do drugiej alternatywnej. Znacznie większą jednak efektywność uzyskuje się przy zastosowaniu statystyki pozycyjnej a zwłaszcza metody "najlepszej estymacji liniowej" [8]. Szczególnie wyraźnie wychodzi to przy badaniach betonu, gdzie istniejące np. u nas zalecenia sugerują konieczność pobierania 20-30 próbek dla ustalenia własności charakterystycznych (parametrów, współczynników korelacyjnych) materiału produkowanego przez dany zakład. W przypadku betonu związane to jest np. z rodzajem kruszywa. Bardzo wysoką efektywność (skuteczność) w ocenie parametrów rozkładu statystycznego można uzyskać już przy podzbiorze liczącym kilka próbek. Ponadto przy metodzie tej istnieje możliwość odrzucenia dolnych lub górnych wartości statystyki, jeżeli zachodzi obawa, że pomiary obarczone były błędami. Odrzucenie skrajnych wartości nie wpływa w sposób istotny na ocene parametrów rozkładu tj. wartości średniej i standardowego odchylenia.

W prowadzonych przez nas badaniach w rachubę wchodzą dwa rozkłady, wykładniczy zwany również rozkładem Weibulla i rozkład normalny. W przypadku rozkładu Weibulla

$$F(\mathbf{x}) = 1 - e^{-\left(\frac{\mathbf{x} - \mu}{\theta}\right)^{\mathbf{b}}}$$
(6.31)

parametrami są μ , θ i b.

Ażeby je wyznaczyć za pomocą metody niemal najlepszej estymacji liniowej konieczna jest znajomość nachylenia b. Przyjmując, że dla danego zagadnienia wielkość ta jest znana mamy [8]

$$\mu^{*} = \sum_{i=1}^{n} k_{1i} x_{(i)}$$

$$\theta^{*} = \sum_{i=1}^{n} k_{2i} x_{(i)}$$
(6.32)

gdzie wielkości k_{11} , k_{21} odczytać można z tablic [8]. W naszym przypadku dla żeliwa Żl26, odlewnia B, po przyjęciu, że 1/b=0.5 odczytujemy dla n = 5

$$k_{11} \quad 1,204 \quad 0,212 \quad 0,046 \quad -0,072 \quad -0,391$$

$$k_{21} \quad -1,033 \quad -0,074 \quad 0,111 \quad 0,258 \quad 0,739$$

$$x_{1} \quad 153 \quad 163 \quad 178 \quad 135 \quad 164$$

$$\mu^{*} = 153,112$$

$$\theta^{*} = 5,673$$

Dla rozkładu normalnego według metody najlepszej liniowej estymacji otrzymujemy parametry rozkładu ze wzoru

$$\mu^{*} = \sum_{i=r_{1}+1}^{n-r_{2}} a_{1i} x_{(i)}$$

$$\sigma^{*} = \sum_{i=r_{1}+1}^{n-r_{2}} a_{2i} x_{(i)}$$
(6.33)

gdzie r_1 , r_2 oznacza ilość odrzuconych próbek, odpowiednio od dołu i od góry.

Biorąc 10 próbek wybranych losowo otrzymujemy

			C. (1997)		~ 5	* 6	~1	~ 8	~ 9	×10
μ*	-		0,2050	0, 1038	0, 1122	0,1198	0,4592	-	-	-
σ^*	-	4	-0,8898	-0, 11 01	-0,0262	0,0549	0, 97 11			
×(i)	128	134	135	138	1 53	155	156	163	164	1 7 8
μ* =	149,3	370		×.						

Średnia wartość dla wszystkich dziesięciu próbek wynosi 150, a wartość średnia zbioru z którego pobrano próbkę statystyczną jest równa 148,65. Przykład powyższy wykazuje bardzo dużą przydatność metod statystyki pozycyjnej dla wyznaczenia, względnie skontrolowania, wielkości charakterystycznej A występującej we wzorze (4.22).

6.6. Analiza sekwencyjna

Zgodnie z teorią estymacji [27] test u

$$\frac{\overline{x} - \xi_{o}}{\sigma/\sqrt{n}} > u_{1-\infty}$$
(6.34)

jest tekstem jednostajnie najmocniejszym [19] [27]. Dla zweryfikowahipotezy $\xi = \xi_0$ ilość próbek, którą należy zbadać wynosi

$$\sqrt{n} = (u_{1-\beta} + u_{1-\alpha}) \frac{\sigma}{\xi_1 - \xi_0}$$
 (6.35)

gdzie a, β - przyjęte poziomy istotności, σ wariancja

u – wartość zmiennej losowej

 ξ_1, ξ_0 - teoretyczne wartości parametrów rozkładu.

W przypadku analizy sekwencyjnej ilość obserwacji zależy od przebiegu obserwacji poprzednich, na skutek czego może być uważana za zmienną losową. W stosunku do klasycznych testów statystycznych w analizie sekwencji oprócz obszarów przyjęcia lub odrzucenia danej hipotezy jest jeszcze trzeci obszar, w którym nie można podjąć decyzji co do przyjęcia lub odrzucenia i obserwacje należy prowadzić dalej, ponieważ zebrane dane nie uprawniają do podjęcia właściwej decyzji.

Przyjmijmy, że prawdopodobieństwo słuszności hipotezy $\xi = \xi_1$ wynosi $1 - \beta$, natomiast gdy prawdziwe jest $\xi = \xi_1$ to prawdopodobieństwo zajścia zdarzenia $\xi = \xi_1$ wynosi α . Innymi słowy, prawdopodobieństwo dla $\xi = \xi_0$ wynosi α a dla $\xi = \xi_1$ jest równe $1 - \beta$. Zatem warunek słuszności hipotezy $\xi = \xi_1$ można zapisać

$$\frac{p_{1m}}{p_{0m}} \leqslant \frac{1-\beta}{\alpha} \tag{6.36}$$

Podobnie warunek pra wdziwości hipotezy $\xi = \xi_o$ będzie równy

$$\frac{p_{\rm im}}{p_{\rm om}} \ge \frac{\beta}{1-a} \tag{6.37}$$

jeżeli przez p_{1m} , p_{0m} oznaczymy gęstości prawdopodo bieństwa poszczególnych obserwacji x _p x₂...x_m. Jak długo stosunek gęstości prawdopodobieństw nie wiele się różni nie można podjąć ostatecznej decyzji.

Podstawą analizy sekwencyjnej, opartej na stosunku gęstości prawdopodobieństw, jest nierówność

$$\frac{\beta}{1-\alpha} < \frac{p_{1m}}{p_{0m}} < \frac{1-\beta}{\alpha}$$
(6.38)

Proces obserwacji musi być tak długo kontynuowany jak długo spełniona jest powyższa nierówność.

Wyrażenia na p_{1m} , p_{0m} zależą od rodzaju rozkładu. Rozpatrzymy ila przykładu dwa rozkłady statystyczne, rozkład normalny

$$P(x) = \frac{1}{\sqrt{2\pi} \sigma} \int_{-\infty}^{x} e^{-\frac{(x-a)^2}{2\sigma^2}} dx$$
 (6.39)

oraz rozkład wykładniczy.

Dla rozkładu normalnego funkcje gęstości są dane następującymi wzorami

$$p_{0m} = \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^{m} e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{m} (x_{i} - \xi_{0})^{2}}$$

$$p_{1m} = \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^{m} e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{m} (x_{i} - \xi_{1})^{2}}$$
(6.40)

Wstawiając te wyrażenia do nierówności 6.38 otrzymamy po przekształceniach nierówność, którą można wykorzystać do obliczeń praktycznych [27]

$$\frac{\sigma^{2}}{\xi_{1}-\xi_{0}}\ln\frac{\beta}{1-a}+m\frac{\xi_{0}+\xi_{1}}{2}<\sum_{i=1}^{m}x_{i}<\frac{\sigma^{2}}{\xi_{1}-\xi_{0}}\ln\frac{1-\beta}{a}+m\frac{\xi_{0}+\xi_{1}}{2}$$
(6.41)

W przypadku rozkładu *wykładniczego* (Weibulla) dystrybuanta określona jest wzorem

$$F(\mathbf{x}) = 1 - e^{-\left(\frac{x}{\theta}\right)}$$
(6.42)

We wzorze tym występują dwa parametry, pierwszy θ zwany parametrem położenia i drugi b zwany parametrem skali lub nachylenia. Pierwszy z nich znany jest w rozkładach trwałości próbek badanych na zmęczenie jako tak zwana trwałość charakterystyczna odpowiadająca prawdopodobieństwu 63,2% czyli wartości $F(x = \theta) = 1-1/e = 0,632$. Postępując podobnie jak w przypadku rozkładu normalnego mamy nierówność

$$\frac{\beta}{1-a} < \frac{p_{1m}}{p_{0m}} < \frac{1-\beta}{a}$$
(6.43)

Funkcja gęstości prawdopodobieństwa przy $\mu = 0$ odpowiadająca dystrybuancie

$$F(\mathbf{x}) = 1 - e^{-\left(\frac{\mathbf{x}}{\theta}\right)^{\mathbf{b}}}$$
(6.44)

wyrazi się wzorem

$$\frac{d F(x)}{dx} = p(x) = \frac{b}{\theta} \left(\frac{x}{\theta}\right)^{b-1} e^{-\left(\frac{x}{\theta}\right)^{b}}$$
(6.45)

Zatem funkcja gęstości dla parametru położenia θ_i będzie równa

$$f(x, \theta) = \frac{b}{\theta_{i}} \left(\frac{x}{\theta_{i}}\right)^{b-1} e^{-\left(\frac{x}{\theta_{i}}\right)^{b}}$$
(6.46)

Stąd prawdopodobieństwo słuszności hipotezy $\theta = \theta_1$ przy podzbiorze $x_1, x_2, \dots x_m$ wyniesie

69

http://rcin.org.pl

$$p_{1m} = f(x_1, \theta_1) \times f(x_2, \theta_1) \times \dots \times f(x_m, \theta_1) = \\ = \left[\frac{b}{\theta_1} \left(\frac{x_1}{\theta_1} \right)^{b-1} \exp \left(-\left(\frac{x_1}{\theta_1} \right)^{b} \right] \times \dots \times \left[\frac{b}{\theta_1} \left(\frac{x_m}{\theta_1} \right)^{b-1} \exp \left(-\left(\frac{x_m}{\theta_1} \right)^{b} \right]$$
(6.47)

Podobnie dla p_{om} otrzymamy

$$\mathcal{P}_{om} = \left[\frac{b}{\theta_0} \left(\frac{x_1}{\theta_0}\right)^{b-1} \exp \left[-\left(\frac{x_1}{\theta_0}\right)^{b}\right] \times \dots \times \left[\frac{b}{\theta_0} \left(\frac{x_m}{\theta_0}\right)^{b-1} \exp \left[-\left(\frac{x_m}{\theta_0}\right)^{b}\right]$$
(6.48)

Stosunek p_{1m}/p_{om} przedstawi się następująco

$$\frac{p_{1m}}{p_{0m}} = \frac{\frac{b^{m}}{\theta_{1}} \frac{x_{m}^{(b-1)}l}{\theta_{1}}}{\frac{b^{m}}{\theta_{1}} \frac{x_{m}^{(b-1)}m}{\theta_{1}}} \exp - \frac{\frac{\sum_{i=1}^{n} x_{i}^{b}}{\theta_{1}}}{\frac{b^{m}}{\theta_{0}} \frac{x_{m}^{(b-1)}l}{\theta_{0}}} = \frac{\exp \left[\sum x_{i}^{b}\right]\left[\frac{1}{\theta_{0}} \frac{1}{\theta_{0}} + \frac{1}{\theta_{0}}\right]}{\left(\frac{\theta_{1}}{\theta_{0}}\right)^{bm}}$$

$$(6.49)$$

Wprowadzając oznaczenia

$$\gamma = \frac{\theta_1}{\theta_0} \tag{6.50}$$

otrzymamy ostatecznie

$$\frac{p_{1m}}{p_{om}} = \frac{\exp\left[\frac{1}{\theta_i} \left(\gamma^b - 1\right)_i \sum_{i=1}^m x_i^b\right]}{\gamma^{b,m}}$$
(6-51)

Wstawiając to do podstawowej nierówności analizy sekwencyjnej mamy

$$\frac{\beta}{1-\alpha} < \frac{\exp\left[\frac{1}{\theta_{i}^{b}} \left(\gamma^{b}-1\right)_{i}\sum_{i=1}^{m} x_{i}^{b}\right]}{\gamma^{bm}} < \frac{1-\beta}{\alpha}$$
(6.52)

Stąd

$$\ln \frac{\beta}{1-\alpha} < \frac{1}{\theta_1^b} \left[\gamma^b - 1 \right] \sum_{i=1}^m x_i^b - bm \ln y < \ln \frac{1-\beta}{\alpha}$$

lub

$$\frac{\theta_{\mathbf{i}}^{\mathbf{b}}}{\gamma^{\mathbf{b}}-1} \ bm \ln y + \ln \frac{\beta}{1-a} < \sum_{\mathbf{i}=1}^{m} x_{\mathbf{i}}^{\mathbf{b}} < \frac{\theta_{\mathbf{i}}^{\mathbf{b}}}{\gamma^{\mathbf{b}}-1} \ bm \ln y + \ln \frac{1-\beta}{a}$$

Rozpatrzymy teraz konkretny przypadek weryfikacji hipotezy $\xi_1 = 150$ w stosunku do alternatywnej hipotezy $\xi_0 = 130$. Jak wynika z tabeli 2 $A = R_r (B - c_L c_T)$ dla żeliwa Żl26 z Odlewni B ma średnią wartość 148 natomiast żeliwo Żl18 z odlewni A ma A = 130. Sprawdzimy ile trzeba przeprowadzić prób, ażeby zweryfikować hipotezę $\xi_1 = 150$. W tym celu w podzbiorze o liczności 20 ustalono kolejność za pomocą losowania. Wylosowana kolejność przedstawiała się następująco:

18, 11, 8, 13, 19, 10, 14, 17, 16, 4, 20, 15, 5, 12, 9, 6, 2, 3, 1, 7 Uporządkowane w tej kolejności wartości A_i wynoszą: 153, 163, 178, 135, 164, 155, 138, 134, 128, 156, 142, 154, 150, 122, 156, 153

Dla rozkładu normalnego przyjmujemy

$$\xi_{i} = 150 \qquad \xi_{2} = 130 \qquad \sigma = 15 \qquad a = \beta = 0,05$$

Ze wzoru (6.41) otrzymujemy
$$\frac{225}{20}(-2,95) + m \cdot 140 < \sum_{i=1}^{m} x_{i} < \frac{225}{20}(2,95) + m \cdot 140$$

$$m \cdot 140 - 33,2 < \sum_{i=1}^{m} x_{i} < m \cdot 140 + 33,2$$

71

(6.53)
Rysując wy tej zależności linie ograniczające obszary odrzucenie, przyjęcia i kontynuacji widzimy z rysunku 37, że hipotezę $\xi_1 = 150$ należy przyjąć po trzeciej próbie w stosunku do hipotezy $\xi_0 = 130$.

Rys. 37. Weryfikacje hipotezy za pomocą analizy sekwencyjnej

Dla spełnienia warunku wytrzymałościowego według wzoru (4.28) istotne znaczenie ma wielkość charakterystyczna A. W badaniach, których wyniki zebrano w tabelach 2 i 4, zaobserwowano odchylenia w wartości A dla poszczególnych gatunków żeliwa dochodzące nawet do 20%. Widać to wyraźnie na rysunku 38 przedstawiającym zbiór wartości A dla wszystkich próbek. Na rysunku tym wykreślono, dla orientacji, średnie wartości A dla poszczególnych gatunków żeliwa(por.tab.2).

Wyjaśnienia przyczyn zaobserwowanych odchyleń w wartościach wielkości charakterystycznej A poszukiwać należy w różnicach predkości fal podłużnych i poprzecznych wywołanych bliżej nieokreślonymi (lub nierozpoznanymi) składnikami strukturalnymi, których wpływ na wytrzymałość jest z kolei znikomy. Przyczynami mogą być np. nieco inne zawartości procentowe wegla w postaci grafitu, co pociaga za soba zmiane predkości, głównie fal podłużnych, natomiast bardzo nieznacznie wpływa na zmianę wytrzymałościowych własności osnowy metalicznej. To samo dotyczyć może rozłożenia grafitu. Należy przy tym pamiętać, że rozłożenia grafitu, czyli kształt i grubość płatków grafitu, decydować bedą przede wszystkim o rozproszeniu podłużnych fal ultradźwiekowych oraz ich predkości. Równocześnie współczynnik spiętrzenia naprężeń może być zależny od grubości płatków grafitu, wpływać na wytrzymałość, przy czym, wpływy te na ogół mogą zachodzić w odmiennych kierunkach, to znaczy powodować wzrost wytrzymałości przy obniżeniu prędkości fal ultradźwiękowych i na odwrót.

Jeżeli ta koncepcja wytłumaczenia zaobserwowanych różnic w wartości A (por. tab. 2) jest słuszna, wówczas po wykreśleniu zależności między prędkością fal ultradźwiękowych podłużnych i poprzecznych a wytrzymałością na rozciąganie, punkty odpowiadające jednakowym wartościom A, powinny leżeć na jednej krzywej. W naszym przypadku najcz ęściej występującą wartość A jest zbliżona do 150. Punkty odpowiadające gatunkom żeliwa o innych wartościach A powinny odbiegać od tych linii. I tak dla wartości A < 150 punkty będą przesunięte w lewo od linii odpowiadającej parametrowi A = 150, a punkty odpowiadające wartościom A > 150 będą przesunięte w prawo w stosunku do linii odpowiadającej A = 150. Oznacza to, że w pierwszym przypadku spotykamy się z mniejszymi wytrzymałościami przy większej prędkości fal ultradźwiękowych, w drugim natomiast z większymi wytrzymałościami przy mniejszych prędkościach fal ultradźwiękowych.

Różnice w prędkości fal podłużnych powinny w silniejszym stopniu wpływać na zmiane wytrzymałości, aniżeli takie same różnice

Rys. 39. Zależność prędkości fal poatużnych c_L i fal poprzecznych c_T od wytrzymałości (wartości średnie, tabela 8)

http://rcin.org.pl

w predkości fal poprzecznych. Wynika to bezpośrednio stad, że w naszych badaniach rozstepowi wytrzymałości równemu ok. 45 kG/mm² odpowiada rozstęp prędkości fal poprzecznych i fal podłużnych odpowiednio równy ok. 700m/s, oraz 1600m/s. O wielkości tego wpływu decydować będzie gradient zależności prędkości fal ultradźwiekowych od wytrzymałości. Stosunek wpływu na wielkość A odchyleń predkości podłużnych fal ultradźwiekowych do odchyleń prędkości poprzecznych fal ultradźwiękowych powinien być proporcionalny do drugiego pierwiastka ze stosunku odpowiednich gradientów, zależności c_L-R, i c_r-R, ponieważ z rozważań rozdziału 4 wynika, że wytrzymałość jest w pierwszym przybliżeniu proporcjonalna do iloczynu c LCT względnie, jak pokazano w punkcie 5.3, przy spełnieniu pewnych warunków, do kwadratu predkości fal podłużnych. Ponadto z analizy przeprowadzonej w rozdziałach 3 i 6 wynika, że w pewnym, niewielkim przedziale wytrzymałości można się liczyć z liniową zmianą prędkości fal podłużnych i prędkości fal poprzecznych.

Dla sprawdzenia powyższej koncepcji wykreślono na rysunku 39 zależność prędkości podłużnych i poprzecznych fal ultradźwiękowych względem wytrzymałości na rozciąganie. Posłużono się tutaj średnimi wartościami wytrzymałości i prędkości dla poszczególnych gatunków żeliwa. Dane te zaczerpnięto z tabeli 8 przedstawiającej średnie wartości dla badanych gatunków żeliw oraz dla trzech gatunków żeliwa, Okręgowego Dozoru Technicznego w Warszawie [13]. Wyniki zebrane przez Okręgowy Dozór Techniczny w Warszawie zawierają znacznie mniej danych. Ograniczyły się one do pomiarów twardości, wytrzymałości na rozciąganie i prędkości podłużnych fal ultradźwiękowych, Mimo to wprowadzono je do tej pracy celowo, ażeby sprawdzić, na dodatkowym materiale, słuszność koncepcji przedstawionej w poprzednich rozdziałach oraz ogólny charakter podanego rozwiązania.

Na rysunku 39 przy każdym punkcie podano wartość A. Linie ciągłe poprowadzono przez punkty odpowiadające w przybliżeniu tej samej wartości A, tzn. wartości A bliskich 150. Linia przedstawiająca zmiany $c_{\rm L}$ ma, zgodnie z przewidywanymi, odcinek prosty aż do wytrzymałości rzędu ok.25kG/mm, poczem wykres ulega zgięciu. Linia odpowiadająca prędkości poprzecznych fal ultradźwiękowych jest prosta w całym zakresie obserwacji. Stosunek gradientów obu zależności w części prostoliniowej jest równy w przybliżeniu 9.

Z rysunku widać wyraźnie, że punkty odpowiadające wartościom A różniącym się od 150 są przesunięte w stosunku do obu linii ciągłych, zgodnie z podanymi powyżej przewidywaniami. Wykres ten pozwala na obliczenie różnic wartości A. Przeprowadzimy je dla wszystkich grup żeliwa, które wykazały te odchylenia, tzn. dla Zl18, Żl22, Żl26 z odlewni A oraz Żl30 z odlewni B (por.tab.8).

Żeliwo Żl18 – Odlewnia A

Procentowa odchyłka wytrzymałości na skutek różnicy prędkośc fal podłużnych w stosunku do linii odniesienia (zależność $c_L - R_c$ wynosi

$$(14, 2 - 17, 2) / 14, 2 = -21, 2\%$$

Procentowa odchyłka wytrzymałości spowodowana różnicą prędkośc fal poprzecznych będzie równa

$$\frac{14,2-11}{14,2} = +22,5\%$$

Stosunek wpływu prędkości fal podłużnych do wpływu prędkości fal poprzecznych powinien być zgodnie z podanymi poprzednio sugestiami proporcjonalny do drugiego pierwiastka z gradientów, w naszym przypadku $\sqrt{9} = 3$. Wobec tego procentowy udział odchylenia prędkości fal poprzecznych powinien wynosić około 22,5/3 = 7,5% jeżeli, dla odchylenia w prędkości fal podłużnych przyjmiemy mnożnik 1. Ostatecznie wartość A będzie wynosić

$$A_1 = 150(1 + 0.075 - 0.212) = 0.863 \cdot 150 = 129$$

co jest bardzo bliskie wielkości rzeczywistej, równej 130. Różnica wynosi ok. 0,8%.

Želiwo Žl22 – Odlewnia A.

Wielkość A wyznaczona doświadczalnie wynosi A = 170. Procentowe odchylenie wywołane zmianą prędkości fal podłużnych

$$\frac{20,95-18,6}{20,95} = 11,2\%$$

Procentowe odchylenie wywołane zmianą prędkości fal poprzecznych może być praktycznie pominięte.

Stąd wynika, że wielkość A powinna wynosić 150.1,112 = 166 co różni się od wartości rzeczywistej tylko o 2,35 %.

Żeliwo Żl26 – Odlewnia A.

Z doświadczenia uzyskano A = 185. Odchylenie wywołane przez c_{T} :

$$\frac{24,65-19,3}{24,65} = 21,6$$

Odchylenie wywołane przez cr

$$\frac{1}{3} \cdot \frac{24,65-23,1}{24,65} = \frac{1}{3} \cdot 6,3\% = 2,1\%$$

Stąd wielkość A powinna wynosić 150. 1,237= 182. Różnica w stosunku do wartości rzeczywistej jest równa 1,62%.

Želiwo Ž130 - Odlewnia B.

Wartość A wyznaczona doświadczalnie wynosi 138. Odchylenie wywołane przez c_{T} jest równe praktycznie zero. Odchylenie wywołane przez c_{T} :

 $\frac{1}{3} \frac{23,15-29,3}{23,15} = -8,85\%$

Stąd wielkość A powinna wynosić 150.0,09115 = 137 co jest tylko o 0,7% mniejsze od wartości wyznaczonej doświadczalnie.

Przytoczone przykłady pokazują, że za pomocą wykresu przedstawionego na rysunku 39 można obliczyć wartość A bez konieczności uciekakania się do prób wytrzymałościowych. Wystarczy jedynie pomiar wartości prędkości fal podłużnych i fal poprzecznych.

W punkcie 5.3 pokazano, że przy pewnych założeniach możliwa jest również ocena wytrzymałości jedynie w oparciu o znajomość prędkości fal podłużnych. Spróbujmy oszacować te wielkości dla trzech gatunków żeliwa które badano w Okręgowym Dozorze Technicznym (tab. 2, rys. 39). W tym celu przyjmijmy, że stosunek $c_{\rm T}/c_{\rm T}$ dla tych żeliw wynosi 0,555. Wobec powyższego wielkości A_1 i B_1 we wzorze

$$R_r = \frac{A_1}{B_1 - c_L^2}$$

powinny być równe $A_1 = A/0,555 = 270$ oraz $B_1 = B/0,555 = 34$

Przeprowadzając obliczenia w sposób identyczny z poprzednim otrzymany (rys.39)

dla Z115, Odlewnia D, A = 154 stąd A₁ = 280

dla Ż120, Odlewnia D, A = 170 stąd $A_1 = 310$

dla Ż125, Odlewnia D, A = 178 stąd $A_1 = 323$

Porównanie tych wartości z rzeczywistymi (por. tab. 2) daje procentowe odchyłki dla Żl 15, Żl 20 i Żl 25 odpowiednio równe 6,98%, 3,12% i 3,2%.

Rys. 40. Porównanie wytrzymałości rzeczywistej żeliwa z obliczoną na podstawie pomiaru c_Lc_T

Rys.41. Porównanie wytrzymałości rzeczywistej żeliwa z obliczoną na podstawie pomiaru c²_L

http://rcin.org.pl

Na rysunkach 40 i 41 przedstawiono wykresy obrazujące odchyłki miedzy rzeczywistymi wartościami wytrzymałości, wyznaczonymi w próbie rozciągania i wartościami obliczonymi na podstawie pomiaru iloczynu predkości podłuznych i poprzecznych fal ultradźwiekowych względnie kwadratu predkości podłużnych fal ultradźwiekowych. Ze zbioru powyższego usunieto te pomiary, które nie mieściły się w przedziałach ulności wykreślonych na rysunkach 32 i 33. Przy ocenie wytrzymałości na podstawie pomiaru iloczynu predkości fal podłużnych i predkości fal poprzecznych niemal wszystkie wyniki mieszczą się w granicach 10% odchyłki. Nieco większy jest rozrzut przy wyznaczaniu wytrzymałości ze wzoru w którym występuje kwadrat predkości fal podłużnych. Odchyłki tej wielkości należy uznać za nieznaczne, jeżeli zważymy, że żeliwo jest materiałem niejednorodnym w którym własności wytrzymalościowe moga wykazywać, nawet w objętości jednej próbki, pewne fluktuacje. W próbie rozciągania pekniecie następuje, ze względu na kształt próbki, w desygnowanym miejscu przekroju, natomiast fale ultradźwiękowe przechodziły przez cała długość próbki. Zmierzona wartość predkości była wiec wartościa średnia dla całej długości a nie wartościa w desygnowanym miejscu pekniecia. Być może, że to jest jedna z przyczyn, pewnych rozbieżności między tą samą wielkością wyznaczaną różnymi sposobami.

Wyniki badań doświadczalnych w połączeniu z analizą statystyczną potwierdziły słuszność założeń poczynionych przy wyprowadzeniu kryterium wytrzymałościowego dla oceny wytrzymałości materiałów kruchych za pomocą metody ult radźwiękowej. Punktem wyjściowym było oparcie się na hipotezie wytrzymałościowej największego wydłużenia, wprowadzenia pojęcia zredukowanego modułu sprężystości i przyjęcia statystycznego rozkładu krytycznej wartości odkształ cenia, na granicy wytrzymałości. "Ultradźwiękowe kryterium wytrzymałościowe" sprowadza się do prostej zależności, mówiącej że iloczyn różnicy zredukowanego modułu granicznego i rzeczywistego oraz wytrzymałości równy jest pewnej wielkości charakterystycznej dla danego gatunku materiału. Przez zredukowany moduł graniczny rozumie się tutaj maksymalną możliwą wartość dla danego gatunku materiału.

Wykazano, że moduł zredukowany może być z dostateczną dokładnością zastąpiony przez iloczyn $c_{\rm L}c_{\rm T}$ prędkości fal podłużnych i prędkości fal poprzecznych a przy spełnieniu pewnych warunków przez kwadrat prędkości fal podłużnych. Ma to bardzo duże znaczenie praktyczne, pozwala bowiem, dzięki zastosowaniu metod analizy statystycznej, na wyznaczenie wielkości charakterystycznych dla danego gatunku materiału (żeliwa, porcelany, betonu) na podstawie tylko kilku prób wytrzymałościowych. Wydaje się, że ze względu na ogólne założenia poczynione przy wyprowadzeniu teoretycznej zależności między wytrzymałością materiałów kruchych i parametrami charakteryzującymi rozchodzenie się fal ultradźwiękowych "ultradźwiękowe kryterium wytrzymałościowe" może znaleźć zastosowanie również i do innych materiałów, nie objętych niniejszymi badaniami. Odnosić się to może do stali o wysokiej wytrzymałości, które w próbie rozciągania przejawiają własności plastyczne w bardzo słabym stopniu.

Dodatek A. Transformacja współrzędnych

Zależność między wytrzymałością na rozciąganie R_r i iloczynem prędkości fal podłużnych przez prędkość fal poprzecznych $c_{\rm L}c_{\rm T}$ nie jest liniowa. W punkcie 4.3 wykazano, że zależność wytrzymałości na rozciąganie od iloczynu $c_{\rm L}c_{\rm T}$ można przedstawić w postaci liniowej w układzie współrzędnych $c_{\rm L}c_{\rm T} - (1/R_r)$ lub $R_rc_{\rm L}c_{\rm T} - R_r$. Obecnie wykażemy, jak przedstawiają się zależności przy przejściu od układu współrzędnych x-y do układu współrzędnych (1/x) - y. Dla nawiązania do wielkości występujących w rozważaniach w punkcie 4 przyjmij-my $x = R_r$, $y = c_{\rm L}c_{\rm T}$.

Transformację współrzędnych mającą na celu sprowadzenie zależności nieliniowej do zależności liniowej można przedstawić w ogólnej postaci

$$f(\mathbf{y}) = \mathbf{a} + \beta \ g(\mathbf{x}) \tag{A.1}$$

Równanie (A.1) prowadzić może do różnych typów zależności, jeżeli zamiast funkcji f(y) i g(x) wstawimy odpowiednie zmienne niezależne. W naszym przypadku ograniczymy się do funkcji

$$f(y) = \begin{cases} y \\ = \begin{cases} 1/y \end{cases} \text{ oraz } g(x) = \begin{cases} x \\ 1/x \end{cases}$$
(A.2)

Stosownie do tego otrzymujemy zależności

$$y = a + \beta x$$

$$y = a + \beta/x$$

$$1/y = a + \beta x$$
 lub
$$y = \frac{1}{\beta (x + \frac{a}{\beta})}$$

$$1/y = a + \beta/x$$
 lub
$$y = \frac{1}{a} - \frac{\beta}{\alpha^2} \frac{1}{x + \frac{\beta}{\alpha}}$$

(A.3)

Funkcje (A.3) z wyjątkiem pierwszej są specjalnym przypadkiem równania hiperboli

$$(y - \gamma)(x - \lambda) = \chi$$

o trzech parametrach. Dwa z nich przedstawiają asymptoty $x = \lambda$, y = y trzecia krzywiznę χ .

Zależność hiperboliczną sprowadzić można do liniowej w układzie współrzędnych y - (1/x). Przyjęcie tego układu współrzędnych prowadzi do wzorów podanych w punkcie 4.3.

Obecnie przedstawimy proste przypadki liniowych zależności w układzie współrzędnych (1/x) - y i ich transformacje do współrzędnych x - (yx), czyli układu przyjętego przy rozważaniach, przeprowadzonych w punkcie 4. Wybór tego układu współrzędnych dokonany został z tego powodu, że znacznie łatwiej przeprowadzić doświadczalną weryfikację teoretycznych zależności podanych w punktach 4.2 i 4.3.

Liniowa zależność między y i (1/x) prowadzi do następujących równań:

w układzie współrzędnych y - (1/x)

$$\gamma = a + \beta(1/x)$$

lub w postaci odcinkowej

$$\frac{y}{a} + \frac{(1/x)}{(-\frac{a}{\beta})} = 1$$

w układzie w spółrzędnych (yx) - x

$$(yx) = ax + \beta$$

lub w postaci odcinkowej

$$\frac{(yx)}{\beta} + \frac{x}{-\frac{\beta}{a}} = 1$$

Dla różnych wartości a, β czyli dla różnych przebiegów linii przedstawia jących zależność między zmiennymi y – (1/x) względnie (yx) - x otrzymujemy

a). Dla
$$-\frac{a}{\beta} = \infty$$
, $a > 0$

b). Dla
$$a > 0$$
, $-\frac{a}{\beta} > 0 \rightarrow \beta < 0$

Z przytoczonych przykładów w naszym przypadku zastosowanie znalazły przypadki a i b. W pierwszym z nich przechodzenie linii wyrównawczej przez początek układu współrzędnych (yx) - x świadczy o całkowitej niezależności wytrzymałości na rozciąganie od iloczynu $c_{\rm L}c_{\rm T}$ W drugim liniowa zależność w układzie y - (1/x) transformuje się do linii prostej odcinającej na osiach układu współrzędnych odcinki β/α i β z których pierwszy odpowiada wielkości A/B a drugi wielkości A występujących w równaniu (4.22).

Lp.	Odlewnia	Gatunek żeliwa	Rozstęp wytrzymałości R _{rmin} – R _{rmax} kG/mm ²	llość pró– bek
1	А	ŻI 18	15,5 - 12,5 = 3	9
2		22	22,5 - 19,0 = 3,5	10
3		26	27,0 - 21,0 = 6,0	10
4	В	Żl 18	20,0 - 11,0 = 9,0	56
5		22	26,5 - 15,0 = 10,5	58
6		26	27,0 - 20,0 = 7,0	6 0
7		30	17,5 - 14,0 = 3,5	55
8	C ,	ŻSF 10	57,5 - 47,0 = 10,5	64
9	$D^{1/}$	Żl 15	19,0 - 14,5 = 4,5	44
10		20	24,0 - 19,0 = 5,0	44
11		25	28,5 - 21,o = 7,5	44
				454
	3			
1/ Wy Do	miki udoste zoru Techi	ępnione dz nicznego v	ięki uprzejmości Okręgo v Warszawi e 13.	wego

Tabela 1. Badane gatunki żeliwa

Tabela 2. Mechaniczne i akustyczne własności żeliw oraz wytrzymałość na rozciąganie obliczona ze wzorów

$$R_{ro} = A/(B - c_{L}c_{T}) \quad i \quad R_{ro} = A_{1}/(B_{1} - c_{L}^{2})$$

Wymiary: $R_{r} \quad kGmm^{-2}$, $H_{B} \quad kGmm^{-2}$
 c_{L} , $c_{T} \quad 10^{3}ms^{-1}$, $c_{L}c_{T}$, c_{L}^{2} , $10^{6}m^{2}s^{-2}$
 $A = R_{r}(18,75 - c_{L}c_{T})$, $A_{1} = R_{r}(34 - c_{L}^{2})$

s standardowe odchylenie błędu oceny \mathbf{R}_{p} na podstawie $\mathbf{c_L c_T}$

s standardowe odchylenie błędu oceny R_r na podstawie c $_{I}^2$

żell- wnia		1	Nła	sno	ści			Wi	elkośc	i oblic	zeniow	ve	
, Odle		mech	18 1e	ak	ustycz	ne				R _{ro}	⊿R _r	Rro	⊿ R _r
Q.ed W2	Lp.	R _r	H _B	c _{L.}	c _T	°L°T	c _L ²	A	A1	wg	c _L c _T	wg	c _L ²
٩													
	1	14,5	152	4,10	2,27	9,30	16,81	137	249	13,7	-5,8	13,8	-5,1
ī	2	14,0	143	4,10	2,31	9,45	16,81	130	241	14,0	0,0	13,8	-1,4
Ň	3	14,0	143	4,15	2,30	9,54	17,22	129	235	14,1	0,7	14,1	0,7
đ	4	14,5	145	4,10	2,30	9,42	16,81	135	249	13,9	-4,3	13,8	-5,1
Ő	5	15,5	145	4,15	2,31	9,58	17,22	142	260	14,2	-9,2	14,1	-9,9
m	0	12,5	1.52	4,20	2,33	9,76	17,64	112	204	14,5	13,8	14,5	13,8
1	7	15,0	1.50	4,35	2,31	10,10	18,92	130	226	15,0	0,0	15,7	4,5
5	8	13,5	1.43	3,95	2,31	9,12	15,60	130	248	13,5	0,0	12,9	-4,7
N.	9	14,5	156	4,35	2,31	10,10	18,92	125	219	15,0	3,3	15,7	7,6
			A -	130	9	= 6,5%		A1 *	237	3	s, = 7	,5%	
	10	22.0	175	4.45	2.47	11.00	19.80	171	312	21.9	-0.5	21.6	-1.9
	11	21.0	1.91	4.45	2.46	10.95	19.80	164	298	21.8	3.7	21.6	2.8
٩	12	21,5	170	4.50	2,47	11,10	20,25	164	296	22.2	3,2	22,3	2.7
ia.	13	19,5	197	4,35	2,47	10.75	18,92	176	294	21.2	8,0	20,3	3.9
Ę	14	22,5	1.85	4,45	2,46	10,90	19,80	177	320	21.7	-3,7	21,5	-4.7
ē	15	20,5	175	4,35	2,42	10,50	18,92	169	309	20.6	0,5	20,3	-1.0
PC	16	19,0	1.97	4,40	-05 8 -04765		19,36		278	1.000	044.00	20,9	9.1
0	17	20,0	1.67	4,40	2,45	10,75	19,36	160	293	21,2	5,4	20,9	4,3
22	18	22,0	191	4,35	2,44	10,60	18,92	179	332	20.9	5,3	20,3	-8,4
5	19	21,5	179	4,35	2,47	10,70	18,92	173	324	21,1	-1,9	20,3	-5,9
			A =	170	s	= 3,9%		A1.	• 306		s, • 5	1%	

	wnia		١	Vła	sno	ści		Wi	elkośc	ci obli	czenio	we		
	, Odle		mech niczn	e e	ak	ustycz	ine				R _{ro}	⊿ _R	Rro	⊿ _R
(es a	Lp.	R _r	нв	с _Г	°T	CLCT	c_L^2	А	A ₁	wg c _l	с _т	wg c_{L}^{2}	
	۲	20 21	27,0 26,5	207 207	4,70 4,55	2,55 2,55	12,00 11,60	20,09 20,70	182 189	322 353	27,4 25,9	1,5 -2,3	28,2 25,2	4,3 -5,2
	wnla	22 23	23,0	166 207	4,50 4,85	2,52	12,20	20,25 23,52	180	316 288	28,2	2,5	24,4 32,1	5,7 14,3
35	odle	24 25	21,5 21,0	187	4,45 4,40	2,38 2,38	10,00	19,80	175	305 307	22,7	-5,3 6,3	23,7 23,0	9,3 8,7
	5	26	22,5	182	4,25	2,52	10.70	18,06	181	358	23,0	2,2	21,1	-6,6
	20	27	25,5	200	4,45	2,25	11,35	19,80	212	362	20 7	-14.5	23,6	-8,1
	Żì	29.	26,0	193	4,65	2,50	11,65	21,62	185	322	26,0	0,0	27,1	41-93
				A =	185	9	= 6 , 1%		A	336	s ₁	= 12,0	5%	
		30	12,5	153	3,51	2,36	8,82	12,32	124	271	15,1	17,2	13,9	10,1
		31	13,0	152	3,63	2,27	8,24	13,17	137	271	14,3	9,1	14,4	9,7
		33	12.5	145	3,10	2,52	8.32	11.83	130	277	14.4	13.2	13,2	8.1
		34	14,0	150	3,60	2,27	8,17	12,96	148	295	14,2	1,4	14,3	2,1
		35	13,0	157	3,57	2,42	8,63	12,74	131	276	14,8	12,2	14,1	7,8
		36	15,5	162	3,86	2,36	9,10	14,89	150	297	15,6	0,6	15,7	1,3
		37	12,5	151	3,39	2,32	7,86	11,49	136	282	13,8	5,1	13,4	6,7
		38	12,0	149	3,49	2,23	0,00	12,18	158	202	13,7	12,4	13,8	13,0
	Щ	40	19.5	184	3.85	2,55	9.31	14.82	182	374	15.9	-22.6	15,7	-2.4
	đ	41	19,0	188	4,11	-,	- 10-	16,89		325			17,6	-8,0
	F	42	16,0	173	3,93			15,44		297			16,2	1,2
	je	43	15,0	170	3,66	2,32	8,49	13,39	154	309	14,6	-2,7	14,6	-2,7
	PO	44	17,0	172	3,80	2,42	9,19	14,44	163	332	15,5	-9,7	15,4	-10,4
	8	45	18,5	183	3,80	2,32	8,81	14,44	184	362	15,1	-22,5	15,4	-20,1
	H	40	15,0	172	3,18	2,30	8,92	14,20	153	296	15,3	-2,0	15,5	2,0
	Ż	48	14.0	161	3,73	2,32	9.02	13.91	131	281	15.4	9.1	14.9	6.0
		49	10	176	3,74	2,55	9,53	13,98						0.000
				A =	147	5	. = 11,5	%	A ₁ -	301	9	·1 - 7,	3%	
		50	12,4	195	4,62	2,36	10,90	21,34	152	246	19,1	-1,6	19,4	0,0
		51	24,5	223	4,79	2 68	12 83	22,94	137	271	25 3	87	22,2	-10,4
		53	19.1	192	4.6	2,42	11.25	21.62	143	236	20.0	4.5	19.9	4.0
		54	19,8	211	4.35	2,55	11,09	18,92	152	299	19,6	-1,0	16,3	-21,5
	щ	55	22,5	219	4,76	2,65	12,61	22,65	138	255	24,4	7,8	21,7	-3,7
	đ	56	24,8	242	4,86	2,62	12,73	23,61	149	258	24,9	0,4	23,7	-4,6
	F	57	22,8	213	4,76	2,55	17,13	22,65	151	259	22,7	-0,4	21,7	-5,1
	è	58	24,1	253	4,91	2,49	12,22	24,10	157	239	23,0	-4,8	24,8	2,8
	PO	59	19,1	204	4,50	2,02	11 08	20.97	142	241	19.5	5.1	18.9	2.1
	~	61	22.2	220	4.90	2.50	12.25	24.01	144	222	23.1	3.9	24,6	9,8
	2	62	22,8	219	4.71	2,55	12,01	22,18	154	269	22,3	-2,2	20,8	-9,6
	12	63	20,1	204	4,62	1000	120050033	21,34		254		1.1.1.1.1	19,4	-3,6
	66	64	20,0	208	4,81	2,32	11,16	23,13	152	217	19,8	-1,0	22,7	11,9
		65	19,3	193	4,65	2,36	10,97	21,62	150	239	19,3	0,0	19,9	3,0
		00	23,5	205	2,01	2,00	12,41	20,11	149	241	20,1	0,0	24,0	2,0

żeli- wnia												3	
hek		N	lla	sno	ści				Wiell	kości (bliczen	iowe	
a, O		med	ha-	ak	ustycz	ne				Rro	AR,	Rro	ARr
03	Lp.	R	HB	°L	° _T	°L ^c T	c _L ²	A	A ₁	wg	c _L c _T	wg	= ² _L
а П	67	19.6	199	476	2 42	17 57	22 65	1 42	2 22	207	5.2	22.0	1.0
N F	68	21,5	213	4,77	2,50	11,90	22,75	1.47	242	21.9	1.8	21.9	1.8
0 6	69	22,0	245	4,90	2,50	12,25	24,01	143	220	23,1	4,8	24,6	10,6
νŻ			A =	146		5 = 4,8	3%	A	1 = 2	46	5,	= 8,3%	7
	70	21.6	22.8	180	2 55	1246	22.01	1 65	2 49	220	2.0	02.0	
	71	24,0	250	483	2,55	12,40	23,91	1 20	2 201	23,9	13 7	22,9	-42
	72	22.4	237	4.94	2.27	11 21	24 40	1.69	215	109	-12 6	14.1	71
	73	25.1	220	4.92	2.55	12.54	24.20	1.56	246	14.2	-14-9	23.6	-6.4
	74	26,3	224	4,93	2,65	13,06	24.30	1.50	255	26.4	0.4	23.8	-10.5
	75	25,3	220	4,98	2,55	12,69	24,80	1.53	233	24,8	-2.0	25,1	-0,8
	76	24,4	218	5,00	2,55	12,75	25,00	1.46	220	25,0	2,4	25,7	5,1
	77	25,1	223	4,94	2,36	11,65	24,40	178	241	21,1	-19,0	24,1	-4,2
	78	24,6	221	5,0	. 2,55	12,75	25,00	148	221	25,0	1,6	25,7	4,3
ш	79	25,9	225	5,00	2,55	12,75	25,00	1.55	233	25,0	-3,6	25,7	-7,8
la la	80	25,8	220	4,99	2,49	12,42	24,90	163	295	23,7	-8,9	25,4	-1,6
Ę	81	22,7	224	4,99	2,68	13,37	24,90	122	207	27,9	18,6	15,4	10,6
E .	82	.22,2	227	4,97	2,55	12,67	24,70	1.35	200	24,7	10,1	24,8	10,5
PC	83	21,3	228	4,92	2,49	12,25	24,20	138	209	23,1	7,8	23,6	9,7
0	04	25,3	220	4,98	2,55	12,09	24,80	1.09	243	24,8	-2,4	25,1	-0,8
9	85	25,0	210	5,00	2,69	13,00	25,00	1 24	223	29,2	10,1	23,1	3,5
~	87	25.0	227	496	2,55	1264	24 60	153	235	246	-1 6	24.6	-1.6
·N	88	25.9	229	4.98	2.49	12.40	24.80	164	238	231	-9.7	25.1	-3.2
	89	26,2	223	4,96	2,62	13,34	24,60	1.42	248	27,7	5,4	24,6	-6,5
			A .	149	-	5 - 10.	3%		A. = 2	31	S	6.7%	٦
			Ľ						1		1		J
	90	24,5	241	5,04	2,79	14,06	25,40	115	211	32,0	23,4	26,9	8,9
	91	25,0	261	4,93	2,68	13,21	24,30	1.39	243	27,1	7,7	23,8	-5,1
	92	20,0	243	4,92	2,65	13,03	24,20	149	255	20,2	0,8	23,0	-10,2
	93	24,0	220	4,84	2,55	12,34	23,43	1 46	204	23,4	-2,0	21,9	-9,0
	94	22,0	130	4,00	2,55	12,24	23,04	1 20	216	25,0	14 1	23.6	6,0
	95	21,0	230	486	2 62	1273	23 62	1 26	218	249	15 7	223	5.8
	97	25.0	235	484	2 68	1297	23 43	1 56	264	26.0	-3.8	21.9	-14.2
	08	15.0	186	446	2,55	1137	19 89	1 11	212	203	26.1	16.4	8.5
	99	17.5	187	4.46	2.42	10.79	19.89	1.39	247	18.9	7.4	16.4	-6.7
ш	100	26.0	237	4.91	2.49	12.22	24.10	170	257	22,9	13,5	23,3	-11,6
4	101	24.5	21.5	4.89	2.55	12.46	23.91	1.54	247	23.8	-2.9	22,9	-6,8
Ę	102	21.5	242	4,91	2,68	13,15	24,10	120	213	26,8	19,8	23,3	7,7
le l	103			2	1.50	13				0 ./		1	1.5
PC	104	26,5	240	5,08	2,55	12,95	25,80	1.54	217	25,9	-2,3	28,2	6,0
0	105	23,5	237	5,03	2,55	12,82	25,30	1.39	204	25,3	7,1	26,6	11,7
0	106	24,5	226	4,89	2,68	13,10	23,91	163	247	22,6	-8,4	22,9	-7,0
3	107	23,0	228	5,03	2,68	13,48	25,30	121	200	28,5	19.,3	26,6	13,5
Z1	108	25,0	243	5,04	2,76	13,91	25,40	121	215	31,0	19,4	26,9	7,1
	109	25,0	235	5,03	2,76	13,88	25,30	122	218	30,0	16,7	26,9	6,0 T
			A	138		s = 10,	5%	A	1 = 2	31	s ₁	- 9,19	6

żeli- vnia		w	ła	sno	ści				Wielko	sści ob	oliczenie	owe	
Udlev		meo	ha- me	ā	kustyc	zne				R _{ro}	0 _R	R _{ro}	AR _r
Gat Wa,	Lp.	R _r	н _в	cL	c _T	$c_{L}c_{T}$	c _L ²	A	A ₁	wg	c _L c _T	wg	c _L ²
	110	49,5	153	5,18	2,94	15,22	26,83	175	355	42,5	-16,5	40,9	-21,0
	111	49,5	166	5,08	2,92	14,93	25,80	189	406	39,2	-25,5	35,7	-38,7
	112	54,0	167	5,33	2,98	15,88	28,40	155	302	52,2	-3,4	52,3	-3,3
	113	47,0	170	5,33	3,05	16,25	28,40	135	263	52,2	10,0	52,3	10,1
	115	54,0	174	5,47	3,05	16,08	29,92	112	220	64.5	25,4	71,8	24,8
	110	51,0	170	5,37	2,90	15,00	20,03	140	203	54,5	0,4	50,1	10,1
	117	50,0	170	5,24	2,90	16 50	20,31	110	214	50,0	1,0	53,4	12.0
	110	55,0	170	5,42	3,00	15,00	29,31	119	200	69,I	20,3	62,5	12,0
	110	54,5	170	5,37	2,90	15,69	20,03	120	262	52,5	-3,0	50,7	3,9
	119	50,0	1.64	5,35	2,99	15,99	20,02	130	209	54,4	0,1	54,5	0,5
	120	51,0	171	5,51	2,99	16.00	20,19	144	290	52,0	1,9	50,4	-1,2
	121	53,5	176	5,39	2,90	15.05	29,05	144	205	55,0	4,1	59,2	9,0
	122	53,0	170	5,32	2,90	15,05	29,05	104	202	51,7	-2,5	59,2	10,5
	123	53,0	170	5,33	3,01	16,04	28,40	144	297	55,4	4,3	52,3	-1,3
	124	57,5	160	5,33	3,01	16 50	20,40	100	322	55,4	-3,0	52,5	-10,0
	125	55,0	108	5,40	3,00	16,52	29,10	123	200	50.2	18,2	00,5	9,1
	120	54,5	170	5,30	3,00	16,21	28,09	130	322	59,2	11 4	49,0	-9,9
	127	49,0	170	5,33	3,01	16 50	20,40	117	214	50,3	11,4	52,3	14.7
	128	54,0	100	5,42	3,00	10,58	29,37	117	250	40.0	21,9	63,3	14,7
	129	54,5	107	5,32	2,90	15,74	29,05	104	210	49,0	-9,4	59,2	7,9
	130	55,0	107	5,40	2,99	10,14	29,10	144	200	57,5	4,3	00,5	9,1
U	131	52,5	170	5,30	2,95	15,81	28,72	154	200	51,0	-2,9	55,5	5,4
ಹ	132	54,2	170	5,35	3,00	10,05	28,02	147	293	55,0	2,0	54,5	0,0
3	133	55,5	175	5,38	3,03	16,30	28,94	130	281	61,1	9,2	57,9	4,1
Me	134	55,0	174	5,38	3,00	10,10	28,94	140	218	50,0	2,0	57,9	5,0
đ	135	53,0	172	5,31	2,90	15,71	20,19	101	300	49,4	-(,)	50,4	-5,2
0	130	51,0	160	5,30	3,01	16,13	28,72	134	209	57,2	10,8	55,5	8,1
	137	53,5	108	5,38	2,98	10,03	28,94	140	2/1	55,1	2,9	57,9	7,0
0	138	52,0	175	5,31	2,99	15,87	28,19	150	302	52,1	0,2	50,4	-3,2
ъ	139	53,5	174	5,30	2,99	10,02	20,72	140	282	55,0	2,1	55,5	3,0
6	140	54,0	167	5,31	2,90	15,71	28,19	104	314	49,4	-9,3	50,4	-7,1
E C	141	55,0	108	5,31	2,98	15,82	28,19	101	320	51,2	-(,4	50,4	-9,1
03	142	50,0	173	5,31	2,99	15,87	28,19	144	291	52,0	3,0	50,4	0,8
N.	143	52,5	177	5,31	2,95	15,00	28,19	102	305	40,5	-0,2	50,4	-4,2
	144	54,5	171	5,31	2,95	16.01	20,19	100	311	40,5	-12,4	50,4	-0,1
	145	49,0	1/3	5,37	3,02	15,21	20,03	124	253	59,0	10,9	50,7	13,0
	140	54,0	107	5,37	2,97	15,90	20,03	147	279	52,0	-2,0	50,7	4,0
	147	54,0	171	5,34	3,00	15,02	20,51	147	290	54,9	1,0	53,4	-1,1
	148	50,0	170	5,32	2,99	15,90	20,30	143	200	52,0	4,9	51,4	6,0
	149	53,0	172	5,37	2,99	10,05	28,83	143	274	55,5	4,5	50,7	0,0
	150	49,0	1/0	5,31	3,01	15,98	28,19	130	285	54,1	9,4	50,4	2,0
	151	52,5	1/4	5,32	3,01	10,01	28,30	144	299	54,7	4,0	51,4	10.0
	152	55,0	107	5,30	3,00	15,90	20,09	157	325	52,0	-4,0	49,0	-10,9
	153	55,0	1/4	5,31	2,97	15,77	20,19	165	320	17 4	-9,1	10,4	-9,1
	154	52,0	164	5,30	2,94	15,58	28,09	105	307	41,4	-9,7	49,0	-4,8
	155	54,5	171	5,31	2,94	15,61	28,19	117	317	10,1	22,2	50,4	-0,1
	156	54,5	172	5,32	2,98	15,93	28,30	104	311	53,2	-2,4	51,4	-0,0
	157	50,0	176	5,31	3,00	15,85	28,19	102	325	51,7	-8,3	50,4	-11,1
	158	56,5	171	5,30	3,00	15,93	28,09	159	334	53,2	-0,2	49,6	-13,9
	159	57,00	165	5,32	3,02	15,90	28,30	162	325	52,6	-8,4	51,4	-10,9
	160	53,5	167	5,32	2,95	16,06	28,30	144	305	55,7	3,9	51,4	-4,1
	161	53,5	175	5,32	2,95	15,70	28,30	103	305	49,2	-8,5	51,4	-4,1
	162	55,0	169	5,31	3,02	10,03	28,19	150	320	55,0	0,0	50,4	-9,1

-													
tell-			w	łas	nos	ści		- Arri-1,	Wielk	wści o	bliczen	lowe	
uek : Odlew		mec nicz	ha- me	aki	ustycz	ne				Rro	⊿R _r	Rro	AR _r
Gatu wa,	Lp.	R _r	НВ	°L.	c_T	c _t c _T	c_{L}^{2}	А	A ₁	wg o	L ^C T	wg	c_L^2
()	163	51,5	173	5,32	2,93	15,58	28,30	163	294	47,3	-6,3	51,4	-0,2
ž	164	54,0	170	5,39	3,14	16,92	29,05	99	267	82,0	34,0	59,2	8,8
超	165	52,5	170	5,32	3,03	16,11	28,30	139	299	56,7	7,4	51,4	-2,1
ş	166	50,0	170	5,37	2,98	16,00	28,83	138	259	54,6	8,4	56,7	11,8
	167	54,0	170	5,31	2,99	15,87	28,19	156	314	52,0	-3,8	50,4	-7,2
ŏ	108	50,0	108	5,15	2,88	14,83	20,52	220	419	38,2	-40,0	39,2	42,9
0	109	49,0	170	5,40	2,98	16,09	29,10	130	237	56,3	13,0	00,5	19,0
-	170	55,0	170	5,31	2,90	15,71	28,19	107	320	49,3	-11,0	50,4	-9,1
G.	171	54,0	160	5,38	3,04	16.11	28,94	1.15	2/3	62,5	13,0	57,9	0,7
S	172	55,0	107	5,32	3,03	15.60	29,05	140	212	50,7	3,0	59,2	7,1
-N	1/3	54,5	170	5,32	2,95	12,09	29,05	107	207	49,0	-11,2	59,2	,,9
			A =	15 0		s = 12	4%	A	1 = 2	93	⁵ 1 ⁼	11,3%	
	174	17,5	224	4,05			16,40		308			17,1	-2,3
	175	15,0	21.6	4,05			16,40		264			17,1	12,3
	176	18,0	213	4,05			16,40		318			17,1	-5,3
	177	18,0	21.2	4,20			17,64		294			18,4	2,2
	178	16,5	210	4,15			17,22		275			17,9	7,8
	179	18,5	210	4,15			17,22		310			17,9	-3,4
	180	16,5	21.8	4,10			16,81		284			17,5	5,7
	181	18,0	218	4,05			16,40		317			17,1	-5,3
	182	16,5	217	4,00			16,00		297			16,7	1,2
	183	17,5	217	4,15			17,22		294			17,9	2,2
	184	16,5	221	4,05			16,40		291			17,1	3,5
	185	16,c	219	4,05			16,40		282			17,1	0,4
	186	16,0	214	4,05			10,40		282			17,1	0,4
	187	15,0	208	4,05			16,40		204	12		17,1	12,3
	188	10,5	218	4,10			10,81		284	35		17,5	5,7
	189	18,0	221	4,05			10,40		310			17,1	-0,0
	190	10,0	214	4,05			16,40		282			17,1	0,4
	191	10,5	215	4,00			16,40		290			171	5,5
	192	18,0	218	4,00			16.40		3.8			171	-3,3
р	193	10,5	219	4,05			16.40		316			171	-5 3
e e	194	17 5	219	4,05			16.40		308			171	23
Ę	195	17,5	205	4,05			16.40		200			171	0.6
ě	190	17 5	200	4,05			16.40		308			171	-23
po	100	17 5	210	4 15			17 22		204			17.9	2.2
U	100	18.0	212	4 15			17 22		302	0		17.9	0.6
10	200	19.0	215	4 15			17.22		319			17.9	-6.2
-	200	18.0	220	4.05			16.40		316			17.1	-5.3
	202	18.0	221	4.05			16.40		316			17.1	-5.3
-18	203	18.0	211	4.05			16.40		316			17.1	-5.3
	200	14:5	212	4 15			17.22		244			17.9	19.0
	205	18.0	211	4.10			16.81		310			17.5	-2.9
	206	19 0	214	4.15	54		17.22		320			17,9	-6.2
	207	16.0	211	4.15			17.22		268			17,9	10.6
	208	18.5	224	4.00			16,00		333			16,7	-10,8
	209	18.5	211	4.05			16.40		326			17,1	-8,2
	210	17.5	218	4.15			17,22		294			17,9	2,2
	211	17.5	220	4.10			16,81		300			17,5	0,0
	21.2	19.0	212	4.10			16,81		326			17,5	-8,6

c żeli- ewnia		5	Wła	sn	οśc	1			Wielk	ości o	obliczer	niowę	
atunel a, odi		mec	ha- ine		akust	rczne				R _{ro}	∆R _r	R _{ro}	[∆] R _r
Ϋ́.	Lp.	R _r	н _в	с _Г	° _T	°L°T	c _L ²	А	A ₁	wg c	c _L c _T	wg d	2 1
Żl 15 Odlewnia D	213 214 215 216 217 218	18,5 17,5 18,0 17,5 17,5 21,5	212 214 205 212 214 214	4,05 4,05 4,05 4,05 4,05			16,40 16,40 16,40 16,40 16,40 A ₁ = 19,36	301	326 308 316 306 308 315	s ₁ -	6,5%	17,1 17,1 17,1 17,1 17,1 21,9	-8,2 -2,3 -5,3 -2,3 -2,3 1,8
	219 220 221 222 223 224 225 226 227 228 229	20,5 21,5 22,5 19,5 22,5 22,5 22,5 22,5 22,0 22,0 22,0	207 215 241 212 205 205 205 205 207 216 218 210	4,40 4,35 4,35 4,35 4,35 4,35 4,35 4,35 4,35			19,36 18,92 18,92 18,92 18,92 18,92 18,92 18,92 18,92 18,92 18,92 18,92 18,92		301 324 339 311 332 342 309 339 331 331 322			21,9 21,2 20,1 21,2 21,2 21,2 21,2 21,2 21,2	6,4 -1,4 -6,1 3,0 -3,8 -6,1 3,3 -6,1 -3,8 -3,8 -3,8 -3,8 -0,5
0	230 231 232 233 234 235 236 237 238 239 240 241	20,0 21,0 21,5 23,0 22,0 21,0 20,5 20,5 21,5 22,0 20,0 22,0 0	207 215 216 208 222 239 199 205 205 217 204 203	4,35 4,30 4,35 4,40 4,35 4,40 4,35 4,35 4,35 4,35 4,35 4,35			18,92 18,49 18,92 19,36 18,92 18,92 18,92 18,92 18,92 18,92 18,92 18,92		301 326 324 346 322 316 327 309 324 331 302 332			21,2 20,6 21,2 21,2 21,2 21,2 20,1 21,2 21,2 21,2	5,7 -1,9 -1,4 -8,5 -0,9 -2,0 3,3 -1,4 -3,8 5,7 -3,8
ŻI 20 Odlewnia D	241 242 243 2445 245 246 247 248 249 250 251 255 255 255 255 255 255 255 255 256 257 258 2590 261	22,0 22,0 22,0 20,0 20,0 20,0 20,0 20,0	203 215 211 224 214 210 215 239 212 207 211 207 219 236 214 231 214 214 214 214 214 214 202 209	4,30 4,40 4,30 555 4,355			18,92 19,36 18,92 18,49 18,92 19,80 19,80 19,80 18,92		332 322 351 332 301 301 301 294 324 317 301 324 324 317 310 331 324 270 327 342 309 318 316			21,2 21,9 21,9 21,2 20,6 21,2 21,2 21,2 21,2 21,2 21,2 21,2 21	-3,8 -0,5 -3,8 2,9 5,9 3,7 8,4 -1,4 0,9 2,3 8,4 -1,4 -2,8 3,5 -1,5 2,8 -1,5 -2,8 3,5 -2,8 3,5 -2,8 3,5 -2,8 -3,5 -2,8 -2,6 -3,8 -2,6 -3,8 -3,8 -3,8 -3,8 -3,8 -3,8 -3,8 -3,8
		×.					A1 -	320			^s 1 - 4, ⁸	9%	

.

⁹1 - 4,8%

•

kali rria			Wła	.s n	ośc	i		v	Vielkoś	ici oblic	zeniov	ve	
volbC)		mecl nicz	ha- ne	ał	custyc:	zne				R _{ro}	Δ _R	R ro	⊿r _r
Geti Wa,	tp.	Rr	нв	c _L	с _т	c ^r c ^L		A	A ₁	wg c	L ^C T	wg c	2 L
	262	22,5	244	4,50			20,25		309			22,8	1,3
	203	21,0	231	4,00			21,10		201			04.4	25
	265	25,0	230	4.65			21,10		300			25 3	12
	266	25 5	240	4 70			22 09		305			26 3	30
	267	21 5	241	1 75			22 56		000			20,0	5,0
	268	26 5	239	4.70			22 09		316			26 3	-08
	269	24 5	239	4 70			22 09		292			26 3	6.8
	270	27.5	255	4.65			21.62		340			25.3	-8.7
	271	26.0	257	4.65			21.62		322			25.3	-2.8
	272	24.0	229	4.65			21.62		246			25.3	5.1
	273	26.0	226	4.65			21.62		322			25.3	-2.8
	274	23.5	224	4.75			22.56		264			27.4	14.2
	275	26.5	249	4.70			22.09		316			26.3	-0.8
	276	27.0	224	4.65			21.62		335			25.3	6.7
	277	24.5	226	4.70			22.09		292			26.3	6,8
	278	25.5	239	4.65			21.62		316			25.3	0,8
	279	27.5	234	4.75			22,56		315			27.4	0,4
	280	24.5	234	4.70			22,09		293			26.3	6,8
0	231	25.0	229	4,75			22,56		286			27,4	8,8
	282	25.5	260	4,65			21,62		315			25,3	-0,8
57	283	26,5	229	4,70			22,09		316			26,3	-0,8
-M	284	27.5	234	4,80			23,04		301			28,6	3,9
lle	285	26,0	234	4,65			21,62		321			25,3	-2,8
ŏ	286	27,0	246	4,75			22,56	1.2	309			27,4	1,5
	287	24,0	229	4,75			22,56		275			27,4	12,4
22	288	26,0	224	4,75			22,56		297			27,4	5,1
	289	28,0	234	4,70			22,09		334			26,3	-6,5
Z	290	26,0	219	4,70			22,09		309			26,3	1,1
	291	26,0	224	4,65			21,62		322			25,3	2,8
	292	27,0	222	4,70			22,09		322			26,3	-2,7
	293	26,5	234	4,70			22,09		316			26,3	-0,8
	294	27,5	234	4,70			22,09		328			26,3	-4,6
	295	21,5	234	4,65			21,62		256				
	296	24,0	224	4,65			21,62		297			25,3	5,1
	297	27,0	234	4,70			22,09		322			26,3	-2,7
	298	27,5	234	4,65			21,62		341			25,3	-8,7
	299	25,0	239	4,75			22,56		286		<i>.</i>	27,4	8,8
	300	28,0	231	4,60			21,16		360		2	24,4	14,8
	301	24,0	234	4,70			22,09		286			26,3	8,8
	302	27,0	239	4,70			22,09		322			26,3	-2,7
	303	28,5	224	4,70			22,09		340			26,3	8,4
	304	28,0	234	4,70			22,09		334			26,3	6,5
	305	27,0	234	4,70			22,09		322			26,3	1,1
							A,	. 31:	3	s, -	5,7%	1	

Pabela 3. Mechaniczne i akustyczne własności izolatorów i próbek porcelanowych z masy B-6 oraz wytrzymałość na rozciąganie wyznaczona ze wzoru R_{ro} = A/(B - c_Lc_T).

$$10^{3} \text{ms}^{-1}$$
 , $c_{L}^{c} c_{T}$ $10^{6} \text{m}^{2} \text{s}^{-2}$

$$A = R_r (B - c_L c_T) = 10^6 k G m m^{-2} m^2 s^{-2}$$

c_L , c_T

Nr	р	R _r	с _Г	c _T	c ^r c ^L	^R r ^c L ^c T	А	R _{ro}	Rr	∠r _r %
1	2	3	4	5	6	7	8	9	10	11
A. Izc	olatory									
1941	10400	224	5300	3750	19,9	44,6	11,4	201	-23	-10,2
1838	10500	226	5210	3750	19.5	44.1	12,4	186	-40	-17,7
1985	10500	226	5500	3690.	20,3	45,9	10,6	218	-3	-3,5
198o	11200	241	5450	3620	19,7	47,5	12,8	193	-48	-19,9
2142	9900	214	5430	3480	18,9	40,5	13,0	168	-46	-21,5
						04 E		101	50	20.4
2030	8500	183	5100	3370	17,2	31,5	14,3	131	-52	-28,4
7759	8000	172	5450	3510	19,1	32,9	10,1	173	1	0,6
1785	8600	185	5450	3480	19,0	35,2	11,1	1/1	-14	-7,6
2029	7800	168	5250	3690	19,4	32,6	9,4	183	15	8,9
2528	5500	118	5400	3230	17,5	20,7	8,9	137	17	14,5
1920	7400	160	5550	3340	18.5	29.6	10.4	157	-3	-1.9
1804	7400	160	525o	3380	17.8	28.5	11.5	142	-18	-11.2
1928	6600	142	5350	3500	18.7	26.6	8.9	162	20	14.0
2610	6900	149	5550	3530	19.6	29.2	8.1	190	41	27.5
2422	5300	114	538o	3320	17.9	20,4	8,1	144	30	26,4
				A . 1	0.7		- 17 29	6		
BDr	Shki z	macv	B_6	[A -]			- 11,27	<u> </u>		
0.10		=	<u> </u>	26.0	00.7	100.0	10 5	445	145	24.6
12	1620	590	6180	3680	22,7	133,9	13,5	445	-145	-24,0
6	1610	586	6020	3040	22,0	128,9	17,0	602	-204	-43,5
20	1520	559	6300	3740	23,5	131,4	0,4	7002	123	220
1	1465	528	6350	3720	23,6	124,6	6,4	132	204	30,0
(13)	1340	515	6370	3760	23,9	123,1	5,7	930	415	80,5
8	1390	506	6100	3670	22,4	113,4	13,2	394	-112	-22,1
11	1420	501	628o	3740	23,5	117,7	7,5	682	181	36,0
4	1226	461	6300	3690	23,2	107,0	8,3	569	108	23,4
10	1265	446	6190	3670	22,7	101,2	10,3	445	-1	-0,2
16	1200	442	6180	3700	22,9	101,2	9,3	487	45	10,2
5	1310	434	6150	3780	23,2	100,7	7,8	569	135	31,1
7	1060	386	6190	3620	22,4	86,5	10,0	394	8	2,1
(14)	1020	371	6220	3800	23,6	87,6	5,2	731	360	97,0
18	980	361	6130	3650	22,4	80,9	9,4	394	33	9,1
				A = 9	,5	s	s = 36,6	%		
hez r	róhek r	nr (13) (14)	A = 1	0.2		3 = 15.2	%		
000 0	- Short I									

Tabela 4. Mechaniczne i akustyczne własności betonów oraz wytrzymałość na ściskanie wyznaczona ze wzoru

$$R_{co} = A_1/(B_1 - c_L^2)$$

Wymiary: R_c kGrcm⁻², c_L 10³ms⁻¹, c_L^2 10⁶m²s⁻²

$$A_1 = R_2 / (B_1 - c_L^2) = 10^6 kGcm^2 m^2 s^{-2}$$

	R _c	°L	° ² L	A1	R _{co}	4R%
ki ki	145	3,75	14.06	1870	125	-15.0
ws 63	150	3,85	14,82	1820	133	-12.8
190	160	3,95	15,60	1820	142	-12.7
15	180	4,05	16,40	1900	153	-17.6
ШX	170	4,15	17,22	1660	166	2,4
				A ₁ = 1623	s ₁ -	15,2%
	63	3,04	9,24	1119	95	33,7
	81	3,15	9,92	1383	99	18,2
	73	3,23	10,43	1210	102	28,4
	78	3,25	10,56	1282	103	24,3
	90	3,30	10,89	1547	105	8,6
	90	3,39	11,49	1396	109	17,4
	107	3,39	11,49	1660	109	1,8
	93	3,46	11,97	1398	112	17,0
	104	3,53	12,46	1512	116	10,3
	124	3,57	12,74	1768	118	-5,1
	114	3,58	12,81	1618	119	4,2
~	119	3,62	13,03	1662	121	1,7
33	126	3,05	13,32	1560	123	7,3
6	145	3,00	13,40	1850	124	-9,7
5	14.4	3,07	13,47	1962	125	-16,0
·D	129	3,71	13,70	1967	127	-13,4
To la	162	3,77	13,70	1695	127	-0,8
3	138	3,70	14,29	2072	133	-22,6
jk	155	3,43	14,50	1011	133	-3,8
Y	14.9	3,05	15.07	1911	137	-13,1
	165	3.90	15.21	1045	143	-3,5
N.	157	3.94	15 22	1802	143	-15,4
1	150	3.97	15.76	1686	150	-0,8
ŝ	166	3.99	15.92	1839	152	0,0
r.	178	3.99	15.92	1972	153	-16.3
щ	195	4.01	16.08	2129	154	-26.6
	163	4,07	16,56	1702	162	-20,0
	178	4,11	16,89	1800	167	-6.7
	169	4,12	16,97	1695	168	-0,6
				A ₁ = 1686	^s 1 •	15%
0	125	3,00	9,00	2250	147	15,0
60	115	3,39	9,55	2007	152	24,3
19	135	3,17	10,05	2288	156	13,5
-	175	3,23	10,43	2900	160	-9,4
z	140	3,33	11,09	2227	166	15,7
VS	150	3,50	12,25	2213	179	16,2
6	175	3,50	12,25	2581	179	2,2
M	225	3,60	12,96	3159	188	-19,7
Po	170	3,66	12,96	2387	188	9,6
<u> </u>	190	3,68	13,54	2557	197	3,6
29	295	3,73	13,91	3862	202	-46,0
Th.	305	3,76	14,14	3922	206	-48,1
A	205	3,83	14,63	2536	214	4,2
	225	3,83	14,63	2783	214	-5,1
) I	235	3,83	14,63	2907	214	-9,8
	320	3,83	14,63	3958	214	-49,5

-						
	R _c	c ^r	c_L^2	A ₁	R _{co}	∆R%
	105	1 03	15.44	2254	229	14.8
	265	3,93	15.44	3063	229	-15,7
	370	3.93	15:44	4277	229	-61,6
	300	4.05	1640	3180	250	-20,0
6	175	4.08	16.60	1820	254	31.1
96	250	4 16	1730	2425	273	8.4
i i i	315	4 16	1730	3056	273	-15.4
	200	4.20	1764	1872	283	29.3
12	220	4.20	17.64	2059	283	22,3
Ŋ	200	4.20	1764	2714	283	-2.3
õ	245	4 21	1772	2274	285	14.0
N	255	4.21	1772	2366	285	10.5
å	275	4 21	1772	2552	285	3,5
	365	4.26	18.10	3249	297	-22,9
2	270	4.30	19.14	2122	337	19,9
17	278	4.38	19.14	2185	337	17,5
Á	310	4.38	19.14	2437	337	8,0
	270	4:43	19.62	1993	359	24.8
	300	4,45	19,80	2160	368	18,5
				A ₁ = 2646	^s 1 ⁼	23,6%
	35	3.38	11.42	545	62	43,5
	35	3, 19	12,18	518	65	46,2
	42	3.53	12.46	511	66	36,4
	37	3,56	12.67	532	67	44,8
	38	3.59	12,89	536	68	44,1
	60	3,60	12,96	842	69	13,0
	70	3,65	13,32	958	70	0,0
	65	3,65	13,32	889	70	7,1
	35	3,70	13,69	466	72	51,4
	110	3,72	13,84	1448	73	-50,7
	80	3,72	13,84	1053	73	-9,6
	55	3,74	13,91	720	74	25,7
	45	3,75	13,95	587	74	39,2
	60	3,75	13,95	783	74	18,9
	60	3,78	14,06	776	- 74	18,9
6	105	3,93	15,40	1218	83	-26,5
90	145	3,97	15,76	1630	86	-68,6
H	80	4,00	16,00	880	87	8,0
	85	4,03	16,24	915	90	5,6
- Pa	140	4,07	16,40	1484	91	-53,8
Ň	155	4,07	16,40	1643	91	-70,3
18	150	4,10	16,81	1529	95	-57,9
BV	75	4,10	16,81	764	95	21,1
0,	105	4,14	17,10	1040	97	-8,2
	60	4,17	17,39	577	100	40,0
A	105	4,17	17,39	1009	100	-5,0
2	180	4,31	18,57	1517	114	-57,9
14	125	4, 32	18,66	1043	116	-7,8
1	130	4,36	19,01	1039	121	-7,4
	175	4,37	19,01	1398	121	-44,6
	195	4,37	19,01	1558	121	-61,2
	130	4,40	19,36	993	126	-3,2
	75	4,42	19,49	563	128	41,4
	160	4,43	19,54	1194	129	-24,0
	205	4,43	19,54	1529	129	-58,9
1 - S	1.00	4,52	20,43	1010	141	-0,4

÷

	R _r	с _Г	c _L ²	A ₁	R _{co}	∆r%
¥.	150	4,55	20,70	945	153	2.0
50	155	4,62	21,34	877	170	8,8
908	175	4,67	21,81	908	186	5,9
d a c	205	4,86	23,62	693	285	28,1
5 P D	145	4,92	24,21	405	345	58,0
	<i>P</i>			A ₁ = 964	•	= 37,4%
	92	3,93	15,44	1060	119	22,7
	117	3,87	14,98	1390	115	-1,7
	112	4,07	16,56	1170	132	15,1
	121	4,25	18,06	1082	154	21,4
Z	104	4,45	19,80	749	192	45,8
V3	172	4,08	16,65	1782	133	-29,3
ev	153	4,34	18,84	1248	169	9,5
32	170	4,51	20,34	1132	207	17,9
Ż	142	4,80	23,04	562	348	59,1
2 2	197	4,17	17,39	1893	144	-36,8
- 96	199	4,29	18,40	1711	160	24,4
코드	195	4,48	20,07	1351	199	2,0
57	201	4,68	21,90	1025	271	25,8
õ	229	4,33	18,75	1889	167	-37,1
M	241	4,46	19,89	1955	170	-41,8
Pa	238	4,70	22,39	1170	281	15,3
1.35	275	4,41	19,45	2080	183	-50,3
	324	4,70	22,09	1595	281	-15,3
				A ₁ = 1380	s ₁	= 31,4%

.

Tabela 5.

Analiza korel ac yjna dla żeliw Żli8, z odlewni A, B, C. Ż122, Ż126, Żl 30, ŻSF 10

1	<i>i</i> 1	X	13	14	16	18	17	18	19	20	21	22	23	24	25	28	27	28	47	48	49	80	51	62	53	54	65	56	57	58			X= 35	• *	-
Ľ,	·	W Y	-22	-21	-20	-19	-18	-17	-16	-15	-14	-13	-12	-11	-10	-9	-8	-7	+12	13	14	15	10	17	18	19	20	21	22	23	n	n·w	n-w2	Sy	w.8.
99999999999999999999999999999999999999	30 20 10 90 90 80 70 80 70 60 50 40 30 20 10 90 90 80	41 40 39 38 37 36 34 32 31 30 28 27 26																			3	4 1	;	1 2	1 3 2 2	· 1 1 1 1 7 1 1	1 2 5 2 5 3	1	;		1 2 5 2 7 2 6 11 4 3 5 1 3 5 4	+41 +80 -195 +76 -259 +72 +210 +374 +132 +96 +155 +30 +155 +30 +87 +140 108	1681 3200 7605 2888 9583 2592 7350 12716 4356 3072 4805 900 2523 3920 2516	23 39 102 41 140 40 119 211 73 55 90 16 50 74 57	943 1560 3978 1558 5180 1440 4165 7174 2409 1760 2790 480 1450 2072 1539
77777	70 60 50	25 24 23																	,			1									1	- 24 + 23	576 529	15 12	360 276
2 3 3 3 3 3 3 3 3 3 3 3 3 3	455 465 465 465 465 465 465 465 465 465	22 - 27 - 17 - 18 - 19 - 20 - 21 - 223 - 24 - 25 - 272 - 24 - 272 - 272 - 272 - 272 - 313 - 312 - 314 - 315 - 316 - 317 - 318 - 317 - 317 - 318 - 317 - 318 - 317 - 318 - 317 - 318 - 317 - 318 - 317 - 318 - 317 - 318 - 317 - 318 - 317 - 318 - 317 - 318 - 317 - 317 - 317 - 318 - 317 - 317 - 317 - 317 - 317 - 317 - 317 - 317 - 317 - 317 - 317 - 317 - 317 - 317 - 317 - 318 - 317 - 317 - 317 - 317 - 317 - 317 - 317 - 317 - 317 - 317 - 317 - 317 - 317 - 317 - 317 - 318 - 317 - 317 - 317 - 318 - 317 - 318 - 317 - 318 - 317 - 318 - 317 - 318 - 317 - 318 - 317 - 317 - 318 - 317 - 317 - 318 - 317 - 31	1 1 3 2	2 2 1	1 1 3 1 1	2]	1	1	1	1 2 5 1 1	1 1 1 2	2 2 1 1 3 1	2 2 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	13	4 1 1 3 3 1	2341111	4	,													1845785553334472 2212364332	- 22 - 136 - 72 - 95 - 140 - 168 - 100 - 115 - 75 - 78 - 75 - 78 - 75 - 78 - 712 - 66 - 56 - 56 - 35 - 721 - 115 - 120 - 125 - 35 - 72 - 35 - 72 - 75 - 75	484 2312 1296 1805 2800 3528 2420 2645 2880 1875 2028 2187 3136 2187 3136 3364 6300 1922 2178 2312 1225 2312 1225 2312 1225 2312 1225 2312 1325 2312 1325 2312 1325 2312 1325 2312 1325 2312 3364 6300 1922 2312 2312 3364 6300 1922 2312 2312 3364 6300 1922 2312 3364 6300 1922 2312 3364 6300 1922 2312 3364 6300 1922 2312 3364 6300 1922 2312 3364 6300 1922 2312 3364 6300 1922 2312 2312 3364 5300 1922 2312 3364 5300 1922 2400 2528 2400 2026 2000 2000 2000 2000 2000 2000	15 -725 -456 -666 -529 -579 -399 -3754 -5731 -3774 -388 -3604 -2444 -6436 -444	330 -1224 630 1722 1144 1357 1308 1004 961 1512 1653 3090 961 1258 560 1258 560 1258 560 1386 2146 2520 2705 1848
	-	n	1	5	8	3	1	2	2	10	5	10	11	4	13	13	6	1	1		4	7	3	3	8	14	18	3	2	1	165	-629	152727	-216	80 649
š	-	n.v	-154	-105	-160	-57	-18	-34	-32	-150	-70	-130	-132	-44	-130	-117	-48	-7	+12		56	105	48	51	144	266	360	63	44	23	-216	4			
20.8	-	C .	3388	105	3200	1083	204	5/8	512	2250	980	1690	1584	484	1690	1053	384	49	144	-	784	1575	768	867	2592	5054	7200	1323	968	529	42868	1			
y=5	-	- C	6200	Im	-300	-112	-30	-0/	- 00	-300	-140	-262	-264	-87	-250	-263	-108	-18	+23		109	185	90	89	259	492	652	107	77	41	-629	1			
		wev	0792	4074	10000	102	1 048	1139	1056	4500	1320	3406	3168	957	2500	2367	864	126	276		1526	2775	1440	1513	4662	9348	13040	2247	1694	943	80649	(

$$v = -216/165 = -1,3091$$
, $x = 35 - 13,091 = 33,6909$
 $w = -629/165 = -3,8121$, $y = 520 - 38,121 = 481,8790$

$$s_{v}^{2} = \left[42868 - 216^{2}/165 \right] / 164 = 259,6765 \qquad s_{v} = 16,1144$$

$$s_{w}^{2} = \left[152727 - 629^{2}/165 \right] / 164 = 916,730 \qquad s_{w} = 30,2776$$

$$s_{vw} = \left[80649 - 216 \ 629/165 \right] / 164 = 486,7718 \qquad s_{x} = 16,1144$$

$$s_{y} = 302,776$$

$$b_{w,v} = 486,7718/259,6765 = 1,87453 \qquad s_{xy} = 4867,718$$

$$r = 486,7718/(16,1144 \ 30,2776) = 0,9976 \qquad b_{y,x} = 18,7453$$

Y = 481,8790 + 18,7453(x - 33,6909) = -149,667 + 18,7453 x

$$Y = R_r c_L c_T, \quad x = R_r$$

$$R_{r} = 149,667/(18,7453 - c_{L}c_{T}) = 150/(18,75 - c_{L}c_{T})$$

$$SKR_{w/v} = 916,730 \cdot 164 - 1,87453 \cdot 486,7718 \cdot 164 = 766,09$$

$$s_{w/v}^{2} = 766,09/163 = 4,71 \qquad s_{w/v} = 2,17 \qquad s_{y/x} = 21,7$$

$$s_{\chi}^{2} = 2,85 + 0,0111 (x - 33,6909)$$

99

http://rcin.org.pl

Tabela 6.	Analiza	regresji	dla	próbek	porcelanowych.	Zależność	miedzy
-----------	---------	----------	-----	--------	----------------	-----------	--------

8	x	У	y-lox	Y	Y-y s
	2,24	44,6	22,2	45,8	0,44
	2,26	44,1	21,5	46,3	0,80
	2,26	45,9	23,3	46,3	0,15
	2,41	47,5	23,4	50,1	0,95
	2,14	40,5	19,1	43,3	1,02
	1,33	31,5	13,2	35,6	1,50
	1,72	32,9	15,7	32.7	-0,07
	1,85	35,2	16,7	36.1	0,33
	1,68	32,6	15,8	31.8	-0,29
	1,18	20,7	8,9	29.3	-3,14
	1,60	29,6	13,6	29,8	0.07
	1,60	28,5	12,5	29.8	0.47
	1,42	26.6	12.4	25.3	-0.47
	1,49	29.2	14.3	27.1	-0.77
	1.14	20,4	3.0	18.3	-0.77
	5,90	133.9	74.9	137.8	1.42
	5.86	128.9	70.3	136.8	285
	5,59	131.4	75.5	129.8	-0.58
	5.28	124.6	71.8	122.8	-0.58
	5.15	123.1	71.6	118.8	-157
	5.06	11.3.4	62.8	116.8	124
	5.01	1177	676	115.8	-069
	4.61	107.0	609	105.8	-0,03
	4.46	1012	566	101.8	022
	4 42	101,2	570	101,0	0,22
	4 34	100.7	573	07 3	-0,09
	1,91	865	170	96,6	-1,24
	3,50	876	505	00,0	175
	3,61	800	149	71 2	-1,15
	3,01	00,9	±40	11,5	-0,58
n	20				-1,00
S	9368	20479	1 117		
SK	376 9350	101 382 19	59 56 3 39	ST	84 75 615
s^2/n	302 6187	14461704	42 570 45	5 5 m	66 15 423
SKR	74 3163	4676515	16002.04	STR	1860 102
h	SIR	SKD - 25 3	10 992,94	Sor	1000, 192
SIR ² /S	KR	46561.91			
SKR .	x	203.24			
f y	c	27			
2		75074	r - 274		
dn	22202	7062	30211		
311	3,2303	10,02	30,3 14		
	Y = 70,62 +	25,0307(x-3	3,2303) = -10,	237 + 25,	0307x
JR/ SI	CR SKR = 0,9	$98 , s_a^2 = \frac{s^2}{n}$	-= 0,259 ,	s_= 0,:	51
s ²	= 0,1015 , s _b =	0,317, s ²	$s_{a}^{2} + s_{b}^{2}(x - x)$	x) ² = 0,259	9+0,1015 (x

R_rc_Lc_T - R_r

Tabela 7

	II/1965	III/1965	I V/1965
77	99	94	99
S	53 54 20	507180	531640
SK	2896512200	2736760000	2855323800
S^2/n	2895702292	2736505876	2854981981
SKR	809408	254124	341819
s 2	8259	27 33	3488
5	90,88	52,28	59,06
S≁n	5408	5395	5370
		$y^2(98,93) = \frac{3488}{2733} = 1,27 < F_0$, ₀₅ = 1,39
		$s^{2} = \frac{254124 + 34181}{98 + 93} = 31$	10, / = 191
		d = 5395 - 5370 = 25	
		$s^{2}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) = 3110 \cdot 0,0$	$\sqrt{65,3}=8,$
		$t_{\alpha} = \frac{25}{8.1} = 3,08$ $t_{0,01} =$	2,576 t _{0,001} = 3,291
		$P(/t/ \ge t_{\infty}) = 0,5\%$ czyli r	óżnica jest istotna
v² (98	$(8,98) = \frac{8259}{2722} = 3 >$	$F_{0,05} = 1,39$	
. 2	2/33		
+	$\frac{3_2}{m} = 83,5 + 27,6 =$	111,1	
"1	<i>n</i> ₂		
d = 54	$408 - 5395 = 13^{\circ}$		
t =	13 = 1.24		
v	/111,1		
	s_{1}^{2}/n_{1}		
<i>c</i> = -	$s_1^2/n_1 + s_1^2/n_2$	= 0,752,	
	0.7522 0.2402		
$\frac{1}{1} = \frac{1}{1}$	$\frac{0,752}{98} + \frac{0,248}{98}$	= 0,00582	
1	70 70		l
			1

Porównanie rozkładów prędkości fal ultradźwiękowych w trzech próbkach statystycznych pobranych losowo w różnych okresach produkcji. Prędkość podłużnych fal ultradźwiękowych podano w [m/s]

Odlewnia	Odlev	vnia A		Odlev	vnia B			D			Porcelana		
Wskaźniki	Ż1 18	Ż1 22	Ż1 26	ŻI 18	Ż1 22	Ż1 26	Ż1 30	ŻSF 10	ŻI 15	Ż1 20	Ż1 25	Izolatory	В-6
H _B [kGmm ⁻²]				164,9	213,2	225	228,5	170,3	214,8	214,2	234,5		
R _r [kGmm ⁻²]	14,22	20,95	24,65	14,97	21,48	24,42	23,15	53,19	17,36	21,25	25,68	1,79	4,77
1/R _r [kG ⁻¹ mm ²]	0,702	0,478	0,405	0,666	0,465	0,409	0,432	0,188		maatur murte von 22 m		0,558	0,210
c _l [ms ⁻¹]	4161	4405	4500	3715	4736	4962	4884	5332	4080	4350	4685	5380	6200
° _T [^{ms¹]}	2306	2457	2498	2375	2503	2548	2614	2991	Į –			3510	3700
$c_{L}^{c}c_{T}^{[10^{6}m^{2}s^{-2}]}$	9,60	10,70	11,25	8,80	11,80	12,60	12,70	15,90				1	23,00
c _T /c _L	0,555	0,555	0,555	0,638	0,530	0,515	0,535	0,560				0,652	0,596
c ^r t'B	0,512	0,570	0,600	0,469	0,630	0,670	0,676	0,848				0,755	0,92
$A = R_{r}(B - c_{r}c_{T})$	130,13	170,27	185,19	147,35	5 146,0	1 148,6	5 1382	2 151,50	1		And Collection in the second	10,9	9,50
(RB-A)	117	224	312	131	253	308	292	847	{			33,8	109,5
R _r c _r c	136,5	224	227	131,5	254	308	299	846				33,8	109,5

Tabela 8. Średnie wartości wskaźników własności mechanicznych

i akustycznych badanych gatunków żeliw i porcelany.

http://rcin.org.pl

LITERATURA

- Akroyd T.N.W., R. Jones, Nondestructive Testing of Structural Concrete by the Ultrasonic Pulse Method, Proc. Fourth Intern. Conf. Non-Destructive Testing, Butterworkts, London 1964, 230-234.
- [2] Bierwirth G., Zerstörungsfreie Prüfung von Gusstücken durch Ultraschall, Giesserei 44 (1957), 477-485.
- [3] Brunarski L., Określenie dolnej granicznej wytrzymałości i współczynnika jednorodności betonu metodą ultradźwiękową, Materiały III Krajowej Konferencji Badań Nieniszczących PAN - SIMP, Warszawa 3-6-X.1966, 19, ref. A04.
- [4] Brunarski L., J. Kijkowski, Badanie konstrukcji betonowych i żelbetowych za pomocą betonoskopu ultradźwiękowego, Warszawa 1963. Praca zgłoszona do nagrody Komisji Nieniszczących Metod Badania Materiałów PAN w 1963 r.
- [5] Brunarski L., Gleichzeitige Anwendung verschiedener zerstörungsfreien Prüfmethoden zur Gütekontrolle des Betons, Wissenschaftliche Zeitschrift der Hochschule für Bauwesen, Leipzig, Sonderdruck 1963, Herausgeber Der Rektor, 191-197.
- [6] Blom G., Statistical Estimates and Transformed Beta-Variables, Almquist and Wiksells, Stockholm, 1958.
- [7] Collaud A., Giesserei Techn.-Weiss. Beihefte, 14/1954/, 709-726, 15/1954/, 767-795.
- [8] Contributions to Order Statistics (Ed. A.E. Sarhan, B.G. Greenberg), J.Wiley, New York, 1962.
- [9] Deputat J., Z. Pawłowski, The Photomechanical Effect in NaCl Crystals, Bulletin de l'Academie Polonaise des Sciences, Serie des Sciences techniques, Vol. XIII, 1, 1965, 1-10.
- [10] Deputat J., Z. Pawłowski, Kinetics of the Photomechanical Effect in NaCl Crystals, tamże, XIV, 2, 1966, 81-88.
- [11] Deputat J., Z. Pawłowski, Dislocation Density and Ultrasonic Attenuation in Deformed NaCl Crystals, tamże, XIV, 1966, 419-424.
- [12] Deputat J., Z. Pawłowski, Limit Values of Cold-work in NaCl Crystals, tamże, XIV, 1966, 581-586.
- [13] Dobrzyński A., Ultradźwiękowe parametry a wytrzymałość na rozerwanie żeliwa szarego, II Narada DT na temat Badań Nieniszczących, Łódź 1-3 VI 1966, Okręgowy Dozór Techniczny w Warszawie, 1-31.

- [14] Dixon W.J., F.J.Massey, Introduction to Statistical Analysis, McGraw Hill Co, New York 1957.
- [15] Dyląg Z., Z. Pawłowski, Przykład analizy trwałości dwóch żelbetowych kominów wentylacyjnych, Biuletyn WAT, IX, 11/12/100/, 1960, 31-54.
- [16] Felix W.A., Nondestructive "Tensile Testing" of Cast Iron, Metal Progress, Vol. 83, Feb. 1963, 91-95.
- [17] Felix W., Der Elastizitätsmodul als Hilfsmittel bei Qualitätsbeurteilung von Gusseisen, Giesserei 10 Jan. 1963, H. 1, 6-11.
- [18] Filipczyński L., Z. Pawłowski, J. Wehr., Ultradźwiękowe metody badania materiałów, WNT, Warszawa, 1963.
- [19] Fisz M., Rachunek prawdopodobieństwa i statystyka matematyczna, PWT, Warszawa 1958.
- [20] Friedel J., Dislocations, Pergamon Press, Oxford 1964.
- [21] Frielinghaus R., J. Koppelmann, Genaue Schallschwächungsmessungen mit handelsüblichen Ultraschall-Impulsecho-Geräten, Materialprüfung 6/1964/, 10, 337-342.
- [22] Fracture, Proceedings of an International Conference on the Atomic Mechanisms of Fracture held in Swapscott, Massachusetts, April 12 - 16, 1959, John Wiley, New York, 1959.
- [23] Fracture of Solids, Interscience Publishers, J. Wiley, New York 1963 (Ed. D. C. Drucker and J.J. Gilman).
- [24] Gatto F., New Statistical Methods Applied to the Analysis of Fatigue Data, in *Colloqium on Fatigue*, (Editor W. Weibull M.Odqvist) Proceedings, Springer Verlag Berlin 1956.
- [25] Gordon R. B., The Effect of Light on the Mechanical Properties of Alkali Halide Crystals, in *Physical Acoustics*. (Editor W.P. Mason), Vol. III, Part B, Academic Press, New York, 1966.
- [26] Grzesiak K., Niezawodność urządzeń elektronicznych, PWN, Warszawa 1965.
- [27] Hald A., Statistical Theory with Engineering Applications, J. Wiley and Sons Inc. New York 1955.
- [28] Jarvis J.A.F., Determination of Tensile Strength of Cast Iron by Ultrasonics, Proc. Fourth Intern. Conference on Non-destructive Testing, Butterworths, London 1964, 173-175.
- [29] Jarvis J., Ultrasonic in the Foundry, British Foundrymen, Aug. 1957, 400-406.
- [30] Johnson L.G., The Statistical Treatment of Fatigue Experiments, Elsevier Publishing Co., Amsterdam 1964.

- [31] Krautkrämer J., Die Messung der Ultraschallschwächung nach dem Echolt-Verfahren, Giesserei, Techn.-Wiss. Beihefte, 1958, 20, 1067-1075.
- [32] Mason W.P., Physical Acoustics and the Properties of Solids, D. Van Nostrand Co., New York, 1958.
- [33] Merkulov L.G.(redaktor), Ulrazwukowyje mietody issledowanja dislokacji, sbornik statej, Perevod iz angliskowo i nemeckowo, Izdat. In. Lit., Moskva 1963.
- [34] Paradine C.G., B.H.P. Rivett, Statistical Methods for Technologists, The English Universities Press Ltd, London, 1964.
- [35] Patterson W., E. Bodmer, Ultraschallmessungen an Gusseiesen mit lamellarer und kugeliger Graphitausbildung, Giesserei, Techn.-Wiss. Beihefte, 1957, H. 17, 909-917.
- [36] Pawłowski Z., Internal Friction of Metals and the Problem of Damage Cumulation with Static and Variable Loadings, Proc. Vibr. Pro blems, Warsaw, 1, 4, 1963, 44-64.
- [37] Pawłowski Z., Ultrasonic Attenuation During Cyclic Straining, Proc. Fourth International Conference on Non-Destructive Testing Butterworths 1964, 192-195.
- [38] Pawłowski Z., Granica zmęczenia i rozrzut jej wartości. Przegląd Spawalnictwa, 7-8, 1964, 161-173.
- [39] Pawłowski Z., Ultradźwiękowa metoda oceny wytrzymałości żeliwa, Materiały III Krajowej Konferencji Badań Nieniszczących PAN-SIMP Warszawa 3-6.X.1966, 1-11, ref. A 01.
- [40] Pawłowski Z., Ocena wytrzymałości porcelany metodą ultradźwiękową, tamże, 11-18, referat A 02.
- [41] Pawłowski Z., Evaluation of Tensile Strength of Brittle Materials with Ultrasonics, Proc, V Intern, Conf. on Nondestructive Testing, Montreal 21-26.V.1967, in print.
- [42] Pawłowski Z., Evaluation of Physical and Mechanical State of Polycrystalline Materials, in Internal Friction in Materials, Proceedings, (Editor Z. Pawłowski) Ossolineum, Wrocław, w druku.
- [43] Pawłowski Z., J. Raniszewski, Ultradźwiękowa nieniszcząca kontrola wyrobów betonowych, Zeszyty Problemowe Nauki Polskiej, XXVI, 1965. Nieniszczące metody badania materiałów, 373-389.
- [44] Pohl E., Die zerstörungsfreien Prüfmethoden in der Baupraxis der DDR, Materiały III Krajowej Konferencji Badań Nieniszczących PAN-SIMP, Warszawa 3-6.X.1966, 253-262, ref. C01.

- [45] Pawłowski Z., J. Sosnowski, Zasady badania aparatury ultradźwiękowej, Materiały III Krajowej Konferencji Badań Nieniszczących PAN-SIMP, Warszawa 3 - 6.X.1966, 525-534, ref. E05.
- [46] Properties of Crystalline Solids, ASTM Special Technical Publication No. 283, ASTM, Philadelphia 1961.
- [47] Ranachowski J., J. Wehr, O możliwości strukturalnych badań materiałów elektroizolacyjnych metodami ultradźwiękowymi, Przegląd Elektrotechniczny, XXXIV (1958), 1, 20-26.
- [48] Reti P., Gütekontrolle von kugelgraphitischem Gusseisen mit Ultraschall, Wiss, Z. Hochsch. Schweissmaschinen bau Magdeburg 3 (1959), 195-202.
- [49] Sawczuk A., L. Brunarski, Ultradźwiękow e badanie jakości i jednorodności betonu w konstrukcjach, Zeszyty Problemowe Nauki Polskiej, XXVI, 1965, Nieniszczące metody badania materiałów, 369-409.
- [50] Seemann H. J., Versuche zur ultraakustischen Prüfung von Gusseisen, Giesserei, Tech. Wiss. Beih. 1952, H.9, 403-408.
- [51] Smirnow N.W., J.W. Dunin-Barkowskij, Kratkij kurs matematiczeskoj statistiki dla techniczeskich prilożenii. Fizmatgiz, Moskwa 1959.
- [52] Tablice Statystyczne, PWN, Warszawa 1957.
- [53] Thompson D.O., Amplitude Independent Internal Friction and Examples of Its Utility in Diffussion Studies, in Internal Friction in Materials, Proceedings, (Editor Z. Pawłowski) Ossolineum, Wrocław, w druku.
- [54] Truell R., Dislocation Damping, in Internal Friction in Materials, Proceedings, (Z.Pawłowski, Editor) Ossolineum, Wrocław, w druku.
- [55] Truell R., Ch. Elbaum, High Frequency Ultrasonic Stress Waves in Solids, in *Handbuch der Physik* Ed. S. Flügge Band XI/2 Akustik II, 153-258.
- [56] Weibull W., Fatigue Testing and Analysis of Results, Pergamon Press, Oxford, 1961.
- [57] Wiegand H., H. Hentze, Bestimmung von Werkstoffkennwerten an Eisen-Graphit-Werkstoffen mit Ultraschall, Metal 13/1959, 1110-1113.
- [58] Zettler E., Ermittlung elastischer Kenngrössen von Gusswerkstoffen mit Hilfe von Ultraschallgeschwindigkeits - und Schwächungsmessungen, Ill Kongress für Materialpräfung, Budapest 1964.

- [59] Ziegler R., R. Gerstner, Die Schallgeschwindigkeit als kennzeichnende Grösse für die Beurteilung von Grauguss, 24 Internationaler Giessereikongress Stockholm, 19-24 VIII 1957, Vortrag nr 6.
- [60] Zieliński Z., Podstawowe własności mechaniczne żeliwa szarego w odlewach konstrukcyjnych i możliwości ich przewidywania, Prace Instytutu Odlewnictwa, XV (1965), 2/65, 77-162.
- [61] Żabińska T., Krytyczna ocena możliwości kontroli jakości materiałów ogniotrwałych przy pomocy ultradźwięków, Materiały III Krajowej Konferencji Badań Nieniszczących PAN-SIMP, Warszawa 3-6.X.1966, 41-48, ref. A06.
Zdzisław Pawłowski, Evaluation of Strength of Brittle Materials with Ultrasonics.

A cricital review of the existing methods for the evaluation of strength of brittle materials has been made. It is shown that the existing solutions of this problem have only limited application. Generally they are valid for the given grade of material coming from one foundry or factory. This statement is based on own investigations of several hundred specimens of cast iron, electrotechnical porcelain and concrete (Tables 1, 2, 3, 4).

The grafite structure of the different grades of cast iron is shown in Figs. 4, 5. Figures 6-15 present the strength of cast iron against velocity of ultrasonic longitudinal and transverse waves, ultrasonic attenuation or the quotient of ultrasonic wave velocity and Brinell hardness.

It was shown for the two tested grades of electrotechnical porcelain that one cannot expect the correlation between the tensile strength and the velocity of ultrasonic waves (Fig. 16, 17).e The same happens for the attenuation of longitudinal waves. But there is a strongly defined dependence between the strength and the fracture appearence of porcelain. The river like pattern on the sufrace of a fractured specimens corresponds to higher tensile strength (Fig. 18, 19).

In Figure 20 the different equations for the evaluation of the compressive strength of concrete are graphically presented.

The reason for the lack of a general solution for the evaluation of tensile or compressive strength of brittle materials seems to lie in the weak physically justified background. All existing correlations are deduced on purely empirical basis.

In Chapter 4 a new aproach to quantitative strength evaluation is presented. The starting point for the theoretical prediction is the assumption that the fracture starts due to the stress concentration in the neighbourhood of inclusions like graphite in cast iron and porosity in porcelain. The strength criterion of Saint Venant may be conveniently interpreted if one introduce the reduced modulus of elasticity. It is shown that the reduced modulus of elasticity is proprtional to the product of ultrasonic longitudinal and transverse waves [Eq.4.13]. If one further considers that the critical value of strain at fracture is not a constant, but has some statistical distribution (Fig. 21) one comes to the formula (4.22). The characteristic quantity A appearing in the equation (4.22) have defined physicall meaning and seems to be valid for materials having similar structure.

The experimental verification of the equation (4.22) derived on purely theoretical considerations is presented in Chapter 5. In Tables 2-4 the comparision between the predicted and experimentally determined strength values is given. Chapter 7 deals with the statistical methods which served for the experimental verification of the theory. A method for drawing regression lines based on statistical distributions of random variables and equal possibilities is demonstrated [6.2, 6.4]. It is shown that the characteristic value A appearing in the equation (4.22). can be estimated very effectively using the methods of order statistics of the sequential analysis.

The validity of the *"ultrasonic strength criterion"* can be prooved from the data given in Tables 2-4 and presented in Figures 23, 24, 25, 27, 40, 41). It seems on the basis of results obtained that the *"ultrasonic strength criteriom"* may have the application for all kinds of brittle materials.