
AMAS COURSE ON MECHANICS OF ADVANCED MATERIALS 
MAM'2001 - (PP.307-368) - WARSAW, OCTOBER 8-12, 2001. 

Advanced composite materials 

R. PYRZ 

Aalborg University 
Institute of Mechanical Engineering 

Pontoppidanstraede 101, DK-9220 Aalborg, Denmark 

These notes provide a brief introduction to different modelling approaches used to de
scribe coupled multi-physics processes in solids. Examples of typical processing-related 
application areas, and the disciplines required to develop appropriate predictive models 
are given. This is then followed by an example of a coupled multi-physics constitutive 
framework recently developed to study the failure of ceramic-metal interfaces undergoing 
oxidation and subjected to thermal fatigue. In this example, system failure occurs by 
cleavage due to the nucleation and coalescence of mesoscopic cracks within the ceramic
metal bimaterial system. Such bimaterial systems are usually present in thermal barriers 
coatings used in gas turbine blade applications. The magnitudes of the peak local stresses 
normal to the bimaterial interface, which are responsible for microcrack nucleation dur
ing thermal cycling, are determined from a multi-scale continuum mechanics parametric 
study. The finite element studies rely on the coupled diffusion-constitutive framework 
and periodic unit cell techniques to incorporate explicitly the effects of interface mor
phology, oxidation and time-dependent deformation processes on the local interfacial 
stresses. 

1. Introduction 

Composite materials are hybrid materials of which the composition and inter
nal architecture are varied in a controlled manner in order to match their perfor
mance to the most demanding structural or non-structural roles. The composite 
microstructures may be subdivided, as depicted in Fig. 1, according to whether the 
reinforcement is in the form of continuous fibres, short fibres, or particles. Further 
distinction may be drawn on the basis of fibre diameter, orientation distribution 
and the matrix and inclusions constituent materials i.e. metal, polymer, ceramic. 

Most materials are effective composites. This is particularly true of natural bi
ological materials, which are often made up of at least two constituents. In many 
cases, a strong and stiff component is present, often in elongated form, embedded 
in a softer constituent forming the matrix. For example, wood is made up of fibrous 
chains of cellulose molecules in a matrix of lignin, while bone and teeth are both 
essentially composed of hard inorganic crystals (hydroxyapatite) in a matrix of a 
tough organic constituent called collagen. 

An interesting example is provided by the so-called "dual phase" steels evolved 
in the seventies. They are produced by annealing fairly low carbon steels in_!;pe a+r 
phase field and then quenching so as to convert the 1 phase to martensite. The result 
is a product very close to what is now referred to as a particulate composite with 
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Monofilaments Whiskers/Staple Fibres Particulate 

FIGURE 1. Schematic depiction of the three types of composites, classified according to the type 
of reinforcement. 

about 20% of very hard, relatively coarse martensite particles distributed in a soft 
ferrite matrix. This is a strong, tough and formable material, now used extensively 
in important applications such as car bodywork. Its success could be interpreted as 
confirming the viability of the composite concept, although its properties have been 
very seldom considered in terms of composite micromechanics. 

A composite might seem a case of needless complexity. The making of ideal 
structural materials would appear to be at hand, in the midsection of the periodic 
table. Those elements, among them carbon, aluminium, silicon, nitrogen and oxygen 
form compounds in which atoms are joined by strong and stable bonds. As a result, 
such compounds typified by the ceramics, for instance aluminium oxide, silicon car
bide and silicon dioxide, are strong, stiff and resistant to heat and chemical attack. 
Their density is low and furthermore their constituent elements are abundant. 

Yet because of a serious handicap these substances have rarely served as struc
tural materials. They are brittle and susceptible to cracks. In bulk form the sub
stance is unlikely to be free of small flaws or to remain free of them for long in actual 
use. When such a material is produced in the form of fine fibres, its useful strength 
is greatly increased. The remarkable increase in strength at small scales is in part a 
statistical phenomenon. If one fibre in an assemblage does fail, moreover, the crack 
cannot propagate further, and the other fibres remain intact. In a similar amount of 
the bulk material, in contrast, the initial crack might have led to complete fracture. 

Tiny needlelike structures called whiskers made of substances such as silicon 
carbide and aluminium oxide also contain fewer flaws and show greater strength 
than the material in bulk form. Whiskers are less likely to contain defects than the 
bulk material, not only for statistical reasons, but also because they are produced 
as single crystals having a theoretically perfect geometry. The notion that many 
materials perform best as fibres also holds for certain organic polymers. Composites 
are a strategy for producing advanced materials taking advantage of the enhanced 
properties of inclusions. A bundle of fibres has little structural value. To harness 
their strength in a practical material the designer of a composite embeds them in a 
matrix of another material. The matrix acts as an adhesive, binding the fibres and 
lending solidity to the material. It also protects the fibres from environmental stress 
and physical damage which could initiate cracks. 
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The strength and stiffness of the composite remain very much a function of 
t.he reinforcing material, but the matrix makes its own contribution to properties. 
The ability of the composite material to conduct heat and current, for example, is 
heavily influenced by the conductivity of the matrix. The mechanical behaviour of 
the composite is also governed, not by the fibres alone, but by a synergy between 
the fibres and the matrix. 

The ultimate tensile strength of a composite is a product of the synergy. When a 
bundle of fibres without a surrounding matrix is stressed, the failure of a single fibre 
eliminates it as a load carrier. The stress it had borne shifts to the remaining intact 
fibres moving them closer to failure. If the fibres are embedded in a matrix, on the 
other hand, fracture does not end the mechanical function of a fibre. The reason is 
that as the broken ends of the fibre pull apart, elastic deformation or plastic flow 
of the matrix exerts shear forces gradually building stress back into the fragments. 
Because of such load transfer the fibre continues to contribute some reinforcement 
to the composite. The stress on the surrounding intact fibres increases less than it 
would in the absence of the matrix, and the composite is able to bear more stress 
without fracturing. The synergy of the fibres and the matrix can th1.,1s strengthen 
the composite and also toughen it by increasing the amount of work needed to 
fracture it. 

Although the general requirement that the matrix will be ductile provides some 
guidance for choosing a matrix material, the most common determinant of the choice 
is the range of temperatures the composite will face in its intended use. Composites 
exposed to temperatures between 100 and 200°C usually have a matrix of polymer. 
Most composites belong to this group. 

Polymer matrices are often thermosets. They are polymers in which bonds be
tween the polymer chains lock the molecular structure in a rigid three-dimensional 
network, which cannot be melted. Thermosets resist heat better than most thermo
plastics, the other class of polymeric materials, which melt when they are heated 
because no bonds cross-link the polymer chains. Epoxies are the most common 
thermosetting matrix for high-performance composites, but a class of resins called 
polyimides, which can survive continuous exposure to temperatures of more than 
300°C, have attracted considerable interest. If the resin is a thermoset, the struc
ture must then be cured, subjected to conditions that enable the polymer chain to 
cross-link. Often the composite must be held at high temperature and pressure for 
many hours. 

In part to shorten the processing time, thermoplastic matrix materials are at
tracting growing interest; one promising example is a polymer called PEEK (poly
etheretherketone). Consolidating a composite that has a thermoplastic matrix re
quires only relatively short exposure to a temperature which is sufficient to soften 
the plastic. The melting temperature of some thermoplastic matrices is so high 
that they rival thermosets in heat resistance; PEEK, for example, melts at 334°C. 
Thermoplastics have the additional advantage of being tougher than most of the 
thermosets. 

Temperatures high enough to melt or degrade a polymer matrix call for another 
kind of matrix material, often metal. Along with temperature resistance a metal 
matrix offers other benefits. Its higher strength supplements that of the reinforcing 
fibres, and its ductility lends toughness to the composite. A metal matrix exacts 
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two prices: density that is high in comparison with polymers, even though the light 
metals such as aluminium, magnesium and titanium are the most common matrices, 
and complexity of processing. Indeed, whereas the production of many advanced 
polymer matrix composites has become routine, the development of metal matrix 
composites has progressed more slowly in part because of the extreme processing 
conditions needed to surround high strength fibres with a matrix of metal. 

Metal matrix composites might assume a place in the cooler parts of the skin 
of a hypersonic aircraft, but at the nose, on leading edges of the wings and in the 
engines, temperatures could exceed the melting point of a metal matrix. For these 
environments there is a growing interest in a class of composites that have matrices 
as resistant to heat as the fibres themselves, and also as lightweight and potentially 
as strong and stiff, namely, ceramics. Because they are brittle, ceramics behave 
differently from other matrices. In metal and polymer matrix composites the fibres 
supply most of the strength, and the ductile matrix acts to toughen the system. A 
ceramic matrix, in contrast, is already abundantly stiff and strong, but to realize 
its full potential it needs toughening. The fibres in a ceramic matrix composite fill 
this need by blocking the growth of cracks. A growing crack which encounters a 
fibre may be deflected or may pull the fibre from the matrix. Both processes absorb 
energy. 

The ceramic matrix gives such composites great temperature resistance. Borosil
icate glass reinforced with carbon fibres retains its strength at 600°C. Such matrices 
as silicon carbine, silicon nitride, aluminium oxide or mullite (a complex compound 
of aluminium, silicon and oxygen) yield composites that remain serviceable at tem
peratures well above 1000°C. The heat resistance of a ceramic matrix composite, 
however, complicates its fabrication. 

The characteristics of these three classes of composites can be exemplified by 
the relation of stress and strain for the unreinforced polymer, metal and ceramic 
as compared with curves for the corresponding composites. Whereas unreinforced 
epoxy stretches easily, an epoxy matrix composite containing 50% by volume of sili
con carbine fibres is far stiffer (Fig. 2a). In an aluminium matrix the same volume of 
reinforcement, in this case aluminium oxide fibres, also improves stiffness dramat
ically (Fig. 2b). Because the fibres are brittle the composite fails at a much lower 
strain than unreinforced aluminium does. A similar fraction of silicon carbine fibres 
stiffens a matrix of borosilicate glass only slightly but toughens it considerably, in
creasing the percentage by which it can be strained without breaking (Fig. 2c). The 
fibres do so by restraining the growth of matrix cracks which might otherwise lead 
to fracture. 

Related to ceramic matrix composites in character but distinctive in manufac
ture is a composite in which both the matrix and the reinforcing fibres consist 
of elemental carbon. Carbon-carbon composite is reinforced by the element in a 
semicrystalline form, graphite; in the matrix the carbon is mostly amorphous. A 
carbon-carbon composite retains much of its strength at 2500°C and is used in the 
nose cones and heat shields of re-entry vehicles. Unlike most ceramic composites, 
it is vulnerable to oxidation at high temperatures. A thin layer of ceramic is often 
applied to the surface of a carbon-carbon composite to protect it. 

The combination of fibre and matrix gives rise to an additional constituent in 
composites; an interphase region. Chemical compatibility between the fibres and 
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FIGURE 2. Stress-strain curves for (a) SiC/epoxy, {b) Al203/aluminium, and 
(c) SiC/borosilicate glass composites. 
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the matrix is most crucial at this region. In polymer and metal matrix composites 
a bond must develop between the reinforcement and the matrix, if they are to act 
in concert. A prerequisite for adhesion is that the matrix, in its fluid form, will be 
capable of wetting the fibres. Fibres that would otherwise not be wetted by their 
matrix can be given a coating that fosters contact by interacting with both the fibres 
and the matrix. In some cases varying the matrix composition can also promote the 
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process. Once the matrix has wetted the fibres thoroughly, intermolecular forces or 
chemical reactions can establish the bond. 

Progress towards managing the many variables of composite design has encour
aged investigators to contemplate new complexities. An ordinary composite rein
forced with stiff, straight fibres usually displays a nearly constant value of stiffness. 
New composites designed to display specific non-linear relations of strain and stress 
are now attracting interest. One such example, a flexible composite consisting of 
undulating fibres in an elastomeric matrix, can elongate readily at low stresses, but 
stiffens when the fibres become fully extended, Fig. 3. 
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FIGURE 3. Flexible unidirectional composite and corresponding stress-strain diagram 
along x axis. 

A hybrid composite strengthened with two kinds of fibres, some of them brittle 
and inextensible and the other ductile and tough, can display the opposite be
haviour. The stiff fibres cause stress to increase very sharply at low strains, but 
when the strain is sufficient to break the stiff, brittle fibres, the curve of stress 
over strain flattens, Fig. 4. The ductile fibres come into play, and as a result the 
composite becomes more extensible. The hybrid design can yield a material that 
combines much of the stiffness of an ordinary composite containing only stiff fibres 
with increased toughness. 

Traditionally, composites have been designed and manufactured with the pur
pose of serving very specific functional goals. Such goals and considerations may 
include stiffness, fracture, toughness, fatigue life, impact resistance, electromag
netic shielding, corrosion resistance and biocompatibility, just naming a few. With 
the expansion in available material systems for composites, advancements in fabri
cation technologies and improvements in analysis and design techniques, it becomes 
increasingly feasible for developing multi-functional fibre composites for which a 
number of functional goals are satisfied simultaneously, and the performance can 
be optimized. It should be born in mind that multifunctional composites are made 
possible only through the design of their microstructure. For example the transport 
properties e.g. electrical conductivity, thermal conductivity, dielectric constants, 
magnetic permeability and diffusion coefficients of composites are also very sensi-
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FIGURE 4. Tensile stress-strain curves of a carbon/glass/epoxy interlaminated composite. 

tive to the microstructure. Consider, for instance, the electrical behaviour of metal
filled polymers. The effective resistivity changes sharply from non-conducting to 
conducting behaviour upon crossing a "percolation threshold" demonstrating the 
importance of structural features that promote transport along the preferred path, 
i.e. percolative mechanisms. Figure 5 illustrates such a transition for a composite 
containing conductive fillers in an insulating polymer matrix. The decrease in resis
tivity with the increase in filler volume fraction is attributed to the enhancement 
in probability of particle-particle contact. These contacts promote the formation of 
continuous conduction paths that mimic the behaviour of conducting fibres. 

Filler volume fraction , Vr 

FIGURE 5. Chain formation in a particulate filled composite. Open circles and closed circles 
indicate, respectively, isolated particles and contacting particles participating in chain formation. 

It is important to recognize that the distinction between the three classes of 
materials i.e. metals, ceramics and polymers and their composites is disappearing. 
There are now plastics as strong as metals which show some electrical conductiv
ity. Metal is being made as super-plastic and can be subjected to deformation in 
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processing like conventional polymeric materials. Also the three classes of materials 
are beginning to show the same limits of strength and stiffness; fibres made from all 
three can attain stiffness and strength close to the theoretically predicted values. 
Furthermore, the properties of all three classes of materials can be modified and 
improved by the use of surface coatings. 

As the distinction between the three classes of materials disappears, new possi
bilities and opportunities arise. One of these is the possibility of designing materials 

(a) 

(b) 

(c) 

FIGURE 6. Schematic overview of the approaches employed in fabrication of (a) polymer matrix 
composites, (b) metal matrix composites, and (c) ceramic matric composites. 
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not so much for final properties but equally in terms of processability. Figure 6 il
lustrates approaches used in processing of composites for three classes of materials. 

The commonality in some processing routes shared by the three classes of ma
terials will enable more extensive and effective transfer of know-how among the 
three basic disciplines and effect efficient processing technology for composite ma
terials. Furthermore, the commonality in performance shared by the three classes 
of materials, e.g. stiffness, strength and thermal expansion enables to engineer com
posites with a broad spectrum of component materials. Consequently, hybridization 
of materials, e.g. glass and low-melting-point metal, ceramics and thermoplastics, 
and polymer and metal in laminates, or other interdispersed composite forms can 
be achieved and the properties optimized (e.g. composites composed of metal and 
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polymer components of nearly the same stiffness but different fatigue resistance or 
thermal expansion coefficient). 

The traditional approach based upon discrete design and manufacturing steps 
for conventional structural materials needs to be replaced by an integrated design 
and manufacturing process, which necessitates a closer relationships among different 
disciplines of materials technology, Fig. 7. 

A fully integrated design process capable of balancing all the relevant design, ma
terial and manufacturing variables requires an extensive data base on microstructure 
constitution and behaviour, the ability to model fabrication processes, and three
dimensional analysis of the properties and behaviour of the resulting structure. 
Knowledge of the relationships among the constituent properties, microstructure 
and macroscopic behaviour of the composite is basic to the development of an in
tegrated design methodology. The similarity in material property and behaviour of 
the three classes of materials implies that analytical and design methodologies orig
inally developed for a specific class of composites may be transferable to others. A 
notable example is the fracture and failure behaviour of ceramic and polymer based 
composites. 

These notes are intended as a short introduction to micromechanics of hetero
geneous materials, modelling and characterization techniques which encompass all 
three classes of materials and their composites. 

2. Effective properties - simple models 

Composite materials are inherently inhomogeneous in terms of both elastic and 
inelastic properties. One consequence of this is that, on applying a load, a non
uniform distribution of stress is set up within the composite. Much effort has been 
devoted to understanding and predicting this distribution, as it determines how the 
material will behave and can be used to explain the superior properties of composites 
over conventional materials. The methods used for modelling stress distribution in 
composites range widely in nature and complexity. 

2.1. The slab model 

The simplest way to model the behaviour of a composite containing continuous 
aligned fibres is to treat it as if it were composed of two slabs bonded together, 
one of the matrix and the other of the reinforcement, with the relative thickness of 
the latter in proportion to the volume fraction of the fibres (designated as /). The 
response of this "composite slab" to external loads can be predicted quite easily, 
but its behaviour will closely mirror that of the real composite only under certain 
conditions. 

2.1.1. Axial stiffness. The model is most useful for the case of a normal stress 
being applied parallel to the fibre axis (the !-direction), Fig. 8. The two slabs are 
constrained to have the same lengths parallel to the bonded interface. On applying 
a stress u1 the two components of the slab composite exhibit the same strain c1. 

This "equal strain" condition is valid for loading along the fibre axis, provided that 
there is no interfacial sliding. The axial strain in the fibre and the matrix must 
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FIGURE 8. Schematic illustration of (a) a composite with aligned fibres, (b) a representation of 
this as bonded slabs containing a volume fraction f of fibres, and (c) the two slabs experience 

the same axial strain. 

correspond to the ratio between the stress and the Young's modulus for each of the 
two components so that 

{2.1) 

Hence, for a composite in which the fibres are much stiffer than the matrix 
(Et >>Em), the reinforcement is subject to much higher stresses (a11 >>aim) than 
the matrix and there is a redistribution of the load. The overall stress a1 can be 
expressed in terms of the two contributions being made 

(2.2) 

The Young's modulus of the composite can now be written 

Using the ratio between the stresses in the components given by Eq. (2.1), this sim
plifies to Using the ratio between the stresses in the components given by Eq. (2.1), 
this simplifies to 

(2.3) 

This well known "Rule of Mixtures" indicates that the composite stiffness is 
simply a weighted mean between the moduli of the two components, depending 
only on the volume fraction of fibres. This equation is expected to be valid to a 
high degree of precision, providing the fibres are long enough for the equal strain 
assumption to apply. Very minor deviations from the equation are expected as a 
result of stresses which arise when the Poisson's ratios of the two components are 
not equal. The equal strain treatment is often described as a "Voigt model". 
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2.1.2. Transverse stiffness. Prediction of the transverse stiffness of a composite 
from the elastic properties of the constituents is far more difficult than the axial 
value. In addition, experimental measurement of transverse stiffness is more prone 
to error, as a result of higher stresses in the matrix, which can, for example, cause 
polymeric matrices to creep under modest applied loads. The conventional approach 
is to assume that the system can again be represented by the slab model depicted 
in Fig. 9. 

FIGURE 9. Schematic showing (a) the slab model and (b) the "equal stress" assumption. 

An obvious problem with the slab model is that the 2- and 3-directions are not 
identical; direction 3 is equivalent to the axial direction. In reality, the matrix is 
subjected to an effective stress intermediate between the full applied stress operation 
on the matrix when it is normal to the plane of the slab interface and the reduced 
value calculated above for a stress axis parallel to this interface. In the limiting case 
of the "equal stress" model a stress is applied in the 2-direction 

(2.4) 

so that the component strains can be expressed in terms of the applied stress. The 
overall net strain can be written as 

(2.5) 

from which the composite modulus is given by 

Substituting expressions for c2t and c2m derived from (2.4) gives 

E2 = [L + (1- /)l-1 
Et Em 

(2.6) 

The equal stress treatment is often described as a "Reuss model". 
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Although this treatment is simple and convenient it gives a poor approximation 
for E2 . It is instructive to consider the true nature of stress and strain distributions 
during this type of loading when the "slab" of reinforcement is replaced by fibres. 
In simple terms, regions of the matrix "in series" with the fibres, close to them and 
in line along the loading direction, are subjected to a high stress similar to the one 
carried out by reinforcement as depicted in Fig. 9b. The regions of the matrix "in 
parallel" with the fibres, i.e. adjacent laterally, are constrained to have the same 
(low) strain as the reinforcement and carry a low stress as illustrated by Fig. 8c. 

The overall strain field can be visualized by the operations of removing the fi
bres, uniformly straining the remaining matrix, re-insert the fibres (which will be 
very little deformed by the stress, as they have a high stiffness), and then distorting 
the matrix so as to re-unite the two components around the interfaces. The result of 
this operation is shown in Fig. 10; the grid lines, which initially form a square mesh 
to represent unstrained material, become distorted on loading the composite in a 
way which reveals the distribution of local strain. This strain, and hence the stress, 
is distributed inhomogeneously within the matrix - in contrast to the uniformity 
of matrix strain when the loading direction is along the fibres. This inhomogene
ity, with sharp concentrations of stress in certain locations, is very significant in 
terms of the onset of non-elastic behaviour, which arises as a result of interfacial 
debonding, matrix plastic deformation and microcracking. The general nature of 
the transverse strain field is provided by the photoelastic technique applied to a 
macromodel composite material loaded normal to the fibre direction (vertically in 
the image shown in Fig. 11). 

The higher order fringes, which are located above and below the fibres, represent 
regions in which the matrix is highly distorted. The sharp gradients of stress along 
the loading direction form an important feature: most simple attempts to represent 
the distribution of matrix stress, such as the slab model, do not take this into 
account. 

(al 

' ' ' (b) 

FIGURE 10. Schematic strain field (a) unstrained and (b) on application of a transverse stress in 
the vertical direction. 
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FIGURE 11. A photoelastic image showing isochromatic fringes for a macro-model composite 
loaded in transverse tension (vertical direction) . 

The slab model gives an underestimate of· the Young's modulus and can be 
treated as a lower bound. Various empirical and semi-empirical expressions designed 
to give more accurate estimates have been proposed. The most successful of these 
is following (the Halpin-Tsai equation) 

in which 

E _ Em ( 1 + ~ TJ f) 
2 - (1 - TJ f) ' 

(k -1) 
TJ = (k + ~). 

(2.7) 

The value of~ may be taken as an adjustable parameter, but its magnitude is 
generally of the order of unity. 

A comparison is presented in Fig. 12 between the predictions of Eqs. (2.3), (2.6) 
and (2. 7) and experimental data for a glass/polyester system. It is clear that the 
equal strain treatment (Eq. (2.3)) is in close agreement with data for the axial 
modulus. For the transverse modulus, the situation is less clear. 

Firstly, the experimental data show considerable scatter; some of the values ac
tually lie below the equal stress prediction, Eq. (2.6), which should constitute a 
lower bound. Secondly, many of the values appear to lie closer to the equal stress 
curve than to the Halpin-Tsai prediction, although this is less obvious for the high 
fibre content. This behaviour is almost certainly the result of inelastic deformation 
of the matrix. In practice, the behaviour may be influenced by other factors which 
are difficult to incorporate into simple models. These include the effect of a degree 
of fibre misalignment, elastic anisotropy of the fibre (or of the matrix - e.g. for a 
textured polycrystalline metal) or the early onset of a non-elastic response. Never
theless, it should be noted that even in the absence of any such complications, use 
of the equal stress model introduces significant errors. 
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FIGURE 12. Comparison between experimental data for the axial and transverse moduli and 
corresponding predictions. 

Beyond these simple models for predicting the transverse modulus, there are 
powerful but complex analytical tools as the Eshelby equivalent inclusion method 
(see Sec. 3) and numerical techniques as finite element method. The plots shown 
in Fig. 13 give an idea of the errors likely to be introduced in real cases using 
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FIGURE 13. The transverse Young's modulus for (a) glass fibres in epoxy and (b) silicon carbide 
fibres in titanium. 
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simple analytical expressions as compared with the Eshelby method, which should 
be more reliable. It can be seen that the equal stress assumption gives a significant 
underestimate, whereas the Halpin-Tsai equation is quite reliable. 

2.1.3. Shear stiffness. The shear moduli of composites can be predicted by eval
uating the net shear strain induced when a shear stress is applied to the composite, 
in terms of the individual displacement contributions from the two constituents. 

A shear stress designated 7ij ( i f. j) refers to stress acting in the i-direction on 
the plane with a normal in the j-direction. Similarly, a shear strain ''(i.j is a rotation 
towards the i-direction of the j-axis. The shear modulus Gii is the ratio of 7ii to 
'Yii. As the composite body is not rotating, the condition 7ij = 7ji must hold. In 
addition, Gii = Gii so that 'Yii = 'Yii· Since the 2- and 3-directions are equivalent 
in the aligned fibre composite, it follows that there are two shear moduli, because 
G12 = G21 = G13 = G31 f. G23 = G32· 

There are also two shear moduli for the slab model (Fig. 14), but these are 
unlikely to correspond closely with the values for the fibre composite. 

ACTUAL SLAB MODEL 

G ~z=G ,3 
= Gz~ = G3, G,,=G32 

= G2.= Gn 
Mtxed 

Equal stress 

Mixed Equal stram 

FIGURE 14. Schematic illustration of how the shear moduli are defined for a real fibre composite 
and for the slab model. 

The stresses 7 12 and 7 21 are assumed to operate equally within both of the 
constituents. The derivation is similar to the equal stress treatment 

712 = 712/ = 'Y12/ G f = 712m = 'Y12m Gm, 
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where 1121 and 112m are the individual shear strains in the two constituents. The 
total shear strain is found by summing the two contributions to the total shear 
displacement in the !-direction 

and 

i.e. 

(u1/ + U1m) 
"Y12 = J + (l _ J) = f"Y12/ + (1 - /)"Y12m 

G _ 712 _ 712/ _ [ J + (1- /)"Y12m]-
1 

12 
- 112 - f"Y121 + (1- /)"Y12m - G 1 712/ 

[ 
f (1 -f) l-1 

G12= -+--a, Gm 
(2.8) 

The other shear modulus shown by the slab model G 13 = G31 in Fig. 14 cor
responds to an equal shear strain condition and is analogous to the axial tensile 
modulus case. Then 

G13 = !G1 + (1- f)Gm. (2.9) 

It may be noted that neither the equal stress condition nor the equal strain con
dition is close to the situation during shearing of the composite, in which the strain 
partitions unevenly within the matrix. Therefore neither of the above equations is 
expected to be very reliable, particularly the equal strain expression. 

It is not obvious just how poor the approximation represented by Eq. (2.8) is 
likely to be, nor even which of the two actual shear moduli it will approach more 
closely. More rigorous methods predict that the values of G12 and G23 are rather 
close to each other, with G12 slightly larger in magnitude. Equation (2.8) gives a 
significant underestimate relative to both of them, while Eq. (2.9) is a gross over
estimate. In view of this, the Halpin-Tsai equation is frequently employed. In this 
case, the appropriate equation is 

in which 

G _ Gm(1 + ~TJJ) 
12 - (1 - TJ/) ' 

(~ -1) 
TJ= (~+~)' 

(2.10) 

and the parameter ~ is again taken to have value of around unity. This has been done 
for the curves in Fig.15, which shows comparisons between predictions ofEq. (2.10) 
and those of the equal stress (Eq. 2.8) and Eshelby models for both polymer and 
metal matrix composites. It can be seen that the Halpin-Tsai expression represent 
a fairly good approximation to the axial shear modulus (G12 ). A striking feature 
of both the transverse and the shear moduli for polymer composites (Fig. 13a and 
15a) is that they are close to the matrix values (f = 0) to the relatively high volume 
fractions (! = 0.3-0.4), although in both cases the true modulus is not as low as 
the prediction of the equal stress model. 
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FIGURE 15. Predicted shear moduli for (a) glass fibres in epoxy and (b) silicon carbide fibres in 
titanium. 

2.1.4. Poisson contraction effects. For an aligned fibre composite there are 
three different Poisson's ratios as illustrated in Fig. 16. This brings the total number 
of elastic constants identified for this material to seven. 

~ . 
:;=;;:jj:= 

• • 
v,2 = v,3 v2· = v3, v23 = v32 

Equal applied strains Unequal applied strams Unequal applied strains 
Unequal Poisson strains Equal Poisson strains Unequal Po1sson strains 

FIGURE 16. Schematic illustration of how three Poisson's ratios are defined. 
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However, because some of these constants are inter-related only five independent 
values are needed to describe the behaviour of such a transversely isotropic material. 
The following two relationships between identified constants account for this 

and (2.11) 

Estimation of three Poisson's ratios on the basis of the slab model presents 
difficulties because of the greater degree to which the contractions of the two con
stituents must match, when compared with the real composite. The effect of this is 
that although three Poisson's ratios can be identified for the slab model, a mean
ingful calculation can only be done for the equal imposed strain case giving v12 . In 
this case, the Poisson strains for the two constituents can be valuated independently 
and summed. Thus 

so that 

and 
(2.12) 

A simple rule of mixtures is therefore applicable, and because the equal strain 
assumption is accurate for axial stressing of the composite, this is expected to be a 
reliable prediction. 

Simple expressions can also be derived to give fairly realistic predictions for 
the other two ratios. The ratio of the axial contraction to the transverse extension 
on stressing transversely, v21 , is obtained from the reciprocal relationship given in 
Eq. (2.11), so that 

(2.13) 

This will be lower than v12 because, on stressing transversely, the fibres will 
offer strong resistance to axial contraction. This leads to pronounced contraction in 
the other transverse direction, so that v23 is expected to be high. An expression for 
v23 may be obtained by considering the overall volume change experienced by the 
material 

UH 
~ = Cl + C2 + C3 = K' (2.14) 

in which u H is the applied hydrostatic stress and K is the bulk modulus of the 
composite. Only a single stress, u2 is being applied here, so that 

Thus 
(2.15) 
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which leads directly to 

i.e. 

R. PYRZ 

E2 
v23 = 1 - v21 -

3
K . (2.16) 

The bulk modulus of the composite can be estimated via an equal stress as
sumption, so that 

and 

giving 
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FIGURE 17. Predicted Poisson's ratios for (a) glass fibres in epoxy and {b) silicon carbine fibres 
in titanium. 
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The bulk moduli of the constituents are related to other elastic constants by 
expressions such as 

Kf = Ef 
3(1 - 2Vj) 

The accuracy of Eq. (2.16) is determined largely by the error in E2 • In the com
parison shown in Fig.17, the Halpin-Tsai values of E 2 predicted by Eq. (2.7) were 
used in obtaining values for v21 and v23 . It can be seen that agreement with the 
Eshelby method is fairly good. These plots convey an idea of the pronounced ten
dency under transverse loading for the composite to contract in the other transverse 
direction in preference to the axial direction. 

2.2. The shear lag model 

The preparation of composites containing short fibres or equiaxed particles al
lows scope for using a wider range of reinforcement and more versatile processing 
and forming routes. Thus, there is interest in understanding the distribution of 
stresses within such a composite and the consequences of this for the stiffness and 
other mechanical properties. 

The most widely used model describing the effect of loading in aligned short-fibre 
composite is the shear lag model, which centres on the transfer of tensile stress from 
matrix to fibre by means of interfacial shear stresses. The basis of the calculations 
is shown schematically in Fig. 18. In this diagram, reference lines are drawn on a 
fibre and the surrounding matrix, which are initially straight and normal to the 

FIGURE 18. The shear lag model showing: (a) unstressed system, (b) axial displacements u 
introduced on applying tension parallel to the fibre and (c) variation with radial location of the 

shear stress and strain in the matrix. 
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fibre axis. External loading is then applied, Fig. 18b, parallel to the fibre axis. The 
reference lines distort in the manner shown. Attention is concentrated on the shear 
distortions of the matrix close to the fibre, represented schematically in Fig. 18. The 
model is based on considering the shear stresses in the matrix and at the interface. 

2.2.1. Stress and strain distributions. The radial variation of shear stress in 
the matrix T (at a given axial distance x from the fibre mid-point) is obtained by 
equating the shear forces on neighbouring annuli with radii T1 , T2 of length dx (see 
Fig. 18c) 

or 
T1 T2 

T2 T1 

The shear stress T in the matrix at any radius p is therefore related to that of 
the fibre/matrix interface (radius T), Ti by 

The strain field around the fibre can be defined in terms of the displacement u 
of the matrix in the x-direction, relative to the position for no applied stress (see 
Fig. 18). The increment of this displacement, du, on moving out from the fibre axis 
by dp, is determined by the shear strain{, and hence by the shear modulus Gm 

du _ _ T _ Ti ( r·) __ , ____ -. 
dp Gm Gm P 

For any given value of x, the difference between the displacement of the matrix at 
a radius Rand that of the interface is given by a simple integration 

UR R 

l du =TiT I dp 
Gm P 

Ur r 

i.e. 
TiT (R) 

U R - Ur = G m ln -:;: . (2.18) 

The matrix strain is assumed to be uniform remote from the immediate vicinity 
of the fibre. The radius R represents some far-field location where this condition 
becomes operative. In a composite containing an array of fibres the appropriate 
value of R/T is related to the proximity of neighbouring fibres and hence to the 
fibre volume fraction f. The exact relationship between R/T and f is dependent 
on the way the fibres are arranged; however, because R/T appears in a logarithmic 
term, the final result is relatively insensitive to the details of the fibre arrangement. 
A hexagonal array of fibres leads to 

7rT2 

J = (2R)(RJ3)' 
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{2.19) 

The build up of tensile stress in the fibre a 1 is determined from the distribution 
of interfacial shear stress. Referring to Fig. 18c, the basic force balance acting on an 
element of the fibre is 

27r r dx Ti = - r r2 da 1, 

{2.20) 

Now, the variation of Ti with x is unknown a priori, but Eq. {2.18) can be used 
to relate it to displacements and hence to axial strains. It is assumed that there is 
no shear strain in the fibre and the interfacial adhesion is perfect (so that Ur = u 1, 
the displacement of the fibre surface). 

The following relationship is used for the shear modulus of the matrix 

Em 
Gm = 2{1 + Vm)' 

and substitution in Eq. {2.18) leads to the result 

2Em(UR- Uj) 

{1 + Vm) r 2ln{1/ f)· 
{2.21) 

The displacements themselves are unknown, but their differentials are related 
to identifiable strains. For the fibre 

duf a1 
dx =cf = E,· {2.22) 

The corresponding expression for the matrix is less well defined. The differential 
of UR will approximate to the far-field matrix strain, at least over most of the length 
of the fibre, and this, in turn, is close to the overall composite strain c1 

{2.23) 

Although not rigorous, this represents a fairly good approximation; the far
field matrix strain is shown in Fig. 18b as being approximately uniform along (and 
beyond) the length of the fibre. The fibre strain {and stress) builds up with distance 
from ends of the fibre. 

Finally, the stress distribution in the fibre can be determined. Differentiation of 
Eq. {2.21) and substitution leads to 

cPa/ n2 

- 2- = 2 (af- E1 ct}, 
dx r 

{2.24) 

in which n is a dimensionless constant given by 

[ 
2Em l! 

n = E,{I + Vm) ln{l/ /) · 
{2.25) 
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Equation (2.24) is a standard second-order linear differential equation with the 
solution . (nx) (nx) u 1 = Et c:1 + B smh --;- + _D cosh --:;:- . (2.26) 

On applying the boundary conditions 

ut=O at x=±L, 

where L is the fibre half-length, and writing the fibre aspect ratio L/r as s, this 
gives the solution 

O'f = Et C:J (1- cosh (nrx) sech(ns)]. (2.27) 

The variation of interfacial shear stress along the fibre length is derived, accord
ing to Eq. (2.20), by differentiating this equation, to give 

n c:1 . (nx) 
Ti = 2 Et smh --:;:- sech(ns). (2.28) 

2.2.2. The stress transfer length. Equations (2.27) and (2.28) allow predictions 
to be made about the stress distribution along the length of the fibre. An example 
is shown in Fig.19. 

-_--.. -.... :::::: :::::: ~:::: :: ;" I 
~ 40 

0 • - · ·-----· -- -·~ -- -· --- ---- ------------ ---·-- -- ---~----
·06 -04 -02 0 02 0 . 4 06 
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~ : t I ~ ::::: :::::: ::::: : : :o I 
~ 4 :-i 2 :-

... 
~ 
J. 

-<1.6 -0.4 -<1 .2 o.:: 0 .-4 0 .6 0 .8 
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---
1 

FIGURE 19. Predicted variations in (a) fibre tensile stress and (b) interfacial shear stress along 
the length of a glass-fibre in polyester/30% glass fibre composite subjected to an axial 

strain of w-3 . 

This shows the variations in fibre tensile stress and interfacial shear stress along 
the length of a fibre in a composite of aligned glass fibres in a polyester resin 
matrix. The tensile stress is zero at the fibre ends and a maximum in the centre. 
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The interfacial shear stress is zero in the centre and a maximum at the ends. For 
the high aspect ratio case (s =50), the fibre is long enough for the tensile stress to 
build up until the fibre has a strain equal to that of the matrix and the composite. 
This gives rise to the plateau region of the fibre stress curve and a region of zero 
interfacial shear stress. (With continuous aligned fibres, all of the composite is 
in this equal strain condition with respect to stress in the axial direction - see 
previous subsection). There are regions of the fibre near the ends which are less 
heavily stressed than this central plateau region, so that the average fibre stress 
is lower than in a long-fibre composite subjected to the same external load. The 
reinforcing efficiency decreases as the fibre length is reduced, since this increases the 
proportion of the total fibre length which is not fully loaded. This behaviour leads 
to the concept of a stress transfer length, over which the strain in the fibre builds 
up to the plateau (matrix) value. For the case shown, this length is about 10 fibre 
diameters. Provided that the system remains fully elastic and there is no interfacial 
sliding, this value is dependent only on the elastic constants of fibre and matrix. 
(With a stiffer matrix such as metal, the stress transfer length will be shorter as a 
result of higher interfacial shear stresses). 

For the low aspect ratio (s = 5) case, the whole length of the fibre is only 5 fibre 
diameters so that the stress in it does not build up to a plateau value. Such fibres 
are not providing very efficient reinforcement, because they carry much less stress 
that would longer fibres in the same system. A stress transfer aspect ratio St can be 
identified as the one exhibited by fibres in which the peak (central) stress closely 
approaches the maximum possible (at which its strain is equal to the value being 
imposed on the composite). From Eq. (2.27), this will be the case when 

cosh(O) sech(ns) >> 1. 

Since cosh(O) = 1, the requirement is to set sech(ns)(= 1/ cosh(ns)) to a suitably 
low value. Choosing 0.1, the condition becomes 

cosh(ns) = 10 i.e. St :=:::: ~
n 

(2.29) 

The value of n, obtained from Eq. (2.25) becomes smaller as the fibre/matrix 
modulus ratio rises, and as the volume fraction of fibres decreases. In general, how
ever, the value does not vary widely; it is typically about 0.1 for polymer matrix 
composites and 0.4 for metal matrix composites. The corresponding values of St are 
therefore of the order of 30 and 7, respectively. (For ceramic matrix composites, the 
value of n is normally close to unity and hence St is small. However, the introduction 
of ceramic fibres into a ceramic matrix is normally done for purposes other than 
that of stiffening the material, namely for the increased toughening, so that efficient 
load transfer is not a primary objective). 

The shear lag model provides qualitatively realistic results. For example, the 
finite difference method illustrates how high matrix shear strains near the end of 
the fibre lead to a build-up of fibre tensile strain, Fig. 20. However, quantitative 
examination reveals discrepancies. The data in Fig. 21 were obtained by measuring 
the local tensile strain at different points along a polydiacetylene fibre embedded in 
an epoxy matrix subjected to an external tensile load. While the general appearance 
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FIGURE 20. An elastic deformation map obtained by a finite difference method showing how 
initially orthogonal grid around a fibre end becomes distorted on applying an axial tensile stress. 

{The fibre/matrix stiffness ratio = 40). 
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FIGURE 21. Strains in a polydiacetylene fibre embedded in an epoxy matrix, measured by shifts 
in the Raman resonance spectrum for three values of the macroscopic strain applied to the 

matrix. The fibre aspect ratio was about 200 and the fibre/matrix stiffness ratio was about 16. 
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of the curves agrees well with the shear lag model for the higher imposed strains, 
there are discrepancies. Notable among these is the fact that the fibre stress does 
not fall to zero at the ends. This is primarily the result of the transfer of tensile 
stress across the fibre ends which is neglected in the basic model and is relatively 
unimportant in composites with high fibre aspect ratio. 

2.2.3. Transfer of normal stress across fibre ends. Any attempt to account 
for this effect, while retaining the attractive simplicity of the shear lag model, must 
involve postulating an analytical expression for the fibre end stress a e. This must 
be an arbitrary postulate, since there is no scope within the shear lag framework 
for any rigorous description of stresses beyond the fibre end. It is suggested that 
Ue be set equal to the average of the peak fibre stress and the remote matrix stress 
values predicted by the standard shear lag model 
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FIGURE 22 .. Predicted vari:"tions i~ axial stress within (a) a glass fibre in a polyester/30% glass 
fibre compos1te and (b) a S1C fibre m Al30% SiC fibre composite; at a composite strain of 10-a. 
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in which a fO is given by substituting x = 0 in Eq. (2.27) and amo is taken as Emc1 

(matrix average stress). This leads to an expression for ae 

and hence, using the new boundary conditions a f = a e at x 
Eq. (2.26), a new expression is obtained for a r 

a 1 = c 1 [ E 1 - ( E 1 - Em) cosh ( 1rrx ) sech ( ns) J . 

(2.30) 

±L to solve 

(2.31) 

In Fig. 22 predictions from this equation are compared with those of the standard 
model (Eq. 2.27) for polymer- and metal matrix composites. The predicted stresses 
in the fibre are significantly higher for the modified model, particularly near the 
fibre ends. Taking account of fibre end stress transfer naturally leads to the fibres 
carrying more load, particularly for short fibres. This results in an increase in the 
predicted stiffness of the composite. 

2.2.4. Prediction of stiffness. The basic results of the shear lag model can be 
used to predict the elastic deformation of the composite. Consider a section of area 
A taken normal to the loading direction, as shown in Fig. 23. This section intersects 
individual fibres at random positions along their length. The applied load can be 
expressed in terms of the contributions from the two components 

or 

I ~ 

~I 

I 

Area !I 

/a 
... I 

I 

L - ----- _ .J 

FIGURE 23. Random section through a stressed short-fibre composite. 

(2.32) 
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in which Cf 1 and Cf m are the volume-average stress carried by fibre and matrix. This 
equation is often termed the "Rule of Averages" (see next section). The average fibre 
stress is evaluated from Eq. (2.27) 

L 

71 = E1 c1 I [1 _ cosh(7 )] dx, 
I L cosh(ns) 

0 

_ E ( 1 tanh(ns)) 
a/= f €1 -

ns 
(2.33) 

For the matrix, it is again conventional to resort to the assumption of a uniform 
tensile strain equal to that imposed on the composite 
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FIGURE 24. Predicted composite/matrix modulus ratio as a function of the fibre matrix modulus 
ratio, for composites with 30% reinforcement and fibre aspect ratio of (a) 30 and {b) 3. 
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Combining Eqs. (2.32)-(2.34) gives the stress-strain relationship for the compos
ite 

[ ( 
tanh ( ns) ) l 

<11 = c1 f Et 1 - ns + (1 - f)Em . (2.35) 

The same procedure for the modified model, taking account of fibre end stress 
transfer, leads to 

(2.36) 

These equations can be tested by making comparisons with prediction from more 
rigorous Eshelby model, Fig. 24. 

It can be seen that the standard shear lag model is inaccurate for low fibre as
pect ratios. The predictions of the standard model look particularly unreliable when 
the fibre/matrix modulus ratio is small. This suggest that the fibre end stress mod
ification might be particularly useful for discontinuously reinforced metal matrix 
composites. This is confirmed by the data in Fig. 25, which compares predictions 
from three models with measured stiffness for particulate metal matrix composite. 
The standard shear lag model is clearly unsuitable for such materials. 
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FIGURE 25 .. Comparison between experimental data and model predictions for the stiffness of 
Al/SiC particulate composites produced by extrusion. As the particles are not equiaxed, and 
tend to become aligned during processing, an aspect ratio of 2 was used in the predictions. 

It may be noted from Eqs. (2.35) and (2.36) that the stiffness approaches the 
limiting (Rule of Mixture) value as s becomes large enough for tanh(ns)/ns to 
become negligible. Since tanh(ns)/ns "' 1 for ns 3 and assuming that 0.1 can be 
taken as << 1, 

10 
BRM:::::::-, 

n 
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in which SRM is the fibre aspect ratio needed for the composite modulus to approach 
its maximum (Rule of Mixtures) value. As noted earlier, values of n are typically 
around 0.1 for polymer composites and 0.4 for metal matrix composites. This suggest 
values for SRM of about 100 and 25 for polymer- and metal-based composites, 
respectively. These can be regarded as target (minimum) aspect ratios when the 
main objective is to maximise the load transfer and hence the stiffness. 

2.2.5. Onset of inelastic behaviour. Several phenomena can occur which cause 
departure from ideal elastic behaviour. These include plastic deformation of the 
matrix, debonding and subsequent frictional sliding at the interface, formation of 
cavities or cracks in the matrix (particularly at fibre ends) and fracture of fibres. 
These effects change the stress distribution and hence affect the stress-strain curve. 
They are also related to the onset of failure and hence to the strength of the material. 
Description and analysis of these important micromechanisms are beyond the scope 
of this course. Nevertheless, it is appropriate to examine a simple extension to the 
basic shear lag theory designated to predict the onset of departure from elastic 
behaviour. 

The onset of matrix plasticity or interfacial sliding is expected to occur at the 
fibre ends where the matrix shear stress is a maximum. A critical interfacial shear 
stress Tcr can be specified for these processes. Substitution of Tcr into Eq. (2.28), 
with x = L, gives the composite strain at the onset of such inelastic behaviour 

2Tcr coth(ns) 
Clcr = nEt . (2.37) 

This can be converted to an applied stress using Eq. (2.35), leading to the expression 

2Tcr {[ ) JEt} Utcr = -E f Et + (1- /)Em coth(ns) - - . 
n 1 ns 

(2.38) 

This point does not correspond to a clearly identifiable composite yield stress, 
since yielding (or interfacial sliding) is only taking place in a small localized region. 
However, at this point the stress-strain curve will start to depart from a linear 
plot. As an illustration of the use of Eq. (2.37), in a typical glass fibre reinforced 
polymer composite, with Tcr = 20 MPa, the composite strain at the onset of inelastic 
behaviour is about 0.6% for long fibres (s "' 30) and about 0.3% for short fibres 
(s "'5). 

The likelihood of fibre fracture taking place before matrix yielding or interfacial 
sliding can also be examined. The peak stress in the fibre at the onset of interfacial 
sliding or yielding is found from Eq. (2.27) by setting x = 0 and the composite strain 
to the value given by Eq. (2.37). This leads to 

2~r[ ] a10 = - coth(ns)- cosech(ns) . 
n 

(2.39) 

Schematic plots of this relationship are shown in Fig. 26 which also gives an indica
tion of the range of values expected for Tcr in metallic and polymeric matrices and 
for the fracture stress acr exhibited by ceramic fibres. It is clear from this plot that 
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FIGURE 26. Plots of the dependence of peak fibre stress <>Jo (at the onset of interfacial sliding 
or matrix yielding) on the critical shear stress for the onset of these phenomena Tcr 

according to Eq. {2.39). 

on increasing the load applied to either type of composite, yielding or sliding at the 
interface takes place before fibres start to fracture. 

As the composite strain is increased, yielding (or sliding) spreads along the 
length of the fibre, raising the tensile stress in the fibre as the interfacial shear stress 
increases. Fracture of fibres may then become possible, and a simple treatment can 
be used to explore the limit of this effect. If it is assumed that the interfacial shear 
stress becomes uniform at Tcr along the length of the fibre, then a critical aspect ratio 
Scr can be identified below which the fibre cannot undergo any further fracture. This 
corresponds to the peak (central) fibre stress just attaining its ultimate strength a cr 

so that integration of Eq. (2.20) along the fibre half-length leads to 

acr 
Scr = -2-. 

Tcr 

The consequence is that a distribution of aspect ratios between Scr and Scr /2 is 
expected, if the composite is subjected to a large strain. The value of Scr ranges 
from over 100 for a polymer composite with poor interfacial bonding to about 2-3 
for a strong metallic matrix. 

3. Overall properties- advanced models 

Continuum mechanics deals with idealized materials consisting of material points 
and material neighbourhoods. It assumes that the material distribution, the stresses, 
and the strains within an infinitesimal material neighbourhood of a typical particle 
(or a material element) can be regarded as essentially uniform. On the microscale, 
however, the infinitesimal material neighbourhood, in general, is not uniform, con
sisting of various constituents with differing properties and shapes, i.e. an infinitesi-
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mal material element has its own complex and, in general, evolving microstructure. 
Hence, the stress and strain fields within the material element likewise are not uni
form at the microscale level. One of the main objectives of micromechanics is to 
express in a systematic and rigorous manner the continuum quantities associated 
with an infinitesimal material neighbourhood in terms of the parameters that char
acterize the microstructure and properties of the microconstituents of the material 
neighbourhood. 

3.1. Representative volume element 

A representative volume element (RYE) of a material point of a continuum 
mass is a material volume which is statistically representative of the infinitesimal 
material neighbourhood of that material point . The continuum material point is 
called a macro-element. The corresponding microconstituents of the RYE are called 
the micro-elements. An RYE must include a very large number of micro-elements, 
and be statistically representative of the local continuum properties. -

Figure 27a shows a continuum, and identifies a typical material point P sur
rounded by an infinitesimal material element. When the macro-element is magni
fied, as sketched in Fig. 27b, it may have its own complex microstructure. It may 
consist of grains, separated by grain boundaries, voids, inclusions, cracks, and other 
similar defects. To be representative, this RYE must include a very large number of 
such microheterogeneities. Figure 28 shows the microstructure in Al-Si/SiC parti
cles metal matrix composites processed by investment cast (slow cooling, Fig. 28a) 
and the pressure die cast (rapid cooling, Fig. 28b). At the slower cooling rate, it is 
clear that the SiC particles have been pushed into the interdendritic regions by the 
growing dendrites, causing severe clustering. For the more rapid cooling it seems 
likely that the growing dendrites have at least partially engulfed the particles so 
that less pushing has occurred; in any event, because the scale of the dendrite arm 
spacing is similar to that of a typical particle diameter, pushing can only occur over 
short distances and does not lead to pronounced clustering. 

MACROSCAL£ 
CONTINUUM 

MICROSCALE 

FIGURE 27. Representative volume element. 
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FIGURE 28. Optical micrograph of Al-Si/SiC composite; (a) slow cooling and (b) rapid cooling. 

Figures 29 are optical micrographs of a metal-matrix composite with particu
lates, Fig. 29a,b, and short fibres, Fig. 29c. Formation of ceramic-rich bands during 
extrusion is clear. The asymmetry of the ceramic content distribution on either side 
of the band, apparent in Fig. 29c, can be explained in terms of superimposed gradi
ents of temperature and strain rate across the section of the extrudate. A mechanism 
involves ceramic particles migration down a gradient of matrix flow stress associated 
with a thermal gradient caused by the strain localization. Fibres appear to be more 
prone to the effect than particles, possibly because they rotate, and hence interact 
more with each other, during the process. 

In these examples, a sample of typical dimension of one millimetre may be used 
as an RVE. As may be inferred from these illustrations, to quantify the concept 
of an RVE, two length-scales are necessary; one is the continuum or macro-length 
scale, by which the infinitesimal material neighbourhood is measured; the second 
is the micro-length-scale which corresponds to the smallest microconstituent whose 
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FIGURE 29. Formation of ceramic-rich bands during extrusion; (a) slight or (b) moderate 
banding in particulate (SiC) composite, and (c) severe banding in short fibre reinforced metal 

matrix composite. 
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properties and shape are judged to have direct, first-order effects on the overall 
response and properties of the continuum. In general, the typical dimension of the 
macro-element, D, must be orders of magnitude larger than the typical dimension 
of the micro-element, d; i.e. D / d >> 1. For example, if the continuum is a poly crys
talline solid which is viewed as a homogenized continuum, and one is interested in 
describing the aggregate or polycrystal properties (the polycrystal being the macro
element) in terms of single-crystal properties (each crystal being a micro-element), 
then the dimension, D, of the RVE should be much larger than the typical size, d, 
of the individual crystals. As a second example, if one is interested in estimating the 
elastic moduli of a whisker reinforced composite in terms of the matrix (assumed 
uniform and homogeneous) and the whisker parameters, then the size of the RVE 
must be so that it includes a large number of whiskers. In either example, whether 
or not the micro-elements have a random, periodic, or other distribution does not 
affect the requirements of D/d >> 1, although, of course, the corresponding over
all properties of the RVE are directly affected by this distribution. Note that the 
absolute dimensions of the microconstituents may be very large or very small, de
pending on the size of the continuum mass and the objectives of the analysis. It is 
only the relative dimensions that are of concern. For example, in characterizing the 
overall properties of a mass of compacted fine powder in powder-metallurgy, with 
grains of submicron size, a neighbourhood of a dimension of 100 microns would be 
sufficient as an RVE, whereas in characterizing an earth dam as a continuum, with 
aggregates of many centimetres in size, the absolute dimension of an RVE would be 
of the order of tens of meters. 

Another important question is what constitutes an underlying essential micro
constituent. This is also a relative concept depending on the particular problem and 
the particular objective. It must be addressed through systematic microstructural 
observation at the level of interest, and must be guided by experimental results. 
Perhaps one of the most vital decisions is the definition of the RVE. An optimum 
choice would be one that includes the most dominant features that have first-order 
influence on the overall properties of interest, and at the same time yields the sim
plest model. This can only be done through a coordinated sequence of microscopic 
(small-scale) and macroscopic (continuum-scale) observation, experimentation and 
analysis. In many problems in the mechanics of materials, suitable choices often 
emerge naturally in the course of the examination of the corresponding physical 
attributes and the experimental results. 

3.2. The Eshelby equivalent inclusion method 

Internal stresses are commonplace in almost any material which is mechanically 
inhomogeneous. Typically, their magnitude varies according to the degree of inho
mogeneity for an externally loaded polycrystalline cubic metal, differently oriented 
crystallites will be stressed to different extents, but these differences are usually 
quite small. For a composite consisting of two distinct constituents with different 
stiffnesses, these disparities in stress will commonly be much larger. Internal stresses 
arise as a result of some kind of misfit between the shapes of the constituents (ma
trix and reinforcement, i.e. fibre, whisker or particle). Such a misfit could arise from 
a temperature change, but a closely related situation is created during mechanical 
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loading - when a stiff inclusion tends to deform less than the surrounding matrix. 
Analysis of the stress required to mate up the inclusion and matrix across the in
terface allows the prediction of properties such as thermal expansivity and stiffness. 
For an arbitrary inclusion shape, this analysis can only be carried out numerically, 
but for the special case of an ellipsoid an analytical technique can be employed. 
The key point here is that the ellipsoid, which can have any aspect ratio, has a 
uniform stress at all points within it. Figure 30 shows the slice from an axisymmet
ric three-dimensional photoelastic model containing a prolate ellipsoidal inclusion 
of stiffness "' 2.5 times that of the matrix, viewed between crossed polars. The 
model was loaded in axial compression. The pattern of fringes (contours of equal 
principal stress difference) shows that the stress within the matrix fluctuates in a 
complicated manner, the stress being largest at the inclusion ends and smaller than 
the applied stress about the equator. The stress within the inclusion, on the other 
hand, is larger than the applied stress and is uniform throughout. 

FIGURE 30. Photoelastic model of ellipsoidal inclusion loaded in axial compression. 

The Eshelby technique is based on representing the actual inclusion by one made 
of matrix material which has an appropriate misfit strain so that the stress field 
is the same as for the actual inclusion. Suppose a region within a homogeneous 
medium was suddenly to transform in shape, so that it no longer fitted freely into 
the hole in the matrix from which it came; what would the stress field look like? 
The answer to this question would at first sight appear to have little to do with 
calculating the stresses within composites, but Eshelby showed that there is an 
elegant solution to this problem, which can be applied to a wide variety of other 
situations. The consequences of a spontaneous transformation of the type discussed 
above can best be visualized in terms of displacement maps, Fig. 31. 

In these diagrams, the grid lines represent the displacement of an originally 
square mesh, while the thickness of lines represents the stiffness. A transformation 
(i.e. a shape change) imposed on a region within a matrix tends to cause complex 
distortions in both the transformed region and the surrounding matrix. This is so 
far non-uniform strains (in this case a linear change in width with height, Fig. 31a) 
and uniform strains (in this case a simple shear, Fig. 31b). It is clear that the elastic 
strain field is very complicated, both inside and outside the constrained transformed 
region, and for this reason an analytic solution is not usually possible. An example of 
such a spontaneous shape change is provided by a martensitic transformation. When 
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FIGURE 31. Schematic illustration of how a transformation imposed on a matrix region cause 
complex distortions for (a) non-uniform strains and (b) uniform strains. 

the transformed region is ellipsoidal in shape and the shape change is a uniform one 
(i.e. ellipsoid), however, the mathematics become tractable. This is because under 
these conditions the stress and strain within the enclosed phase are uniform (see 
Fig. 30). 

3.2.1. Average strain and stress theorems. Under conditions of an imposed 
macroscopically homogeneous stress or deformation field on the RVE, the average 
stress and strain are representatively defined by 

< tij > = ~I tij dV, {3.1) 
v 

< a ij > = ~ I a ij dV, 
v 

{3.2) 

where Vis the volume of the RVE and the symbol < > denotes volume averaging. 
Homogeneous boundary conditions applied on the surface of a homogeneous body 
will produce a homogeneous field there. Such boundary conditions are obtained by 
imposing displacements at the boundary S in the form 

{3.3) 

where e?; are constant strains. Alternatively, traction can be imposed on S so that 

ti = a?;n;, {3.4) 

where a?; are constant stresses and n is the unit outward normal vector to S. 
To calculate the average strains in composite material it appears that one must 

solve the elasticity problem of the RVE subjected to the displacement homogeneous 
boundary conditions, Eq. {3.3). The strain-displacement relations are 

{3.5) 
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Substituting (3.5) in (3.2) yields 

2V < Ei1· > = l(u~ 1 ~ + u(2
)) dV1 + l(u~2) + u(2~) dV2. t,J J,t t,J J,t (3.6) 

v1 v2 

where "1" and "2" denote phase 1 and 2 of the two phased composites with v1' v2 
being the volumes occupied by the two phases. The use of Gauss theorem 

I Ui,pdV =I uinpd8 (3.7) 

v s 

implies that 

I (1) (1) ) I (2) (2) ) 2V<ci;>= (ui n;+u; ni d8+ (ui n;+u; ni d8, (3.8) 

s1 s2 

where 81 and 82 are the bounding surfaces of phases 1 and 2, respectively. The 
surfaces 81 and 82 contain the interfaces 812 and the external surface 8. Assuming 
perfect bonding between the phases, i.e. 

uP) = u~2) on 812 
' ' ' 

it follows that the contributions from 8 12 in the two integrals in Eq. (3.8) cancel 
each other. This leads to 

< Eij > = 2~ I ( Ui n; + u; ni) d8. 
s 

(3.9) 

Substituting in Eq. (3.9) the homogeneous boundary conditions (3.3) and using 
again the Gauss theorem (3.7) yields 

11o o 1 ol o < Eij > = 2V (cip Xp n; + E;p Xp ni) d8 = 2V ci; 2xp,i dV = cii' (3.10) 

s v 

where Xp, i = 8pi; i.e. the volume averaged strain within RVE is equal to the constant 
strain applied on the surface. 

The homogeneous boundary conditions with traction applied on 8, produce a 
stress field in the composite whose average, <ui;>, is identical to the constant stress 
u?;. To this end, consider the equilibrium equations in the absence of body forces 

Uij,j = 0, 

which implies that 

Substituting this relation in (3.1) provides 

V < Uij >=I (uikx;),k dV 
v 

(3.11) 

(3.12) 

http://rcin.org.pl



346 R. PYRZ 

and by Gauss' theorem we have 

I (1) (1) I (2) (2) V < u ii > = u ik xi n k ds + u ik xi n k ds (3.13) 

s1 s2 

Since tractions are continuous at the interfaces 8 12 , i.e. 

the contributions from 8 12 to the two integrals cancel each other and Eq. (3.13) 
reduces to 

Thus 

V < Uij >=I UikXjnk ds = u~J> I Xjnk dS = u}~> I Xjk dV = V u!;>. 
s s v 

(0) < Uij > = uij . (3.14) 

3.2.2. Relation between averages. Let us consider the homogeneous boundary 
conditions (3.3) according to which displacements are applied on the surfaceS of a 
RVE. For a two-phase composite with perfect bonding between the constituents 

where c0 with a = 1,2 denote the volume fractions of the phases, and 

< €ij >(a)= ~a I c!j>dv 

Vo 

which is the average strain in the phase a. Similarly, 

< Uij >(a)= ~a I u!J>dv 

v .. 

and 
< Uij > = C1 < Uij >( 1

) +c2 < Uij >(2
) . 

By the average strain theorem we have 

(0) < €ij > = cii , 

and the constitutive law in the phases is 

< >(a)_ c(o) (a) 
Uij - ijkl < Ckl > ' 

where c:;i, are stiffnesses of phases. 

a= 1,2, 

The constitutive law for a composite can be written in terms of averages 

< Uij > = c;ikl < €ij >, 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 
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where c;ikl is as yet unknown stiffness of the composite. From Eqs. (3.10), (3.15), 
(3.17), (3.18) and (3.19) substituted to Eq. (3.20) one gets 

C• ,_0 - c < IT •. >(1) +c < IT • • >{2} ij kl c. kl - 1 v t) 2 v &) 

C• o c<1> (1) c<2> (2) 
ijkl ckl = C1 ijkl < Ckl > +c2 ijkl < Ekt > (3.21) 

C• o _ c<1> ( (2>) c<2> (2) 
iikl Ekt - ijkl < Ekt > -c2 < Ekt > + c2 ijkt < Ekt > 

C• o _ c<l> o (c<2> c<1> ) (2) 
ijkl ckl - ijkl ckl + C2 ijkl - ijkl < Ekt > · 

Equation (3.21) implies that the effective moduli can be determined from the 
elastic moduli of the phases provided the average strain < Ekt >(2 ) in the inclusion 
phase 2 is known. 

3.2.3. The Eshelby solution. The case where a given material is infinitely ex
tended is of particular interest for the mathematical simplicity of the solution as 
well as for its practical importance. When the solution is applied to inclusion prob
lems, it can be assumed with sufficient accuracy that the materials are infinitely 
extended since the size of the inclusions is relatively small compared to the size of 
the macroscopic material samples. 

Definitions: 
Eigenstrain - nonelastic strains such as thermal expansion, phase transformation, 

initial strains. 
Eigenstress - self-equilibrated internal stress caused by one or several of these 

eigenstrains in bodies which are free from any other external force and surface 
constraints. 

The term ''residual stresses" have been frequently used for the self-equilibrated 
internal stresses when they remain in the material after fabrication or plastic defor
mation. Eigenstresses are called thermal stresses when thermal expansion is a cause 
of the corresponding elastic field. For example, when a part n of a material has its 
temperature raised by T, thermal stress Uij is induced in D by the constraint from 
the part which surrounds n, Fig. 32. 

The thermal expansion a:T, where a: is the linear thermal expansion coefficient, 
constitutes the thermal expansion strain 

where 8ii is the Kronecker delta. The thermal expansion strain caused when n can 
be expanded freely with the removal of the constraint from the surrounding part. 

The actual strain is then the sum of the thermal stress by Hooke's law. The 
thermal expansion strain is a typical example of an eigenstrain. In the elastic theory 
of eigenstrains and eigenstresses, however, it is not necessary to attribute cii to any 
specific source. The source could be phase transformation, precipitation, plastic 
deformation or a fictitious source necessary for the equivalent inclusion method. 
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FIGURE 32. Inclusion 0. 

When an eigenstrain ci; is prescribed in a finite subdomain f2 in a homogeneous 
material D, and it is zero in the matrix D-n, then n is called an inclusion. The 
elastic moduli of the inclusion n and the matrix D-n are the same. 

If a subdomain f2 in a material D has elastic moduli different from those of the 
matrix D-f2, then f2 is called an inhomogeneity. Applied stresses will be disturbed by 
the existence of the inhomogeneity. This disturbed stress field will be simulated by 
an eigenstress field by considering a fictitious eigenstrain ci; in nina homogeneous 
material. 

The major contribution made by Eshelby was to establish the relation 

(2)total S • · o 
cii = ijkl c~c1 m u, (3.22) 

where the total strain in n is given by the sum of the eigenstrain and the resulting 
elastic strain i.e. 

c~~)total = c~~) + c~ . . 
IJ IJ IJ (3.23) 

The eigenstrain ci; is uniform inn and the resulting strain (3.23) is also uniform 
in n. This is the most valuable result from the Eshelby solution. (The development 
of Eq. (3.22) is omitted here). In the expression (3.22) Sijkl is called Eshelby tensor 
which has the following properties: 

• it is symmetric with respect to the first two indices and the second two indices 

however, it is not, in general, symmetric with respect to the exchange of ij 
and kl, i.e. 

sijkl -:1 sk,ij; 

• it is independent of the material properties of the inclusion n; 

• it is completely defined in terms of the aspect ratios of the ellipsoidal inclusion 
nand the elastic parameters of the surrounding matrix D-f2; 

• when the surrounding matrix D-f2 is isotropic, then Siikl depends only on the 
Poisson ratio of the matrix and the aspect ratios of n. 

If an ellipsoidal inclusion has it principal half axes denoted by a 1 , a2 and a3 

then the Eshelby tensor components for special shapes of inclusions are as follows: 
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5v- 1 
Su22 = S2233 = Su33 = S1133 = S2211 = S3322 = , 

15(1 - v) 

4- 5v 
sl212 = s2323 = s3131 = 15(1 - v)' 

7- 5v 
Su11 = S2222 = S3333 = 15(1 _ v). 

Elliptic cylinder ( a3 -t oo): 

s3333 = o, 

s3311 = o, 

S2233 = --- , 1 [ 2va1 l 
2(1-v) a1+a2 

s3311 = o, 
1 2va2 

Su33 = ---, 
2(1 - v) a1 + a2 

sa322 = o, 

1 [ a~ + a~ 1 - 2vl 81212 = 2(1- v) 2(al + a2)2 + -2- ' 

349 
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13- Bv a3 
81111 = 82222 = 32(1 _ v) 1r a

1
, 

1 - 2v 1r a3 
83333 = 1------, 

1- v 4 a1 

Bv- 1 a3 
81122 = 82211 = 32(1 _ v) 1r a

1
, 

2v- 1 a3 
81133 = 82233 = 8(1 _ v) 1r a

1
, 

83311 = 83322 = -- 1 - --7r- ' 
v ( 4v + 1 a3 ) 

1 - v Bv a1 

7- Bv a3 

81212 = 32(1 - v) 7r a1' 

1 ( v - 2 1r a3 ) 
81313 = 82323 = 2 1 + 1 _ 

11 
4 a

1 
; 

1 
82323 = 83131 = 2' 

ll 
83311 = 83322 = -1--, 

-ll 

83333 = 1, 

and all other 8iikl = 0. 

3.2.4. Equivalent inclusion method. Consider an infinitely extended material 
with the elastic moduli c~~l containing an ellipsoidal inhomogeneity with the elastic 

moduli C~~~· We investigate the disturbance in an applied stress caused by the 
presence of this inhomogeneity. Let us denote the applied stress at infinity by a?i 

and the corresponding strain c?i. The stress disturbance and the strain disturbance 

are denoted by a~f) and c~f), a = 1, 2, respectively. The total stress (actual stress) 

is a?i + afJ) in the matrix and a?i +a~]) in the inhomogeneity. The total strains are 
o <1) d o (2) t· l H k ' l . . cii + cii an cii + cii , respec 1ve y. oo e s aw 1s wntten 

o (2) c<2) ( o (2)) 
aii + aii = iikl ckl + ckl in n, 

o (1) c<1) ( o (1)) 
aii + aii = iikl ckl + ckl 

(3.24) 
in D-S1. 

The equivalent inclusion method is used to simulate the stress disturbance using 
the eigenstress resulting from an inclusion which occupies the domain n. Consider an 
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infinitely extended homogeneous material with the elastic moduli cil~~ everywhere, 
containing domain f2 with an eigenstrain cii, Fig. 33. The eigenstrain has been 
introduced here arbitrarily in order to simulate the inhomogeneity problem using 
the inclusion problem. 

FIGURE 33. Equivalent inclusion method. 

When this homogeneous material is subjected to the applied strain c?i at infinity, 
the resulting total stress in the inclusion is 

0 (2) c<t) ( 0 {2)total • ) . ("\ (3 25) 
aii + aii = ijkl ckl + ckl - ckl m u. · 

The necessary and sufficient condition for the equivalency of the stresses and 
strains in the above two problems of the inhomogeneity and inclusion is an identity 
between Eqs. (3.24h and (3.25) i.e. 

C (2) ( 0 (2)) c<t) ( 0 (2)total • ) (3 26) 
ijkl ckl + ckl = ijkl ckl + ckl - ckl ' · 

where c~~)total - ckl = c~~) is the elastic strain in the inclusion, Eq. (3.23). For the 

inhomogeneity problem (i.e. left hand side of Eq. (3.26)) the strain c~~) is equal to 
the total strain c~~)total, then from Eqs. (3.26) and (3.22) one gets 

C <
2

> ( o s • ) c< 1
> ( o s • • ) (3 27) ijk ckl + klmnCmn = ijkl ckl + klmncmn - ckl · · 

Knowing elastic constants of the inhomogeneity and the matrix together with the 
Eshelby tensor, it is possible to find from Eq. (3.27) components of the eigenstrain cii 

in terms of the remote strain c?i. After obtaining cii the stress in the inhomogeneity 

a?i + a}J> may be obtained from Eq. (3.24)1 or Eq. (3.25). 
In a RVE there is a unique dependence of the average strains in the phases upon 

the overall strain in the composite. Let this be written as 

(t) _ A(t) _ A(t) o < Cij > - ijkl < Ckl >- ijklckl1 

(2) _ A{2) o < cij > - ijklckl, 

(3.28) 
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with 
A

(1} A{2} 
C1 ijkl + C2 ijkl = Iijkl' 

where Iijkl is the unit tensor; A~~~~ (a = 1, 2) are called concentration tensors. 
Then, substituting the average strain in the inclusion phase 2, i.e. Eq. (3.28)2 to the 
expression (2.21) the required effective stiffness of the composite can be obtained as 

C• - (1} ( {2} (1} ) (2} 
iikl - Ciikl + c2 Ci;mn - Ci;mn Amnkt· (3.29) 

From Eq. (3.29) it is clear that the knowledge of the concentration tensor is suffi
cient to determine the effective stiffness of a composite provided that the constituent 
properties and volume fractions of phases are known. This being a tremendously 
difficult task, different models have been introduced which approximate the concen
tration tensor. 

The ~implest model follows from the Eshelby concept and is called the "dilute" 
approximation, in which the concentration tensor is approximated by embedding a 
single particle in an all-matrix material. In the "dilute" approximation the volume 
fraction of particles is small enough that each single particle does not "see and 
feel" its neighbours, and therefore they may be considered independently. Since the 
distances between particles are large as compared to dimensions of the particles we 
may consider each particle embedded in the infinite matrix. (In a sequel, the tensor 
quantities will be denoted with lower dash in order to shorten the notation). Then 
from Eq. (3.28)2 

A
(2} = e{2} 

0 . e 
The strain in the inhomogeneity 

e{2} = e{2}total + eo 

or 
e:<2

} = Se* + e0
• 

It follows from Eq. (3.26) and Eq. (3.32) that 

C(l} ( e<2} - e*) = c<2}e:(2} 

or 
C(l} e:* = ( C{l} - c<2}) e:<2}. 

From the Eshelby solution (3.22) the eigenstrain can be calculated as 

or 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

e:* = s-1 
( e<2} - e0

) ' (3.34) 

where s-1 is an inverse Eshelby tensor. Then substituting (3.34) into (3.33) yields 

c<1} [ s-1 ( e(2} -eo)] = ( c<1} - c<2}) e<2} 
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or 
[c(l)s-1- ( c(l)- c<2))] e<2) = c<1)s-1eo. (3.35) 

Multiplication by S(C( 1)]- 1 provides 

(3.36) 

It follows that the requested concentration tensor of an elliptical inclusion, em
bedded in a matrix subjected to uniform deformation at large distances from the 
inclusion, is given by 

A<•> = e;:> = { 1- s [c< 1>]-1 
( c(l>- c<•>)} -

1 

(3.37) 

and the effective stiffness can be determined from Eq. (3.29). 
Typical results are shown in Fig. 34, which gives axial and transverse stiffness 

prediction for aligned short fibre composites where the short fibre was modelled as 
an alongated ellipsoid with the aspect ratio of a3 fa 1 = a2 varying from 1 to 100. 
Figure 34a confirms that in the practicable volume fraction range up to about 
40-50%, fibres with fairly high aspect ratios are needed in order to effect substan
tial improvements in the stiffness. The transverse stiffness predictions in Fig. 34b, 
however, show clearly that the aspect ratio has very little effect on the transverse 
stiffness. This is the case for all composites. 
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FIGURE 34. Eshelby predictions of the Young's modulus as a function of fibre volume fraction 
for glass fibres in an epoxy matrix for (a) axial and (b) transverse loading. 
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3.2.5. The ·Mori-Tanaka theory. An equivalent inclusion method provides a 
first-order approximation and yields an explicit result for a composite stiffness C* 
but neglects particle interaction and is therefore valid only at small concentration 
of particles. A better approximation, which takes into account particle interactions, 
is the Mori-Tanaka theory. This method assumes that the average strain < e > <2> 

in the interacting inhomogeneities can be approximated by that of a single inho
mogeneity embedded in an infinite matrix subjected to the uniform average matrix 
strain < e ><1>. This is illustrated in Fig. 35. 
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FIGURE 35. Schematic representation of the Mori-Tanaka model. 

The problem to be solved according to this model is that of a single inhomogene
ity in a certain large volume V' which is enclosed by a surface S', and subjected to 
the boundary condition 

(s') (1) Up = < Epq > Xq. (3.38) 

The solution of this problem is 

(2)_,.,., (1) < Emn > - .L mnpq < Epq > , (3.39) 

where T is determined from the solution of a single inhomogeneity embedded in an 
infinite matrix subjected to boundary conditions (3.38). 

Substituting {3.39) into expression (3.15) and remembering the statement of the 
average strain theorem (Eq. (3.10)) yields (in shortened notation) 

or 

(3.40) 
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Substituting Eq. (3.40) into (3.39) leads to the following relation 

< e >(2) 
A<2

> = 0 = T(c1I + c2T)- 1
. 

e 

355 

(3.41) 

Thus, the concentration tensor A <2>, which relates an average strain in the inho
mogeneity to the uniform remote strain field, is related to the concentration tensor T 
via Eq. (3.41). Consequently, the effective stiffness of the composite is given from 
Eqs. (3.29) and (3.41) as 

(3.42) 

The concentration tensor Tis determined from the solution of a single inhomogene
ity embedded in an infinite matrix subjected to boundary conditions (3.38). From 
the Eshelby equivalent inclusion method, Eq. (3.27), we have 

c<2> ( < e >< 1> +Se*) = c(l> ( < e >( 1
) +Se*- e*), (3.43) 

where e0 has been replaced by the average matrix strain < e >(1) since now it 
constitutes the homogeneous boundary conditions. For the inhomogeneity the strain 
is given by 

(3.44) 

The expression (3.44) is analogous to (3.32) with an appropriate replacement of the 
remote strain field. Then, calculating the eigenstrain from (3.44), i.e. 

e* = s-1 ( < e >(2) - < e >(1)) ' 

and substituting to Eq. (3.43) with (3.44) in mind yields 

c<2> < e ><2>= C(ll ( < e ><2> -e*) 

JJ. 

c(l>e· = ( c<l) - c<2)) < e >(2) 

JJ. 

c(l>s-1 ( < e >{2) - < e >{1)) = ( c<1l - c<2)) < e >{2) 

JJ. 

[ c<1>s-1 - ( C{l) - c<2>)] < e >(2)= C(l)S(l) < e >(1) . 

Multi plication of both sides of the Eq. ( 3.45) by a factor S - 1 ( C (1)) - 1 yields 

[I-s (ell)) -I ( C(l) - cl•l)] < e >(2)= < e >(I), 

(3.45) 

and recalling the definition of the concentration tensor T, Eq. (3.39) one obtains 

(3.46) 
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Then, finally, the effective stiffness is determined from Eq. (3.42) with the substitu
tion of the expression (3.46). 

The engineering constants of the composite can be derived from the stiffness 
tensor C* (Eq. (3 .42)) which is too elaborate for manual manipulations and must 
be evaluated with a computer programme. As an example, the components of the 
stiffness tensor c· have been calculated for a short fibre composite with perfectly 
aligned fibres modelled as an elliptic cylinder with equal semi-axis a1 = a2 . The 
numerical values of the stiffness components are as follows 

7.450 3.428 3.179 0 0 0 

7.450 3.179 0 0 0 

0.295 0 0 0 
· 10- 10 (GPaJ . (Ciikd = 

3.082 0 0 
symmetric 

3.082 0 

1.590 

The stiffness has been calculated for a nylon PA6/glass fibre composite with 35% 
volume fraction of fibres. The matrix and the fibre stiffness were, respectively, 
3.0 GPa and 73.5 GPa, whereas the Poisson ratio of the matrix was v = Q.33. From 
the stiffness components one can extract engineering constants of the composite, 
and the Young's modulus of the composite along the direction of fibres' alignment 
reads E = 27.68 GPa, whereas the transverse modulus i.e. along the cross section 
perpendicular to the fibres privilege direction is Et = 5.77 GPa. 

It has to be noted that in a real short fibre composite, processed for example 
by an injection moulding technique, the fibres are neither aligned nor dispersed at 
random directions. Fibre orientation is controlled by the nature of the flow field 
during filling of the mould. In general, fibres tend to become aligned parallel to the 
direction in which the material is becoming elongated (provided the flow is not too 
turbulent). This is illustrated by the schematic diagram of the flow pattern during 
injection into a simple rectangular mould, and the corresponding dispersion pattern 
of fibres, shown in Fig. 36. 

In this case, the fibres are well aligned in the outer layers of the moulding, 
but more randomly oriented towards the core. By predicting the flow behaviour 
under different injection conditions for specific components, a degree of control over 
the final fibre orientation pattern is often possible. Figure 37 shows a unit sphere 
within which one can illustrate the orientation distribution of fibres. If we translate 
orientation directions of all fibres contained in a RYE towards the unit sphere in 
such a way that they become attached to the centre point of the sphere, then the 
direction lines would cross a part of the surface of the unit sphere enclosed by a 
circle the longitude of which is determined by the angle () provided that all fibre 
directions lie in the interval (0, 8). 

The orientation distribution function g((), <P) describes a number of fibres direc
tions which cross a unit surface area of the sphere. Assuming that fibre orientations 
are uniformly distributed with respect to <P, which is usually the case for injection 

-r:noulded components, the orientation distribution function depends only upon the 
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FIGURE 36. (a) Schematic diagram of the mould filling process. (b) The longitudinal section of a 
polypropylene/15% glass fibre composite. (c) Transverse section from the same moulding. 
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Xat dS=sineded<t» 

(a) (b) 

FIGURE 37. (a) Unit sphere. (b) Boundary conditions for a single fibre in local coordinate system. 

angle 8, where(} belongs to the interval [0, n"/2]. The boundary conditions for each 
fibre are described in the local coordinate system (X{, X~, X3). The local coordi
nate boundary conditions are obtained from global coordinate boundary conditions 
which are prescribed for the RVE of the composite, Fig. 38. 

i.e. 

a' <e ><n 
iJ 

FIGURE 38. (A) RVE. (b) Global coordinate boundary conditions. 

The effective stiffness is calculated from an energy balance of the composite 
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c• = 1+ cO> je•dV. 
u 0Vv 

n 

c<t) 
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(3.47) 

Observe, that in order to find the effective stiffness of the composite it is nec
essary to estimate eigenstrains e•. Since each fibre is oriented differently, then the 
effect of fibres' misalignment (or orientation distribution) is taken into account by 
averaging the eigenstrain over all directions present in the specimen and character
ized by the orientation distribution function i.e. 

(3.48) 

where an infinitesimal surface element is given by 

dS = sinOdfJd~. 

The eigenstrain e• ( (}, ~) is calculated first in the local coordinate system (XL X~, 
X~) following a usual Mori-Tanaka procedure as described above and then trans
formed into the global coordinate system (X1 , X 2 , X 3 ) becoming a function of 
angles (} and ~. The calculations are straightforward but very tedious, and, there
fore, omitted here. The volume fraction of fibres c2 are defined by the following 
function 

or 

C2 = :D I g(O, ~)V dS 
n 

V C2 

Vv = f g(O,~)dS" 
n 

Substituting (3.49) into (3.48) yields 

(J 211' 

J J e•(O,~)g(O,~) sinOdfJd~ 
1 I ·dv o o Vv e =c2.;;........;;...._fJ_2_11' _______ _ 

o J J g(O,~)sinOdOd~ 
0 0 

One of the most versatile orientation distribution functions is given below 

(sin 8)2P-l (cos 8)2Q-l 
g( 8) = -9,--'-------'--~--'-----

J (sin 8)2P-1 (cos 0)2Q-l d(J 
6a 

(3.49) 

(3.50) 

(3.51) 

when the orientation distribution with respect to~ may be assumed to be uniform. 
The function (3.51) can simulate a skewness and peakedness of the orientation 
distribution to different extent depending on numerical values of parameters P 
and Q (P, Q > 1/2). Oa and (}b are the upper and lower limit for the angle (} 
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which is present in the distribution. Figure 39 illustrates an applicability of the 
expression (3.51) to the description of experimental results. The fibre orientations 
have been measured by an image analysis system on the cross sections perpendicular 
to the moulding direction. 
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FIGURE 39. Correlation of experimental results (histograms) with the Eq. (3.51}. N is a number 
of measured fibres. 

The measurements have been made for two specimens processed with high and 
low injection speeds, respectively. Moreover, the orientation of fibres has been de
tected at two positions of each specimen: close to the outer layer of the specimen 
and at the central area of the core region. Obviously, the fibres are more aligned 
along the outer layer than in the core of the specimens. It also seems to be the case 
that the higher injection speed aligns more fibres in the outer layers than the lower 
speed does. 

Since the angle(} prescribes a rotation of the fibre in (X2, X3 ) plane, then the 
eigenstrain along the X3 direction is only the function of 8, i.e. g(8, ~) g(8, 0), under 
the uniformity assumption with respect to the angle~. The Young's modulus along 
the fibres privileged direction may be calculated from (3.50) yielding 
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E(l) 

E= ------~!------------
! e3(8,0) g(8,0) sin 8 d8 

1 E< 1> o + ~c2~~~----------
u3 2 f g(8) sin 8 d8 

0 
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(3.52) 

The results were calculated with the same material constants as for a composite 
with aligned fibres and the experimentally obtained g(B), Table 1. 

TABLE 1. 

E [Gpa] 

Outer layer Core 

High speed 9.83 7.28 

Low speed 9.13 6.26 

It follows that the fibre orientation distribution has a pronounced influence on 
the composite stiffness. Furthermore, the outer layer of the injection moulded parts 
is more stressed under a uniform deformation field than the core area. This is due 
to a higher stiffness resulting from the better alignment of fibres in the region. 
Thus, the variations of the fibre distribution at different sites of a specimen can by 
themselves induce nonhomogeneous stress field apart from the disturbances caused 
by the presence of fibres. 

3.2.6. Determination of local stress variations. The determination of the 
local stress field in a composite is of interest when considering the influence of the 
microstructure morphology on different micromechanisms such as microcracks and 

FIGURE 40. Ti-5Al-5V /80% SiC composite. 
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voids formation and interfacial debonding. Stress analysis methods, which can be 
applied, are limited by the composition and complexity of the composite, e.g. spatial 
distribution and shape of the inclusions. For composites with long cylindrical fibres 
embedded in a matrix material and aligned unidirectionally, the analysis may be 
performed on a plane section perpendicular to the fibre direction. Thus the analysis 
may be reduced to a two-dimensional problem consisting of a matrix with circular 
inclusions. 

The spatial distribution of fibres is normally assumed to have some form of 
regularity. Due to the regularity assumption the fibres will be exposed to the same 
amount of interaction, and a unit cell (RVE) may consist only of one repeated unit 
of the regular pattern, such as in Fig. 40. 

The example shown in this figure is an exception rather than a common situ
ation. In most composite materials clustering of fibres result in an appearance of 
matrix-rich areas that significantly influence global response of the material. The 

FIGURE 41. Propagation of a transverse crack in polyester/glass lamina. 
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short range interactions in random distribution of fibres play a dominant role in 
nonhomogeneous, local variations of the field quantities. These interaction effects 
produced by fibres are highly sensitive to their exact positions with respect to their 
neighbours. The local properties become stress-dependent, and the deformation is 
no longer homogeneous, being influenced by the distribution of the reinforcement 
phase. Neglecting the geometrical disorder of fibres does not introduce a signifi
cant error in the prediction of the elastic and transport properties. By contrast, 
the fracture and plastic deformation of a matrix are highly nonlinear and localized 
phenomena which enhance the effect of preexisting heterogeneities in such a way 
that the local geometrical disorder cannot be neglected. The microfailure threshold 
is dominated by extreme fluctuations of the stress field, and these local hot spots 
are strongly influenced by a distribution pattern of fibres. Figure 41 shows the mi
crograph which illustrates the propagation of a transverse crack in polyester/ glass 
lamina. Obviously, the crack path, i.e. also toughness, depends on how fibres are 
positioned with respect to each other. 

The finite element method is ideally suited to the modelling of highly ordered 
composite systems, such as a hexagonal array of continuous fibres, because the choice 
of the mesh domain and its repeat arrangement are unambiguous. The best choice of 
the mesh for disordered systems is less clear. Unfortunately, in many cases it turns 
out that the predictions are very sensitive to the arrangement chosen, because it 
affects the severity of the constraint imposed on different regions of the matrix due 
to the presence of neighbouring fibres, which, in turn, influences matrix plasticity 
and damage formation . The finite element solution for a multi-fibre approach is 
feasible if the mesh resolution is not a critical issue. An example of this is given 

+ t t t + t t + + t 

+ + + + + + + + + + 

.·.!•.t=>a 

• ·3 t~'Pa. 

2~ • '~4:Ja 
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FIGURE 42. Finite element model of randomly packed continuous fibres in a matrix subjected to 
transverse tensile stress. 
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in Fig. 42, which illustrates the local variation in matrix hydrostatic stress in a 
FEM domain containing 30 aligned boron fibres in an Al(6061) matrix subjected to 
a transverse tensile stress 137 MPa. (The shading of the fibres is not indicative of 
the stresses within them). 

Predicted stress-strain response for this composite is presented in Fig. 43a along 
with a prediction for different regular distributions. There exists a strong divergence 
in the plastic response among considered models, and the only cause of these differ
ences is the distribution pattern of fibres. Similarly, in Fig. 43b, large differences in 
the work-hardening behaviour of short fibre composite result from changes of pack
ing distributions, even though there is no change in fibre volume fraction or aspect 
ratio, or in any physical property of either constituent (the dashed line in Fig. 43b 
represents experimental values). 

0 
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FIGURE 43. Predicted stress-strain responses for (a) Al-50 vol% B long fibre composite under 
transverse loading, and {b) 5456 Al-20 vol% aspect ratio 4 SiC for different fibre packing. 

FE methods are versatile and powerful and can be used to reveal useful infor
mation about both local and global characteristics of composites. However, a sound 
understanding of the basis of FEM such as mesh sensitivity and an appreciation of 
the significance of the boundary conditions being used are essential, if misleading 
deductions are to be avoided. FUrthermore, in order to explore the influence of fibre 
dispersions on both local and global quantities, it is necessary to perform a large 
number of simulations to calculate ensemble-averages within each family of possible 
dispersions. Finite element application to this task will be too time consuming and 
costly. · 

An alternative approach may be based on the combination of the Eshelby's 
equivalent inclusion method and the superposition scheme which is solved itera
tively. Figure 44 illustrates a principal idea behind this method. 

Contrary to the solution for a single fibre the stress interactions between the 
fibres must be taken into account. The basic idea of accounting for this interaction 
is to determine the stress field inside a fibre as in the Eshelby solution, but also 
include the interacting stress field from the neighbouring fibres. The problem is 
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FIGURE 44. Superposition scheme for multi-fibre problem. 
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divided into a number of sub-problems corresponding to the number of fibres. In 
each subproblem the heterogeneous solid is substituted with a homogeneous body 
where an unbalanced stress field has been introduced. This corresponds precisely 
to the Eshelby idea. However, instead of solving a subproblem directly through the 
Eshelby tensor, it is solved iteratively since we have to incorporate the interacting 
stresses from the remaining fibres adding them te the stress field inside the area 
covered by the fibre. In other words, using Eshelby's terminology, every inclusion in 
the equivalent material is exposed to the total stress which is composed of the elastic 
stress and the eigenstress, as before, and additionally has a third component that 
comes at the inclusion spot from surrounding inhomogeneities. It is obvious that the 
iterative procedure is necessary as the balance of stresses must be simultaneously 
achieved at all fibres. 

The newest developed X-ray tomographic microscopy method, which is based 
on the use of desktop instruments, is very suited to yield information about the 
internal structure of a mm-size composite sample non-destructively and in three 
dimensions. 

X-ray microscopy is a relatively new technique that has not been applied to any 
significant extent in materials science. Most X-ray microscope development has so 
far been made using large synchrotron sources. This has limited X-ray microscopy 
to a research tool available only at the major synchrotron facilities. The use of X
ray tubes with a very small focus together with a very sensitive recording devices 
enable the design of a bench-top X-ray microscopy with a spatial resolution less 
than 6 micrometers. In X-ray microtomography, the object is rotated so as to ob
tain radiographic projections from different viewing angles. An enlarged radiograph 
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of the object is recorded by an X-ray sensitive camera after the object has been 
traversed by the conical X-ray beam. All these projections are used in a reconstruc
tion algorithm, which calculates a set of serial non-destructive sections where the 
interpretation of the image, i.e. cross section, can be done in terms of attenuation 
of the X-rays in the object . Then, a three-dimensional image of the specimen can 
be reconstructed from serial sections and can be processed to show and measure 
three-dimensional features. 

Figure 45 shows radiographic image of unidirectional fiber glass epoxy compos
ite acquired at single viewing angle. One reconstructed cross-section through the 
unidirectional composite is presented in Fig. 46a. This non-destructive image allows 
determination of the center positions for all fibers in order to characterize a disper-

FIGURE 45. Radiographic image of a unidirectional glass fiber epoxy composite. 

(b) 

FIGURE 46. reconstructed transverse section of unidirectional composite (a); corresponding 
binary image (b). 
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sion pattern in quantitative terms, simultaneously giving a visual impression about 
the homogeneity of fibers' dispersion. 

The precision and accuracy of the image is slightly disturbed by a statistical 
noise, which cannot be eliminated from microtomographic scans. However, the post
reconstruction filtering, image enhancement and thresholding can to a large extent 
eliminate its influence. This is illustrated in Fig. 46b where the original image is 
replaced by its digitized counterpart. The coordinates of fiber centers vary with the 
position of the reconstructed cross section. The non-destructive slices taken at rela
tively small interval of approximately 80 J.tm clearly indicate that the fibers are not 
parallel. This effect is detailed in Fig. 47, where marked fibers change their relative 
position along the distance between two consecutive slices. Such non-destructive 
serial sectioning may be used to disclose fiber waviness, a geometrical factor that 
controls compressive properties of the unidirectional composite. Having to ones 
disposal a stress analysis method that allows to calculate the stress field in the uni-

(a) (b) 

FIGURE 4 7. Magnified binary reference section (a); section 80 J.Lm apart (b). 
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FIGURE 48. Variability of maximal radial stresses for fibers in the reference section (a); in the 
section 80 J.Lm apart (b). 

http://rcin.org.pl



368 R. PYRZ 

directional composite loaded transversely to the fibers direction by a remote stress 
as described above, it is possible to follow slice-to-slice variations of the stress field. 
Figure 48 exemplifies this possibility showing variability of maximal, radial stresses 
at fibers' interfaces for two consecutive cross-sections from Fig. 47. The remote stress 
is equal to 1 MPa; thus all maximal radial stresses are magnified locally. Further
more, the variability of stresses for the image from Fig. 47a is significantly larger 
than for the other image. Stress variances are 0.0133 and 0.0057, correspondingly. 
Although the reconstructed images look apparently very alike a detailed analysis 
discloses subtle differences that may have a crucial influence on the overall behavior 
of the composite. 
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