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Recent methods in computational structural mechanics put more emphasis on 
the consideration of uncertainties of loads and structural properties within the 
analysis. In most cases, these methods rely heavily on probability theory and 
statistics. Computational procedures for an efficient handling of random phe­
nomena in structural mechanics have been developed over the last few decades. 
This includes specific concepts for stochastic finite elements which are based on 
the possibly very close relation between structural and statistical/stochastic data. 
The paper starts with a description of essential elements from probability the­
ory. This includes random variables, random vectors, and random fields . Special 
emphasis is then put on outlining methods to determine structural failure prob­
abilities under static and dynamic loading conditions. These methods cover ac­
curate methods such as Monte Carlo simulation as well as approximate methods 
such as the first order reliability method or the response surface method. Several 
numerical examples from different areas of structural mechanics demonstrate the 
application of these methods. 

Key words: Reliability analysis, nonlinear structu.rol analysis, stochastic mechan­
ics, rondom fields, computational mechanics, stochastic finite elements. 

1. Introduction 

Numerical methods for structural analysis have been developed quite sub­
stantially over the last decades. In particular, finite element methods and 
closely related approximations have become state of the art. The modeling 
capabilities and the solution possibilities lead, on the one hand, to an in­
creasing refinement allowing for more and more details to be captured in the 
analysis. On the other hand, however, the need for more precise input data 
becomes urgent in order to avoid or reduce possible modeling errors. Such er­
rors could eventually render the entire analysis procedure useless. Typically, 
not all uncertainties encountered in structural analysis can be reduced by 
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100 C. BUCHER and M. MACKE 

careful modeling since their source lies in the intrinsic randomness of natural 
phenomena. It is therefore appropriate to utilize methods based on proba­
bility theory to assess such uncertainties and to quantify their effect on the 
outcome of structural analysis. 

The paper presents an overview of probability-based methods to describe 
structural uncertainties and to calculate stochastic structural responses - in 
particular structural reliability. The theoretical concepts are supplemented 
by several numerical examples in which the implementation of the methods 
in structural mechanics is demonstrated. 

2. Random variables 

2.1. Basic definitions 

Probability in the mathematical sense is defined as a positive measure 
in the range [0, 1] associated with an event A in probability space. For most 
physical phenomena this event is defined by the occurrence of a real-valued 
random value X which is smaller than a prescribed, deterministic value x, 
i.e., 

A={X:X<x}. (2.1) 

The probability P(A) associated with this event obviously depends on the 
magnitude of the prescribed value x, i.e., P(A) = F(x). For real valued X 
and x, this function is called cumulative distribution function with 

F(x) = P(X < x). (2.2) 

Since for real-valued variables x it is always true that -oo < x < oo, we 
obviously have 

lim F(x) = 0, and lim F(x) = 1. 
x--oo x-+oo 

(2.3) 

Formal differentiation of F(x) with respect to x yields the probability density 
function 

d 
f(x) = dx F(x). (2.4) 

From the above relations it follows that the area under the probability density 
curve must be equal to unity, i.e., 

00 

j f(x)dx = 1. (2.5) 

-oo 

A qualitative representation of these relations is given in Fig. 1. 
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FIGURE 1. Schematic sketch of cumulative distribution and probability density 
functions. 

In many cases it is more convenient to characterize random variables in 
terms of expected values rather than distribution functions. Special cases of 
expected values are the mean value p, 

00 

J1. = E[X] = j xf(x)dx, (2.6) 
-00 

and the variance a 2 of a random variable 

00 

cr2 = Var[X] = E[(X- JJ.)2
] = j (x- JJ.) 2 f(x)dx. (2.7) 

-00 

The positive square root of the variance a is called standard deviation. For 
variables with non-zero mean value (p, =I= 0) it is useful to define the dimen­
sionless coefficient of variation 

a 
V --- . 

J.-L 
(2.8) 

A description of random variables in terms of mean value and standard de­
viation is sometimes called second moment representation. Note that the 
mathematical expectations as defined here are ensemble averages, i.e., av­
erages over all possible realizations. For a more extensive treatment of the 
above subjects see, e.g., (1). 
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102 C. BUCHER and M. MACKE 

2.2. Two types of distributions 

Due to its simplicity, the normal or Gaussian distribution is frequently 
used. A random variable X is called to be normally distributed when its 
probability density function f ( x) is of the form 

j (X) = _!_ cp (X - J.L) = -
1
- exp [- (X - J.L) 

2

] , -00 < X < 00, ( 2. 9) 
a a av'27r 2a2 

whereby cp( ·) denotes the standard normal density function 

cp(u) = ~ exp[-~
2

], -oo < u < oo. (2.10) 

The cumulative distribution function F(x) is described by the normal integral 
<P(·) as 

F(x)=$(X:JL) (2.11) 

in which 

$(u) = ~ i: exp[- ~] dz. (2.12) 

This integral is not solvable in closed form, however tables and convenient 
numerical approximations exist. The use of the normal distribution is fre­
quently motivated by the central limit theorem which states that an additive 
superposition of independent random effects tends asymptotically to the nor­
mal distribution. 

A random variable X is referred to as lognormally distributed when its 
probability density function f ( x) is 

f(x) = 1 cp(ln[x- xo]- b) 
a(x- xo) a 

= 1 exp [- (ln[x- xo] - b)2] ' xo ::; x < oo, 
a(x- xo)J21r 2a2 

(2.13) 

and its cumulative distribution function F(x) is consequently given by 

F(x) = $('n[x-:o]- b). (2.14) 

In other words, a random variable X is said to be lognormal when its loga­
rithm is normally distributed. In the above equations, the parameters a and 
bare related to the mean value J.L and the standard deviation a of X by 

a= 
a2 

and b = ln[J.L- xo] - 2 (2.15) 
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STOCHASTIC COMPUTATIONAL MECHANICS 103 

or 

(2.16) 

In Fig. 2 the normal and lognormal probability density functions are displayed 
for J.l = 1.0 and a= 0.5. It is clearly seen that the lognormal density function 
is non-symmetric. 
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FIGURE 2. Normal and lognormal probability density functions. 

2.3. Random vectors 

5 

In many applications a large number of random variables occur together. 
It is conceptually helpful to assemble these random variables Xi (with i = 
1, 2, ... , n) into a random vector 

(2.17) 

where [·]' is transpose. For this vector, expected values can be defined in 
terms of expected values for all of its components, i.e., the mean value vector 
is defined as 

J.l = E(X] = (E[X1], E(X2], ... , E(Xn)]' = (J.LI, J.£2, ... , J.tnJ', (2.18) 

and the covariance matrix as 

C = Cov[X, X] = E[(X- J.,L)(X- J.l)']. (2.19) 
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The dimensionless quantity (with i,j = 1, 2, ... , n) 

(2.20) 

is called coefficient of correlation, whereby ai and aj denote the standard 
deviations of the random variables Xi and Xj, respectively. The value of the 
coefficient of correlation is bounded in the interval [ -1, 1]. 

The covariance matrix C is symmetric and positive definite. Therefore, 
it can be factored into (Cholesky decomposition) 

C=LL' (2.21) 

in which L is a non-singular lower triangular matrix. The Cholesky factor L 
can be utilized for a representation of the random variables X in terms of 
zero-mean uncorrelated random variables X via 

(2.22) 

2.4. Joint probability density function models 

If all n random variables Xi (with i = 1, 2, ... , n) are mutually indepen­
dent, then then-dimensional joint probability density function fn(x) is given 
by the product of the individual probability density functions f(xi), i.e., 

n 

fn(x) = fl f(xi)· (2.23) 
i=l 

This follows from the multiplication rule for independent events. Especially 
for n independent standard normal random variables Ui (with i = 1, 2, ... , n) 
follows that 

n 

<tJn(u) = fl <p(ui)· (2.24) 
i=l 

It should be noted, that independent random variables are always uncorre­
lated. The reverse is not necessarily true. However, if the random variables 
are jointly normally distributed, and they are pairwise uncorrelated, then 
they are also pairwise independent. 

If the n jointly normally distributed random variables X are pairwise 
correlated, then their joint probability density function is given as 

fn(x, ~'-• C) = J 1 
exp [--

2
1 
(x- J-L)'C- 1(x- J-L)l 

(27r)n det C 
(2.25) 
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STOCHASTIC COMPUTATIONAL MECHANICS 105 

or for standardized normal random variates 

( ) 1 [ 1 1 -1 l 'Pn u, R = exp - -
2 

u R u , J (27r )n det R 
(2.26) 

with R denoting the correlation matrix, i.e., the matrix of correlation coef­
ficients. 

For random variables X with arbitrary (marginal) distribution functions 
f(xi), an analogous description of the joint probability density function fn(x) 
in terms of its marginals and second moment characteristics - i.e., mean J-t 
and covariance C - can be achieved in form of the J ohnson translation system 
[2, 3] which is defined as 

(2.27) 

In Eq. (2.27) the variables Ui (with i = 1, 2, ... , n) are zero-mean standard 
normal random variables given by the translation 

(2.28) 

As can be seen from Eq. (2.27), the correlation of the random variables 
X is handled by the n-dimensional joint normal distribution 'Pn ( ·). Since the 
marginal transformation of Eq. (2.28) changes the correlation structure, the 
relation between the correlation coefficients {}ij in the original random vari­
able space and the correlation coefficients Tij in the normal random variable 
space is given by 

(2.29) 

Therefore, when using this model, we have to adapt the correlation coeffi­
cients rij by solving Eq. (2.29). This is usually achieved by iteration. A known 
problem of the model is that this iteration may lead to a non-positive-definite 
matrix of correlation coefficients in normal random variable space, although 
the corresponding covariance matrix in original random variable space is pos­
itive definite. In this case, the model is not applicable. 

The above model is especially convenient when transforming correlated 
non-normal variables X to uncorrelated normal variables U with zero mean 
and unit variance. This is a common feature in most reliability analysis meth­
ods like the first order reliability method, as will be seen below. In this case 
the transformation consists of the following two steps: 

http://rcin.org.pl



106 C. BUCHER and M. MACKE 

1. Transform from correlated non-normal space (variables Xi) to corre­
lated standard normal space (variables Ui) by utilizing the marginal 
transformation 

Ui = <P- 1 [F(xi)], i = 1, 2, ... , n. (2.30) 

It should be noted that these transformations can be carried out inde­
pendently. 

2. Transform from correlated normal space to standard normal space by 
means of 

u = L-1u . (2.31) 

in which L is calculated from the Cholesky decomposition of the cor­
relation matrix R in normal random variable space. 

The transformation from uncorrelated normal to correlated non-normal space 
is simply made in reverse order. 

3. Structural reliability analysis 

3.1. Limit state function and probability of failure 

Generally, failure (i.e., an undesired or unsafe state of the structure) is 
defined in terms of a limit state function g( ·). Having given a vector of n 
random variables X= [X1, X2, . . . , Xn]', the limit state function g(x) divides 
the random variable space in a safe domain 

S = {x: g(x) > 0}, (3.1) 

and a failure domain 

F = {x: g(x) ~ 0} . (3.2) 

Frequently, Z = g(X) is called safety margin. As can be seen in Fig. 3, the 
definition of the limit state function is not unique. However, the probability 
of failure, i.e., the probability that failure will occur, which is defined as 

P(F) = P(g(X) $ 0) = j · · · j f(x)dx (3.3) 

g(x)~O 

is a unique quantity. In other words, the probability of failure does not depend 
on the particular choice of the limit state function. 
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STOCHASTIC COMPUTATIONAL MECHANICS 107 

F ={(V, L, Mpi): V L ~ Mp1} ={(V, L, Mp1): 1- (V L/Mpl) ~ 0} 

FIGURE 3. Structural system and failure condition. 

3.2. First order second moment (FOSM) 

The first order second moment method [4, 5] aims at a representation of 
the limit state function g( ·) by calculating the statistical moments of the 
safety margin Z. Let us assume that the limit state function g( ·) is given as 

(3.4) 

where Xi (with i = 1, 2, ... , n) are random variables. A special case of the 
limit state function given in Eq. (3.4) is the linear function 

n 

Z =no+ L:niXi 
i=l 

(3.5) 

with ni (with i = 0, 1, ... , n) being arbitrary constants. Therewith the mean 
value of Z is given as 

n n 

E[Z] = no + I: niE[Xi] = no + I: niJ-li, (3.6) 
i=l i=l 

whereas the variance is 

n n n n 

Var[Z] =I: I: ninjCov[Xi, Xj] =I: I: ninjl?ijaiaj. (3.7) 
i=lj=l i=lj=l 

As can be easily seen, the safety or reliability index {3 is given by 

{3= E[Z] 
JVar[Z] 

(3.8) 
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In general, however, g(x) is non-linear. In this case, the mean and variance 
of Z have to be approximated. Let us assume the function g( ·) is suffciently 
smooth near the expansion point xo, then 

~ 8g(x) I 
g(x) = g(xo) + ~ axi x=xo (xi - xo,i) + (3.9) 

Utilizing the mean xo = JL as an expansion point will result in 

E[Z] ~ g(JL) = g(J-L1, /-L2, ..• , J-Ln) (3.10) 

and 

Var[Z] "" t t a~~:) lx=,. a~~;) lx=,. Cov[X;, Xil· (3.11) 

Therewith the approximate safety index is 

[ ] 

-1/2 

c n n 8g(x) 8g(x) 
f3 ~ f3 = g(JL) L L -. I - . I flijaiaj . 

. 1 . axt x-u axJ x-··· t= J=1 -,.- -,.-

(3.12) 

Note that this result does not take into account the types of distributions of 
the basic variables. The calculated approximate safety index {3c also depends 
significantly on the expansion point for the Taylor-series, as can be seen in 
the following example. 

Given is a cantilever beam of length L with plastic moment mpl under 
load V (see Fig. 3). Both the load V and the length L are normal random 
variables. Their statistical description is given in Table 1. 

TABLE 1. Definition of random variables for cantilever beam (see Fig. 3). 

I Variable I Mean I Standard deviation I Distribution I 

I 

V 

I 

5 

I 

0.5 

I 

Normal 
L 2 0.2 Normal 

ffipl 15 

A possible formulation of the limit state function is 

91 (v, l) = mpl- vl. 

Utilizing the first order second moment method with 

8g1(v,l) =-l and 
av = -v, 

I 

(3.13) 

(3.14) 
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it follows that 
91 (J-t) = 5.0, 

and 

[
a91(v,l)l ]

2 

[a91(v,l)l ]
2 

= 20 av av + az az .. 
v,l=IJ. v,l=IJ. 

Therewith, an approximation for the reliability index is 

c 5.0 
/31 = /07i ~ 3.53 . 

v2.0 

109 

(3.15) 

(3.16) 

(3.17) 

However, an equivalent formulation for the limit state function is given 
as 

Therewith 

ffipl 
92(v, l) = -l-- v. 

a92(v, l) = _
1 

av 
and 

and consequently 
92 (J-t) = 2.5 

and 

[ 
a 92 ( v, z) 1 J 

2 

[ a 92 ( v, z) 1 J 
2 

r'V 0 81 av a V + az az rov • • 

v,l=IJ. v,l=IJ. 

The approximate safety index is in this case 

c 2.5 
/32 = /i\01 ~ 2.78' 

v0.81 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

which differs clearly from the above calculated approximation ,Bf. It should 
be pointed out that the exact value of the safety index is f3 = 3.18. 

3.3. First order reliability method (FORM) 

The concept of the first order reliability method [6, 7) is based on a descrip­
tion of the reliability problem in standard normal space. Hence transforma­
tions from dependent non-normal variables to independent normal variables 
with zero mean and unit variance are required [8). In the following we assume 
that we are working in standard normal space. (A possible transformation 
from non-normal to normal space has been described in Sec. 2.4.) 

Let us assume again that the limit state function 9(·) is given as 

(3.23) 
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_where Ui (with i = 1, 2, ... , n) are standard normal random variates. We 
want now to linearize the limit state function around a point u*. In first 
order reliability method the expansion or design point u* is chosen such as to 
maximize the probability density function of U in the failure domain (point of 
maximum likelihood). Geometrically, this coincides for the standard normal 
space with the point in the failure domain having the minimum distance {3 
from the origin, as shown in Fig. 4. Note that this geometrical formulation 
is in general not valid in other random variables than the standard normal 
space. 

Failure 
domain F 

Safe 
domainS 

FIGURE 4. Expansion point u• and reliability index {3 in standard normal space. 

From the geometrical interpretation of the expansion point u * in standard 
normal space it becomes quite clear that the calculation of the design point 
and, consequently, the reliability index {3 can be reduced to an optimization 
problem of the form 

{3 = min { (u'u) 1/ 2 I g(u) = 0}, {3 > 0, g(O) E S. (3.24) 

This leads to the Lagrange function 

L = u'u + .Xg(u) ---+ min! (3.25) 

Standard optimization procedures can be utilized to solve for the location 
of u* [9). 

Given is, again, the cantilever beam of length L with plastic moment mpl 

under load V. Both V and L are normal random variables and their statistical 
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STOCHASTIC COMPUTATIONAL MECHANICS 111 

description is the same as given in Table 1. The limit state function is given by 

g(v, l) = mpl- vl. 

In standard Gaussian space the Lagrange function is written as 

Therewith, the partial derivatives are 

8L/ 8u1 = 2ul - Aal (x2a2 + J-L2) = 0, 

8Lj8u2 = 2u2- Aa2(x1a1 + J-Ll) = 0, 

8L/A = mpl- (u1a1 + J-L1)(u2a2 + J-L2) = 0. 

The solution to the above equation system is given by 

ui :=::::: 2.25, u2 :=::::: 2.25, and A :=::::: 3.67, 

(3.26) 

(3.28) 

(3.29) 

as can be shown by inserting in Eq. (3.28). This corresponds to a safety index 
of {3 = 3.18. The {3-point coordinates in original random variable space are 

v* :=::::: 6.12 and l* :=::::: 2.45. (3.30) 

For determining the failure probability, the exact limit state function g(u) 
is replaced by a linear approximation g(u) as shown in Fig. 4. Expanding 
the limit state function in u* in a Taylor series (with only the linear terms 
retained) gives 

or simply 

g(u) = g(u*) + ~(u;- ui) 8~:) ~u~u· 
= g(u*) + (u- u*)' ((u*) 

g(u) = a:'u + {3 = 0. 

In Eq. (3.32) the a-values - so called sensitivity factors - are given by 

whereas the {3-index is 

a:'- ((u*) 
- v'C'(u*)((u*)' 

g(u*)- (u*)'((u*) 
{3 = -V-;=(,;:::::::::( u==:* )=(:::::::::( u=:=* )-· 

(3.31) 

(3.32) 

(3.33) 

(3.34) 
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As can be seen from Eq. (3.32), the linearized limit state function is a 
linear combination of normally distributed random variables, i.e., the limit 
state function is also a normal random variable with mean 

E[g(u)) = (J (3.35) 

and variance 
Var[g(u)) = 1. (3.36) 

Since failure is defined as g(u) ::; 0 the failure probability utilizing the lin­
earized limit state function is 

P(F) = <P( -(3). (3.37) 

This result is exact if g(u) is actually linear. 

4. Monte Carlo methods 

4.1. Plain Monte Carlo simulation 

In stochastic structural mechanics we are interested in determining func­
tionals of the form J w(x)f(x)dx = E[w(x)J, (4.1) 

V 

whereby V denotes the integration domain and f(x) is a joint probability 
density function . The most prominent example of such a functional certainly 
is the probability of failure 

P(F) = J · · · J f(x)dx. ( 4.2) 

g(x)~O 

Introducing an indicator function I( ·) that equals one if its argument is true, 
and zero otherwise, we can write the probability of failure in from of Eq. ( 4.1) 
as 

P(F) = J l(g(x) ::; O)f(x)dx = E[I(g(x) ::; 0)]. (4.3) 

V 

In order to determine P(F), in principle, all available statistical methods 
for estimating expected values are applicable. If m independent samples x(k) 

(with k = 1, 2, ... , m) of the n-dimensional random vector X are available, 
then the estimator 

m 

P(F) = E[I(g(x) ::; 0)) = L I(g(x(k)) ::; o) (4.4) 
k=l 
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STOCHASTIC COMPUTATIONAL MECHANICS 113 

yields a consistent and unbiased estimate of P(F) (10, 11). The variance of 
this estimator is given as 

Var[P(F)] = ~ Var[I(g(x) ~ 0)] = ~ (P(F)- P 2 (F)). (4.5) 
m m 

Therefore, for small values of P(F) the variance of its estimator is approxi­
mately 

~ 1 
Var[P(F)] ~ - P(F). 

m 
(4.6) 

The required number m of samples to achieve a certain - most preferably 
small - value of the variance of the estimate is independent of the dimension 
n of the problem. However, for small values of P(F) and small values of m 
the confidence of the estimate is very low as can be seen from Eq. (4.6). 

4 

2 

0 

-2 

0 

g(u) = 0 

0 

0 

0 0 0 
0 0 

0 
0 

oo 
0 0 

0° 0 ° oo 0 

0®-. 0 oO 0 0 

Failure 
domain F 

tj~ 0 c9 0 
o 0 o"o o o o 
c:fO ~ 0 0 

oo go ~o 
o 0 o BQ> 

0 0 0 0 ~ oo 
0 o 0 (J 

0 0 0 

Safe 
domainS 0 

-2 

0 

0 

0 

2 

Random variate U1 
4 

FIGURE 5. Plain Monte Carlo simulation in standard normal space (m= 100}. 

To make this finding more clear, let us re-calculate the cantilever problem 
of Sec. 3.3 by plain (or crude) Monte Carlo simulation. The dimensionless 
limit state function in standard normal space is given as (see also Fig. 5) 

(4.7) 

with mpl = 15, /-Ll = 2, J-L2 = 5, a 1 = 0.2 and a2 = 0.5. To utilize the 
estimator of Eq. ( 4.4), we generate samples of the standard normal variables 
ul and u2 and evaluate the indicator or limit state function, respectively. 
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As can be seen from Fig. 5, if the estimated probability of failure is quite 
small, we quite seldom have a hit in the failure domain F. (For the shown 
m = 100 samples there is no hit in the failure domain at all.) In other words, 
only a small fraction of the samples will contribute to the estimator of the 
probability of failure and therefore the estimate will have a large variance. 
For a sample size of m= 104 we get an estimate of the probability of failure 
of P( F) = 4.0 · 10-4 with a sampling error of e = 50.0 %, which is defined as 

A (\far[P(F)]) 112 

e = A 

P(F) 
(4.8) 

For a lower number of samples there were no hits in the failure domain, as 
can be seen from Table 2. 

TABLE 2. Comparision of different simulation techniques. 

m Plain simulation Importance sampling Adaptive sampling 

P(F) e P(F) e P(F) e 
102 - - 5.9. 10-4 19.6% 6.8. 10-4 8.3% 
103 - - 6.6. 10-4 5.9% 6.7. 10-4 2.5% 

104 4.0. 10-4 50.0% 6.9. 10-4 1.9% 6.7. 10-4 0.8% 

4.2. Importance sampling 

In order to reduce the standard deviation (\far[P(F)]) 112 of the estimator 
to the order of magnitude of the probability of failure P(F) itself, m must 
be in the range of m= (P(F))- 1 . For values of P(F) in the range of 1·10-6 

this can not be achieved with reasonable computational effort. Alternatively, 
strategies have top be employed which increase the "hit-rate" by artificially 
producing more samples in the failure domain than should occur according 
to the distribution function f(x). One way to approach this solution is the 
introduction of a positive weighting function h( ·) such that 

P(F) = j I(g(x) ~ O)f(x)dx = j I(g(x) ~ 0) {~:~ h{x)dx. {4.9) 
D D 

This positive weighting function can be interpreted as the density function 
h(x) of a random vector X. Therewith the probability of failure P(F) is 

P(F) = E [I(g(X) ~ 0) {~:n . (4.10) 
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The probability of failure is then estimated from (10, 11] 

( 4.11) 

This estimator of the failure probability is again unbiased, i.e., 

E[I(g(x) ::; 0)] = E [I(g(X) ::; 0) ~~~n ( 4.12) 

with variance 

Var[f>(F)] = ~ { E [I(g(X) ::; 0) G~~D 
2

] - (P(F))2
}. (4.13) 

As can be seen from eqs. (4.12) and (4.13), the utilization of the density 
function h( ·) does not change the value of the estimate of P( F), but only 
the variance of the estimate. Therefore, a useful choice of h(x) can be based 
on minimizing the variance of Eq. (4.13). Ideally, such a weighting function 
should reduce the sampling error. However, this can not be achieved in reality, 
since such a function should have the property 

_ { P(
1
F) f(x), if g(x) ~ o, 

h(x) = 
0, otherwise. 

(4.14) 

This property requires the knowledge of P(F) which, of course, is unknown. 
Nevertheless, Eq. ( 4.13) can be utilized to construct improved Monte Carlo 
estimators as can be seen in the following example. 

Let U be normally distributed with cumulative distribution function 
4>(u). Assume that the limit state function is given by 

g(u) = {3- u. (4.15) 

We want to find an optimal sampling density function in the form 

h( -)- 1 [ (u-a)
2

] u - --exp- . 
~ 2 

( 4.16) 

In this form, a will be chosen to minimize the variance of the estimated 
probability of failure. 

http://rcin.org.pl



116 C. BUCHER and M. MACKE 

The variance of the estimator of P( F) can be calculated directly by eval­
uating the expectations given above, i.e., 

00 

= 1 jexp[-u2 + (u- a)2] du- _!_(<I>(-/3))2 
m.J2; 2 m 

( 4.17) 

/3 

= _!_ exp(a2)<I>( -(/3 +a))-_!_ (<I>( -/3))2. 
m m 

Differentiation with respect to a yields 

aa Var[P(F)] = _!_ exp(-a2)[2a<I>(-(f3+a))- cp(-(f3+a))]. (4.18) 
a m 

Therefore a necessary condition for the variance Var[P(F)] to become mini­
mal is 

2a<I>( -(/3 +a))- cp( -(/3 +a))= 0. (4.19) 

Using the following asymptotic (as z ~ oo) approximation for <I>( -z) (Mill's 
ratio) 

1 
<I>(-z) ~ -cp(-z) 

z 
an asymptotic solution to the minimization problem is given by 

2a 
-- - 1 = 0 or a = /3. 
f3+a 

(4.20) 

( 4.21) 

This means that centering the weighting function h( u) at the design point 
u* = f3 will yield the smallest variance for the estimated failure probability. 
For a value of f3 = 3.0 the variance is reduced by a factor of 164 as compared 
to plain Monte Carlo simulation. 

The above finding can be generalized to n dimensions, leading to impor­
tance sampling at the design point. This procedure can be established in three 
steps: 

1. Determine the design point x* as shown in the context of the first order 
reliability method in Sec. 3.3. 

2. Choose a weighting function (sampling density) h(x) with mean value 
vector E[X] = x* and covariance matrix C = Cov[X, X] = Cov[X, X] 
in the following form (n-dimensional normal distribution) 

h(x) = 1 exp[-~(x- x*)'c- 1(x- x*)]. (4.22) 
J(27r)n det C 2 
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3. Perform random sampling and statistical estimation according to 
eqs. (4.11) and (4.13). 

The efficiency of this concept depends on the geometrical shape of the limit 
state function. In particular, limit state functions with high curvatures or 
almost circular shapes cannot be covered very well. 

Applying this procedure again to the cantilever beam problem, we shift 
the sampling density h( ·) to the design point u* in standard normal space, 
i.e., the sampling density is centered around u* = [2.25, 2.25]'. In Fig. 6 
samples generated with this new sampling density are shown. As can be 

4 
g(u) = 0 • • 

::S 
Q) 2 
~ 
'i: 
~ 
8 0 

0 
0 

"0 0 c:: 
~ 0 
~ 0 

-2 Safe 
domainS 

-2 0 2 4 

Random variate U 1 

FIGURE 6. Importance sampling at the design point u• (m= 100). 

clearly seen, now approxiamtely half of the samples hit the failure domain, 
contributing therewith to the estimate of the probability of failure. Since, 
furthermore, the samples are centered around the most likely point leading to 
failure, the variance of the estimate can be considerably reduced. For a sample 
size of m= 103 the estimate of the probability of failure is P(F) = 5.9 ·10-4 

with a sampling error of e = 5.9% (see Table 2). 

4.3. Adaptive sampling 

Another Monte Carlo method for estimating the probability of failure 
is adaptive sampling [12]. This method also utilizes an importance sampling 
density function h( ·), however, the necessary parameters - like, e.g., the mean 
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values and the covariance matrix- are estimated from the results of a pre­
vious Monte Carlo simulation run. 

Consider now the sampling density function h(x, J.L, C) (e.g., a normal 
joint distribution) with unknown mean values J.L and covariance matrix C. 
As we already know, an optimal choice of this parameters is given when the 
variance of estimator of the failure probability becomes minimal. In other 
words, for determining the mean values J.L and C the following optimization 
problem has to be solved 

(4.23) 

In general it is difficult to find a solution of Eq. ( 4.23). Therefore, via a first 
initial guess of the parameters jL0 and Co samples in the failure domain are 
generated which allow to estimate these parameters directly and refine them 
in subsequent steps. In the(!+ 1)-th iteration step the parameters A-r+l and 

C-y+l are estimated by 

m (-(k)) 
~ = _.!._ ""x.(k) I( (x.(k)) < o) f x A 

J.L"Y+l m~ g - h(-(k) A C ) 
k=l X ,J.L-y, "Y 

(4.24) 

and 

C-y+l = ~ f (X(k) - {1.-y+l)(X(k) - {1.-y+l)' 
i=l 

f( -(k)) 
x I( (x.(k)) < o) x 

g - h(- (k) A c ) 
X 'J.L"Y' -y 

(4.25) 

In other words, adaptive sampling utilizes previously gathered information 
about the failure domain to improve the estimated parameters and therewith 
the efficiency of the importance sampling technique. 

In Fig. 7 the samples after adaptation are shown. The estimated values 
of the second moments are Ml = 2.44, fL2 = 2.44, a1 = 0.66, a2 = 0.66, e12 = 
-0.88. Therewith, we can achieve already with a sample size of m = 103 

an estimator of the probability of failure of P(F) = 6. 7 · 10-4 with a high 
confidence, since the sampling error is only e = 2.5 %, as can be seen from 
Table 2. 
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FIGURE 7. Adaptive sampling in standard normal space (m= 100). 

5. Response surface method 

5.1. Response surface models and regression 

119 

To reduce computational costs in stochastic structural analysis it has been 
suggested to utilize the response surface method [13]. Thereto response sur­
faces are designed as more or less simple mathematical models for describing 
the possible experimental outcome (e.g., the structural response in terms of 
displacements, stresses, etc.) of a more or less complex structural system as a 
function of quantitatively variable factors (e.g., loads or system conditions), 
which can be controlled by an experimenter. Obviously, the chosen response 
surface model should give the best possible fit to any collected data. 

Let us denote the response of any structural system to a vector x of n 
input variables Xi (with i = 1,2, ... ,n), i.e., x = [x1,x2, ... ,xn]', by z(x). In 
most realistic cases it is quite likely that the exact response function will not 
be known. Therefore, it has to be replaced by a "flexible" function q( ·) which 
will express satisfactorily the relation between the response z and the input 
variables x. Taking into account a (random) error term e, then the response 
can be written over the region of experimentation as 

(5.1) 

whereby (}j (with j = 1, 2, ... ,p) are the parameters of the approximating 
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function q( ·) . Taking now expectations, i.e. , 

TJ = E[z], (5.2) 

then the surface represented by 

(5.3) 

is called a response surface. The vector of parameters 8 = [(h, (h, . .. , Bp]' has 
to be estimated from the experimental data in such a way that Eq. (5.2) is 
fulfilled. Thereto, the method of maximum likelihood can be utilized. Under 
the assumption of a normal distribution of the random error terms c, the 
method of maximum likelihood can be replaced by the more common method 
of least squares [14). In the latter case the parameters 8 are determined in 
such a way, that the sum of squares of the differences between the value of the 
response surface q(8; x(k)) and the measured response z(k) at the m points 
of experiment 

k = 1,2, . .. ,m, (5.4) 

becomes as small as possible. In other words, the sum of squares function 

m 

s(8) = L (z(k)- q(8;x(k))) 2 (5.5) 
k=l 

has to be minimized. This corresponds to a minimization of the variance of 
the random error terms c. The minimizing choice of () is called a least-squares 
estimate and is denoted by iJ. 

The above regression problem becomes more simple to deal with when 
the response surface model is linear in its parameters 8. Let us assume that 
the response surface is given by 

(5.6) 

The observations z(k) made at the points of experiment x(k) can be repre­
sented by this response surface model as 

[ z(l) l [ q
1
(x(ll) 

q2(x(I)) 
qp(x(ll) l 

[0
1

] [ c<

1

> l z(2) ql ( x(2)) q2(x(2)) qp(x(2)) 02 c(2) 
(5.7) . . . + . . . . . . . . . 

z(m) ql (x(m)) q2(x(m)) qp(x(m)) Bp c(m) 

or 
z = Q8 + e (5.8) 
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with e as a vector of random error terms. Assuming that the random error 
terms are normally distributed and statistically independent with constant 

. 2 . vanance a , Le., 

then the the covariance matrix of the observations z is 

Cov[z] = E [ (z - E[z]) (z - E[z])'] = a 21 (5.10) 

with I as an identity matrix. 
The least square estimates iJ = [01, .•. , Bp]' of the parameter vector 8 are 

determined such that 

L = (z- QO)'(z- QO) = z'z- 2z'QO + (QO)'QO 

becomes minimal. A necessary condition is that 

From this follows that 

0~ = -2 z'Q + 2 (QO)'Q = 0. 
88 

Q'QO = Q'z. 

The fitted regression model is consequently given by 

z = QiJ. 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

If the matrix Q'Q is not rank deficit, i.e., rank (Q'Q) = p ~ m, then there 
exists a unique solution to the above system of equations. The estimated 
parameter vector is given by 

(5.15) 

This estimator is unbiased, i.e., 

E[O] = 8 (5.16) 

with covariance 
(5.17) 

If the above made assumptions with respect to the random error terms e do 
not hold - e.g. the error terms are correlated or non-normally distributed 
- then a different minimizing function L than given in Eq. (5.11) has to be 
utilized. Typical examples thereof are given in (14). 
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5.2. Analysis of variance 

Since a response surface is only an approximation of the functional rela­
tionship between the structural response and the basic variables, it should 
be evident that, in general, there is always some lack of fit present. There­
fore, a crucial point when utilizing response surfaces is to check whether the 
achieved fit of the response surface model to the experimental data suffices 
or if the response surface model has to be replaced by a more appropriate 
one. Therefore, different measures have been proposed in the past for test­
ing different aspects of response surface models. The basic principle of these 
measures is to analyze the variation of the response data in comparison to the 
variation which can be reproduced by the chosen response surface model -
that's why this kind of response surface testing is also referred to as analysis 
of variance. 

Let us start with a measure of overall variability in a set of experimen­
tal data, the total sum of squares St. It is defined as the sum of squared 
differences (z(k) - z) between the observed experimental data z(k) (with 
k = 1, 2, ... , m) and its average value 

i.e., 

1 m 
z =- Lz(k), 

m 
k=l 

1 1 ( 1 )2 St = Z Z-- 1 Z 
m 

(5.18) 

(5.19) 

where 1 is a vector of ones. If we divide St by the appropriate number of 
degrees of freedom, i.e., (m- 1), we obtain the sample variance of the z's, 
which is a standard measure of variability. 

The total sum of squares can be partitioned into two parts, the regression 
sum of squares sr, which is the sum of squares explained by the utilized 
response surface model, and the error sum of squares se, which represents 
the sum of squares unaccounted for by the fitted model. The regression sum 
of squares is defined as as the sum of squared differences (z(k) - z) between 
the value z(k) predicted by the response surface and the average value z of 
the observed data, i.e., 

A 1 2 
Sr = (Q8) 1z-- (11z) . 

m 
(5.20) 

If the response surface model has p parameters, then the number of degrees 
of freedom associated with the measure sr is (p - 1) . 

The sum of squares unaccounted for in the model- called error sum of 
squares or, sometimes also, residual sum of squares- is defined as the squared 
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difference (z(k) - z(k)) between the observed experimental data z(k) and the 
value z(k) predicted by the response surface, i.e., 

Se = z'z- (QO)'z. (5.21) 

Obviously, the error sum of square se is the difference between the total 
sum of squares St and the regression sum of squares sr, i.e. Se = St - Sr. 
Consequently, the degrees of freedom associated with the measure se are 
(m- p) = (m- 1)- (p- 1). Moreover, it can be shown that 

(5.22) 

Thus an unbiased estimator of a 2 is given by 

~ 2 Se 
a=--

m-p 
(5.23) 

From the above defined sums of squares different kinds of statistics can be 
constructed which measure certain aspects of the utilized response surface. 
The first of such measures is the coefficient of (multiple} determination 

r2 = Sr = 1- Se 

St St 
(5.24) 

which measures the portion of the total variation of the values z(k) about the 
mean i which can be explained by the fitted response surface model. We can 
easily see that 0 ::; r 2 ::; 1. A large value of r 2 is supposed to indicate that the 
regression model is a good one. Unfortunately, adding an additional variable 
to an existing response surface model will always increase r 2 - independent 
of its relevancy to the model [15). Therefore, an adjusted r 2-statistic has been 
proposed, defined as 

rl = 1 _ E[se] = 1 _ Se (m- 1). 
E[st] St (m- p) 

(5.25) 

As has been pointed out in [15), in general the measure rl does not increase 
when terms are added to the model, but in fact decreases often if these 
additional terms are unnecessary. 

A different measure, which allows to test the significance of the fitted 
regression equation, is the ratio of the mean regression sum of squares and 
the mean error sum of squares, i.e., 

Fo = E[sr] = Sr (m- p) 
E[se] Se (p- 1) ' 

(5.26) 

http://rcin.org.pl



124 C. BUCHER and M. MACKE 

the so-called F-statistic, which follows an F-distribution. The F-statistic 
allows to test the null hypothesis 

Ho : fh = 02 = · · · = Op = 0 (5.27) 

against the alternative hypothesis 

H 1 : ()j -=J 0 for at least one value of ()j (with j = 1, 2, ... ,p). (5.28) 

For a specified level of significance o, the hypothesis Ho is rejected if 

Fo > Fo:,p-l,m-p· (5.29) 

Here (p - 1) is the degrees of freedom numerator and (m - p) is the degrees 
of freedom denominator. If Ho is rejected we can conclude that at least one 
or more of the terms of the response surface model are able to reproduce a 
large extent of the variation observed in the experimental data. Or, if the 
hypothesis Ho is not rejected, a more adequate model has to be selected, 
since none of the terms in the model seem to be of indispensable nature. 
Further and more advanced measures or checking procedures can be found, 
e.g., in [14, 15, 16, 17]. 

5.3. First- and second-order polynomials 

As already mentioned above, response surfaces are designed such, that 
a complex functional relation between the structural response and the basic 
variables is described by an appropriate, but - preferably - as simple as 
possible mathematical model. The term "simple" means in the context of 
response surfaces, that the model should be continuous in the basic variables 
and should have a small number of terms, whose coefficients can be easily 
estimated. Polynomial models of low-order fulfill such demands. Therefore, in 
the area of reliability assessment the most common response surface models 
are first- and second-order polynomials (cf. [13, 18, 19, 20]). 

The general form of a first-order model of a response surface TJ, which is 
linear in its n basic variables Xi, is 

n 

TJ = Oo + Z: Oixi 
i=l 

(5.30) 

with ()i (with i = 0, 1, ... , n) as the unknown parameters to be estimated 
from the experimental data. The parameter ()0 is the value of the response 
surface at the origin or the center of the experimental design, whereas the 
coefficients ()i represent the gradients of the response surface in the direction 
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of the respective basic variables Xi· As can be seen from Eq. (5.30), the first­
order model is not able to represent even the simplest interaction between 
the input variables. 

If it becomes evident that the experimental data can not be represented 
by a model whose basic variables have independent influences, then the first­
order model can be enriched with (simple) interaction terms, such that 

n n-1 n 

TJ = Oo + L Oixi + L L OijXiXj· (5.31) 
i=l i=l j=i+l 

The total number of parameters to be estimated is given by 1 + n(n + 1)/2. 
In the response surface model of Eq. (5.31) there is some curvature present, 
but only from the twisting of the planes of the respective input variables. 
If a substantial curvature is required as well, then the above model can be 
further enriched by n quadratic terms to a complete second-order model of 
the form 

n n n 

TJ = Oo + L Oixi + L L OijXiXj· (5.32) 
i=l i=l j=i 

The total number of parameters to be estimated is, therewith, given by 1 + 
n + n( n + 1) /2. In most common cases either the first-order or the complete 
second-order model are utilized as response surface functions. 

5.4. Design of experiments 

Having chosen an appropriate response surface model, support points x<k) 

(with k = 1, 2, ... , m) have to be selected to estimate in a sufficient way the 
unknown parameters of the response surface. Thereto, a set of samples of 
the basic variables is generated. In general, this is done by applying pre­
defined schemes, so called designs of experiments. The schemes shown in the 
following are saturated designs for first- and second-order polynomials, as 
well as full factorial and central composite designs. As is quite well known 
from experiments regarding physical phenomena, it is most helpful to set up 
the experimental scheme in a space of dimensionless variables. The schemes 
as described in the following perform experimental designs in a space of 
dimension n, where n is equal to the number of relevant basic variables. 

The selected design of experiments provides us with a grid of points de­
fined by the dimensionless vectors e<k) = [~~k), ~~k), ... , ~~k}]'. This grid has 
to be centered around a vector c = [c1 , c2 , ... , en]'. In the absence of further 
knowledge, this center point can be chosen equal to the vector of mean values 
J-t = [J.Lb J.L2, ... , J.Ln1' of the basic random variables Xi (with i = 1, 2, ... , n). 
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As will be shown below, when further knowledge about the reliability prob­
lem becomes available other choices of the center point are, in general, more 
appropriate. The distances from the center are controlled by the scaling vec­
tor s = [s1, s2, ... , snJ'· In many cases it is useful to choose the elements 
Si of this scaling vector equal to the standard deviations ai of the random 
variables Xi. So, in general, a support point x(k) (with k = 1, 2, ... , m) is 
defined as 

(k) 
xl 

(k) 
Cl + ~1 SI 

(k) (k) 
x(k) = x2 C2 + ~2 S2 

(5 .33) 

(k) 
Xn Cn + ~~k) Sn 

The number m of generated support points depends on the selected method. 

FIGURE 8. Saturated linear experimental scheme for n = 3. 

Saturated designs provide a number of support points just sufficient to 
represent a certain class of response functions exactly. Hence for a linear 
saturated design, a linear function will be uniquely defined. Obviously, m= 
n + 1 samples are required for this purpose (cf. Fig. 8). The factors dk) for 
n = 3 are given by 

(5.34) 

Here each column represents one support point. Of course, any variation of 
the factors above in which some or all values of ( + 1) were replaced by ( -1) 
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would also constitute a valid linear saturated design. Obviously, there is 
some arbitrariness in the design scheme which can usually be resolved only 
by introducing additional knowledge about the system behavior. 

FIGURE 9. Saturated quadratic design scheme for n = 3. 

A saturated quadratic design (Fig. 9) generates m= n(n + 1)/2 + n + 1 
support points x{k) . The factors dk) for n = 3 are given by 

[ 

0 +1 0 0 -1 0 0 +1 +1 0] 
e = o o +1 o o -1 o +1 o +1 . 

0 0 0 +1 0 0 -1 0 +1 +1 
(5.35) 

Again each column represents one support point. As mentioned above, any 
change of sign in the pairwise combination would also lead to a saturated 
design, so that the final choice is somewhat arbitrary and should be based 
on additional problem-specific information. 

Redundant experimental designs provide more support points than re­
quired to define the response surface, and thus enable error checking pro­
cedures as outlined in the preceding section. Typically, regression is used 
to determine the coefficients of the basis function. The full factorial design 
(Fig. 10) generates l sample values for each coordinate, thus producing a total 
of m= ln support points x(k) (with k = 1, 2, ... , m). Note that even for mod­
erate values of l and n this may become prohibitively expensive. Therefore 
frequently subsets are chosen which leads to fractional factorial designs. The 
central composite design (Fig. 11) superimposes a full factorial design with 
l = 2 and a collection of all center points on the faces of an n-dimensional 
hypercube. Thus it generates m= (2n + 2n) support points x(k). 
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FIGURE 10. Full factorial design scheme for l = 3 and n = 3. 

FIGURE 11. Central composite design scheme for n = 3. 

D-optimal designs attempt to maximize the information content if only a 
small subset of the otherwise preferable full factorial design can be utilized, 
e.g., due to restrictions on computer capacity. Given a set of candidate factors 
e(k) a subset of size m' is chosen in order to maximize the following function 

D = det(Q'Q). (5.36) 

In this equation, Q denotes a matrix containing values of the basis func­
tions for the response surface evaluated at the selected support points (cf. 
Eq. (5.8)) . Typically the number m' is chosen to be 1.5-times the correspond­
ing number of a saturated design. 
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TABLE 3. Numbers of support points for different experimental designs. 

n Linear Quadratic Full factorial Central composite Full factorial 
(l = 2) (l = 3) 

1 2 3 2 4 3 
2 3 6 4 8 9 
3 4 10 8 14 27 
4 5 15 16 24 81 
5 6 21 32 42 243 

Table 3 shows the number of support points as a function of the number 
of variables for different experimental schemes. It is quite clear that factorial 
schemes - especially the full factorial - may become quite unattractive due 
to the exponential growth of the number of support points with increasing 
dimension of the problem. On the other hand, more economical saturated 
designs do not allow for sufficient redundancy which is needed to provide 
error control on the basis of the analysis of variance as outlined in a pre­
vious section. Therefore moderately redundant schemes (such as D-optimal 
designs) may provide the most appropriate solution. 

5.5. Adaptation 

When applying the response surface method in reliability assessment 
problems, the response surface has to approximate the limit state function 
g(x) = 0 sufficiently well in the region which contributes most to the fail­
ure probability P(F). In other words, since only a very narrow region around 
the so-called design point x* really contributes to the value of the probability 
of failure integral, relatively small deviations of the response surface q(8; x) 
from the true limit state function g(x) in this region may lead to significantly 
erroneous estimates of the probability of failure. In order to avoid this type of 
error, we must ensure that the "important region" is sufficiently well covered 
by the design of experiment scheme when constructing the response surface. 

Since we do not know the important region beforehand, an adaptation 
scheme has to be applied which utilizes the information gained from the 
initial response surface design. In reliability assessment we select the design 
point :X* as determined from the first order reliability method utilizing the 
response surface as a new center point c for the design scheme. If the region 
covered by the new design scheme is not overlapping with the initial design 
scheme region, it is recommendable to perform some additional experiments 
along the path from the old to the new center point. 

A similar adaptation scheme can be constructed by utilizing the basic 
idea of adaptive sampling. In adaptive sampling the mean value vector 1-£* of 
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the generated samples conditional on the failure domain F is estimated, i.e., 

J.L* = E[XIX E F]. (5.37) 

This mean value vector can be utilized -like the design point :X* above- as 

a new center point for the design scheme. 
Using one of these adaptation schemes will , in general, shift all support 

points closer to the limit state g(x) = 0. Ideally, some support points should 
lie on the limit state. A repeated calculation of J.L* or the design point :X* can 
be utilized as an indicator for the convergence of the procedure. 

5.6. Example of use of response surface method 

Given is a tension bar with known load p = 1, random diameter X 1 and 
yield strength X2. The dimensionless limit state function is given as 

(5.38) 

The random variables X1 and X2 are independent. X1 is log-normally dis­
tributed with distribution function F(x) = <I>[(ln(x) -1)/2], X> 0. x2 obeys 
the Rayleigh distribution function F(x) = 1- exp[-1rx2 /(4J.L2)], x ~ 0, with 
mean J.L = 200. The response surface model we want to use in the following 
is a first-order polynomial of the form 

(5.39) 

whereas u1 and u2, respectively, are the random variables x1 and x2 trans­
formed to standard normal space, i.e., Ui = <I>- 1 [F(xi)]. As design of experi­
ments we utilize a 22-factorial design with one center run in standard normal 
space, i.e., 

u = [ -1 +1 -1 +1 
-1 -1 +1 +1 

(5.40) 

As method for adaptation, we determine in each step the design point 
u* = [ui, u2]' for the approximating response surface ry(u) and repeat the 
experimental design centered at this design point. As start point we utilize 
the origin in standard normal space. 

When applying this scheme we perform an accompanying analysis of vari­
ance, i.e., we determine in each step the coefficient r 2, its adjusted form rl 
and the F -statistic. As can be seen from Table 4, the above mentioned mea­
sures indicate a non-satisfactory performance of the chosen response surface 
model. Not only differ the values of r 2 and rl considerably from each other, 
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but they are also clearly different from the optimal value of one. This indi­
cates, that the model is not able to reproduce appropriately the variation in 
the experimental data. Furthermore, when testing the null hypothesis Ho of 
Eq. (5.27) at a confidence level of a= 1%, we can not reject the hypothesis, 
since clearly Fo < Fo.o1, 2, 2 = 99. In other words, the chosen response surface 
model is not appropriate for the experimentally gained data. This can also 
be noticed when investigating Fig. 12, which displays the limit state function 
g( u) in standard normal space for different values of p. As can be seen, the 
limit state function is highly non-linear. 

2 

s 0 
Cl> ...., 
~ 
'i: 
~ -2 
a 
0 

'"0 
§ -4 0::: 

-6 

-6 -4 -2 0 2 

Random variate ul 

FIGURE 12. Limit state function g(u) in standard normal random variable space 
for different values of p. 

Nevertheless, when taking the logarithm of the response values, a linear 
response surface would represent a good approximation of the true limit state 
function. Therefore, a more adequate response surface model would be of the 
form 

17(u) = Oo exp(81 u1 + 82u2)- 1 

which can be transformed to its linear form by 

(5.41) 

(5.42) 

When using this response surface model, all measures displayed in Table 4 
show satisfactory values. Moreover, already in the second step, i.e., after 
the first adaptation a reasonable approximation of the exact result can 
be achieved. The response surface method converges to the point u* = 
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TABLE 4. Analysis of variance. 

Original scale Transformed scale 
1. step 2. step Last step 1. step 2. step Last step 

St 6.60. 109 3.19 . 108 16.95 17.41 19.40 22.90 

Sr 5.04. 109 2.38. 108 10.95 17.40 19.38 22.86 

Se 1.56. 109 0.81 • 10M 6.00 0.01 0.02 0.04 
r"J. 0.76 0.74 0.64 0.99 0.99 0.99 

ri 0.53 0.49 0.29 0.99 0.99 0.99 

Fo 3.23 2.92 1.82 2044.73 857.02 631.24 

ui -0.68 -1.30 -3.54 -4.10 -3.75 -3.41 

ui -0.37 -0.79 -3.51 -1.21 -1.73 -2.24 
{3 0.77 1.52 4.98 4.27 4.13 4.08 

[-3.41, -2.24]', which relates to a reliability index j3 = 4.08. These results 
are an excellent approximation of the true design-point u* = [-3.46, -2.29]' 
and the true reliability index j3 = 4.15. It should also be noted, that when we 
would have dismissed the indicators in the original scaling as being not rel­
evant, the response surface analysis would not provide a satisfactory result, 
as can be seen from Table 4. 

6. Random fields and stochastic finite elements 

6.1. Description of random fields 

A random field H(x) is a real-valued random variable whose statistics 
(mean value, standard deviation, etc.) may be different for each value of x 
[21, 22), i.e., 

(6.1) 

Typical examples of random fields are spatially varying material properties, 
deviations from a perfect geometry or uncertain structural loads (see Fig. 13). 
The mean value and auto-covariance function of a random field are given as 

Jl(x) = E[H(x)] (6.2) 

and 

respectively. A random field H ( x) is called weakly homogeneous if 

J.L(x) = const. T/ x E V and c(x, x + ~) = c(~) T/ x E V. (6.4) 
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FIGURE 13. Sample function of one-dimensional random field. 

A homogeneous random field H ( x) is called isotropic if 

c(x, X+ e)= c(llell) V X E V. (6.5) 

The latter means that the covariance function depends on the distance only 
(not on the direction). Typically, fiber-reinforced materials are non-isotropic 
in their mechanical properties. In such a case, the contour lines of constant 
correlation are elongated in one direction (see Fig. 14). 

Isotropic Anisotropic 

FIGURE 14. Isotropic and anisotropic correlation contours. 

For describing random fields, very often the correlation length le is uti­
lized. Let us define for an isotropic random field H(x) the separation distance 
8 between two points by 

(6.6) 

http://rcin.org.pl



134 C. BUCHER and M. MACKE 

Then the correlation length le is given by 

(6.7) 

L le L 
1 1 

FIGURE 15. Correlation function and correlation length. 

6.2. Spectral decomposition 

For numerical computations it is useful to represent a continuous random 
field H(x) in terms of discrete random variables Vk (with k = 0, 1, ... , n) 
[23, 24) as 

00 

H(x) = L Vk<i>k(x), X E V c 1Rn; vk, 4>k E JR. (6.8) 
k=O 

The functions <l>k(x) are deterministic spatial shape functions which are usu­
ally chosen to represent an orthonormal basis on V. The random coefficients 
Vk can be made uncorrelated, which is an extension of orthogonality into 
the random variable case. This representation is usually called K arhunen­
Loeve expansion. It is based on the following decomposition of the covariance 
function 

00 

c(x1, x2) = L Ak<i>k(xi)<i>k(x2) (6.9) 
k=O 

in which Ak and <i>k(·) are the eigenvalues and eigenfunctions of c(·, ·), respec­
tively. These are solutions to the integral equation 

j c(xt, x2)<i>k(xl)dx1 = Ak<i>k(x2)· (6.10) 

V 

http://rcin.org.pl



STOCHASTIC COMPUTATIONAL MECHANICS 135 

In most finite element applications the random field H(x) is discretized 
right from the start as 

Hi= H(xi), i = 1,2, ... ,n. ( 6.11) 

A spectral representation for the discretized random field is then obtained 
by 

n n 

Hi= L Vk<Pk(xi) = L Vk<Pki· (6.12) 
k=l k=l 

This is equivalent to the following vector-matrix multiplication 

(6.13) 

The columns 4>k = [<Pkl, . .. , <l>knl' of the matrix ~ thereby have to fulfill the 
orthogonality condition 

~~~=I (6.14) 

with I as a unit matrix. The covariance matrix of the coefficients V = 

[V1, V2, . .. , Vk, . . . , Vn]' is given as 

Cov[V, V] = diag(a~) with ai 2: a~ 2: ... 2: a~ 2: .. . 2: a~ . (6.15) 

The conditions of eqs. (6 .14) and (6.15) are satisfied, when the column vectors 
4>k of the matrix ~ are solutions to the following eigenvalue problem 

Cov[H, H]4>k = a~f/>k, k = 1, 2, ... , n . (6.16) 

6.3. Stochastic stiffness matrix (plane stress) 

The element stiffness matrix Ke relates the nodal forces pe to the nodal 
displacements qe by 

Keqe = pe (6.17) 

in which, for the simple element shown in Fig. 16 

(6.18) 

and 
(6.19) 

Based on the principle of virtual work, the element stiffness matrix for a 
linear material law (assuming geometrical linearity as well) is obtained as 

K• = j B'(x,y)D(x,y)B(x,y)dV•. (6.20) 
ye 
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Typically, the strain interpolation matrix B ( x, y) is chosen in polynomial 
form, i.e., 

B(x, y) = :E LBklxkyl, k, l, r ~ 0. 
k+l~r 

(6.21) 

In this equation, Bkl are constant matrices. In fact, for the element shown 
in Fig. 16 there is only one such matrix, i.e., Boo. 

y ,v 

x,u 

FIGURE 16. Constant strain triangle finite element. 

Assuming that the system randomness is described by a random elastic 
modulus Y(x, y), the elasticity matrix D(x, y) can be written as 

D(x, y) = DoY(x, y). (6.22) 

Using the polynomial form of B(x, y), the element stiffness matrix finally 
becomes 

K• = :E:E:E:EB~tDoBmn J Y(x,y)xkylxmyndv•. 
k+l~r m+n~r ve 

(6.23) 

The last term in this equation is a so-called weighted integral of the ran­
dom field Y ( x, y) . The global stiffness matrix is then assembled by applying 
standard finite element techniques. 

6.4. Static response (perturbation method) 

Let us use a perturbation approach for the random elastic modulus in the 
form 

Y(x,y) = Yo(x,y) + .sY1(x,y) (6.24) 
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in which Yo is the deterministic mean, e is a "small" quantity, and Y1 describes 
the random deviation from the mean. The assembly of the element stiffness 
matrices leads to a global stiffness matrix K which has random perturbations 
as well, i.e., 

(6.25) 

Given the (deterministic) global load vector p, the (random) global dis­
placement vector q is determined from the solution of the following system 
of linear equations 

Kq=p. 

Expanding q into a power series with respect toe 

q = Qo + eq1 + e2Q2 + ... 

an approximate solution can be obtained in terms of powers of e as 

eo: Koqo = p, 

e1 : Koql = -K1qo, 

€2: 

(6.26) 

(6.27) 

(6.28) 

Usually, this is truncated at linear terms in e. From this first order pertur­
bation result the mean value E[q] of the displacement vector becomes 

E[q] = qo, (6.29) 

and the covariance matrix of its components is 

Cov[q, q] = E[qlq~]. (6.30) 

The actual computation can be based on the weighted integral representation 
of Eq. (6.23) and takes into account the spectral decomposition of the random 
fields via Eq. (6.8). 

6.5. Natural frequencies of a structure with randomly distributed 
elastic modulus 

In the following, a spherical shell structure (see Fig. 17) in free vibration 
is considered. The shell is discretized by 288 triangular shell elements (25). 
The shell is assumed to be fully clamped along the edge. The material of the 
shell is assumed to be elastic (in plain stress) and the elastic modulus Y(x) is 
modeled as a log-normally distributed, homogeneous, and isotropic random 
field. Its auto-covariance function c(x1, x2) is assumed to be of the form 

c(xJ. X2) = a2 exp [ _llxl ~ x2ll] . (6.31) 
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z 

k::x 
FIGURE 17. Spherical shell structure. 

In the above equations, the 3-dimensional vectors x 1 and x2 are two coordi­
nates of points within the shell structure. The diameter of the shell at the 
basis is d = 20 m, the correlation length is assumed to be le = 10 m and the 
coefficient of variation of the random field is v = 0.2. 

The question to be answered is what magnitude of randomness may be 
expected in the calculated natural frequencies. Quite clearly, this is very im­
portant for structural elements designed to carry, e.g., rotating machinery 
which produces almost harmonic excitation, and possibly resonance. Hence 
the probability of obtaining high deviations from the mean natural frequency 
needs to be calculated. This example shows quite typically the close connec­
tion required between the stochastic analyses and the finite element analysis. 
Within the finite element model, the random field Y(x) is represented by 
its values in the integration points of the elements. The shell elements as 
utilized here have two layers of each 13 integration points, so there is a total 
of 26 x 288 = 7, 488 integration points. In order to reduce this rather high 
number of random variables the following strategy is applied. First, the elas­
tic modulus is represented by one value per element (given the correlation 

cPl 

FIGURE 18. Selected mode shapes of the covariance function. 
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length of le = 10 m this is not a severe simplification). Second, the remain­
ing random field is represented in terms of independent random variables and 
corresponding space dependent shape functions. These independent variables 
are obtained by applying the transformation described in Sec. 2.4. 

Fig. 18 shows selected space dependent shape functions. They are or­
dered according to decreasing magnitude of the corresponding eigenvalues. 
A Monte Carlo simulation is then carried out to generate sample functions of 
the random field. The simulation results obtained from m = 103 are shown 
as a histogram of the fundamental natural frequency in Fig. 19. The results 
indicate a relatively high scatter of the fundamental frequency - the deter­
ministic system has two equal lowest natural frequencies at 42Hz - with a 
coefficient of variation of approximately 15%. 
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0.00 
36 38 40 42 44 46 

Fundamental natural frequency 

FIGURE 19. Histogram of the fundamental natural frequency. 

7. Stability of structures with random imperfections 

7 .1. Geometrical imperfections 

Quite often not only material properties show some considerable scatter, 
but also the geometry deviates from its nominal value. Such deviations can 
have a variety of consequences. One of the most pronounced effects cancer­
tainly be observed with respect to the degree of stability of slender structures. 

Let us assume that the geometrical imperfections are described by a ran­
dom field H(x) which describes the spatially distributed, random deviations 
from the perfect geometry at each point x of the structure. Utilizing the 
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stochastic finite element method, the random field is discretized at n points 
Hi = H(xi) (with i = 1, ... , n), i.e., 

n n 

Hi= L Vk<f>i(xi) = L Vk<f>ki· (7.1) 
k=l k=l 

If some geometrical points of the structure are not random, but determin­
istic, the random field has to be conditioned. Let us assume that at the points 
S = [Ht, ... , Hp]' of the random field the deterministic values s should be 
prescribed. Then the conditional random field has to be constructed with the 
modifed means 

E[Hils] = E[Hi] + Cov[Hi, S] ( Cov[S, S]) -l (s- E[S]), (7.2) 

and covariances 

respectively [26). 

7.2. Zero solution and neighbouring paths 

The dynamic response of a structure is described by the following equation 
of motion 

Mq + r(q, q) = p(t), (7.4) 

whereby M is the mass matrix, r( ·) is a vector of restoring forces and p( t) 
is an applied-load vector. Linearization of Eq. (7.4) with respect to the zero 
solution ( qo, <io) results in 

or 

r(q, it)"" r(qo, <io) +:. (qo, <io) 4 

ar ( . ) + aq Qo,Qo q 

r(q, q) ~ r(qo, <io) + Cq + Kq, 

(7.5) 

(7.6) 

whereby q = q-qo denotes the perturbation of the zero solution. The quanti­
ties C and K are the tangential damping and stiffness matrices, respectively. 
Therewith, the equation of motion (7.4) can be split up in a differential equa­
tion for the zero solution 

Mqo + r(qo, <io) = p(t), (7.7) 
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and a differential equation for the paths in its neighbourhood, i.e., 

Mq + Cq +Kq = 0. (7.8) 

The stability properties of the structure can be determined by analyzing 
Eq. (7.8). 

7.3. Lyapunov exponent 

For determining the Lyapunov exponent, Eq. (7.8) is written in state space 
formulation as 

(7.9) 

or 
z = A(t)z. (7.10) 

Taking into account the initial conditions z(to) = zo, the solution for 
Eq. (7.10) is given by 

z(t) = A(t)A - 1(to)zo (7.11) 

with A(·) denoting the fundamental matrix of the system (7.10). For periodic 
coefficients with minimal period T, i.e., 

A(t + T) = A(t) (7.12) 

holds that 
A(t + T) = A(t)S, (7.13) 

whereby S is a constant non-singular matrix. 
Let us consider the solution 

z = A(t)e = x(t) (7.14) 

of the system (7.10), with e as an eigenvector of:::, i.e., 

det(S - AI) = 0, (7.15) 

and A as its corresponding eigenvalue. Utilizing Eq. (7.13), the solution x(t) 
can be periodically continued as 

x(t + T) = A(t + r)e = A(t)se = Ax(t), (7.16) 

as long as A = 1. However, for A > 1 the solution is instable since there exist 
neighbouring paths which are diverging. This behavior is described by the 
Lyapunov exponent 

1 
1-L = T lgA, (7.17) 

i.e., for a positive Lyapunov exponent J..L > 0 the system is instable. 
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7 .4. Shell segment under periodic forcing 

As an example a segment of a cylindrical shell (height 2b = 10 m, segment 
length 2a = 10 m, thickness d = 0.1 m, cylinder radius r = 250/3 m) is 
investigated. The shell segment is discretized by utilizing triangular shell 
elements (see Fig. 20). The material properties are given in form of elasticity 
modulus Y = 3.4 · 1010 N /m2

, Poisson's ratio v = 0.2 and mass density g = 
3400 kg/m3 . All edges of the shell segment are restrained in radial direction. 
The segment is loaded in axial direction by the load p. For a static load of Pc = 
1.65 · 106 N /m the structure has a bifurcation instability. The corresponding 
buckling shape is depicted in Fig. 21. 

z__(l 
X 

FIGURE 20. Segment of a cylindrical shell under axial loading. 

FIGURE 21. Buckling shape under static line load Pc= 1.65 · 106 Njm. 

In the following we assume geometrical imperfections in radial direction. 
In other words, the shell segment shows some deviations from its perfect 
geometry, however has constant shell thickness. These deviations are modeled 
as a homogeneous, isotropic, zero-mean, normally ditributed random field 
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with covariance function 

(7.18) 

In Eq. (7.18) a = 3 · 10-3 m is the standard deviation of the random field, 
le = 10 m is the correlation length and x1 and x2 are two coordinates on 
the cylindrical shell. The support points along the edges are assumed to be 
deterministic. This is enforced on the random field as a "condition". In Fig. 22 
a sample of the unconditional random field is shown, whereas in Fig. 23 a 
sample conditional on the deterministic support points is shown. 

FIGURE 22. Sample of the unconditional random field (display is 400 times mag­
nified). 

FIGURE 23. Sample of the conditional random field (display is 400 times magni­
fied). 

The orthogonal series expansion of the random field results in probabilis­
tically weighted imperfection shapes 4Ji· The first six imperfection shapes are 
displayed in Fig. 24. The corresponding variances a; are also given. As can 
be clearly seen, the first imperfection shape shows a high resemblance to the 
buckling shape. Moreover, its standard deviation is the highest one. 
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First imperfection shape (a? = 6.17) Second imperfection shape (a~ = 1.82) 

Third imperfection shape (a~ = 1.82) Fourth imperfection shape (a~ = 0.95) 

Fifth imperfection shape ( ag = 0. 71) Sixth imperfection shape (ag = 0.70) 

FIGURE 24. First six imperfection shapes ofthe conditional random field (display 
is 1, 500 times magnified). 

In the following we assume a periodic load of the form 

p(t) = 0.77pc + 0.03pc cos(Ot), (7.19) 

whereby the excitation frequency varies in the range 0.5 :::; Ofw 1 :::; 2.5, with 
w 1 as the first frequency of the undamped, perfect structure under static 
loading 0.77Pc· In the following we utilize 12 mode shapes 'l/Ji for the dynamic 
analysis. The damping of the structure is assumed to be modeled by 

i = 1, ... '12, (7.20) 
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with ( = 0.02. The shell segment is stable for all excitation frequencies- as 
long as there are no geometrical imperfections present. 

Taking into account the above given imperfections a slightly different re­
sult can be obtained. In Figs. 25 and 26 the Lyapunov exponent is shown 
as a function of the excitation frequency and the amplitude of the imperfec­
tions of the first and third imperfection shape. It can be seen, that for the 
first imperfaction shape there exists a pronounced dependency between the 
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FIGURE 25. Lyapunov exponent as a function of the excitation frequency for the 
first imperfection shape. 
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FIGURE 26. Lyapunov exponent as a function of the excitation frequency for the 
third imperfection shape. 
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Lyapunov exponent and the imperfection amplitude. In other words, with in­
creasing amplitude there are areas of instability (J-L > 0) which increase and 
shift to lower excitation frequencies. In case of the third imperfection shape, 
however, the Lyapunov exponents are independent of the imperfection am­
plitude. A similar result as for the third imperfection shape can be achieved 
for the fifth and sixth imperfection shape. All other imperfection shapes show 
no visible influence on the Lyapunov exponent. From this follows that for a 
fully probabilistic analysis only the first, third, fifth and sixth imperfection 
shape have a significant influence. This allows a considerable reduction in 
complexity of the calculations as compared to a full modeling of the random 
field. As methods of calculation variance reduced simulation procedures as 
described in Sec. 4, or the response surface method, as described in Sec. 5, 
can be applied. 

8. Pre-stressed steel flanges with geometrical imperfections 

8.1. Introduction 

Recent investigations of pre-stressed flange connections focused on 
fatigue-relevant tension force amplitudes in the bolts and on failure analysis. 
These investigations were based on numerous experiments [27, 28, 29, 30, 31). 
In [31) a segment of such a flange connection was analyzed by means of fi­
nite elements. The results showed a considerable re-distribution of tension 
forces which leads to a reduction of stress amplitudes in the bolts. An open 
problem are thereby the geometrical imperfections of the contact surface in 
the flange. The latter lead to non-uniform distribution of contact pressures 
and bolt forces, and finally to an increase in tension force amplitudes in the 
bolts. 

Petersen [28) performed an experimental study on these imperfections and 
derived recommendations for design. Based on a segment model, his conclu­
sions are that the fatigue life is not substantially influenced by imperfections. 
In contrast, Schmidt et al. [32) based their analysis on quarter- and half-ring 
flange models. Assuming deterministic imperfection shapes, they show that 
there is a significant increase in fatigue-relevant stress amplitudes due to de­
viations from from the perfect geometry. In reality, imperfections are random 
in location, shape and magnitude. This leads to a loss of structural symmetry. 
Consequently, a full ring flange model has to be investigated. 

8.2. Finite element modeling of flange 

A flange connection with an interior ring of 66 bolts (M36) is investigated. 
The outer diameter of the flange is 3.20 m, the flange thickness is 65 mm 
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and the ftange width is 130 mm. The wall thickness of the cylinder shell is 
14 mm. 1he bolts are pre-stressed with a deterministic force of Fv = 510 kN. 
For simp:icity, only the top flange is modeled, whereas the bottom flange is 
represen~d by constraints. The finite element model of the full ring can be 
seen in Fig. 27. Due to the intended Monte-Carlo-based stochastic analysis 
the modd was chosen in a rather simple way. The model consists of 3,500 
elements with 13,000 degrees of freedom. 1,500 non-linear spring elements 
represent the contact in the flange. These springs have a high stiffness in 
compress.on and a low stiffness in tension. Additionally, these elements can 
have an offset h as shown in Fig. 28. This offset can be utilized to model a 
gap bet~en the flange surfaces due to imperfect geometry. 

Bolts 

I I I 

1,',,,'1:1'::,' ,'',,/ 1':'',:;/ ,~, ,,J 

Contact Elements 

FIGURE 27. Finite element model of the flange. 

Force 1 

Displacement 

H(x) 
(Compression) • 

Offset 

FIGURE 28. Force-displacement relation of contact springs. 

In a irst step, an analysis with perfect geometry is carried out. The 
bending noment (as caused, e.g. , by wind loading) is increased from 0 MN · 
to 30 MN. The resulting maximum bolt force in the tension zone is shown in 
Fig. 29. 1he results compare well to those obtained in [32). 
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FIGURE 29. Maximum bolt force vs. bending moment. 

8.3. Stochastic model of contact surface 

A hypothetic stochastic model for the surface assuming a homogeneous 
and isotropic log-normally distributed random H(x) field is chosen. In the 
computational procedure, the random field is represented by offsets Hi of the 
contact springs (see Fig. 28). The random field H has a standard deviation 
of a H = 0.2 mm and an autocorrelation function 

(8.1) 

with a correlation length l = 200 mm. x and y are the Cartesian coordinates 
in the contact surface. The simulation model is based on a spectral decom­
position of the random field [23). Specific details regarding the treatment of 
geometrical imperfections are given, e.g., by [33). Realizations of the random 
field are obtained by linear combination of the eigenvectors of the covariance 
matrix with random amplitudes. Three selected eigenvectors (random field 
mode shapes) are shown in Fig. 30. 

Since the model contains 1500 contact elements, the spectral decomposi­
tion yields 1500 random field mode shapes. For computational reasons it is 
useful to reduce this number. A comparative analysis taking into account 800 
and 128 random variables was performed. There were virtually no differences 
in the results. A realization of the contact surface (based on 128 random 
variables, magnified) is shown in Fig. 31. 

For the stochastic analysis it is assumed that the pre-stressing forces in the 
bolts are deterministic. The initial deformation state for one sample is shown 
in Fig. 31. Due to the random pressure distribution in the contact zone the 
application of a bending moment causes random changes in the bolt forces. 
Based on the Monte Carlo method the statistics of the bolt forces are de­
termined. This requires a nonlinear contact analysis in each simulation. The 
computational effort can be reduced by applying latin hypercube sampling. 
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-"'. 

FIGURE 30. Second, fourth and sixth mode shape of random field. 

FIGURE 31. Realization of random field (top: initial, bottom: after pre-stressing). 
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This method is particularly useful for estimation of response variability from 
a very small number of random samples. A recent study by Novak et al. [34) 
showed the excellent applicability of the method for linear and nonlinear 
random field problems. 

8.4. Results 

In a first step, the evolution of the bolt forces with increasing bending 
moment is monitored in the range of linear material behavior. The results 
from 300 simulations are summarized in Fig. 32. For the load level 12, Fig. 32 
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FIGURE 32. Random bolt forces on tension side. 
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shows the histogram of the bolt force on the tension side of the flange ring. 
Selected results are also summarized in Table 5. The comparison to latin hy­
percube sampling results from 32 simulations (using 128 random variables) 
indicate a highly favorable performance of latin hypercube sampling. Fig­
ure 33 compares the mean values and standard deviations of the bolt force 

TABLE 5. Statistics of bolt forces. 

Bending moment [MNm) I Mean force [kN) I C.o.v. [%) I Determ. [kN) I 
4.5 521 1.5 511 
9.0 542 3.7 515 
13.5 573 6.1 528 
18.0 619 8.1 572 

Mean Values LHS 
c PMC 

6.5E5 

6.0 

5.5 

5.0 

0.0 0.5 1.0 1.5 2.0E7 

Coefficient of Variation LHS 
c PMC 

9.0E-2 

8.0 

7.0 
~ 

6.0 

5.0 

4.0 

3.0 

2.0 .. . ~ --· .. 

1.0 
i 

0.0 

0.0 0.5 1.0 1.5 2.0E7 

FIGURE 33. Statistics of random bolt forces on tension side vs. bending moment. 

http://rcin.org.pl



152 C. BUCHER and M. MACKE 

on the tension side from plain Monte Carlo simulation and Iatin hypercube 
sampling. The results are in very good agreement. In a second step, the ef­
fect of brittle failure of the bolts on the load carrying capacity of the flange 
connection was analyzed. Redistribution of the internal forces was taken into 
account. The ultimate bending moment leading to structural failure showed 
a significant level of uncertainty with a coefficient of variation of about 8%. 
Again, the results from Iatin hypercube sampling with a small sumer of sam­
ples are very good as indicated in Table 6. 

TABLE 6. Statistics of ultimate bending moment. 

Method Mean Value [MNm) Coeff. of variation [%] 

LHS (32 samples) 22.3 8.7 

MCS (200 samples) 21.9 7.6 

The results indicate the significance of geometrical imperfections in terms 
of fatigue life of prestressed flange connections. In addition, also the ultimate 
bending moment of such a flange is considerably influenced by imperfections. 
The results are based on a full finite element model of the flange which takes 
into account the non-uniform initial distributions of stresses in the structure 
as well as the redistribution due to increased loading. Application of advanced 
Monte Carlo simulation techniques such as Iatin hypercube sampling can lead 
to a substantial reduction of numerical efforts and thus make a stochastic 
analysis of fairly complex structural systems feasible. 

8.5. Experimental investigations 

The above mentioned assumptions on the underlying random field are 
rather hypothetical as yet. They have to be substantiated by means of ex-

FIGURE 34. Wind turbine tower under construction. 
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perimental investigations. A set of measurements has been carried out and 
documented by Bucher and Ebert [35]. Photogrammetric measurements were 
performed on the flange surfaces to determine their exact geometrical shape. 
The mark-up for the photogrammetry can be seen from Fig. 35. Four rep­
resentative flange geometries obtained from the measurements are shown 
in Fig. 36. These smooth geometries were obtained by triangulating the mesh 
of the measurement points and performing an interpolation using finite plate 
elements based on static condensation. The geometries can be used as a ba-

FIGURE 35. Mark-up for photogrammetric measurements. 

L L. 

L 

FIGURE 36. Flange geometries (deviations from ideal surface in mm). 
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sis for the further development of random field models for the flange surface. 
It is quite remarkable that the maximum deviations from the mean surface 
reach values of 3 mm. This is considerably larger than the standard devia­
tion assumed in the previous calculations. It can therefore be concluded, that 
even more pronounced effects of the geometrical imperfections may occur in 
reality. 

9. Concluding remarks 

The methods available for the analysis of structural reliability allow for 
a treatment of rather complex random phenomena such as random fields 
and random processes in conjunction with structural analysis based on the 
finite element method. It is quite clear that such an analysis- depending on 
the desired degree of accuracy- requires substantial computing power. This 
implies that in most realistic situations, due to limitations of computational 
resources, it may be rather difficult to obtain accurate answers. However, 
there is a fairly wide choice of approximation methods available to provide 
reasonably accurate approximations. In particular, approximations based on, 
e.g., the first order reliability method or the perturbation approach may be 
quite appropriate for intermediate stages of the reliability analysis such as 
required during an optimization procedure. Final results may require higher 
levels of confidence, for which cases importance sampling procedures should 
be applied. 
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