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1.1. Water: a medium in which biology thrieves 

There is no biological tissue which is not a mixture. By mixture we mean a 
composition of different components- either miscible or immiscible- which 
move relative to one another. This relative motion is vital to every living 
organism. The human body is a structure that renews itself continually. In 
five years time every molecule of a human body is replaced. To allow this 
fast pace of repair, diffusion and convection of waste materials and nutrients 
are essential. A mayor component of biological tissues is water. The fast pace 
of renewal of tissues is possible thanks to many factors, one of which being 
the relative motion of solid, water and solutes within cells and tissues. The 
high water content ensures easy diffusion of solutes. The description of this 
motion is obtained by considering the behaviour of the total tissue as the 
sum of the behaviours of the individual components of which the tissue is 
constructed, extended with terms that describe the interaction between the 
different components. This is what we call mixture theory. The application 
of mixture is by no means restricted to biology. In engineering, several types 
of mixtures exist: only gasses, only fluids, gasses and fluids (e.g. multiple 
phase flows), or fluids and solids (flow through porous media). The theory of 
mixtures describes these types of systems. Because the theory of mixtures and 
its application to porous media have applications to subjects very different 
from biological tissues, these notes are relevant for geomechanics, polymer 
scientists, petroleum engineers and civil engineers as well. 
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1.2. The composition of biological tissues 

The cell is the elementary building block of living organisms. The cells of 
multiple-celled organisms are arranged in tissues to make it possible for the 
organisms to function effectively. One can distinguish 4 types of tissue (Guy­
ton and Hall, 1993]: neural tissue, epithelial tissue, muscle tissue, and con­
nective and supportive tissue. In this book we will consider the mechanical 
function of a selection of tissues. All tissues show a multiple-component struc­
ture, consisting of a solid, in which at least one fluid is trapped. The fluid 
is generally distributed over functionally distinct compartments: intracellu­
lar, extracellular, lymphatic system, arterial system, venous system, capillary 
compartment. The fluid within each compartment has diffusing constituents 
whithin it, which play a key role in many physiological processes. As an 
example we illustrate this in the intervertebral disc (Fig. 1). 

nucleus annulus laminates 

FIGURE 1. The intervertebral disc: laminar structure of the anulus enclosing the 
nucleus. 

The solid mainly consists of collagen structures, elastin fibers and ionised 
large molecules, the proteoglycans. The fluid consists of water, in which 
several substances are disolved, from low-molecular ions, larger molecules 
(e.g. albumine). The proteoglycans are constructed of glycosaminoglycans, 
linear polysaccharides consisting of long strings of disaccharides (Fig. 2). 
Due to their size (molecular weight 1-3 million), the proteoglycans are tan­
gled up in a fiberstructure. Furthermore they contain negatively charged 
hydroxyl-, carboxyl-, and sulphate groups, which makes them strongly hy­
drophylic. They are able to bind a water mass up to 50 times their own 
weight. 

Depending on the properties of the solid component we speak of hard 
tissues or soft tissues. The hard tissues (bones, teeth) usually have small de-
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FIGURE 2. Schematic view of (a) the structure of tissue from the intervertebral 
disc and (b) the proteoglycan-molecule; from [1]. 

formations and show a linear relation between the stress and strain. Because 
of their elastic moduli generally higher than the bulk modulus of water, in­
compressible elasticity or poroelasticity does not apply to hard tissues. The 
compressibility of water, and even the intinsic compressibility of the solid 
play an important role in the overall mechanical response [2). 

The soft tissues deform already fiercely under normal physiological cir­
cumstances. Strains of 10% up to 100% are easily obtained. The most im­
portant solid components in soft tissues are elastin and collagen. Elastin is a 
protein that has linear elastic behaviour up to strains of 60% with Young's 
modulus of about 1 MPa [4). Collagen fibers consist of tropocollagen mole­
cules. Such a tropocollagen molecule consists of a helix of three polypeptide 
chains. 

Collagen is about 103 times as stiff as elastin. The Young's modulus is 
about 1000 MPa [4) . For small loads a network of unstretched, undulating col­
lagen fibers between a network of stretched elastin fibers is found. This struc­
ture gives the tissue its low stiffness for small deformations. With increasing 
deformation more and more collagen fibers will be stretched, which causes 
an increase in the stiffness. Therefore the stress-strain relation is strongly 
non-linear, which for example can be seen from Fig. 3. A functional conse­
quence is that the collagen network behaves like a protection against large 
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FIGURE 3. (a) a typical uniaxial force-length relation for soft biological tissues; 
(b) uniaxial stress-strain relation for aorta-tissue from a sinus of Valsalva for 
different strain rates; from [3J. 

deformations. The mentioned stiffnesses only apply for extension, because 
the elastin and collagen fibers buckle easily in compression. A compression 
load is initially transduced by the liquid component in the tissue. 

Biological materials behave anisotropically at fiber level due to the fiber 
construction. This means that the mechanical properties are orientation de­
pendent. Because the fibers are unevenly oriented, these tissues also respond 
anisotropically on a macroscopic level. 

Visco-elasticity is typical for biological tissues. This visco-elasticity ex­
presses itself for example in the strain rate dependence of the stress-strain 
relation (Fig. 3). For cyclic loading we find a hysteresis loop in the stress­
strain diagram. The stress-strain curve during loading is higher than the 
unloading curve. Before we established that the non-linear anisotropic be­
haviour mainly can be ascribed to the solid component of the tissue. The 
viscous effect can not be localised that easily. It can be present intrinsically 
in the solid, but it can also be originating from the viscous liquid compo­
nent . There is experimental evidence that most of the viscosity stems from 
micromotion of the fluid. 

1.3. The mechano-electrochemical behaviour of biological tissues 

Osmotic forces are probably equally important in tissues as viscosity and 
elasticity. Osmosis ensures that the fiber network of the tissue functions under 
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tensile prestresssing and the fluid saturating the network is under pressure. 
This vital to the correct functioning of the tissue as aquous solution typ­
ically resist compression and fibers resist tension. To illustrate the typical 
mechano-electrochemical response of tissue, we consider a swelling and con­
solidation experiment. The composition of the tissue as shown in Fig. 2 causes 
a response as well as to mechanical (forces and displacements) as to chemical 
loads (variations of concentration). It is convenient to group the different 
components of the tissue to describe the response. We consider four compo­
nents: the negatively charged solid component, consisting of fibers and fixed 
proteoglycans, the neutral liquid component, the positively charged cations 
and the negatively charged anions. 

The experimental setup is shown in Fig. 4. The specimen is, precisely 
fitting, closed in between the walls of the container, piston and a porous 
filter. The filter makes it possible for the fluid to flow out of the specimen. 
The resistance to flow in the filter is much smaller than in the specimen. 
The specimen can be mechanically loaded, using the piston (pressure on 
the material). A chemical load is applied as a stepwise change in the salt 
concentration in the fluid flowing through the filter. The response of the 
tissue to the load is measured in terms of variation of the height of the 
specimen. 

(a) piston I (b) 
load cell 1.2 

container 
height 

[mm] 
1.1 

d 

specimen 1.0 

0.9 .._ _ ___._ __ ............ __ _,__ _ ___, 

filter I NaCI solution 0 time [hours] 20 

FIGURE 4. The swelling and consolidation experiment: a) the experimental setup; 
b) the measured variation in height of the specimen in a typical experiment, 
consisting of a conditioning phase a (salt concentration 0.6 M, piston pressure 
0.08 MPa), a swelling phase b (0.2 M, 0.08 MPa), a consolidation phase c (0.2 M, 
0.2 MPa), and a control phased (0.2 M, 0.08 MPa); from [5]. 
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The experiment starts with a conditioning phase (a), during which the 
specimen reaches an equilibrium for a known load. Next, the concentration 
of the ionic solution is decreased (b). This leads to swelling of the specimen. 
This is the result of a combination of osmotic, diffusion and convective effects. 
The concentration gradient between specimen and filter causes (i) an outflux 
of ions out of the specimen, and (ii) an influx of water into the specimen. 
Because the specimen has to be electrically neutral, an outflow of ions is 
limited and therefore a permanent inflow of fluid occurs. In this case we speak 
of Donnan osmosis. The swelling is caused by electrostatic effects. The finally 
attained condition represents an equilibrium between the swelling pressure 
in the fluid related to osmotic an electrical effects, and the stress in the solid 
component, related to the strains in the solid. 

In phase (c) the pressure created by the piston is increased incrementally. 
If we consider both the fluid and solid as incompressible, the increased load is 
at first carried by the liquid component only. At the bottom of the specimen 
a large pressure gradient arises, which causes an outflux of fluid. An effect of 
this outflux is that the piston will lower. The deformation of the specimen 
causes a stress in the solid component that gradually will take over the load 
from the liquid. 

Finally, in phase (d) the boundary conditions of phase (a) is re-established. 
The extent to which the equilibrium in phase (d) fits that of phase (a) is an 
indication for the quality of the experiment. Considering the amount of time 
the experiment requires this is highly recommandable. 

The osmotic pressure causing the swelling here in this experiment by 
lowering the external concentration, is the procedure through which the body 
generates stiffness, even in soft tissues, and appears as a solid, while its main 
constituent is water. The smooth look of a young skin is a result of the 
pre-tension in the solid substance, as a consequence of the swelling pressure 
correlated with the presence of water binding molecule structures beneath 
the skin. The dissappearance of this smooth skin during our lives is to great 
extent connected to a decrease of the water binding ability of the tissues, as 
is the ageing of the human body in general. The amount of water decreases 
during our lives from 75% in a new born to 50% in our last years. Joint 
disorders are also a consequence of damage of the proteoglycan networks in 
the cartilage. 

Beside biological tissues some engineering materials show the same swell­
ing behaviour. Synthetic hydro gels swell in a similar manner. They are, 
among others, used for soft contact lenses, diapers, controlled drug deliv­
ery and to hold water in desert sands. In Fig. 5 the results are presented of 
a swelling and consolidation experiment, carried out upon a copolymerised 
synthetic foam. This material imitates some features of cartilaginous mater-
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ial [ 1]. It is designed to do experiments in well controlled circumstances. The 
results of these experiments are used to validate some aspects of the theory 
of mixtures on biological tissues, as presented during this course. 

The swelling behaviour of clays is important for the ceramics industry. 
In soil mechanics swelling clays are considered the worst manageable soil. 
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FIGURE 5. Swelling/consolidation test of an acrylacid-acrylamidecopolymergel 
processed in a polyurethane foam. 

2. Mechanics and thermodynamics of 1-component mixtures 

In this section 1-component mixtures represent simple continua, consist­
ing of only one component in only one state of aggregation. The mechanical 
and thermodynamical behaviour of these substances will be discussed. 

2.1. Kinematics and stress 

2.1.1. Kinematics. Kinematics describes the displacement and deforma­
tion of continua. We identify an arbitrary point in the continuum with ma­
terial coordinates { 6, ~2, 6}. We put these coordinates in a column {: 

(2.1) 
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in which the superscript T represents the transposition. The momentary po­
sitioning vector x of a particle can be written as a function of the material 
coordinate ~ and the time t: 

x = x(~, t). (2.2) 

It is often convenient to identify the points in the continuum with their 
position xo in a state of reference, e.g. the state at time to: 

Xo =X(~, to). (2.3) 

We can therefore consider the momentary position x of a point as a function 
of the position in the state of reference: 

x = X(xo, t). (2.4) 

If the positions of the points in the continuum can be followed, than 
also changes of these positions can be identified. These variations can reveal 
itself in changes of the distance between two points, or changes of the angles 
between line pieces. The size of these changes can be determined with the 
deformation tensor, which will be derived below. 

Consider two neighbouring points with material coordinates ~ and ~ + 
d~, that are in the state of reference at positions xo and xo + dxo. In the 
~omentary state, these points are situated at the positions x en x + dx . 

The projection of the difference vector dxo in the state of reference on 
the difference vector dx in the momentary state is the deformation tensor F: 

dx = F · dxo (2.5) 

in which F can be determined using: 

(2.6) 

In this formulation V 0 represents the gradient operator correlated to the 
state of reference, while the superscript c indicates the conjugated. Now, 
consider an infinitesimal cube of matter that has a volume dVo in the state 
of reference. The momentary volume dV , obtained after deformation F, is: 

dV = det(F) dVo. (2.7) 

Often, the volumetric variation factor is also used: 

J = dV/dVo = det(F). (2.8) 
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The deformation tensor F describes the variations in volume and shape as 
well as the rigid rotation of the material. We are mainly interested in the 
variations of volume and shape, because these cause the stresses in the ma­
terial. To describe this pure deformation we can use the right Cauchy-Green 
strain tensor C, defined as: 

C= Fe ·F. (2.9) 

The tensor C describes the elongation and shear. In the state of reference 
the right Cauchy-Green strain tensor Cis equal to the unit tensor I. For a 
description of the constitutive behaviour of materials it is most convenient 
to use a strain tensor that is equal to the zero tensor, 0, in the state of 
reference like the Green-Lagrange strain tensor E: 

1 
E = "2 (C- I). (2.10) 

Let us now consider the changes in position and deformation in time. The 
velocity v of a material point is defined as the material time derivative of a 
momentary position vector of the point: 

v = x = x(~, t) = ox({, t) I . 
- at { (2.11) 

This means that changes of the position are observed, while we are connected 
to one particle(~ is constant). For the velocity dx, with which a line element 
dx variates in size and dirt.!ction, the momentary deformation rate, can be 
derived: 

dx =F. p-1 . dx = (D + n) . dx (2.12) 

in which the deformation rate tensor D and the rotational rate tensor n are 
defined as: 

D = ~ {F. p-1 +(F. F-1)c} = ~ {(vvr + (Vv)}, (2.13) 

n = ~ {F. F-1
- (F. F-1r} = ~ {(vvr- (Vv)} (2.14) 

in which the identitiy F · p- 1 = (Vv)c is used. For the velocity, with which 
the momentary volume of the material changes, applies: 

j = J tr(D). (2.15) 

The next expression can be deduced for the material time derivative of the 
Green-Lagrange strain tensor: 

E= Fe ·D·F. (2.16) 
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2.1.2. Stress. The deformation, as described above, is usually caused by 
forces. These forces will often be applied on the surface of the continuum. It 
is common to relate the magnitude of the force to the size of the surface. 

Now, consider an infinitesimal area with a normal vector no and surface 
dAo . After applying a force df this area deforms according to a deformation 
tensor F, where the deformed area gets a normal vector nand a surface area 
dA. We define a stress vector t as force per unit surface area t = df / dA. 
The local state of stress in the material now is given by the Cauchy stress 
tensor u, that projects the normal vector n upon the stress vector t in the 
momentary state: 

t = u · n . (2.17) 

This equation is a definition of the Cauchy stress tensor. The stress u in 
general depends on the deformation of the material. For an incompressible 
material the stress is determined by the deformation (and its time and spa­
tial derivatives) except for a constant hydrostatic contribution -pi, where p 
represents this hydrodynamic pressure. This can be shown by loading such a 
material on all sides by a single hydrostatic pressure. This load will not cause 
any deformation. The stress nevertheless has to increase to reach an equilib­
rium at the boundaries. In other words, a part of the stress in the material 
is independent of the state of deformation. It is convenient to subdivide the 
stress tensor u in a hydrostatic part -pi and a deviatoric part ud: 

u = -pI+ ud. (2.18) 

The constitutive relation of the stresses depend on the mechanical properties 
of the material. This constitutive relation has to be objective, which means 
that it is not allowed to change during rigid rotations. In a later chapter, 
we will show that when using the Green-Lagrange strain tensor as a strain 
quantity, it is convenient to use the Piola-Kirchhoff stress tensor P, as a 
stress quantity, based on objectivity. This stress tensor is defined as: 

P = det(F) p-l · u · p-c. (2.19) 

2.2. Conservation of mass, balance of momentum and balance of 
moment of momentum 

2.2.1. Conservation of mass. We consider an arbitrary, but fixed part of 
space with volume V and outer surface A. The matter in this volume has a 
density p. Conservation of mass requires, that the variation of mass of this 
volume matches the mass flow per unit of time through the surface A, 

(2.20) 
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in which n is the outer normal unit vector. Applying Gauss' theorem and 
swapping of the time derivative and the integral gives 

J (: + V · (pv)) dV = 0. (2.21) 

v 

Because the volume V is arbitrary, the integrant has to be zero in every point 
in space. This results for the local conservation of mass into: 

or 

fJp 
- + V · (pv) = 0 
fJt 

p+ pV · v = 0 

in which the material time derivative is used: 

. Dp fJp 
p = Dt = fJt + v . V p. 

(2.22) 

(2.23) 

(2.24) 

2.2.2. Balance of momentum. Again we consider an arbitrary, but fixed 
part of space with volume V and a surface A. 

The impuls per unit volume is equal to pv. Fully analogously to the 
previous derivation, we now consider transport of impuls pv instead of mass 
p. The variation of momentum in a volume per unit of time is equal to: 

!J pv dV + j(pv)v · n dA. (2.25) 

V A 

According to the balance of momentum this momentum variation is equal 
to the resulting force that works on the matter in V. Generally this force 
consists of a volume force q per unit of mass and a surface force t per unit 
of surface area. According to the balance of momentum we find: 

!! pv dV + J(pv)v · n dA = Jpq dV + jt dA. (2.26) 

V A V A 

The last term of this equation is written as: 

jtdA= Ja·ndA= Jv·acdV. (2.27) 

A A V 

If we apply Gauss' theorem to the second term of (2.26) also, we obtain local 
balance of momentum, using (2.23): 

pv = v . uc + pq. (2.28) 
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2.2.3. Balance of moment of momentum. According to the balance 
of moment of momentum the variation of the moment of momentum in a 
volume V is equal to the transport of moment of momentum through the 
surface area A added to the moment of forces, that work on the volume. The 
moments of momentum are considered with respect to a fixed point 0. This 
is written in integral form: 

~Jx·pvdV = at 
v 

-j ( x · pv )v · n dA 

A 

+ J X • pq dV + J X • t dA. 

V A 

(2.29) 

This equation holds for non-polar continua, continua in which no spread mo­
ments are present. Through laborious deduction the local balance of moment 
of momentum is derived: 

(2.30) 

a simple result, which shows that u is symmetric. 

2.3. Thermodynamics 

2.3.1. The first law of thermodynamics. The first law of thermody­
namics is the law of conservation of energy. It says that the heat dQ added 
to a system can be used to increase an internal energy U of the system with 
an amount dU, to increase the macroscopic kinetic energy K of the system 
with an amount dK, and/or to increase the work done by the system with 
dW8 : 

dQ = dU +dK +dW8 • (2.31) 

If the first law is used for a continuum it is more convenient to consider the 
work dW = -dWs that is applied to the continuum. Furthermore we will 
consider the changes per unit of time, to write (2.31) as: 

(2.32) 

We consider the part of space again with volume V and surface The kinetic 
energy K of the continuum is: 

(2.33) 
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The variations in kinetic energy of the continuum per unit of time, k, is: 

. aj1 j 1 K = at 2 pv · v dV + ( 2 pv · v )v · n dA. (2.34) 

V A 

The internal energy U of the matter in V, is: 

U=jpUdV (2.35) 

v 

in which [; indicates the specific internal energy, or the internal energy per 
unit mass. In this course we will indicate specific quantities with a tilde C ) 
on top of every symbol. The variations of the internal energy per unit of time 
U can be written as: 

(J = !J pU dV + j(pU)v. n dA. (2.36) 

V A 

The applied load consists of a volume load q and a surface load t. The power 
that is provided by the load is: 

W= jpq·vdV+ Jt·vdA. (2.37) 

V A 

We will now specify the heat added to the system more accurately. We con­
sider heat supply through internal heat sources, that produce an amount of 
heat r per unit of time per unit of mass and heat drainage through the sur­
face caused by a heat flux density vector h. The heat added per unit of time 
now yields: 

Q= jpi'dV- Jh·ndA. (2.38) 

V A 

Application of the first law (2.32) now yields: 

- j p ( [; + ~v · v) v · n dA 
A 

+ jpq·vdV+ Jt·vdA 
V A 

+ j pi' dV - j h · n dA. (2.39) 

V A 
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The local form of this law follows from Gauss' theorem. The last term 
of (2.37) is thereby transformed into: 

Jt·v dA = J V · ( CTc · V) dV 

A v 

= J { (V · a c) · v + a : (V v J<} dV 

v 

= J {(V · ac) · v + a : D} dV: (2.40) 

v 

The last transition is justified, because the Cauchy stress tensor u is symmet­
ric. If we use the balance of mass (2.23) and the balance of momentum (2.28), 
we find the local law for conservation of energy: 

pU = pr- v. h + u : D. (2.41) 

Using (2.16) and (2.19) we obtain: 

~ 1 . 
pU = pr- V · h + Jp : E. (2.42) 

2.3.2. The second law of thermodynamics. Considering the original 
formulation of the second law, by Clausius in 1850, heat doesn't flow from 
a cold system to a warm system spontaneously. A more general formulation 
states that systems always show the tendency to transit from an ordered to 
an unordered state. The very existence of the second law is linked to the 
choice in continuum mechanics to describe a system of a limited number of 
independent variables. Because of this limitation, this macroscopic descrip­
tion of the system is inherently incomplete. In other words, there are many, 
many microstates which lead to the same macrostate. The precise definition 
of disorderliness or entropy ( S) in statistical physica has little relevance to 
the subject of mixture theory has such and will therefore not be dealt with in 
detail. It suffies to say that the entropy of a system is related to the number 
of microstates, that leads to the same macrostate. A simple example illus­
trates this clearly. Consider a set of 5 red beads and 5 blue beads, which fit 
into a box with 5 spaces on the left and 5 spaces on the right. A microstate is 
defined by which colour is in which space. The macrostate is defined by a sin­
gle variable: the number of red beads in the 5 spaces on the left. Macrostate 
n corresponds to ( 5· ·· · ·n+ 1 ) 2 microstates· (5-n)! · 
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TABLE 1. The number of microstates is a measure of the entropy of the 
macrostates. 

macrostate number of microstates 
n=5 1 
n = 4 25 
n = 3 100 
n= 2 100 
n = 1 25 
n=O 

When beads are moved around in the box, there is more chance to have 
the system moving towards state n = 2 or n = 3 than towards n = 0 or 
n = 5, simply because there are more ways to be in state n = 2 or n = 3 
than n = 0 or n = 5. This is what the second law of thermodynamics is all 
about. The second law is almost a tautology. The box naturally moves to 
the more entropy states n = 2 or n = 3. In the real problem of continuum 
mechanics we have billions of particles within each representative elementary 
volume, resulting in many more microstates for each macrostate. This makes 
it virtually impossible for entropy to move down. For a closed system we 
have, 

dS 2: 0. (2.43) 

Entropy is the amount of knowledge of the system which is locking in the 
macroscopic description of the system in continuum mechanics terms. It is 
defined as a measure of the number of microstates which correspond to any 
microstate. The more microstates correspond to a macrostate, the less knowl­
edge of the details of the system we gain from the macroscopic continuum 
knowledge, and therefore the higher the entropy. For an open system, the gen­
erated entropy is the change in entropy of the system minus the externally 
supplied entropy ~: 

dQ 
dS- T 2:0. (2.44) 

If the '='-sign in (2.44) counts, we speak of a reversible process, if the '>'-sign 
counts, the process is irreversible. Actually, (2.44) forms the thermodynamic 
definition of entropy. We will write (2.44) again for a part of space with 
volume V and surface area A. If we consider the variations per unit of time, 
we find, using (2.38): 

a j - j - jpr jh - pS dV + pSv · n dA > - dV - - · n dA at - T T (2.45) 

V A V A 

in which the specific entropy S is defined as the entropy per unit mass. 
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TABLE 2. Balance laws for non-polar continua. 

quantity balance law 

mMs P+pV·v=O 

momentum pv = V · u + pq 

moment of momentum u = uc 

energy pU = pr - V · h + u : D 

. - (h) entropy pS ;::: Pf - V · T 

For the local form follows: 

.:. pr (h) pS~ T-V · T . (2.46) 

This form is also known as the Clausius-Duhem-equation. 

2.4. Thermodynamic potentials 

In this paragraph we will consider the amount of energy of a continua. The 
energy per unit mass, the specific energy, is also called the thermodynamic 
potential. 

2.4.1. Ideal media. In the traditional application area of thermodynamics, 
gases are often considered. These gases are regarded as an ideal medium, 
which means, a medium in which the state of stress can be characterized 
with a hydrostatic pressure p. For the work done by the system dW8 applies: 

dWs =pdV (2.47) 

in which dV is the change of volume of the medium. Furthermore, the macro­
scopic kinetic energy K is neglected, as to write the first law (2.31) as: 

dQ = dU +pdV, (2.48) 

which converts for a reversible process into: 

dU = TdS- pdV. (2.49) 

We can make a transition from the global to the local form again by working 
with specific quantities. 

(2.50) 
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in which V = 1/ p represents the volume per unit mass. If we now consider 
the specific internal energy U as a function of the independent variables § 
and V: 

u = U(S, v) (2.51) 

and we determine the total differential of U, 

dU = ( 8~) dB+ (a~) dV, as - av -v s 
(2.52) 

we can derive from (2.50) and (2.52) that: 

T= (~~)~ (2.53) 

P =-(a~). av 8 

(2.54) 

From Eq. (2.52) it turns out that the internal energy doesn't change for a 
thermodynamic process with which the specific entropy S and the specific 
volume V remain constant. Therefore it is convenient for such isentropic, 
isochoric processes to use the potential U. We call S and V the characteristic 
variables, corresponding to the potential U. 

For isentropic, isobaric processes it is more convenient to use another 
potential, the specific enthalpy ii, defined as: 

(2.55) 

In a reversible process we can write the total differential of if, using (2.50). 

dii = TdS + Vdp. (2.56) 

Obviously we can consider the enthalpy ii as a function of the characteristic 
variables Sand p: ii = H(S,p). It can also be derived that: 

T = (at:.) as ' 
p 

(2.57) 

V= (~!t (2.58) 

For isothermal, isochoric processes we use the third thermodynamic poten­
tial, the specific Helmholtz free energy, defined as: 

(2.59) 
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for which we can derive that: 

dF = dU- TdS- SdT = -SdT- pdV (2.60) 

and 

(2.61) 

(2.62) 

In some cases it is recommendable to assume a thermodynamic potential that 
has the temperature as well as the pressure as the characteristic quantities. 
This potential is called the specific Gibbs free energy G = G(p, T), and is 
defined as: 

G=ii-Ts. (2.63) 

For the variation dG of G the next total differential applies: 

dG = dH - TdS - SdT = v dp - SdT (2.64) 

in which (2.56) is used. Following the already known manner, we can derive 
that: 

(2.65) 

- (ac) 
S=- 8T ~ (2.66) 

For isobaric, isothermal, reversible processes holds: 

(dG)p,T,rev = 0. (2.67) 

For the irreversible case it can be derived that: 

( dG)p,T,irrev < 0. (2.68) 

An arbitrary isobaric, isothermal process goes therefore in the direction of 
a decreasing Gibbs free energy untill an equilibrium is reached, for which 
applies: 

2 -(d G)p,T,evenwicht > 0. (2.69) 

We will use these properties of the Gibbs free energy later. 
In the text above, two examples of a free energy have come up. From 

(2.59) and (2.63) it appears that such a free energy is defined by reducing 
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another measure of energy with T S. This term T S represents that part of 
the specific energy, that cannot be released from the matter by some process 
of conversion, because of the second law. When we use the word 'energy' in 
daily life we mean free energy, energy that can readily be used. When we say 
'energy' crisis, we mean free energy crisis. When we say 'law of conservation 
of energy' we mean, law of conservation of internal energy. 

2.4.2. Non-ideal media. In general the state of stress in a continuum 
is not hydrostatic. In this paragraph we will describe state functions for 
a more general state of stress. According to the local balance of energy 
(2.42) and (2.46), the variations of the specific internal energy U in time 
are, for reversible processes: 

.:.. .:.. 1 . 1 
pU = pTS + Jp : E- Th. VT. (2.70) 

We will now restrict ourselves to continua in which no temperature gradients 
are present. If we consider the variations independent of time, it follows, that: 

- - 1 
dU = TdS+ -P: dE. 

Po 
(2.71) 

If we match this expression with the corresponding expression for ideal media 
(2.50), we see that the transition to general media can be attained by the 
following substitution: 

- 1 
-pdV--+ -P: dE. 

Po 
(2.72) 

Physically, both terms represent an infinitesimal amount of work, that is 
produced by the surface forces per unit of deformed volume. We see in (2.71) 
that the specific internal energy is a function of S and E: 

(2.73) 

Differentiating this relation yields: 

- (au) - (au) dU= a§ ;s+ aE 
5

:dE. (2.74) 

Comparing (2.74) with (2.71) shows that: 

T= (~~) E (2.75) 

P=Po(~~t (2. 76) 
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Extension of (2.59), the total differential for the specific Helmholtz free energy 
F, for general media, yields, 

- - 1 
dF = -S dT + -P : dE, 

Po 

from which it can be shown that: 

p =Po ( ~!); 

8=-(~)E· 

(2.77) 

(2.78) 

(2. 79) 

The total differential of the specific Gibbs free energy G (2.64) we extend 
in a similar way: 

- - 1 
dG = -S dT- -E : dP, 

Po 
(2.80) 

from which we see that: 

(2.81) 

(2.82) 

The extensive form of the enthalpy fi can also derived this way. The result 
is shown in Table 3. 

TABLE 3. Thermodynamic potentials. 

name definition total differential 

internal energy [J dU = TdS + .1... p : dE 
PO 

enthalpy fi = [J- .l..p: E 
PO 

dH = TdS- .l..E: dP 
PO 

Helmholtz free energy fr = [J- TS dF = -SdT + ...L P : dE 
Po 

Gibbs free energy 6 =fi-TS dG = -SdT- ..l..E: dP 
Po 
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2.5. The second law and constitutive behaviour 

To trace the mechanical state of a continuum, constitutive equations for 
the material behaviour are also needed as well as the corresponding initial 
and boundary conditions. For the choice of the constitutive equations several 
limitations apply. The next requirements have to be satisfied [Schreurs, 1993; 
Oomens, 1993d]: 
• definiteness; 
• objectivity; 
• thermodynamic permissibility; 
• equipresence. 

The third demand implies that the constitutive equations have to be cho­
sen such, that the entropy inequality (2.46) is satisfied for all possible states 
and variations of state of the continuum. This means that restrictions can be 
obtained using the second law for a general form of the constitutive equations, 
that describe the material behaviour. We will use this demand frequently dur­
ing this course. Equipresence demands that all dependent variables depend 
on all independent variables unless the third demand makes this impossible. 
To illustrate this, we will apply this routine first for the simple case of a 
1-component mixture. 

First we eliminate the term pr from expression (2.46), using (2.42) for 
the first law, which results in: 

. . (1) p(TS- U) + 0' : D + Th. v T ~ 0. (2.83) 

Transition to the specific Helmholtz free energy P (2.59) yields: 

-p(F + t§) + lT : D + Th. v G) :::: 0. (2.84) 

We now assume the following: 
• the material is incompressible; 
• volume forces and forces of inertia are neglected; 
• the temperature of the continuum is constant in time and space. 

The last demand holds under the assumption that the source term r is 
chosen such that temperature remains constant. Therefore this equation will 
not be considered any further. Our final choice for the constitutive behaviour 
has to satisfy the following second law, 

-pF + 0' : D ~ 0, (2.85) 

with additional conditions, the balance of mass and momentum: 

V·v=O, (2.86) 
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V·u=O. (2.87) 

One way of processing of these subsidiary conditions is substitution, where 
a variable in a side condition is first isolated and then eliminated from the 
main equation. The number of equations as well as the number of unknowns 
decreases. If the isolation of a variable is impossible or inconvenient, a sub­
sidiary condition can be accounted for using a Lagrange-multiplier. The sub­
sidiary condition is written as an equation in which all terms are moved to 
the left. The right hand side of the equation is zero. The left hand side of this 
equation, multiplied by the Lagrange-multiplier, is added to the inequality. 
Because the number of unknowns increases in this situation, the method of 
substitution is preferable, if at all applicable. 

Let us nevertheless try to account for the incompressibility condition 
using a Lagrange-multiplier ,\: 

-pF + u: D +-XV· v 2:0, (2.88) 

which can also be written as: 

-pF + (u +-XI) : D 2:0. (2.89) 

The balance laws (2.86) and (2.87) are equivalent to 4 scalar equations with 
9 (6 stresses and 3 velocities) unknown variables. We need therefore 5 addi­
tional equations. Since balance laws are no more available we need at least 5 
constitutive equations. We choose the quantities F and u +,\I as dependent 
variables that depend on independent variables through constitutive rela­
tionships. These relationships are equivalent to 7 scalar equations (1 for F 
and 6 for u + -XI). They provide the 5 missing equations plus 2 equations 
to compensate for the law quantities F and ,\. Then the set of equations is 
closed. 

We chose the Green-Lagrange strain, E, as an independent variable. Such 
choice equates to an assumption of elasticity. Using the principle of equipres­
ence we have to make all dependent variables function of all independent 
variables. In this simple case, it means: 

P = F(E), 

u + -XI = F · u* (E) . pc. 

(2.90) 

(2.91) 

The pre and post multiplication with F ensures that the constitutive function 
u* is objective. The choice of dependent and independent variables doesn't 
result from theory, but is based on physical insight. The number of dependent 
variables should be such as to ensure that the final set of equations is closed, 
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i.e. the number of unknowns should equal the number of equations. Finally, 
the extent to which the resulting constitutive equations describe the observed 
experimental behaviour of the continuum, is a justification for the choice. 
Substitution of the expressions (2.90) and (2.91) in (2.89) yields: 

F · ( -p ~~ + cr') · pc : D ~ 0. (2.92) 

This expression has to apply for arbitrary values of D. Because the factor 
with which Dis multiplied, is dependent of D we can satisfy (2.92) by setting 
this factor to zero. This means that the entropy-production is equal to zero, 
which is in agreement with our assumption of elastic material behaviour. 

Filling of expression (2.91) for u* yields: 

aP c 
u = pF · aE · F - >..I. (2.93) 

Let's compare this expression with (2.18). We find that the Lagrange- mul­
tiplier can physically be interpreted as the hydrodynamic pressure p. The 
deviatoric stress ud can be written as: 

(2.94) 

If we now switch to the second Piola-Kirchhoff stress tensor P, based upon 
ud, we can also write: 

aP 
P = det(F) p-l · ud · p-c =Po aE, (2.95) 

where p/ po = det(F) is used. The elastic behaviour of biological materials is 
often described with a strain energy density function or the elastic potential, 
and indicated with the symbol W. This yields: 

(2.96) 

We can interpret this W as poF, the amount of Helmholtz free energy per 
unit volume. 

Exercises 

1. Use the second law according to (2.84) to derive the general form of 
the constitutive equations for thermo-elastic media. 

http://rcin.org.pl



122 J.M. HUYGHE and P.H.M. BOVENDEERD 

- First, choose the Green-Lagrange strain tensor E, the tempera­
ture T and the temperature gradient VaT = pc · VT as inde­
pendent variables and the Helmholtz free energy F, the entropy 
S, the second Piola-Kirchhoff stress P and the heat flux vector 
ho = F- 1 · h as dependent variables. 

- Then choose the Green-Lagrange strain tensor E, the entropy S 
and the heat flux vector ho = p-1 · h as independent variables 
and the internal energy U, the temperature T, the second Piola­
Kirchhoff stress P and the temperature gradient V oT = pc · VT 
as dependent variables. 

2. In an incompressible biological material the relation between the devi­
atoric Cauchy stress tensor ud and the Green-Lagrange strain tensor is 
described using (2.95) and (2.96). For the elastic potential W applies: 

W(E) = aexp (b(Ef1 + E~2 + 2E~a) 

+ b(Ef2 + E~1 + E~3 + E~2 + E~1 + Efa)], 

where the components Eij are chosen with respect to a Cartesian base 
{ er, e2 , ea}. A cubic-like specimen is created of the material of which 
the edges are oriented along the base vectors. The specimen is tested 
in a uniaxial extension and compression test by loading along the ea­
direction. The elongation factor in this direction is called A. Calculate 
the hydrostatic pressure and the components of u as a function of A. 

3. General theory of mixtures 

We generalize the theory obtained in the last chapter for a description 
of the mechanical behaviour of mixtures, substances consisting of several 
components. A component is defined in this context as a set of material 
constituents that moves jointly in the mixture. 

In this chapter we will derive a general form of the theory of mixtures. 
The description has mainly be taken from Bowen (1976). 

3.1. Quantities of mixtures 

Let's consider a general mixture of v components. Microscopically, only 
one component is present at a certain moment at a certain place in space. 
Furthermore, the composition of the mixture will differ in general from one 
point to another. In the theory of mixtures we try not to describe the be­
haviour of every seperate particle. We use a continuum approach instead, 
in which we spread the properties of the components over a representative 
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FIGURE 6. Illustration of the averaging procedure for a mixture of a solid and a 
fluid. 

volume unit (RVU) ~ Y. This volume has to be big enough to provide a 
good continuum representation of the quantities on microscopic level, but 
also small enough to avoid averaging of macroscopic variations. If the RVU 
is displaced through every possible position in the mixture and the average 
quantities are ascribed to the position of the centre of the RVU, we can de­
termine the average quantities as a function of the position in the mixture 
(Fig. 6) . A consequence of the averaging concept is that every component, 
that is present in the mixture, occupies every position x in that mixture. We 
express the amount of component a in terms of mass m 0 or moles n°. In the 
theory of mixtures we usually take the apparent density p of the components, 
concerned with the RVU, Y, and the present amount of mass, m 0

, in it: 

a= l, ... ,v. (3.1) 

If component a is immiscible with other components, the volume of com­
ponent a is indicated with yo. The real intrinsic density Pi of the compo­
nents of immiscible components is then: 

a= l, ... ,v. (3.2) 

We define the volume fraction ¢P of an immiscible component as: 

a= l, .. . ,v (3.3) 

in which yo is the volume occupied by component a within the volume Y. 
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It will be obvious that: 

(3.4) 

and 
a= 11 ••• 1 v. (3.5) 

We define the density p of the whole mixture as: 

(3.6) 

3.2. Kinematics and stress 

3.2.1. Kinematics. We consider the mixture of v components again. The 
collection of material points ~ of a component a (a= 11 ••• , v) is indicated 
with Ba. These points occupy an area ga in the three-dimensional space at 
timet: 

(3.7) 

The areas ga (a = 11 ••• 1 v) coincide according to the theory of mixtures 
and every position x is occupied by particles of every single component at 
the same time. Therefore, the following holds: 

We can now define a deformation tensor pa per component: 

(3.9) 

In this equation the symbol V 0 represents the gradient operator concerning 
the state of reference of component a. We define the Green-Lagrange strain 
tensor Ea with respect to component a as: 

Ea - ~ { (par . pa - I} -2 . (3.10) 

The velocity va of a material point from component a is defined as: 

(3.11) 

We define the velocity of the whole mixture v as the mass weighted average 
of the velocities of the components: 

1 /) 
v(x 1 t) =- L pava(x 1 t). 

p a=l 

(3.12) 

http://rcin.org.pl



INTRODUCTION TO BIOLOGICAL MIXTURE MECHANICS 125 

We can point several velocities in every point of the continuum. Therefore 
several material time derivatives are defined. Let's consider a quantity a0

, a 
quantity a connected to the component a. We now define two material time 
derivatives of a 0

: 

Da0 8a0 

-- = -- + v. Va0 

Dt 8t ' 
(3.13) 

(3.14) 

Using time derivative a,o: we move with the average velocity of the mixture, 
while we move with the component a if we use a, a:. 

We define the deformation velocity tensor no: and the rotational velocity 
tensor no: as: 

no: ~ {Fa· (Fo:)-1 +(Fa. (Fo:)-1r}, 

no: = ~ {Fa · (Fo:)-1 - (Fa . (Fo:)-1 )c}. 

(3.15) 

(3.16) 

In these definitions we take the material time derivative of the deformation 
tensor po: while we move with component a. 

Finally we define the velocity u 0 of component a with respect to the 
velocity of the mixture as: 

(3.17) 

3.2.2. Stress. Let's consider a small surface with normal unit vector no and 
surface area Ao in this mixture. We can subdivide a force f, that works on 
this surface, in several contributions f 0

, working on each of the components 
a in the mixture. As a result of the force f the surface deforms, during which 
it gets a normal unit vector n and a surface area A. We now define the partial 
stress vector t 0 as the force working on component a, divided by the total 
surface area: 

(3.18) 

For the choice of size of the averaging surface A the same considerations 
apply 3.8 for the averaging volume V. Analoguously to (2.17) we now define 
the partial Cauchy stress tensor u 0

: 

(3.19) 

The tfnsor u 0 projects the normal unit vector n of a surface to the partial 
stress vector to:, that represents the force that is applied per unit of surface 
area. o: the mixture of component a. 
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3.3. Balance of mass, momentum and moment of momentum 

3.3.1. Balance of mass. We consider an arbitrary volume V in space with 
surface area A. The balance of mass for component a reads in integral form: 

:tJ p" dV =- j p"v" · n dA + j C" dV. (3.20) 

V A V 

This equation is equal to (2.20), with an extra source term added that 
accounts for the variation in mass of component a with respect to interactions 
with other components. The quantity co: is defined as the rate of mass transfer 
from component a to other components changes per unit volume of mixture. 
We can think of phase-changes (mass-exchange between liquid and vapour), 
variation of ionisation (mass-exchange between the ion-component and the 
solid phase), or chemical reactions. Applying Gauss' theorem yields the local 
form of the balance of mass per component a: 

(3.21) 

The exchange of mass between the mutual components does not influence on 
the total mass: 

f. ]c." dV = o. 
o:=Iv 

(3.22) 

At the local level this results in the local balance of mass for the whole mixture: 

v 

(3.23) 

3.3.2. Balance of momentum. We consider an arbitrary, but fixed part 
of space with volume V and surface area A again. In integral form the balance 
of momentum for component a is given by: 

! j p'"v" dV = - j (p"v")v" · n dA 

V A 

+ j p"q" dV + j t" dA + j (P" + C"v") dV. (3.24) 

V A V 

We recognize the integral form for one-phase materials again (2.26), com­
pleted with an interaction-term. The volume force that works upon a is 
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indicated with q0
. The term in t 0 represents the force per unit surface area 

mixture on component a. Based on (3.18) a contribution of the surface forces 
has to be calculated by integrating the partial stress vectors t 0 over the sur­
face of the mixture A. In the interaction term the volume force jP represents 
the momentum transfered from other components to component a , counted 
per unit volume mixture and per unit of time. Transition of momentum oc­
curs for example in friction forces, that are a result of relative movement of 
the components. The term c0 V 0 represents momentum transfer associated 
with the exchange of mass fP. It is assumed that the added mass of compo­
nent a gets the same velocity as the already present mass of component a. 
Using Gauss' theorem we find the local form of the balance of momentum per 
component a again: 

p" { a;t" + v" · Vv"} = p"V" = V · (u")c + p"q" + P" (3.25) 

in which u 0 represents the partial Cauchy stress tensor. The term c0 v 0 

doesn't show up again in this equation, because we used the balance of 
mass (3.21). For the total mixture the net conversion of momentum with 
respect to the interaction terms has to be zero, so the local balance of mo­
mentum for the total mixture holds: 

ll 

L(cava + pa) = 0. (3.26) 
a=l 

3.3.3. Balance of moment of momentum. The integral form of the 
balance of momentum for component a is: 

!J x" · p"v" dV =- j (x" · p"v")v" · n dA 

V A 

+ j x" · p"q" dV + j x" · t" dA 

V A 

+ J ( x". (C"v" + P") + m") dV. (3.27) 

v 

The last term accounts for the transfer of the moment of momentum from 
other components to component a. The term x 0 

• (c0 v 0 +p0
) is the moment 

of momentum transfer associated with the momentum interaction ( c0 v 0 + 
p0

). The term m0 represents the direct moment of momentum transfer to 
component a by the other components, counted per unit of volume mixture 
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and per unit of time. An example of such direct moment of momentum 
interaction is the case of friction forces transfered from fluid to solid in flow 
through helical pore structure with preferential helicity. The local form of 
the balance of moment of momentum is: 

(3.28) 

in which Nl:t is the anti-symmetric tensor corresponding to the axial vector 
m a, defined such that for all vectors a applies: 

A Q 

ma·a=M ·a. (3.29) 

The reader is referred to specialized literature for the proof of Eq. (3.28). 
At this moment we consider Ma as a quantity, analoguous to the terms fP 
and pa. 

3.4. Thermodynamics 

3.4.1. The first law. We formulate the first law of thermodynamics for 
a component a in the mixture as the first law for a one component contin­
uum (2.39), completed with an interaction term : 

:J p" ( U" + ~v" · v") dV dV = 

v 

- j p" ( U" + ~v" · v") v" · n dA + j p"q" · v" dV 

A V 

+ ft" · v" dA + J p"T" dV- J h" · n dA + J e" dV 

(3.30) 

A V A V 

!( 1 AQ - ) + VQ . PQ + 2na : M + ca(ua + ~VQ . va) dV 

v 

in which [Ja represents the specific internal energy of component a, ha rep­
resents the heat flux density vector for component a and fa represents the 
specific heat supply to component a by heat sources. In the second of these 
term the symbol e,a represents the direct energy transfer from the other com­
ponents to component a, calculated per unit volume mixture and per unit 
of time. The last term represents the energy supply caused by interaction 
effects with respect to the exchange of mass e,a, the exchange of momentum 
pa and the exchange of moment of momentum Ma. Using Gauss' theorem 
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and the balance of mass, momentum and moment of momentum the local 
form of the balance of energy per component a is derived: 

(3.31) 

Equation (2.41) shows that only the term e_o: is added in the case of mixture. 
In analogy to the other balance laws, we demand that the balance of energy 
for the components is consistent with the balance of energy for the total 
mixture: 

v 

L ( e_o: + uo: . :po: + co:(uo: + ~uo: . uo:)) = o. (3.32) 
o:=l 

Notice that the velocities uo:, defined in (3.17), are found in this equation, 
i.e. the component velocities with respect to the mixture velocity. 

3.4.2. The second law. The second law of thermodynamics, as formulated 
in (2.44), describes thermodynamic properties of a system. For a mixture it 
isn't clear how the system has to be defined: is the system formed by the 
total mixture or forms every component a system on its own? In the last 
case the entropy production per component has to be greater or equal to 
zero. In the first case this demand applies for the total mixture, and there 
can be components for which the entropy production is less than zero. We 
formulate the second law for the whole mixture as this is the only restriction 
which is agreed upon by the whole scientific community. Starting from (2.46), 
we postulate the local form of the second law for the whole mixture: 

(3.33) 

in which §o: is the specific entropy of component a, and To: is the temperature 
of component a. The term "'£ co:§o: discounts the interaction between the 
components again. If we eliminate the term po:ro: using the balance of energy 
per component (3.31) and eliminate the term "'£ e_o: using the balance of 
energy for the total mixture (3.32), it follows that: 

v { 0: ~ 0: po:uo: (1'0: : no: :po: . uo: 0: (" 1 ) L P s - ---ra + To: - ro: + h . v ro: 
o:=l 

- ~ (fJ"' + !u"' · u"' + T"'S"')} :2: 0. (3.34) 

If we finally define the Helmholtz free energy per unit mass for component 
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TABLE 4. Balance laws for mixtures. 

quantities balance law for component (c) and mixture (m) 

mass 

m L: C0 = 0, 

momentum c povo = V . (uo)c + poqo + j/:x., 

m L:(covo +Po) = o, 

moment of momentum c uo - (uo)c = Mo' 

energy c pUCt = pCtfCt _ v . hCt + uCt : no + e_o, 

m L: { e_o + Uet . pet + cet((Jet + !uet . uet)} = 0, 

entropy m L: {Po so - P;:o + V . ( q;) + co §o} ~ 0. 

o: as, 
(3.35) 

we can tramsform (3.34) into: 

t ;" { -p"(F"- fi"i'") + u" : D" + P" · u" 
a=l 

-T"h" · V (;") - C"(i'" + ~u" · u")} ~ 0. (3.36) 

3.5. Thermodynamic potentials 

3.5.1. Partial quantities. The total mass of a mixture is equal to the sum 
of the masses of the components of which the mixture consists. The total 
volume V of the mixture is generally not equal to the sum of the component 
volumes: 

v 

(3.37) 

This is caused, because the interaction between molecules of the same con­
stituent is generally different from that between molecules of different con­
stituent. To account for the independence of mixture composition partial 
quantities are used. We define the partial molar volume yo: of component o: 
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as: 

va = ( av ) ' a = 1' ... ' l/. 
ana p,T,n/3 ,/3-:f;a 

(3.38) 

So, va represents the increase of the volume of the mixture as a result of 
adding a little amount of component a, figured per mol of the added com­
ponent. Furthermore, the thermodynamic state of the mixture, here char­
acterized by p and T, has to stay constant, as well as the composition of 
the mixture. If va is independent of the composition of the mixture, then 
integration of (3.38) yields: 

(3.39) 

Generally, the partial volume of a component in the mixture is not equal 
to the molar volume of the pure component. If this fs the case, we say the 
mixture is ideal. 

3.5.2. Ideal media. Also for mixtures we can define potentials (Katchal­
sky and Curran, 1965). We will restrict ourselves to an ideal mixture of v 
components, in which an amount na moles of every component a is present. 
In the former chapter it turned out that for an ideal medium the Gibbs 
free energy G is a function of the pressure p and the temperature T. In the 
mixture, G is also a function of the mixture composition: 

G = G(T,p, n1, ... , nv). 

For variations dG the following differential applies: 

dG = (:;):,~+ (~~);~" 
v ( ac) + L a a dna. 

a=l n p,T,n/3 ,/3-:f;a: 

(3.40) 

(3.41) 

We now define the partial molar Gibbs free energy (;a: of a component a in 
a mixture as: 

(3.42) 

We can consider (;a as an increase in free energy of the mixture if we add one 
mole of component a to that mixture. The partial molar Gibbs free energy 
is usually called the chemical potential 11a:: 

110: = aa = ( ac) (3.43) 
ana ~,T,n!3,(3-:f;a: 
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Now (3.41) can be transformed to: 

(3.44) 

The part of the chemical potential in thermodynamics is comparable with 
that of the potential energy in mechanics. To illustrate this statement, let's 
consider a process - for a constant temperature and pressure - in which 
an amount dna. of component a is converted from state A to state B. The 
variation dG in Gibbs free energy then reads: 

(3.45) 

According to (2.68) the convertion from A to B will initiate spontaneously if 
dG is negative, i.e. if f.l/... > f.ls. If f.l/... < f.ls, the process will go in the opposite 
direction. In equilibrium dG = 0 applies, such that f.l/... = f.ls· The chemical 
potential therefore indicates in what direction the process will go. We will 
see in Chapter 5 that we can describe processes like osmosis well using the 
chemical potential. 

3.5.3. Non-ideal media. For mixtures of ideal media we could character­
ize the state of stress per component with the total pressure of the mixture p 
and the mixture composition n 1, ... , n 11 (3.40), because these quantities fix 
the partial pressures pa. totally. For mixtures of non-ideal media the state 
of stress has to be described with a whole stress tensor ua., that cannot 
be derived unambiguously from the total mixture stress u and the mixture 
composition. Therefore we have to make G explicitly dependent on all com­
ponent stresses. Starting from (2.80) we characterize the state of stress per 
component with the second Piola-Kirchhoff stress tensor Pa.. 

For mixtures of ideal media, like gasses, it is in addition usual to express 
the amount of a component in moles, indicated with na.. For non-ideal media 
it is sometimes more convenient to convert to masses ma.. The Gibbs free 
energy G for mixtures of non-ideal media can therefore be written as: 

G = G(T,P1
, •. . ,P11 ,m1

, ... ,m11
). (3.46) 

For the variation of the Gibbs free energy after adding a small amount of 
component a, counted per unit mass, now applies: 

-a. ( 8G) f.l = --Ci. . 

8m T,Pl, ... ,Pv,ml3,{3=/:a. 
(3.47) 

We call jla. the specific chemical potential of component a. 
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Exercise 

1. A petrochemical company wants to get insight in the state of stress of 
a formation around a well at 2 km depth. The formation is a mixture 
of mineral solid, water and oil. A finite-element mixture computation 
shows that the partial stresses of the water and oil (hydrostatic) are 
-2 MPa and -5 MPa. The volume fraction of water is 0.05 and that of 
oil 0.08. The responsible engineer wants to compare these values with 
the measured pressures. What is the predicted water pressure and oil 
pressure? 

4. 2-component porous media 

In this chapter we analyse a mixture of an incompressible liquid and an 
incompressible porous solid. This type of saturated porous medium is a good 
model for numerous types of soil mechanics problems and is therefore stud­
ied since many years in civil engineering. It can also be used in the field 
of biomechanics to model the coupling between fluid flow and mechanical 
loading in e.g. cartilage or skin. We will highlight this subject in a some­
what gradual fashion. The equations are first derived in the engineering style 
of Terzaghi for a simple one-dimensional infinitesimal strain case. This, to­
gether with a number of illustrating exercises, ensures that the reader first 
keeps his /her attention on the physics of the phenomenon. In a subsequent 
derivation we use the rigorous approach from the mixture theory for the case 
of three-dimensional finite deformation. 

4.1. The concepts 

4.1.1. Permeability. The French engineer Darcy initiated a number of ex­
periments in the context of the design of fountains in the city of Dijon. 
These experiments aimed at quantifying the permeation of water through 
sand beds (7] (Darcy, 1856). In the experiments water saturated cylindri­
cal sand samples were subjected to a constant pressure gradient. The flow 
through the specimens was measured for varying pressure difference, cross­
sections and lengths of the specimens. (Fig. 7). These experiments showed 
that the flow is proportional to the pressure difference Pl - P2 and the cross­
section A of the sample and inversely proportional to the length L of the 
sample: 

(4.1) 

The proportionality constant K is the permeability. Experiments showed that 
biological tissues comply with Darcy's law reasonably well (Maroudas, 1968, 
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FIGURE 7. Darcy's experiment 

1979) when the fluid is a physiological salt solution. In soil mechanics Darcy's 
law has been shown valid for sand and coarse lime. For clays a conclusive 
experiment has never been done. When different Newtonian fluids are used 
in the same sand samples, the permeability of the sample has been shown 
to be inversely proportional to the viscosity of the fluid. The permeability 
depends on the size and the structure of the pores of the sample also. If the 
sample is compressed, the permeability drops. Different relationships between 
permeability and fluid volume fraction are proposed in the literature. In very 
deformable porous media, like soft biological tissues, only the viscous forces 
of the flowing liquid are sufficient to cause compression of the porous medium 
and thus a reduction of the permeability. 

4.1.2. Effective stress. Consider a mixture of an incompressible solid and 
an incompressible liquid (Fig. 8). We assume that the solid is composed of 
grains - to focus the attention and without loss of generality. The dimen­
sions of the grains and the pores between the grains are small relative to 
the macroscopic dimensions of the material. Every grain is subject to two 
types of external load: (1) the liquid pressure (2) the contact forces with 
neighbouring grains. The liquid pressure is an isotropic load which cannot 
result into deformation of the grains as they are incompressible. Only the 
contact forces with neighbouring grains result in a stress field in the grains 
and thus deformation of the solid skeleton. The latter stress field, averaged 
over a large number of grains and measured per unit mixture surface is the 
effective stress. The effective stress in a mixture of an incompressible solid 
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liquid pressure 

FIGURE 8. The mechanical stress in a fluid solid mixture. 

and an incompressible liquid is that part of the stress that causes deforma­
tion. The total stress u is given by the sum of the effective stress u e and the 
hydrostatic pressure -pi: 

U = Ue- pl. (4.2) 

In this example we assumed that only the pressure of the liquid contributes to 
the total stress. In principle every component- and therefore also the liquid 
component- can contribute to the effective stress in a mixture. Therefore it 
is wrong to consider ( 4.2) a division of the stress in an effective stress caused 
by the solid and a pressure caused by the liquid. In general both components 
contribute to both terms. In soil and rock mechanics, the fields from which 
the effective stress concept originates, the effective stress is often called the 
grain stress, because for lots of soil mixtures contribution of the liquid to the 
the effective stress is negligible. 

In the former chapter we saw that in the more recent theory of mixtures, 
it is common practise to subdivide the total stress in a mixture in partial 
stresses, in analogy to the much older concept of partial pressure from the 
kinetic theory of gasses. These partial stresses can be associated with every 
individual component. For the porous medium this means: 

(4.3) 

The stress-strain relation becomes a relation between the effective stress 
and the pressure in a porous medium. Notice that in force equilibrium the 
total stress appears. 
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4.2. Theory of consolidation of Terzaghi 

During this presentation of porous media mechanics the historical de­
velopment will be followed, because that is the easiest way to comprehend 
it. 

One of the major enemies of civil engineering is the phenomenon consol­
idation. After constructing a big building or a bridge the foundation of the 
construction appears to sink several inches into the ground. As long as this 
sinking is distributed homogeneously over the total area of the foundation 
consequences are not yet disastrous. If there is differential sinking, the con­
sequences can be catastrophic. Cracks in the construction, leakage in case of 
a dam or pulling a building out of position (tower of Pisa). Consolidation 
can usually be attributed to the construction pushing the fluid beneath the 
foundation aside. Therefore, this problem can only be studied with porous 
media mechanics. 

container 

piston/ 
load cell 

specimen 

filter 

FIGURE 9. Setup for a one-dimensional consolidation test. 

The problem of consolidation has been studied by Terzaghi in the nineteen 
twenties. Terzaghi restricted himself to a one-dimensional consolidation, in 
which the liquid flow and the displacement of the solid occur in only one 
direction. This situation is reasonable for a very wide foundation plate where 
the sideward outflow of fluid is only a local boundary effect. We can create this 
situation on purpose in a one-dimensional consolidation experiment (Fig. 9), 
which is often used to study cartilage. 
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In this experiment a cylindrical specimen is placed in a fitting rigid cylin­
der. The bottom of the specimen has contact with a porous filter in which the 
permeability is much higher than the permeability in the specimen itself. The 
top of the cylinder has contact with an impermeable piston with surface area 
A, that is loaded with an axial force F. For an incremental increase of the 
force F, this force will first be intercepted by the hydrostatic pressure ( 4.2), 
because no deformation of the solid has taken place yet: 

F 
p= A' o < z < h, t = o+. (4.4) 

At z = 0 a steep pressure gradient appears that causes the liquid to flow 
out of the specimen. This outflow of liquid results in a smooth downward 
motion of the piston. The deformation of the sample causes an effective stress 
within the sample that gradually will take over the load from the hydrostatic 
pressure. 

We now consider Terzaghi's way to derive the equations that describe this 
process. We restrict ourselves to small deformations. 

q p 

t1\ t1\ 
I I z ~~~--+-~_,r-~-r--~~~--r--1~ 

I I 

FIGURE 10. One-dimensional consolidation of a porous medium. 

Consider a layer [z, z+dz] of a one-dimensional medium that is subjected 
to consolidation. The medium consists of a porous, incompressible, elastic 
solid saturated with an incompressible fluid. Similarly to (4.1) we subdivide 
the total stress a in a hydrostatic pressure p, present in the liquid + solid 
(pressure positive, see Fig. 8) and an elastic stress caused by deformation ae, 
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measured per unit surface area (extension positive). The liquid flux per unit 
mixture area is indicated with a q (z-direction positive). If we neglect the 
forces of inertia and the volume forces, we can write the balance of momentum 
as: 

ae(z + dz)- ae(z)- p(z + dz) + p(z) = 0. (4.5) 

After dividing by dz, we find: 

(4.6) 

Because of incompressibility the balance of mass reduces to the balance of 
volume: 

du(t + dt)- du(t)- q(z)dt + q(z + dz)dt = 0. (4.7) 

After division by dzdt, we find: 

D
8 

(au)+ aq = 0. 
Dt az az 

(4.8) 

In addition to the balance laws we need two constitutive equations. The first 
is the Darcy equation : 

ap 
q=-K­

az 
(4.9) 

in which we consider the permeability K a constant. Substitution of ( 4.9) 
into (4.8) yields: 

D
8 

(au) _ ~Kap = O. 
Dt az 8z az 

The second constitutive relation is the law of Hooke: 

au 
ae=H­

az 

(4.10) 

( 4.11) 

in which His the compressive modulus. We consider H a constant, i.e. linear 
elasticity. The compressive modulus is related to the modulus of elasticity, 
E, and Poisson's ratio, v, for an isotropic medium: 

H=E 1-v 
(1 + v)(1- 2v) 

( 4.12) 

The equations (4.6), (4.8), (4.9) and (4.11) form a complete set of partial 
differential equations (check this!). Integration of Eq. ( 4.6) yields: 

a(z, t) - p(z, t) = -po(t), (4.13) 
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with Po(t) the top load. For a classical consolidation test the top load is a 
step function. After applying this step the function is constant in time, so: 

nsae nsp 
[it- Dt = 0 for t >to. (4.14) 

Substitution of (4.11) into (4.14), yields 

HDs (0u) - Dsp = 0 for t >to. 
Dt 8z Dt 

(4.15) 

Substitution of ( 4.15) and ( 4.9) into ( 4.8) yields the consolidation equation 
of Terzaghi: 

( 4.16) 

Notice the analogy with the diffusion equation. The characteristic time 
that is needed to start the consolidation process of a porous layer with thick­
ness f::,.z, permeability K and compressive modulus H, follows from (4.16): 

!::,.p /::,.p 

!::,.t = KH (!::,.z)2 ( 4.17) 

or: 

(4.18) 

The consolidation time t is therefore inversely proportional to the permeabil­
ity K and the stiffness H, and proportional to the square of the thickness 
of the layer /::,.z. The analytical solution for the consolidation Eq. (4.13) for a 
specimen with thickness h holds: 

with 

00 

P = L! sinMze-M
2
T, 

n=O 

p = p 

' Po 
7T' 

M = '2(2n+1), 

z 
z = h' 

T = 
KHt 

~ 

(4.19) 

(4.20) 

( 4.21) 

(4.22) 

(4.23) 

Notice that for T > 1 the consolidation process of the specimen is largely 
completed (Fig. 11) . 
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FIGURE 11. Dimensionless pressure P versus dimensionless position Z at different 
times during linear, one-dimensional consolidation. 

4.3. Mixture description of saturated porous media 

We shall derive equations applicable to the behaviour of elastic incom­
pressible fluid saturated porous media from mixture theory. 

4.3.1. Assumptions. We consider the porous medium as a two-component 
mixture, composed of a solid (superscripts) and a fluid component (super­
script f). We can rewrite Eq. (3.4) as: 

ql+¢/=1. (4.24) 

Equation ( 4.24) is the saturation condition. We assume that no mass-exchange 
occurs between the components. Each component is assumed incompressible: 

o: Po: 
P. = - = constant 

1. qP a= s, f. (4.25) 

The apparent densities po: however do change as a function of time. We 
consider processes which are sufficiently slow so as to ensure that inertia 
forces are negligible. Volume forces are neglected as well. We assume that all 
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components have the same temperature and no gradients in temperature are 
present either in time or space. 

4.3.2. Conservation laws. 

Conservation of mass. In the absence of mass exchange the local law of 
conservation of mass (3.20) of component a reduces to: 

apo: 
8t + V · (po:vo:) = 0 

Using (3.5) and ( 4.25) we can rewrite ( 4.26): 

B¢P + V · (¢Pvo:) = 0 at 

a= s, f. 

a= s, f. 

Summation of Eq. ( 4.27) yields the local mass balance of the mixture: 

or: 

( 4.26) 

( 4.27) 

( 4.28) 

( 4.29) 

The first term of ( 4.29) represents the rate of volume increase of a unit volume 
of mixture. The second term represents the fluid flux from this unit volume. 
Equation ( 4.29) states that every volume-increase or decrease of the mixture 
is associated with an equal inflow or outflow of liquid. At this point it is 
useful to refer current descriptors of the mixture with respect to an initial 
state of the porous solid. As is usual in continuum mechanics, we define 
the deformation gradient tensor F mapping an infinitesimal material line 
segment in the initial state onto the corresponding infinitesimal line segment 
in the current state. The relative volume change from the initial to the current 
state is the determinant of the deformation gradient tensor J = detF. If we 
introduce volume fractions 

<I>o: = J¢P, (4.30) 

per unit initial volume, we can rewrite the mass balance Eq. ( 4.27) as follows: 

( 4.31) 

when using the identity (2.15): 

ns 
DtJ = JV. vs. (4.32) 
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Conservation of momentum. Considering the assumptions stated earlier, 
momentum balance (3.25) reduces to: 

a= s, f. ( 4.33) 

The momentum interaction f/); arises e.g., as a consequence of friction be­
tween the fluid and the solid. We assume no moment of momentum interac­
tion between fluid and solid. Therefore we tacitly assume the symmetry of 
the partial Cauchy stress tensor in (4.33). Summation of the Eq. (4.33) yields 
the local momentum balance for the mixture as a whole: 

(4.34) 

provided that: 
(4.35) 

The entropy inequality. The local form of the entropy inequality (3.36) 
applied to the mixture as a whole, reduces to: 

L (-Po: po: + Uo: : Do: - jP · Uo:) 2:: 0. ( 4.36) 
o:= s, f 

We introduce the strain energy function 

( 4.37) 
o:=s,/ o:=s,/ 

as the Helmholtz free energy of a mixture volume which in the initial state 
of the solid equals unity. 'l/;o: is the Helmholz free energy of constituent a 
per unit mixture volume. Rewriting the inequality ( 4.36) for the entropy 
production per initial mixture volume - i.e. we multiply inequality ( 4.36) by 
the relative volume change J- we find: 

ns 
- Dt W + Ju : Vvs + JV. [(vf- vs). uf- (vf- vs)'l/;f] 2:: 0. (4.38) 

4.3.3. Constitutive restrictions. Similarly to Section 2.5, we use the en­
tropy inequality to derive constitutive restrictions for the mixture. The en­
tropy inequality should hold for an arbitrary state of the mixture, complying 
with the balance laws and with incompressibility. There are two ways to 
comply with these restrictions. One is substitution of the restriction into the 
inequality, resulting in elimination of a field variable. The other is by intro­
duction of a Lagrange multiplier. The mass balance of the mixture ( 4.29) is 
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accounted for by means of a Lagrange multiplier. Other balance laws and 
the incompressibility conditions ( 4.25) are accounted for by means of substi­
tution. From the inequality 4.38 we see that the apparent density and the 
momentum interaction j/l: is already eliminated from the inequality. In other 
words the conditions of incompressibility and the momentum balance of the 
constituents have already been substituted into the second law. The diver­
gence of the partial stress tensor of the solid V · u 5 and the heat supplies r 0 

also are absent in (4.38) . Thus the momentum balance of the mixture and the 
energy balance have already been substituted in the second law. Therefore, 
restrictions still to be fulfilled are the mass balances of the constituents ( 4.26) 
and mass balance of the mixture ( 4.29). The latter is substituted by means 
of the Lagrange multiplier p: 

ns 
- Dt W + J 0' e : V V 8 

+ J[uf + (pq/ - v/)J] : v ( vf - vs) (4.39) 

+ J(vf- v 8
) • (-V'lj/ + pVq/ + V · uf) 2: 0, 

in which the effective stress u e is defined as 

O'e = 0' +pl. ( 4.40) 

Choice of independent and dependent variables. We choose as de­
pendent variables the dynamic variables appearing in inequality (4.39): W, 
'lji , u e, uf + pq/ I, V · uf + p V q/. Their number should be equal to the 
number of unknown variables appearing in the balance equations minus the 
number of balance equations. The number of dependent variables should be 
as small as possible to describe the state of the tissue well. Their choice is 
a key assumption of the continuum theory and is based on insight in the 
physical phenomena involved in the behaviour of the material. If the depen­
dent variables include only variables describing the local state of the tissue 
(e.g. E), the theory is a local theory. If the dependent variables include vari­
ables describing the state of the tissue some distance away from the point of 
consideration (e.g. V E), the theory is a non-local theory. Throughout this 
book we consider only local dependent variables. We choose as independent 
variables the kinematic variables: the Green strain of the solid E 8

, the fluid 
volume fraction <I>f and the fluid velocity relative to the solid vf- v 5

• For 
reasons of objectivity we need to transform all the vectors and tensors among 
the dependent and independent variables back to the initial state. This yields 
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for the constitutive relationships: 

with 

W = W(Es <Pf vfs) 
' ' ' 

7/Jf = 7/Jf(Es, <Pr, vfs), 

ue =F. Se(Es, <Pr, vrs). Fe, 

ur _ q/pl =F. sf (Es, <Pr, vrs). Fe, 

j/- pVq/ =F. Pf(Es, <Pf, vfs), 

( 4.41) 

( 4.42) 

The principle of equipresence requires that all dependent variables appear in 
each of the constitutive relationships. The choice of independent variables is 
of primal importance for the form of the constitutive relationships that are 
derived. For instance, including for the solid the Green strain only and no 
measure of strain rate, implies elasticity of the solid. In mixture mechanics 
it is also important to realise that each of the variables is an averaged value 
of a physical quantity over an averaging volume. It may seem surprising that 
the shear rate of the fluid is not included in the list of independent variables, 
although the viscosity of the fluid is absolutely essential for the behaviour of 
the mixture. The reason for this is that in a porous medium the shear rate 
at one side of the pore has a sign opposite to the shear rate at the other 
side of the pore. The expectation value of the shear rate in a representative 
elementary volume is therefore the shear rate of the solid, i.e. a generally very 
low value, not representative for the dissipation in the fluid. It is therefore 
more obvious to use the fluid velocity relative to the solid as a macroscopic 
measure of the microvalues of the shear rate. The fluid volume fraction <Pf is 
not independent of the Green strain because of incompressibility: 

<Pf = det F- 1 + <f>b = J det(2E8 +I) - 1 + <f>b· ( 4.43) 

Because of the strong non-linearity of Eq. (4.43), elimination of one of the 
variables is tedious. In fact, the way we deal with the interdependence of these 
two variables is by means of the Lagrange multiplier p. The condition ( 4.29) 
is in fact a differentiated form of Eq. (4.43). This justifies the use of E 8 and 
<Pf as independent variables. 

Constitutive relationships. Applying the chain rule for time differentia­
tion of W: 

( 4.44) 

http://rcin.org.pl



INTRODUCTION TO BIOLOGICAL MIXTURE MECHANICS 145 

and substituting the mass balance of the constituents (4.31) for the elimina­
tion of D;fr from inequality ( 4.39)we get 

( J u - F . 8W . Fe) : V vs + 8W . ns vfs 
e 8E 8vfs Dt 

+ J[uf + (J}cj/- v/)1] : V(vf- v8
) 

( 4.45) 

in which 1-/ is the chemical potential of the fluid: 

r aw 
f.l = 8<Pf + p. ( 4.46) 

Inequality ( 4.45) should be true for any value of the state variables. Close 
inspection of the choice of independent variables and inequality ( 4.45), reveals 
that the first term of ( 4.45) is linear in the solid velocity gradient V v8

, the 
second term linear in g~ vfs and the third term linear in the relative velocity 
gradients V(vf- v8

). Therefore, by a standard argument, we find: 

1 aw c 
ue = JF. 8E . F ' (4.47) 

aw =O 
avfs ' 

( 4.48) 

( 4.49) 

leaving as inequality: 

(4.50) 

Equation ( 4.4 7) indicates that the effective stress of the mixture can be de­
rived from a strain energy function W which represents the free energy of 
the mixture. Equation ( 4.48) shows that the strain energy function cannot 
depend on the relative velocity of fluid versus solid. Thus, the effective stress 
of a biphasic medium can be derived from a regular strain energy function, 
which physically has the same meaning as in single phase media . According 
to Eq. ( 4.49) the partial stress of the fluid and the ions are scalars. Transform­
ing the relative velocities to their Lagrangian equivalents, we find instead of 
(4.50): 

( 4.51) 

in which V o = pc · V is the gradient operator with respect to the initial 
configuration. Note that since J.LfVoc// + Vo · uf depends on vfs according 
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to the constituive relationships ( 4.41), the l.h.s. of inequality ( 4.51) is not 
a linear function of vfs and therefore it is incorrect to equate the factor 
- Vo'l/i + Jl/Vo¢/ + V 0 ·uf to zero. From a physical point of view it is obvious 
that unlike the elastic deformation of the solid the flow of fluid relative the 
solid results in an entropy production. If we assume that the system is not 
too far from equilibrium, we can express the dissipation (4.51) associated 
with relative flow of fluid and ions as a quadratic function of the relative 
velocity: 

( 4.52) 

Here B is a semi-positive definite matrix of frictional coefficients. Substitut­
ing Eq. ( 4.49) into Eq. ( 4.52) yields the Lagrangian form of Darcy's law: 

( 4.53) 

The constitutive behaviour of the fluid-solid mixture is thus described by a 
strain energy function W and frictional tensor B. From the strain energy 
function we derive both the effective stress and the chemical potential of the 
fluid. 

4.3.4. Physical interpretation of the constitutive variables. Com­
paring Eq. ( 4.40) with Eq. ( 4.2) reveals that the Lagrange multiplier p should 
be interpreted as the hydrostatic pressure in fluid. 

V·ue-Vp=O. ( 4.54) 

If we define the permeability tensor K as: 

( 4.55) 

Equation ( 4.53) becomes: 

( 4.56) 

Equation ( 4.56) is the three-dimensional form of Darcy's law ( 4.9). The dif­
ference between the chemical potential 1i and the pressure p is the matric 
potential. The matric potential accounts for adsorption and capillary forces. 
It can be quantified experimentally using capillary rising heights (Fig. 12). 
In Terzaghi's consolidation theory the matric potential is neglected, not be­
cause it is negligible in absolute terms but because its gradient is negligible 
in an homogenous medium with limited variation of fluid volume fraction 
and coarse pore structure. 
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container 

piston/ 
load cell 

specimen 

filter 

FIGURE 12. Matric potential as a function of fluid volume fraction q/ for different 
materials: clay minerals - montmorillonite, illite and kaolinite - and stratum 
corneum 

4.3.5. Resulting equations. The resulting equations are: Momentum bal­
ance of the mixture: 

V·ue-Vp=O. 

Mass balance of the mixture: 

Darcy's law: 

Stress-strain relationship: 

( )
-1 8W c 

u e = det F F · BEs · F . 

Constitutive law for the chemical potential of the fluid: 

r 8W 
f..L =p+-c· 

8<1> 

(4.57) 

(4.58) 

( 4.59) 

(4.60) 

( 4.61) 

The total stress in the mixture is composed of the effective stress and the 
hydrodynamic pressure: u = u e - pi. The effective stress u e is derived 
from the strain energy function of the mixture W. In Eq. (4.60) F is the 
deformation gradient tensor of the solid and E 5 the Green strain tensor of 
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the solid. The strain energy W is a function of the solid strain E. In one­
dimensional space Eq. ( 4.57) reduces to Eq. ( 4.6) from Terzaghi's confined 
compression theory. 

Dynamic boundary conditions are: 

[(ue- pi)· n] = 0, ( 4.62) 

with n the outer normal along the boundary and the square brackets repre­
sent the difference between the value at either side of the boundary; 

(4.63) 

with as a special case represented by the evaporation boundary condition: 

-f f pd v 1-l = RTlncr. 
Ps 

( 4.64) 

Equations ( 4.63) and ( 4.64) enforce continuity of molar chemical potential. 
Discontinuity of chemical potential would lead to an infinite fluid flux which 
is physically impossible. For this reason we claim that even if the material 
properties are sharply discontinuous the chemical potential should be con­
tinuous. This is not true for the pressure p. For instance, at the interface 
between a sand layer and a clay layer the pressure is not continuous, at least 
if capillary effects are not neglected. Similarly interstititial pressure along the 
surface of the skin is not equal to atmospheric pressure. We use the molar 
chemical potential instead of the volumetric chemical potential because the 
volumetric chemical potential can be used only for incompressible media. Al­
though the medium we consider is incompressible, the medium outside the 
boundary need not be incompressible as is the case for evaporation. Kine­
matic boundary conditions are: 

4.4. Conclusion 

[u] =0, 

[(vf- v 8
) • n] = 0. 

( 4.65) 

( 4.66) 

We derived the equations, that describe the behaviour of a porous medium, 
in two different ways. The traditional approach of Terzaghi has the advantage 
that we know the physical meaning of the parameters from the start. Its a 
disadvantage is that we have insufficient insight in to the assumptions that 
we- often unconsciously- accept. For example, it appears from comparison 
of the resulting equations with mixture theory equations that we neglected 
the capillary forces. 
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In the second approach, using the theory of mixtures, all effects are taken 
into account, and simplifications have to be done explicitly. It is done by 
neglecting specific terms in the balance laws or by the choice of the indepen­
dent variables. This approach is also suitable for generalisation to mixtures 
with more components. A disadvantage of this approach is the complexity of 
the derivation. 

Exercises 

1. Cartilage is a porous solid with a volume fraction of 80%. Suppose that 
the Darcy-flow or specific liquid velocity, Q, perpendicular to the lubri­
cation surface measures 500 J.Lm/s. What is the average velocity of the 
liquid particles perpendicular to the lubrication surface? 

2. Suppose that in cartilage the highest effective normal tensile stress is 
0.3 MPa, while the liquid pressure is of the order of 0.2 MPa. From liter­
ature it turns out that ca 90% of the effective stress is born by the colla­
gen. The remaining 10% is intercepted by the macromolecular network 
of proteoglycans. 15% of the volume of cartilage is collagen. Estimate 
the actual stress in the collagen fibers in that normal stress direction. 

3. During walking the fluid is squeezed in and out of the cartilage in the 
·vicinity of the contact face of the femur condyle and the tibia plateau 
by the periodic loading (frequency ca 0.5 Hz). From consolidation tests 
it turns out that the permeability of the cartilage is of the order of 
10-16 m4 jN s and the stiffness of order 0.5 MPa. Estimate the depth 
over which this process of in and outflow of fluid takes place. 

4. The permeability of clay is of the order of 10-16 m4 /N s. The porosity 
of clay is 20 to 50%. The stiffness is hard to estimate, because it is not 
an elastic material. Suppose that the Young's modulus is of the order 
of 100 MPa. Show that the stiffness of a layer of clay (thickness= 6 m), 
estimated from the force-displacement relation measured during driving 
a foundation pile, is not a measure for the supporting ability of the pile 
over a longer period of time. 

5. A rectangular piece of tissue is tested on material properties in a cos­
metic research lab. Because the material shows time dependent behav­
iour and there is a strong suspicion that it is correlated to the squeezing 
and suction of water, a biphasic model (incompressible liquid and solid; 
stress-free situation before the test) is assumed for the interpretation of 
the data. The strips (thickness 1 mm) are submersed in a physiological 
solution (p = 0) and subjected to an incremental increase of the ax­
ial strain from 0 up to 4%. The stress decreases gradually to 0.4 kPa. 
The average thickness of the specimen has first lowered to 0.98 mm after 
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which it has lifted to 0.986 mm. In the third dimension one finds a com­
parable progress of the transverse contraction. Matric potential can be 
neglected. Assume linear isotropic elasticity and estimate the Young's 
modulus and the Poisson's ratio of the biphasic model. What should 
the liquid pressure in the specimen be after applying the load, if the as­
sumption of linear, isotropic elasticity is right? What is the momentary 
increase in stress in the loading direction, immediately after application 
of the load? 

6. Show that the derivation above reduces to Terzaghi's theory in the one­
dimensional case if small deformations, linear isotropic elasticity and the 
absence of capillary forces are assumed. 

5. Solution of exercises 

5 .1. Exercises for Section 2 

5.1.1. Exercise 1. From (2.16) and (2.19), we infer that 

1 . 
CT: D = Jp: E. (5.1) 

Substituting ( 5.1) into in Eq. (2.84) yields: 

:. . - 1 . h 
-p(F + TS) + Jp : E- T . VT ~ 0. (5.2) 

The principle of equipresence requires that all dependent variables depend 
on all independent variables: 

P = F(E,T, VaT), 

S = S(E, T, VaT), 

P = P(E, T, VaT), 

ha = ha(E, T, VaT). 

(5.3) 

Applying the chain rule for time differentiation of F, we find instead of 
inequality (5.2): 

( 
aP 1 ) -p-+-P BE J 

. ( aP -) . :E+ -p8T-pS T 

aP -·- ha 
- PavaT ·VaT- T ·VaT~ o. 

(5.4) 
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The first, second and third term in (5.4) are linear in E, T and VoT respec­
tively. !herefore, the inequality can only be satisfied for all values of E, T 
and VoT if: 

aP 
P=poaE' (5.5) 

- aP 
(5.6) S=--

aT' 

aP 
8VoT = O. (5.7) 

Equation (5.5) is equivalent to (2.95) and Eq. (5.6) to Eq. (2.79). Equa­
tion (5.7) requires that P does not depend on the temperature gradient. 
Therefore, by virtue of (5.5) and (5.6) the stress and the entropy does not 
depend on temperature gradients either. The remaining inequality 

1 
--ho · VoT > 0 T - ' (5.8) 

states that the heat flux vector should be opposite to the temperature gradi­
ent, i.e. heat flows from hot to cold. At thermodynamic equilibrium entropy 
is maximum and the material exhibits uniform temperature distribution. In 
non-equilibrium we assume that the state of the material is close to equilib­
rium. In the vicinity of the state of equilibrium, the left hand side of inequal­
ity (5.8) can be approximated by a quadratic function of the temperature 
gradient. Therefore we find that: 

ho = -G· VoT (5.9) 

in which G is a positive definite tensor. G is the heat conductivity tensor. 
Equation (5.9) is Fourier's law and shows that - unlike the free energy, the 
entropy and the stress - the heat flux vector depends on temperature gradi­
ents. An alternative choice of variables requires to rewrite the second law in 
a somewhat different format. Substituting (5.1) into inequality (2.85) yields: 

..:. ..:. 1 . h 
p(TS- U) + Jp: E- T · VT 2:0. (5.10) 

The principle of equipresence requires that all dependent variables depend 
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on all independent variables: 

u = U(E, s, ho), 

T = S(E, S, ho), 

P = P(E, S, ho), 

VoT = R(E, S, ho). 

(5.11) 

Applying the chain rule for time differentiation of U, we find instead of in 
Eq. (5.10): 

( 
au 1 ) -p-+-P 
aE J 

. ( au ) ..:. 
= E + -pas+ pT s 

au . 1 
- p aho · ho - Tho · VoT 2: 0. 

(5.12) 

The first, second and third term of inequality (5.12) are linear in E, S and 
ho resi?ectively. Therefore, the inequality can only be satisfied for all values 

of E, S and ho provided that 

au 
P = Po{)E' (5.13) 

r _au 
-as' (5.14) 

au 
aho = O. (5.15) 

Equation (5.13) is equivalent to (2.76) and Eq. (5.14) to Eq. (2.76). Equa­
tion (5.15) requires that U does not depend on the heat flux. Therefore, by 
virtue of (5.13) and (5.14) the stress and the temperature does not depend on 
the heat flux either. The remaining inequality is identical to inequality (5.8) 
and leads to Fourier's law as shown above and states that- unlike the stress, 
the internal energy and the temperature - the temperature gradient depends 
on the heat flux. 

5.1.2. Exercise 2. 

(5.16) 
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J = det(F) = 1, (5.17) 

P = po, (5.18) 

(5.19) 

withE the Green-Lagrange strain tensor as defined in (2.10). Lateral bound-

ary conditions require that 

(5.20) 

or 
d 1 1 

an- P = -Pn-- p = 0. 
~ ~ 

(5.21) 

From the strain energy function, we evaluate the second Fiola-Kirchhoff 
stress P11 , P22 and P33: 

(5.22) 

(5.23) 

(5.24) 

Substitution of Eq. (5.19) into (5 .22) and Eq. (5.22) into (5.21) yields the 
expression for the hydrostatic pressure as a function of the extension ratio .X: 

(5.25) 

The stress component 0"33 is: 

(5.26) 

and others vanish. 
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5.2. Exercises for Section 3 

5.2.1. Exercise 1. One can write the partial pressure of component a as: 

pa 
a0 = - a = water, oil 

A' 
(5.27) 

in which A is the total surface. The surface area per component can be 
calculated using the volume fraction. 

V 0 A0 

</P = v = 11· (5.28) 

Substitution of this relation into Eq. (5.27) gives: 

(5.29) 

Since (</>water = 0.05) and (awater = -2 MPa), the actual water pressure is 
40 MPa. For the oil (</>oil= 0.08) and (a0 il = -5 MPa), which gives an actual 
oil pressure of 62.5 MPa. 

5.3. Exercises for Section 4 

5.3.1. Exercise 1. For the specific velocity (Darcy flow) of the fluid through 
the porous solid applies: 

Q 
Vspecific = A = 500 J-Lm / S. (5.30) 

However, the fluid can only flow through 80% of the surface (0.8A), which 
results in an average velocity of: 

Q 
Vaverage = 0.

8
A = 625 J-Lm/s. (5.31) 

5.3.2. Exercise 2. The effective stress (ae) is intercepted for 90% by the 
collagen fibers, which takes up 15% V of the cartilage. The stress in the 
collagen fibers resulting from the effective stress is: 

0.9ae 
a collagen= </> ll = 1.8 MPa co agen (5.32) 

which results in a total stress of: 

a~~f~gen = a collagen - P = (1.8- 0.2) MPa = 1.6 MPa. (5.33) 
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5.3.3. Exercise 3. The maximum loading time is 0_5
1
Hz = 2 s. Since the 

permeability and the stiffness are also known, the depth, over which in and 
outflow takes place, can be determined using the consolidation equation of 
Terzaghi ( 4.17). 

~z = VKH~t = VI0-16 · 0.5 ·106 · 2 =10-5 m. (5.34) 

5.3.4. Exercise 4. Using the permeability, thickness of the clay layer and 
the compressive modulus, an estimate for the consolidation time can be made. 

(~z)2 62 
~t = -- = = 3.6 . 109 s 

K H l0-16 · 100 · 106 

~ 114years. 

(5.35) 

(5.36) 

So the consolidation takes a very long time. The damming of the piles is 
a sort of an instantaneous loading that will be carried by the fluid. During 
years this fluid will flow away and therefore no forecast can be made for load 
bearing over a longer period of time. 

5.3.5. Exercise 5. We have two conditions to consider: one is immediately 
after application of the load, one is a long time later ( t = oo), when a steady­
state is established. In the latter situation the pressure pin the skin sample 
has adopted the pressure value of the external bath, in the former situation 
the fluid has had no time to flow in or out of the sample and incompressibility 
can be assumed (in small displacement theory: en+ E"22 + E"33 = 0, check it!). 

We have 2 momentum equations in both situations; one in the loading 
direction and one in the transverse directions: 

a 11 = a 11 
- p = external load 

e ' 
(5.37) 

(5.38) 

Equation (5.38), t = oo. As the pressure vanishes inside the sample Eq. (5.38) 
requires: 

(5.39) 

or 

(5.40) 

Hence 

(1- 2v)e-22 + v(e-n + 2e-22) = 0 (5.41) 
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or 

(5.42) 

which is nothing else but the definition of the Poisson's ratio, resulting in 

which is consistent with the classical requirement: 

0 < ll < 0.5. 

Equation (5.38) requires that: 

or 

Hence 

or 

__£ (en + ~2 (en - 2ven )) = 0.4 kPa 
1+v 1- v 

E = 0.4 kPa = 10 kPa. 
en 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

(5.48) 

Equation (5.38), t =to. It is obvious that the values of E and v computed 
fort= oo are also valid at t =to; however, the fluid does not allow the mate­
rial to change its volume, and the pressure p is an unknown. Equation (5.38) 
requires: 

a;2 
- p = 0, (5.49) 

1 ! v ( t:22 + 1 !: 2v (en : 2c22)) - p = 0, (5.50} 

Ee22 
P----- -

1+v 

10 .0.02 = -0.148kP . 
1.35 a (5.51) 
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In other words, the fluid is under negative pressure or traction. This traction 
will attract water, and cause the thickness to increase from 0.980 mm to 
0.986 mm. Equation (5.38) requires 

or 

___£_ (E11 + -
1 

v2 (en+ 2E22)) - p = 0 
1 + lJ - v "-.,.-.' 

0 

= 
10 

· 
0

·
04 + 0.148 = 0.444 kPa. 

1.35 
Therefore, we get 

a~ 1 = 0.296 kPa. 

(5.52) 

(5.53) 

(5.54) 

(5.55) 

5.3.6. Exercise 6. When the capillary forces are negligible the chemical 
potential reduces from 

r aw 
f-L = p + a<I>f (5.56) 

to 

(5.57) 

In the case of 1D small deformations the stress-strain relation changes from 

Ue = (detF)-1F · :.:. · pc (5.58) 

to Hooke's law, 

au 
ae = H"Vu= H-, az 

as F ~I and W = Jf(Vu) 2. Darcy's law (4.59) takes the form: 

4/(vr- vs) = -Kap 
az 

and the mass balance Eq. ( 4.58) reduces to 

ns (au) - !__(4/(vf- vs)) = 0. 
Dt az 8z 

(5.59) 

(5.60) 

(5.61) 

Equation (5.60) is now substituted into the mass balance (5.61), and we find, 

ns (au) - !_Kap = 0 (5.62) 
Dt az az az 

which is also Eq. (4.10). Now, Terzaghi's consolidation theory is further de­
rived as done in Sec. 4.2. 
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