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Thermodynamics of solids 
which undergo displacive phase transformations 
and micro-nonhomogeneous deformations 

J. KACZMAREK (GDANSK) 

IN THE PAPER an approach to the thermodynamical description of materials undergoing displacive 
phase transitions and micro-nonhomogeneous deformations is proposed. First, one considers the 
thermodynamics of materials which undergo the micro-nonhomogeneous deformation only. Next, a 
model of the free enerw for materials with D03 structure and undergoing displacive phase transfor­
mations is introduced mto the thermodynamics previously prop<)sed. A model of material dampin~, 
the source of which are micro-nonhomogeneous deformation and displacive phase transitions IS 
considered. 

1. Introduction 

DISPLACIVE phase transformations are characterized by cooperative movement of atoms 
in the transition area. They are diffusionless and have moving interfaces. Such trans­
formations can be induced by stresses or temperature. We can distinguish several sit­
uations depending on temperature. They can be illustrated qualitatively by means of 
a one-dimensional model of the Helmholtz free energy (Fig.l) as a function of the 
shear deformation I· The free energy related to temperature T1 is connected with 
existence of the martensite only. In the case of the one-dimensional model there are 
two martensite variants. Each of them is connected with a different minimum of the 
free energy. At temperature T2 the austenite and the martensite can co-exist. At 
temperature T3 the pseudoelasticity appears. Finally, at temperature T4 the austenite 
phase exists only. Displacive phase transformations are connected with shape mem­
ory. 

Fto. 1. The Helmholtz free energy for a one-dimensional model undergoing the martensitic transformation. 
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136 J. KACZMAREK 

The mentioned phenomena have been considered in the literature. One-dimensional 
models and their generalizations connected with some symmetry groups can be found 
in papers by MOLLER, WILMANSKI (1], FALK (2,3], JAMES (4,5], BARSCH, KRUMHANSL 
[ 6]. Many experimental inv,estigations have been carried out for alloys based on cop­
per. Among others, one can mention CuAl and CuAINi alloys which are connected 
with D03 structure. They undergo a micro-nonhomogeneous deformation during the 
phase transformation. The micro-nonhomogeneous deformation consists in deviation of 
atoms from the positions indicated by the homogeneous deformation. The importance 
of such a deformation has been shown in the paper by KACZMAREK [7]. There, a one­
dimensional mechanical model of two-path displacive phase transformations has been 
proposed. The two-path phase transition appears in CuAINi alloy. During the loading 
process the alloy undergoes subsequent phase transition: from the 1'-phase to the {3"­
phase and then to the a-phase. During unloading, however, it returns to the 1'-phase 
through the /3'-phase, which is different from the {3" -phase [8]. Thus, we can see that 
the sequence of phases which appear during the loading process is different from that 
which appears during unloading. It is just the two-path process. The relative displace­
ment vector which describes the micro-nonhomogeneous deformation is the main feature 
of the-model proposed in [7]. Only with the aid of this variable, different paths of the 
phase transformation can be distinguished, Furthermore, the micro-nonhomogeneous 
deformation is necessary in order to distinguish different phases in CuAl alloy. There, 
two different structural phases in equilibrium are described by means of the same defor­
mation given by the Green strain tensor but they have different micro-nonhomogeneous 
deformations. 

The present author has not come across any approach in the literature which takes 
into consideratimi displacive phase transformations and micro-nonhomogeneous defor­
mations occurring together. On the other hand, the majority of models considered are 
one-dimensional. The author would like to fill partly this gap and to propose a ther­
modynamical, three-dimensional description of materials which undergo displacive phase 
transformations and the micro-nonhomogeneous deformation. The material considered 
has the D03 structure. First, one proposes a termodynamics of materials which undergo 
the micro-nonhomogeneous deformation only. Next, a model of free energy for materials 
with D03 structure and undergoing displacive phase transformations is introduced into 
this thermodynamics. The model of the free energy has been proposed in the paper 
[9]. Here, some aspects of this model and the character of its variables will be described 
only. Furthermore, a model of dumping for the material considered is proposed in the 
paper. 

2. Thermodynamics of materials which undergo micro-nonhomogeneous deformations 

2.1. Description of the micro-nonhomogeneou~ deformation 

The micro-nonhomogeneous deformation appears during the deformation of crystals 
with the complex crystal lattice. In particular, such a deformation is accompanied by 
displacive phase transformations (for instance in CuAl, CuAlNi alloys which have the 
complex crystal lattice). The micro-nonhomogeneous deformation consists in deviation 
of crystal sub lattices from the positions indicated by a homogeneous deformation. It is 
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illustrated at Fig. 2. At Fig. 2a an undeformed crystal lattice is shown. A homogeneous de­
formation of this crystal lattice is shown at Fig. 2b. At Fig. 2c the micro-nonhomogeneous 
deformation is illustrated. There, the vector~ indicates translation of the crystal sub lattice 
from the position indicated by the homogeneous deformation. The vector ~ can be seen 
as a measure of the micro-nonhomogeneous deformation. 

a b c 

FtG. 2. Illustration of the micro-nonhomogeneous det'ormation. 

At that moment, an order concerning deformations considered in the paper should 
be introduced. Thus, we will consider a macroscopic deformation. It relates to an 
area larger than the material point and is described by means of the Green tensor 
field. This deformation can be homogeneous or not. Next, we will consider a micro­
nonhomogeneous deformation. It is a homogeneous deformation of the material point 
and is described by the Green tensor in this point. Finally, we will consider the micro­
homogeneous deformation. It is a nonhomogeneous deformation of the material point 
(Fig. 2). 

The micro-nonhomogeneous deformation has been investigated, among others, in pa­
pers [10, 11]. There, elastic constants connected with relative displacement vectors de­
scribing such a deformation and thermodynamics of perfect crystals are studied. In these 
papers dynamical problems and higher gradients of deformation are not considered. The­
ories connected with higher gradiertts of deformation without any relative displacement 
vectors have been the subject of many papers. We quote here the papers [12, 13, 14). 
In the present paper the description of the displacive phase transformations needs higher 
gradients of the deformation as well as relative displacemen~ vectors. Therefore, these gra­
dients will be introduced into thermodynamics connected with the micro-nonhomogeneous 
deformation. 

At present, we introduce a mathematical description of the micro-nonhomogeneous 
deformation. We assume that a crystal consists of N simple crystal sublattices (the crystal 
shown at Fig. 2 has two simple sublattices). Such crystal can be seen as a multicomponent 
body ( eg. [20, 21, 22]). The aim of this paper is to give a thermomechanical description 
of materials which undergo displacive phase transformations and micro-nonhomogeneous 
deformations. In the description of the displacive phase trasformations [9] relative dis­
placement vectors are a measure of the micro-nonhomogeneous deformation. These 
variables are also important in order to distinguish different phases. However, the whole 
body is seen as a one-component body. Therefore the description should be suitable 
for one-component body with relative displacement vectors connected with the micro­
nonhomogeneous deformation. On the other hand, derivations of motion equations are 
more correct and convenient if we assume that we are dealing with a multicomponent 
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body. Thus, we will start with the assumption that the deformation is given by N A fields. 
Further, these fields will be reduced to one field of deformation and N >. - 1 fields of 
relative displacement vectors. 

Let us assume that the deformation of the crystal with N >. sublattices is described by 
the traditional deformation function 

(2.1) x = x(x, t) 
given for a distinguished sublattice and N >. - 1 deformation functions 

(2.2) Y>. =X+ RW>. 

for the remaining sublattices, where A = 1, ... , N >. - 1, R stands for a rotation tensor 
in the polar decomposition of the gradient deformation tensor F = VR. The relative 
displacement vectors W>. indicates the deviation of the sublattice from the position deter­
mined by a micro-homogeneous deformation. 

At this stage we should consider in more detail the variable W>.. A good illustra­
tion of the W>. is given in Fig. 4. This variable develops together with increasing of 
the micro-homogeneous deformation given there by I· The way of change of W>. is 
determined by the free energy. Vector W>. is defined on undeformed configuration as 
W>.M = W>.M(X, t), M = 1, 2, 3. The vector U>. = Rw>. is a displacement from the 
position given by x. With the help of the formula (2.2) it gives the position of the 
A-component particle. Let us investigate the transformation properties of the vector 
W>. = R-1(Y>. - x). Let us introduce the transformation x* = Qx + c, y~ = Qy>. + c 
and R* = QR, where Q = Q(t) is an orthogonal tensor. Vector w~ is defined as 
w~ = R*- 1 (y~ - x*) = R- 1Q-1Q(Y>. - x) = W>. and does not undergo any change 
during this transformation. It means that W>. is the objective Langrangean vector accord­
ing to the definition given in the paper [23]. 

A position of a body particle described by Eq. (2.1) is connected with the density Ph 
of the distinguished crystal lattice. The other described by Eq. (2.2) are connected with 
densities p >.. Furthermore, we have ph + ~ p A = p, where p is the total mass density of 
the crystal. 

In the paper the summation convention does not apply to the index A. 

2.2. The balance of energy 

The balance of energy will be a starting point to the derivation of thermomechanical 
equations for a body which undergoes the micro-nonhomogeneous deformation. It has 
been mentioned previously that the higher gradients of deformation as well as the relative 
displacement vectors should be introduced into the theory. 

We start from the balance equation suggested in [21] for the multicomponent body. 
Let us consider a body P and its deformed configurations XA(P), Xh(P) determined 
with the help of Eqs. (2.1) and (2.2). The energy of a body Pis the sum of the following 
components. given in deformed configurations 

(2.3) fl>. = I (p>.e + ~P>.il>.;i!>.;)dv>., fth = I (phe + ~ph:l:;.:i:;)dvh, 
X.\(P) Xh(P) 

where e = E / p, E is the total internal energy of the body. 
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The measure ~ of efflux of 1]1 A, 1]1 h through the boundary of the body P, the production 
P of 1]/ A, 1]/ h in P and the supply S of 1]/ A, 1]/ h in P we assume as 

L 

(2.4) ~(IP~, .Ph)= I: J ( q~- I: t~M1 •• • M0 _ 1;Xo,M1 ••• M0 _ 1 

A ax~('P) <1>-1 
M 

- I: fAN1 ••• N0_1NW~N,N1 ••• N,._1) da~ 
t/>•1 

L 

+ f ( qh- I: thM1 ••• M0_1;X;,M1 ••• M,._1 )dah, 
axh('P) 1/>•1 

(2.5) P(I]IA, 1]/h) = L J PAedvA + J Phedvh, 
A X~('P) Xh('P) 

(2.6) S(WA, I]! h) = L J PA(rAe + bAdh)dvA + J Ph(rhe + bh,xi)dvh, 
A X~('P) Xh('P) 

where qA, qh are heat fluxes for components marked by .\ and h, tAM1 ••• M41
_ 1i, 

!AN1 .. . N
41

_ 1N, thM1 ... M41
_ 1i are multipolar tensors (12]. Furthermore, for 4> = 1 in­

dices Mi and Nj vanish and the derivative of the zero order appears for Xi and ivAN· 
b:Ai, bhi are densities of volume forces, PAe' Phe are productions of energy density and 
r :Ae, r he are sources of heat. 

A general balance statement for a multicomponent body based on [21] takes the form 

~ dtJ!). dl]l h 
(2.7) L.J -d + -d = -~(tJ!:A, I]! h)+ P(W:A, l]lh) + S(W:A, I]! h)· 

). t t 

After substitution of Eqs. (2.3)-(2.6) to Eq. (2.7), transforming the time derivative of the 
integrals on the left-hand side of Eq. (2.7) and grouping the suitable terms we obtain 

(2.8) I; J { [ 8~~ + (P~h;),;] (e + ~hoh;) + P~ (~; + fl~;e,;) 
). X~('P) 

+p:Ji~;h; }dv~ 

\JJ [ 8~h + (ph±;),;) ( e + ~X;X;) +Ph G; + X ;e,;) + p,.f;X; }dvh 

+ L J (q:Aj,j- P:A(T:Ae + b:AiY:Ai)- PAe]dv:A + J (qhj,j- Ph(Thi + bhiXi)- Phe]dvh 
:A x~('P) Xh('P) 

L M 

=I: J ( L:t~M1 ••• M0 _ 1;X;,M1 ••• M0 _ 1 + L;/AN1 ••• N0_1NW~N,N1 ••• N0_1)da~ 
:A 8x~<P> 1/>•1 1/>•1 

L 

+ f ( L;thM1 ••• M0 _ 1;X;,M1 ••• M,._ 1)dah. 
8xh('P) <P-t 

At this stage we transform the multicomponent body into a one-component body. It 
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will happen by assumption that RiNW>.N tends to zero. Then, X>.(P) tends to Xh(P) 
and the differentiation with respect to configuration Y>.i changes into the differentiation 
with respect to configuration xi. x h (P) will be further denoted by x(P). Taking into 
account the mass conservation laws for individual components and the suggested limit 
transformation, we obtain the balance equation 

(2.9) J [.t + p~;X; + "L,PJJh..jfh.j + qj,j- Pe- pb;X;]dv 
x(P) >. 

L M 

- J L iM1 .•. M<P_ 1iXi,M1 ••. M<P-1 + L L f>.N1 . •• N<P_ 1NW>.N,N1 . .. N<P_ 1 )da = 0. 
ax(P) 4>=1 >. 4>=1 

During the limit transformation new quantities have appeared Qj = 2:>. Q>.i + Qhi, 
iM1 •• • M<P_ 1i = 2:>. i>.M1 . •. M<P_ 1i + thM1 . •. M<P_1i, re = 2:>. T>.e + rhe, bi = L>. b>.i + bhi· 
We can notice that the limit transformation has not been carried out consistently. In fact, 
we have retained the expression 2::>. p>Jj>. Y>. and the last summand in Eq. (2.9). These 

J J 
expressions will be helpful in description of motion of relative displacement vectors. At 
this stage we have to consider some components which appear in Eq. (2.9) in details. First 
we will investigate the expression PhXiXi + 2:>. P>ii>.iY>.i 

(2.10) P~ix i + LP>ii>.iY>.i = P~ixi + LP>.Uhi -xi +xi)(xi + u>.J 
).. ).. 

= fJX iXi + + 2:::: P>.W>.i - xi)xi + 2:::: P>.(jj>. i - xi)u>.i + 2:::: P>.Xiu>.i ~ fJXiXi 
).. ).. ).. 

+ L P>.W>.i -Xi )RiNW)..N . 
).. 

Influences of inertia of the mass connected with relative displacement vectors on the mo­
tion of the body and acceleration of the body on the motion of the relative displacement 
vectors are neglected in the last step. Furthermore, it is assumed that ( R iNW >.N) · = 
RiNW >.N + R iNW >.N ~ RiNW >.N·. It means neglecting the rotational velocity effects 
on the motion of relative displacement vectors. If we also neglect the rotational acceler­
ation, then the last expression in Eq. (2.10) takes the form L: >. P>.W>. i -xi)RiNW>.N ~ 
2:>. P>.RiMW>.MRiNW>.N = 2:>. P>.W>.NW>.N·· 

Now, we will investigate more exactly the first summand in Eq. (2.9). Let us assume 
that E = F + psT and E = F + psT + psT, where F is the free energy. Let us introduce 
the latter formula into the balance equation (2.9) and study an expression which is an 
integral of F. We assume furthermore that the function F depends on the following 
variables: F = F(xi,M1 , ••• , Xi,M1 ••• ML, W>.N, W>.N,Np ... , W>.N,N1 ... NM, T). Taking it 
into account we obtain 

(2.11) 
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[ 
L L [ {)F ] 

+ J L L(-1)
6

+
1 a (xk,M.pnk)Xi,M1···M.p-1 

ox('P) c/>=1 6=c/> Xi,Mt···M6 ,M6···M<P+l 

(2.11) 
[cont.) 

MM 

+ L L L(-1)"+1 
[
8 

oF ] xk,N.pnk)W>.N,N1 ... N.p_ 1]da 
c/>=1v=6 ).. W>.N,Nt···NII ,NII···N<P+1 

[
{)F . ] [ L = J oTT+ AiXi + L B>.NW>.N dv + J L Ac/>iXi,M1···M.p-1 

xCP> >. &xCP> c/>=1 
M 

+ LLB¢~Nw~N.N1 ••• N~_,]da. 
c/>=1 ).. 

New quantities Ai, Ac/>i' B>.N, Bc/>>.N have been defined during the transformation of 
this identity. For v = 0 the derivation rank is equal to zero in the third summand on 
the right-hand side of the first equality sign in Eq. (2.11). Derivatives of rank equal to 
zero for xi and w >.N appear there for </> = 1. If b = </> and v = </>, then the derivatives 
connected with indices M 6 and N v vanish in the fourth and the fifth summands on the 
right-hand side in Eq. (2.11). Ac/>i and Bc/>>.N are equal to zero forb < </>and v < </>. 

The components pT s and pT s have appeared as a consequence of the introduction 

of the free energy into Eq. (2.9). On the other hand, the expression ~ T has appeared 

during differentiation of F. We can transform the latter two expressions pTs + ~T 
into pT ( s + ! ~). Let us assume that the latter formula is equal to zero. It provides 

1aF 
s= ---

p {)T 
(2.12) 

in agreement with classical thermodynamics of continuum [20]. The remaining term pT s 
will be represented in two different forms. In the first form we obtain the following 
formula: 

In the second form we consider an integral of pT s and then we obtain 

• 2 

J .. J oF J [ {) F · T. ~ T • ] (2.14) pTsdv = - T {)Tdv =- T {)TZT + Ai Xi+ L.J B>.NW>.N dv 
x('P) x(P) x('P) >. 

f[~ATx +~~BT w ]d - L..J c/>; i,M1 ••• M.p-l L.J L..J ct>>.N >.N,N1 ••• N.p_1 a, 
&x('P) c/>•1 c/>•1 >. 

where the quantities AT, BfN, A~;, BI>.N are defined with the aid of the following 
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expressions 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

2.3. The motion equations and the heat conduction equation 

Taking into account Eqs. (2.10), (2.11), (2.12), (2.14) we can transform the balance 
equation (2.9) into the form 

(2.19) J (<A•- AT- pb; + pX;)X; + ~)Bm- BIN+ p~(jj~, -:f;)R;N]W~N 
x(1') >. 

EPF. ) 
- BT2 T + qj,j- Pe- PTe dv 

L 

+ f (~(A,~, · -AT -tM M ·)x·M M L....J opl ¢i 1··· 4>-1' '· 1··· 4>-1 
axCP> ¢=1 

M 

+ L; L;IB¢~N - BI~N - !AN1 •.. N0 _ 1N ]W ~N.N1 ••• N0 _ 1 ) da . 
¢=1 ), 

Equation (2.19) provides the following motion equation 

(2.20) A· - AT - pb · + m: · = 0 ' . ' ,.,...,, 
and the equation for relative displacement vectors 

(2.21) B>.N - BfN + P>.(jj>.i - Xi)RiN = 0 

together with suitable boundary conditions following from the second part of the formula 
(2.19). 

In order to derive the equation of thermal conductivity we use the first form of pT s 
(2.13). Next, using the balance equation (2.9) we obtain the following equation: 

L 8 ( 8F ) 
- LT 8T ox· Xi,M •... M¢ 

¢=1 ,,M1···M4> 
(2.22) 

M ~F ~F. 
- LLT 8T8w W>.N,Nt···N<t>- T 8T2T + qj,j =pre. 

</>=O >. >.N,Nt···N4> 
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In this equation we have obtained the same components which appear in the paper by 
GREEN-RIVLIN [12] and; additionally, the component with variables W>.N and their gra­
dients. 

3. The free energy for materials which undergo displacive phase transformations 

Previously, the thermodynamics of materials undergoing micro-nonhomogeneous de­
formation has been considered. The aim of the paper is to suggest a thermodynamical 
theory for materials undergoing both the micro-nonhomogeneous deformation and the 
displacive phase transformations. An idea of taking into consideration the displacive 
phase transformations consists in determination of a form of the free energy and, next, in 
introducing it into the previously proposed thermodynamics of materials with the micro­
nonhomogeneous deformation. The free energy has been proposed in the paper [9]. In 
this paper we confine ourselves to a rather general discussion connected with its formu­
lation. 

/ 
FIG. 3. Structure of .81-phase (CuAl alloy). 

• - Cu 

o - At 

The free energy is related to the D03 structure. In order to understand the motivations 
as well as the character of variables which appear in the free energy, first we recognize 
geometrical properties of this structure. An example of such a structure is the CuAl alloy. 
It is a cubic body-centered structure (b.c.c) and is called also /1-phase. It is shown at Fig. 3. 
There a face-centered structure is shown by means of a bold line in the frame of b.c.c .. 
However, this face-centered structure is not cubic in the undeformed state. With the aid 
of thin lines, a system of four planes oriented with respect to the OY axis is marked. 
These planes will be called basal planes. One can create similar systems of planes with 
respect to the axes OX and OZ. Then, we take into account twelve planes. However, 
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some of them coincide and finally the D03 structure has six different basal planes in 
undeformed state. 

Let us select an axis, for instance OY, according to Fig. 3. If we apply a suitable exten­
sion along the OY axis and contraction along 0 X and 0 Z axes, then the face-centered 
structure marked by the bold line can transform to a cubic force-centered structure (f.c.c.). 
The strain which leads from b.c.c. to f.c.c. structure will be called the Bain strain along 
the Bain axis 0 Y. The Bain strain can be considered as a stage of the martensitic trans­
formation. 

a b 

---...--

---e--- c=::::> 

,......,lv-----0 g 
t __ _. __ _ 

-- U1oJ 
FIG. 4. The micro-nonhomogeneous deformation pertaining to the transformation 

of .Bt -phase to .Bt' -phase ( CuAl alloy). 

The second stage of the martensitic transformation is a micro-nonhomogeneous shear 
connected with the falling of crystal lattice. As a result of this micro-nonhomogeneous 
shear, the micro-nonhomogeneous deformation appears. It is illustrated in Fig. 4. The 
micro-nonhomogeneous shear takes place in d direction on the basal plane. Further a 
shear system will be connected with plane of Fig. 4 (perpendicular to two opposite basal 
planes). For a given Bain axis we have four basal planes. Thus, four kinds of micro­
nonhomogeneous deformations can appear in connection with this axis. Each of them is 
related to a different basal plane. At this stage we can get twelve martensite variants. For 
each of Bain axes we obtain four micro-nonhomogeneous deformations. 

The next stage of the austenite-martensite transformation is a rotation of each of 
martensite variants obtained towards the habit planes. There are two different habit 
planes for a given martensite variant. Habit planes appear as a result of highly coherent 
motion of atoms during phase transformation. As a result, the parent phase (austenite) 
and the martensite are adapted on habit planes. The habit plane is undeformed and 
unrotated (as far as parent phase is unrotated). The determination of the habit plane can 
follow as a result of geometrical considerations taking into account the Bain strain and 
the shear on the basal plane (16]. Habit planes can also be determined with the aid of 
matrix calculus (17]. 

Ending this discussion on the geometry let us pay attention to an important aspect 
of the martensitic transformation related to the micro-nonhomogeneous deformation. At 
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Q b c 

o = Aluminium } 
• = copper first pl'ane 

• = Copper second plane 

FtG. 5. 1\vo different micro-nonhomogeneous deformations applied to the f.c.c. structure. 

the Fig. Sb the f.c.c. structure as a Bain strain of the b.c.c. structure is shown. At Fig. Sa 
and Fig. Sc two different micro-nonhomogeneous deformations accompanied by the shear 
on opposite basal planes are illustrated. The shear deformation described by means of 
the Green tensor e will coincide in both cases. However, micro-deformations are different 
in each of them. This example shows the validity of using relative displacement vectors 
in description of the displacive phase transformations. These variables are necessary in 
order to distinguish such different phases. 

For further convenience we introduce the following sets: T = 1, 2, 3, Ti = {j : 
j E T,j 'f i}, Ll = {1,2} and multi-indices I = (i,j), J = (i,j,6) = (1,6), K = 
(i, j, 6, h) = (J, h), i E T, j E Ti, 6 E Ll, h E Ll. The multi-indices I, J, K are 
dependent because they have common first indices. 

Thking into considerations the geometrical properties of the D03 structure we will 
introduce suitable mathematical objects. The body will be considered in an unchanging 
orthonormal basis a = {at,a2,a3}. In connection with the Bain axes, an orthonormal 
basis b = {b~, b2 , b3} consisting of vectors which lie on these axes is introduced. To each 
of the Bain axes with index i E T we can assign a plane in which a micro-nonhomogeneous 
shear can occur. There are two planes of such kind. They contain the axes with indices 
i and j E Ti. Thus, the index I can be assigned to such a plane. The plane with 
index I is prependicular to two opposite basal planes (Fig. 3). Therefore, two different 
micro-nonhomogeneous shears can take place in this plane. The first one in the direction 
determined by the intersection of the plane considered with the first basal plane, and the 
second one with the second basal plane. We mark the directions determined in this way 
by dll and dn (Fig. 6). One can assume that index I determines a shear system with two 
possible micro-nonhomogeneous shears. For this shear system we can introduce another 
orthonormal basis d1 = (dit, dn, d13), where d13 = dll X dn (Fig. 6). 

Let us consider a shear system d 1. In the plane of this system two micro-nonhomo­
geneous shears can appear (Fig. 5). One of them has direction dij and the second d ik, 

j , k E Ti. A scheme of such a micro-nonhomogeneous shear is shown at Fig. 4. There, 
1 is a measure of the micro-homogeneous deformation. The micro-nonhomogeneous 
deformation presented there can be described by means of vectors w1 and w2 which 
means deviation of distinguished atom layers from positions indicated by homogeneous 
deformation. In practice, the number of atom layers which are necessary to give the full 
characteristics of the micro-nonhomogeneous deformation can be various. In the case of 
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b c 
z 

d232 

a 

df22 d 2 f 2 

X X )( 

d231 

FtG. 6. Locations of vectors dij k and bi. 

CuAlNi alloy this number is equal to eighteen [8]. The above considerations suggest a way 
of indexing for relative displacement vectors connected with the micro-nonhomogeneous 
deformation. Namely, these variables can take the form Wijam · The first index i E T is 
connected with the Bain axis, the second index j E Ti chooses the shear system I = ( i , j ), 
the third index means the shear direction d 11 or d 12 . The index m E P = { 1, 2 ... p} is 
connected with the number of atom layers considered in a given shear direction. A short 
notation for Wijam = WJam = WJm by means of multi-indices introduced is reached. The 
domain for the relative displacement vectors as J( = {wJm : WJm = WJmdJ(F)} can be 
determined. In general, we can admit that vector dJ depends on the gradient deformation 
F. However, here it is assumed that the vector dJ depends on internal rotation only. 

Two kinds of rotations will be considered in the paper. The internal rotation Ri is 
related to a rotation of the martensite relatively to the parent phase (austenite) towards 
a habit plane and the external rotation Re is understood as a rotation of the Bain axes 
with respect to the basis a. 

Summing up the above considerations we assume the following assumptions pertaining 
to the symmetry: 

1. There exist six basal planes in underformed D03 structure (distributed according 
to Fig. 3). 

2. The free energy function is a positive definite quadratic form in a neighbourhood of 
the deformation equal to zero and has the symmetry properties suitable for the austenitic 
structure considered. 

3. The free energy function has the symmetry properties suitable for a given martensite 
variant structure in a neighbourhood of equilibrium state of this variant. 

4. There exist twenty four habit planes strictly determined in the crystal structure 
considered. 

Furthermore we introduce the following kinematical assumptions: 
1. Relative displacement vectors WJm act in direction dJ. They are the measure of 

deviation of atomic layers from position indicated by homogeneous deformation. The 
micro-nonhomogeneous deformation can start only after exceeding a critical shear stress 
r in a given shear system. 

2. The basis d1 = { dn, dn, d13} can undergo an internal rotation Ri. The process 
of internal rotation can start only after exceeding a critical shear stress r in a given shear 
system. 
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The free energy has been constructed in [9] with the following program: 
1. Assuming as a starting point a free energy F = F( eij, T) as a positive definite 

quadratic form. The free energy has suitable symmetry conditions in a neighbourhood of 
the deformation equal to zero for a given crystal structure. 

2. Determination of a validity domain for the free energy assumed in point 1 with the 
aid of the assumption about critical shear stress. Exceeding this stress causes the phase 
transformation. 

3. For each of the shear system I separately, cutting-off the domain of the free energy 
F by means of the critical shear condition. Next, modelling F = FI again in cutting 
domain, taking into account properties of the phase transformation. 

4. Constructing a new form of the free energy from six functions FI obtained in 
former point. 

5. Introduction of relative displacement vectors for the description of the micro-
nonhomogeneous deformation. 

6. Introduction of higher deformation gradients in order to describe the phenomena: 
the rotation towards a habit plane, 
fiat propagating interfaces. 

The free energy derived in the paper [9] takes the form 

(3.1) F=Ft+M+A+GH. 

The proviously mentioned critical shear condition determines an area in the space of 
stresses as well as in the space of strains. In this area the material does not undergo 
phase transformations yet. Only after exceeding a critical shear the phase transformation 
can start. Then the micro-nonhomogeneous deformation and internal rotations can also 
appear. Thking into account internal rotations and dependence on relative displacement 
vectors, the component of the free energy Ft takes the form [9] 

(3.2) Ft(e) = inf{FI o AI(Ri)(e, Wiom)}, 
I 

where F I is a free energy defined in the basis di, AI is a map transforming strain com­
ponents from the basis d I to the basis b. 

The component of the free energy connected with the micro-nonhomogeneous defor­
mation takes the form [9] 

(3.3) M =I:; (I:; I:; (IP"sm(WJsm)- fm(I')WJsm] 
I 8E.c::l mEP 

+ I:; I:; I:; cs(WJam)(wum)2) , 
aELl 8EL1a mEP 

where L1a = { 8 : 8 -:f. a, 8 E L1}, 1 is a measure of shear deformation. In the above equa­
tion the sum runs through all multi-indices I. However, if the micro-nonhomogeneous 
deformation starts in a given shear system, then all the relative displacement vectors 
pertaining to other systems vanish. The first summand in Eq. (3.3) models the micro­
nonhomogeneous deformation. Function 1/1 om models the shape of the free energy con­
nected with individual atom layer m. The essence of the micro-nonhomogeneous defor­
mation consists in deviation of different atom layers from positions indicated by micro­
homogeneous deformation measured by 1 in the shear system. The function Wsm can 
take the form Wsm = CiomWJsm with minimum equal to zero. With the aid of the 
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function fm(I)Wiom which is linear with respect to variable WJOm we can control the 
position of minimum of the function I]! om - f m ( 1 )w I om and in this way we can introduce 
the micro-nonhomogeneous deformation. The positions of minima depend on 1 and on 
the number of atom layer m. The second summand in Eq. (3.3) causes the bifurcation 
between variables wIt m and w Izm owing to the suitable shape of the function C 6. The 
bifurcation between these variables is connected with two micro-nonhomogeneous shears 
on opposite habit planes. 

The component A is related to internal rotations of martensitic structures towards 
habit planes. Directional derivatives ai< of vectors connected with the crystal structure 
are assumed as variables. These vectors can be seen as material directors introduced in 
the paper [18]. These vectors are connected with habit planes. If the phase transformation 
occurs, then, due to the component of free energy A, the directions of the directors will 
be adapted on a habit plane. There are two habit planes for the forming variant of 
martensite. Thus, A has to cause a bifurcation between internal rotations. 

The component of the free energy G H is connected with higher gradients of the 
deformation as well as relative displacement vectors. A mechanics of flat propagating 
interfaces has been proposed by means of G H. 

The free energy F given by Eq. (3.1) depends on the deformation gradient because 
it contains the Green strain tensor. F depends also on higher gradients of deformation. 
It is because the variables ai< can be expressed by higher gradients. Furthermore, higher 
gradients of deformation appear in G H. F depends also on variables w I am and their 
gradients which appear in G H. Our aim is to construct the free energy function F in order 
to introduce it into the thermodynamics previously suggested. Therefore, connections 
between indices of variables WI am and W>-.N should be elucidated. Atom positions in the 
shear system I and in m-th atomic layer are determined by the vector w I m = w 11m + w 12m. 
Wim is the sum of their components in the basis di . Thus, the index a is related to the 
index N connected with components of the variable W>-.N . The index m is connected 
evidently with A. The index I plots the deformation with suitable internal state variables 
and can be neglected in these considerations. 

Summing up, we can assert that the free energy F can be introduced into the ther­
modynamical model considered in the previous section. 

4. The material damping 

Materials which undergo displacive phase transformations have good damping proper­
ties [19]. Sources of the damping are related to both the micro-nonhomogeneous defor­
mation and the phase transformations. The micro-nonhomogeneous deformation induced 
by micro-homogeneous deformation causes relative motion of atoms. Motion of this kind 
is evidently a source of heat. Therefore, we can postulate that the amount of heat emitted 
during the deformation is proportional to relative velocities of crystal sublattices. Bearing 
in mind the fulfilling of Clausius-Duhem inequality we assume as a starting point the 
positive definite quadratic form 

(4.1) L = L C>-.MNW)..MW)..N + L C>-.vMN(W>-.M- WvM)(W>-.N- WvN) ~ 0, 
).. (>-.,v)EI 

where I = { (A, v) : A < v, A, v = 1 ... N >-. - 1}. The L will determine the amount 
of heat emmitted per unit time in a material point during the body motion. We can 
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transform Eq. (4.1) to the form 

N~-1 N~-1 N~-1 

(4.2) L = L: D>.Niv>.N = L: ( C>.MNW>.M + L: C>.vMN(W>.M- WvM) 
A=1 A=1 v=A+1 

where for A = lv A - 1 the second summand on the right-hand side vanishes and for A = 1 
the third summand vanishes. The formula ( 4.2) defines the dissipative force DAN. 

The material damping connected with displacive phase transformations has different 
mechanism from that for the micro-nonhomogeneous deformation. Heat emitted in this 
transformation will be mainly related to the acceleration connected with breaking after 
passing through the energetic barrier. Thus, we can assume that the dissipative stress is 
proportional to the acceleration of deformation 

(4.3) 

Dissipative forces DAN and stresses tPM can be incorporated into the balance equa­
tion (2.19). Let us modify the balance equation by adding and substracting suitable 
components suggested below 

(4.4) tf>M±i,M + E DANwAN- tflt±i,M-E DANwAN = (tfMxi),M- tPM,M±i 
A A 

+ E DANWAN- tfM±i,M- E DANWAN. 
A A 

Components -tf>M,Mxi + EA DANWAN take part in forming the balance momentum 

equation. The component (tf1xi),M will be transformed into the boundary condi­
tions and components -tf1xi,M - L:A DANWAN take part in forming the heat con­
ductivity equation. Thking into consideration the damping connected with the micro­
nonhomogeneous deformation and displacive phase transformations, the motion equa­
tions and heat conductivity equation (2.20), (2.21) and (2.22) finally can be written 

(4.5) Ai- AT+ tfM,M- pbi + pXi = 0, 

(4.6) BAN- BfN +DAN+ pA(jjAi -Xi)RiN = 0, 

- L T_!_( 8F )x· (4.7) L {)T 8x · •,M •... M., 
1/>•l •,M •... M.p 

M ~F ~F. 
- L LT {)T{)w WAN,N1 ••• N.p- T {)TZT + qj,j =pre 

4>-1 A AN,N •... N.p 

N~-1 

+ E DANwAN + tf>Mxi,M. 
A•l 

The two last terms connected with dissipation arise in Eq. ( 4. 7) as sources of heat. 
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5. Constitutive equations 

Constitutive equations consist of relations imposed on the free energy F, the heat 
flux Qm, the stress tensor tiM and the entropy s. The free energy has been considered 
in the previous section. Let us concentrate now on the constitutive equation for the heat 
flux. In general, the multiphase body is considered. Heat coefficients are different for the 
austenite phase and for the martensite phase. Furthermore, the martensite can undergo 
internal rotations. It influences the heat conductivity coefficients expressed in the basis 
b. The development of relative displacement vectors during the phase transition leads 
to the formation of different martensite variants with different structures. Thus, they 
have also different heat coefficients. In order to take into consideration the above men­
tioned elements we assume the Fourier equation expressed in the basis d 1 as a starting 
point. Let 7][ be the heat flux, Xlk be the heat conductivity coefficients and T,k be the 
gradient of temperature. These quantities are expressed in the basis dJ. The Fourier 
equation takes the form q1 = X1kT,k in this basis. The heat conductivity coefficients 
"'Xlk do not depend on internal rotation Ri because the basis d1 rotates in agreement 
with internal rotations. Thus, as a consequence of the structure transformation during 
deformation, Xlk should depend on the shear deformation measure 1 and variables w J 

only. Therefore, we assume Xlk = Xlk(/, WJ). The relation between the gradient of 
temperature T ,k given in basis d1k and the gradient of temperature T,n expressed in the 
basis bn has the form T,k = dlkbnT,n. Connections between heat flux Qm in the basis 
bm and q1 given in the basis dn can be written as Qm = bmdnq1• Internal rotations will 
be taken into account by assuming dlk = dlk(Ri). Bearing in mind the above consid­
erations we propose the constitutive equations for the heat flux in the basis bm in the 
form 

(5.1) 

The constitutive relation for stresses can be given with the help of Eqs. (2.11), (2.15) 
and (4.3). 

(5.2) t;M, = ~(-l)6 (ox,,':. .. M, + T 8~ (ox,,':. .. MJ) ,M, ... M, 
+CiM1PQi!PQ · 

The constitutive equation for entropy has the traditional form (2.12). Finally, the consti­
tutive equation for the free energy takes the form (3.1). 

These constitutive equations should fulfil the Clausius-Duhem inequality. Let us inves­
tigate this problem for equations considered in the paper. The Clausius-Duhem inequality 
will be introduced in the form [20] 

(5.3) pS + ( ~) ,j - P;• 2: 0. 

Using Eq. ( 4.7) we can determine pre as 

N>.-1 

(5.4) pre= pTs + Qj,j- L D>.NW>.N- tfM±i,M. 
>.=1 
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Introducing Eq. (5.4) into inequality (5.3) we obtain the following condition 

(5.5) t&xi,M + L:>. D >.NW>.N _ qiT,i > 0 
T T T - ' 

which represents the constraints imposed on the constitutive relations. 

6. Conclusions 

The two-path displacive phase transformations mentioned in the introduction can be 
incorporated into the model of the suggested thermodynamics. Mechanical description of 
the two-path process is given in (9]. The two-path process can be seen as a pseudoelastic 
transformation of the ')''-phase (8]. The ')''-phase is connected with the 003 structure 
and appears from /31 phase through the micro-nonhomogeneous deformation in the same 
way as it has been considered in the paper. The essence of introducing this kind of 
transformation into the model of the thermodynamics consists in shaping functions fJJ c5m 

and f m from (3.3) similarly as it has been proposed for functions fJJ and F in [7]. 
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