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Semi-inverse solutions and Almansi’s problem
for viscoelastic cylinder

S. CHIRITA (1As1)

WITHIN THE SET of Almansi’s solutions for a viscoelastic cylinder a subset is outlined by reformulating
the three-dimensional quasi-static equilibrium equations as a formal integro-differential operator for
the cross-section domain. Any solution of the subset is characterized by the property that it can be
treated as a plane strain in the cross-section of the cylinder, the axial variable taking the role of a
parameter. In that subset, some classes of semi-inverse solutions are pointed out and they are used
in order to obtain a solution for the relaxed Almansi’s problem.

1. Introduction

THE ALMANST'S problem [1, 2] is that of a homogeneous isotropic cylinder which — in the
absence of body forces — is in elastic equilibrium under the action of forces distributed
along the lateral surface and over its plane ends. The loadings on the lateral surface are
assumed in the form of a polynomial in the axial coordinate. In the relaxed formulation
of the problem the detailed assignment of the terminal tractions is abandoned in favor of
prescribing merely the appropriate stress resultants. A modern treatment of the relaxed
problem was given recently by IESAN [3].

In this paper we formulate the Almansi’s problem for a viscoelastic cylinder made of an
anisotropic and inhomogeneous material. It is one aim of the paper to obtain some classes
of semi-inverse solutions to the Almansi’s problem which are relevant to treatment of the
associated relaxed problem. The main idea consists in the reformulation of the three-
dimensional quasi-static equilibrium equations as a formal integro-differential operator
for the plane cross-section domain, the axial variable playing the role of a parameter.
Then the conditions upon the solution of Almansi’s problem are determined in order to
enable us to treat it as a plane cross-section strain. These conditions indicate a set of
classes of semi-inverse solutions for the Almansi’s problem.

In this paper, the basic equations, assumptions and a formulation of Almansi’s problem
are contained in Section 2, with the following section devoted to a statement of the
generalized plane strain problems. Four auxiliary generalized plane strain problems are
defined for the subsequent analysis. By reformulating the three-dimensional quasi-static
equilibrium equations for the plane cross-section domain, in Section 4 we deduce the
conditions upon the solution of Almansi’s problem in order to treat it as a plane strain.
In addition, Section 4 also ulitises these results to obtain some classes of semi-inverse
solutions for the Almansi’s problem. The primary solution class is characterized by the
property that the partial derivative of a solution with respect to the axial coordinate gives
rise to a rigid displacement. Any solution of this class is expressed in terms of four
canonical displacements (that can be treated as plane displacements in the plane cross-
section of cylinder) and depends on four arbitrary continuous functions depending only
on time variable.
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The other classes of semi-inverse solutions are characterized by the fact that the partial
derivatives with respect to axial coordinate of a solution lead to a primary solution.

The final section is devoted to determining the solution of the relaxed Almansi’s
problem.

2. Statement of the problem

We consider a prismatic cylinder 3 whose ends are plane, and select a rectangular
system of Cartesian coordinates such that the base of the cylinder lies in the (24, x;)-
coordinate plane and contains the origin, while the generators of the cylinder are par-
allel to the positive 23-axis. We suppose that the length of the cylinder is L and that
D(z3) C R? represents the bounded cross-section at distance '3 from the plane end con-
taining the origin. The boundary d D of each cross-section is assumed to be sufficiently
smooth to admit application of the divergence theorem in the plane of the cross-section.
The lateral boundary of the cylinder is 7 = 0D x [0, L]. We shall employ the usual sum-
mation and differentiation conventions: Greek subscripts are understood to range over the
integers (1,2), whereas Latin subscripts — unless otherwise specified — are confined to
the range (1,2, 3); summation over repeated subscripts is implied and subscripts preceded
by a comma denote partial differentiation with respect to the corresponding Cartesian co-
ordinate; superposed dot denotes differentiation with respect to the time variable; where
no confusion may occur, we disregard the dependence upon the spatial variables.

We assume that the body occupying B is a linearly viscoelastic material that is at rest
at all times ¢ < 0. Let u; be the components of displacement field over B. Then

1
(2.1 egjlu) = Sl + uji),

are the components of the strain field associated with u. The stress-strain relation has the
form [4]

t
(2:2) 5ij(0) = Gijrs@)ers + [Gijrs(t — 2)ers(2)dz.
0

Here 5;;(u) are the components of the stress field associated with u, while ;. stands
for the components of the relaxation tensor. We assume that (7, is symmetric, and
functions

(2.3) Gijrs = Gijrs(z1,22;1)

are smooth functions on B x [0,00). Moreover, we assume that Gijrs(0) is positive
definite in B.

Let s;(u) be the components of the surface traction at regular points of the boundary
0B of B, corresponding to the stress field 5;;(u), defined by

(2.4) si(u) = S;;(u)n;
where n; are the components of the outward unit normal to dB.

We call a vector field u a quasi-static equilibrium displacement field for B correspond-
ing to the body force f, if for each time ¢ € [0,7'), we have u € C''(B) N C*(B), u is
continuous with respect to ¢ on [0, 7) and
(2.5) Sij,j) + fi =0,
holds on B.
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On the lateral surface we assume the boundary conditions
(2.6) siu)=p; onm,
and at the ends we have
2.7) si(u) = 5(1) on D(0), s;(u) = 5(52) on D(L),
for each time ¢ € [0,T). Here, p;, 351) and 852) are functions prescribed on m, D(0) and

D(L), respectively, for each time ¢ € [0, T).
The necessary and sufficient conditions for the existence of the solution to this problem

are given by
ffz dV + f])i(lo + f M da + f (z)da =0,
D() D(L)

)
fewkmjfkdv +fs”k”c]pk(10+ fe,“r s,l ) da + f Eiikis sk)da =0,
D) D(L)

(2.8

where ¢;; is the alternating symbol.
Under suitable smoothness hypotheses on 7, and on the given forces, the solution of
the above problem exists and is continuous with respect to time on [0,7") (cf. FICHERA

(5D-

If we introduce the relations (2.1) and (2.2) into (2.4) and (2.5), it follows that the
solution u of the above problem satisfies the boundary-value problem (.4) defined by the
equations

t
(29)  Ai(W) = (Gijra(Otr,s) j + [(Gijes(t — 2)ur 5(2)) jdz = — f;

0
in B=Dx(,L),
the lateral boundary conditions

t
(210)  Bi(u) = [Giars(Oirs + [Giars(t — 2)ur o(2) d2]na = p;
]
on mw=dD % (0,L),
and the end boundary conditions
(2.11) Ssiw) = —=s on D(0), Sx(w) =sP on D),

foreach t € [0,T).
In this paper we assume that the body force f and the surface force p are polynomials
of degree n in the axial coordinate, i.e.

(2.12) fzk(éﬂl, zil)es, pi= P:k(mh x5 t)ak
k! k!
k=0 k=0
where f;; and p;i (2 = 1,2,3;k = 0,1,...,n) are given functions, continuous on [0, T").

Almansi’s problem (A,) consists in finding a quasi-static equilibrium displacement
field on B that corresponds to the body force f and satisfies the boundary conditions (2.6)
and (2.7), when f and p are given by relation (2.12). We denote by A the set of solutions
of the Almansi’s problem.



250 S. CHIRITA

3. Generalized plane strain state

The state of generalized plane strain for the plane domain D C R? is characterized
by the relation

(3.1) v = vi(xy, e t), (2, 22) € D, t €[0,T).

Such a displacement vector, in conjunction with the stress-strain-displacement relations,
imply that the components of the stress field are functions of z; and z; and ¢, ie. T;; =
T;;(z1, x2;t). Moreover, we have

t
3.2) Tij(v) = G,‘jkg(ﬂ)vk"@ + fGijkﬁ(t — 2)vg g(2) dz.

0

A vector field v is an admissible displacement field provided v is continuous with
respect to time variable on [0, 7") and, moreover, for each ¢t € [0,T),

(i) v is independent of z3;
(i) v e CY(D) N C¥(D).
Under given body forces F(2y, z5;t) on D X [0, T) and boundary forces P(z;, x2;t)

on dD x [0,T), the generalized plane strain problem for D U d D consists in finding an
admissible displacement field v which satisfies the quasi-static equilibrium equations

3.3) Tm-,a(v) +F;=0 inD,
and the boundary conditions
3.4 ToitV)ng =P, ondD,

for each ¢ € [0,T). If we substitute the relation (3.2) into (3.3) and (3.4), we obtain the
displacement plane boundary value problem (P) for D U d D, defined by

t
(3.5) Pi(v) = (Gmkﬁ(owk,ﬁ) + [(Giarstt = 2)or5(2)) 0dz = —F; in D,
g

t
(3:6) Ti) = [GiakpOvrp + [Giarplt — 2)vrp(2)dz|na = P on 9D,
) 0

for each t € [0,T).
The necessary and sufficient conditions for the existence of the solution v of the plane
boundary value problem () associated with D U @D, are given by

(3.7) ng(la+ fP,-ds=O,
D oD
(3.8) Jesaprabpda+ [e3apm0Psds =0,
D aD

Under suitable smoothness hypotheses on d D and on the forces given, a solution of the
generalized plane strain problem (P) exists for each ¢t € [0,T) (cf. FICHERA [5]). In
what follows, we denote by P the set of plane displacement solutions associated with the
cross-section of the cylinder.
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We will have the opportunity to use four special problems P (s = 1, 2, 3, 4) of
generalized plane strain. We denote by w®) (s = 1, 2, 3, 4) the solution of the problem
P® (s =1, 2, 3, 4). The problems P (s = 1, 2, 3, 4) are characterized by the
equations [6]

Piw?) + (Gion(ap)a =0 (B=1,2),
(3.9) Piw?) + Giazsal(t) = 0,
PiwY) - €3,5(Giapslt)z5),a =0 in D,
and the boundary conditions
Ti(wP) + Gians(t)zpna =0 (B =1, 2),
(3.10) Ti(wY) + Gian(tna = 0,
T.w) — €3,5Giam)2pne =0 ondD.
The necessary and sufficient conditions for the existence of the solution are satisfied for

each boundary value problem P®) (s = 1, 2, 3, 4). Therefore, we can assume that the
fields w*) (s = 1, 2, 3, 4) are known.

4. Semi-inverse solutions by plane cross-section displacements

We have now completed all the necessary preliminaries required to analyse the three-
dimensional problem (.4) by means of the generalized plane strain problem associated
with the cross-section of the cylinder. Obviously, the last problem is more tractable.

Therefore, we consider the system (2.9) and the boundary conditions (2.10) on the
cross-section D U @D so that we have the plane boundary-value problem

(4.1) Aiw= - f; inD,
4.2) Bi(w)=p; ondD,
where 23 € (0,L) and t € [0,T) are viewed as parameters. In this connection we pose

the following question: When the solution u € A belongs to the set P of the plane
displacements associated with the cross-section D U @D of the cylinder?

The answer to this question will be given in the terms of the vector-valued linear
functionals R and M, whose components are defined by

(4.3) Ri(w) = [Si(u)da, Mi(u) = [eijxz;Su(u)da,
D D

and which represent the resultant force and the resultant moment about 0 of the tractions
acting on the cross-section D) of the cylinder. Let us note that

(4.4) Mo(v) = €305 [25S53(u) da — 23¢305R p(u)
D
(45) M3(ll) = &30 ZE,_-,Sgﬁ(Il) da.
D

In order to answer to the above question, we write the plane boundary-value problem
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(4.1) and (4.2) in the form

t
(46) Piw) + [Giars@uis + [Giaralt = Durx()dz] + Syigw) + f;=0 in D,
0 ’

t
4.7) T;(u) = — [G.,;Q.kg;(())Uk'g, + fGiakB(t — 2)ug 3(2) dz] ne +p; ondD.
0

Therefore, we can imagine the boundary value problem defined by (4.6) and (4.7) as a
generalized plane strain boundary-value problem of the above section, with

t
(4.8) F; = [Giak3(0)uk,3 + fGiakB(t - z)uk,.z(z)dz] Lt S3i3(u) + fi,
0 !

4
- [Gmks(o)uk,s + [Gions(t = 2)u3(2) dz] Mo+ Pi
0

49) P

From the necessary and sufficient conditions (3.7) and (3.8) it results that u € P if

(4.10) f S3i 3(u)da = — f fida — f pids,
D
(4.11) f&?g,a,@.ro,sj,g';;(u) da = —ng,c,g:Eo,f,@ da — f&g;ag‘to,pg ds.
D aD

Under the hypothesis (2.3), it is easy to observe that the relation (2.2) gives

a* 0%u
EESSi(u) 531(8:5,‘), k_Ovla"-s

so that, by means of the relation (2.12), the relations (4.10) and (4.11) give
an+2
(4.13) fssi( m) =0,

ontip ‘
(4.14) ng,ag:L‘aS;ﬁ(a M) da = 0.

(4.12)

On the other hand, the relations (4.10) and (4.11) prove, by means of the relations (4.3)
and (4.5), that

2. 1
(4.15) Ri(u) = RY — Rip(f,p)z5™",
; (k+ 1) %
(4.16) M(u) = M) -3 " i 1)!M3k(f» P,

k=0
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where
Rie(f,p) = [fir(er,zst)da+ [ piler,azt)ds,
D oD
(4.17) Mix(6,p) = [e30p%0fpr(21,221) da

D

¥ f53aﬁ$opﬁk($1’l‘2;t)d57 k= 01 17"-1n’
oD

and RY and M} are arbitrary functions of ¢, continuous on [0, T).
We are thus led the following result.

PROPOSITION 1. Let u be a solution to the Almansi’s problem (A,). Then u can
be treated as a generalized plane strain solution of the plane boundary-value problem
defined by relations (4.6) and (4.7) if and only if the relations (4.15) and (4.16) hold true.

COROLLARY 1. Let u be a solution of the Almansi’s problem (.A,) for which the
relations (4.15) and (4.16) hold true. Then

1 - 1
4.18) M,(u) = M — M i (F, a0 o S S o (F k+2
(418) Ma(w) = Mz =3, Gy Mas(bmes™ +3 aesan Ron(® p)2s™,
where
(4.19) Mok(f,p) = €305 fﬂ?ﬁf:k(-”chxz;t)da‘F f-rﬂpsk(-"?w”fz;i)ds .
D aD

and M9 are arbitrary functions of ¢ continuous on [0, T').

Proof. In view of the quasi-static equilibrium equations (2.5) and the boundary
conditions (2.6), we get

420)  [roSnus)da = [2,Sns)da = - [205, ) da— [z, fida
D D D D

= — [(@aSps(w),pda + [Ssa(u)yda — [wofrda
D D D

= - fwapsds - fxaf3da + Ra(u).
oD D
On the basis of the relations (4.4), (4.10) and (4.20), we deduce

n

1 R | .
(4.21) (Ma(u))s = — Az_% T Mok (6 paf + kz_% iE3enRak(E, p)zi+!,

which leads to the relation (4.18) and the proof is complete.

REMARK 1. The relations (4.15) and (4.20) yield

n+3
(4.22) fma533(a—'—') da = 0.
D

1 +3
0z}
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REMARK 2. The relations (4.13), (4.14) and (4.22) allow us to point out some classes of
semi-inverse solutions to the Almansi’s problem that can be treated as plane displacements
in the cross-section considering =3 as a parameter. In what follows, we describe the set
of classes of semi-inverse solutions.

THE cLASS C) (the primary solution class). For the vanishing body force and lateral
boundary force, the relations (4.10) and (4.11) take the form

(4.23) ‘]\53{(“'3) da = 0, f€3a,@$053g(u!3) da =0,
D D

and this leads to a class of semi-inverse solutions for Saint-Venant’s problem. Thus, we
are led to introduce the set ) consisting of the solutions of the Saint-Venant’s problem
for which

(4.24) u3

)

is a rigid displacement.
If u’ € Cy, then it can be expressed in the form [6]

4
(4.25) u' = a, ®u®,
s=1

where the canonical displacements u®) (s = 1, 2, 3, 4) (solutions of the plane boundary
value problem (4.6) and (4.7)) are expressed in terms of the auxiliary generalized plane
displacements w(®) (s = 1, 2, 3, 4) by

(3

1
uP) = — 5:6560,5 +w®, WP =z + 0 (B=1,2),

3)

3 3
’U)E,,), u3 i

=I3+ w3,

(4.26) u(j)
4 4
ug") = £334TpT3 + wg", ug) = wg ) ;

and a; (s = 1, 2, 3, 4) are arbitrary functions of ¢ continuous on [0, 7"). Moreover, in
relation (4.25) we have used the notation

t

(4.27) (9 ® h)(@) = g(0)h(2) + fg(t — 2)h(z)dz.
0

It follows from (2.2) and (4.25) that

4
(4.28) Si; (") =Y a, ® S,

s=1
where
Si;(u®) = Ti;(W™) + Gijn(t)ea,  Sij(®) = Ti(w) + Gijaa(t),
Si; (@) = Ti;(w) — e3,3G ij3(1)7
Obviously, the relations (3.9), (3.10) and (4.29) give
(4.30) Saia®™®) =0 inD,
(4.31) Sei(uNny, =0 ondD, s=1,2, 3, 4.

(4.29)
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These relations imply

(4.32) [Ssa@yda=0, s=1,23,4
D

We note that S;;(u‘®)) (s = 1, 2, 3, 4) at t = 0 coincide with the components of the
stress tensor in the auxiliary strain problems of the classical elasticity corresponding to an
elastic material with the positive definite elasticity tensor G;,5(0).

Further, we deduce that for u” € C|,, we have
(

4
Ra(“”) = 0, RE(“U) = Z D3s ®as,
(4.33) \ o=l .
Ma(u“) = Z ESaﬁDﬁs ® s, M3(u“) = z D4s ® ag )
s=1 s=1
where

Dﬁs = f-l'{3533(ll(s)) da, Dis = fSS‘S(“(S)) da,
D

D
(4.34)

D, = f£3aﬁxa‘g3l3(u($)) d(t, s=1, 2,3, 4.
D

We denote by D(?) the 4 X 4-matrix whose components are D, (1), (r,s = 1, 2, 3, 4).
It should be pointed out that D(0) coincides with the corresponding matrix [3] for an
elastic medium with the elastic coefficients (7;;,5(0). It was shown that the matrix D(0)
is invertible [3].

Finally, the corresponding body force F (u") and boundary force s(u") are given by

Fiwy= - 95, =0 inB, s@")=5,w")n,=0 onm,

4
(4.35) s = =) Su®)@a, on D),

s=1

4
si(u") = Z S3iu®)®as on D(L).
s=1
Let @(t) be the four-dimensional vector field (a,(), a2(1), as(t), as(t)). We shall write
u’{@} for the displacement vector u” defined by relation (4.25), indicating thus its depen-
dence on the functions a;(t), a;(t), as(t) and a4(?).

THE cLASS C'., 7 > 1. We denote by C,. the class of solutions of the Almansi’s problem
for which

0™
(4.36) — i G
dzr}
For u* € C,, it follows that
Jd"u*

(4.37) =u’{a"},

T
03
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so that, by means of the relations (4.25) and (4.26), we get

r

o= (k) Jk+2 ) t k+1
Z or 2), al (1) ?[7) Frt (Desastses
+ Z Z a® @ wPzk + Z —'U(M’L:,, 3
(4.38) parilil e -1 " Pl
* k 1
uj = Z — '[ag"(t)fcp +aPO)af + 30 53 al? @ wilad
k= U( ) k=0 s=1
(A) k
+ Z R REER
k=0
where v¥) (2, 29;1)(k = 0,1,...,7 — 1) are plane displacements in P, and a®(k =
0,1,...,r) are arbitrary four-dlmensional vector fields depending only on the time ¢

continuous on [0,T).

The components of the stress field corresponding to the displacement u* defined by
(4.38) have the form

(4.39)  Sii(u*) = Z Za(k’ ® 5zt + Z —1 (P

—l) ! s=1 k= n
k
+ Z T L( ) Z T,J(v("‘))’c3 ,
k=0 k= n
where
k - k

@40) K =3 af@Gim@wl), LY = Gijm @ o

s=1

Further, the corresponding body force F(u*) is given by

r—1
(4.41)  Fi(u*) = -8 ;(w) = — k|@3 [T o V) + KS2,
k=0

+Za("+” ® Sai (u(s))] Z %9: [ W+ K ¢l
k=0

r=3
Lo ken k
+T3i("(k+1))] -y ELgi+ T3,
k=0 "
and the lateral boundary force s(u*) is

=1

(4.42) i) = Sai(u)ng = Y kl' [ Tai Vg + K®ng]

k=0

k
+Ekr L() Ng OnNTm,
k=0
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and the end boundary forces

4
si(u*) = —S5;(u*) = — [Z a® @ S3:u®) + KO + LY + T5:(v®)| on D(0),
s=1

(4.43) Si(u") = 531'(“*) = z Z (t(“ ® 5‘3 (u(s))LL

k= (l ! s=1
+ Z —[I\”" + Tyi(v) LK + Z Lg‘f)L" on D(L).
perily k=0 ©
In view of the relations (4.3)—(4.5) (4.20), (4.32), (4,34) and (4.39), we get

r—1
(4.44) Ry(u*) = Z 1 Zu(“n ® Do, + Z —'L'sf [ Tos(v*+D)

k() k=0

+I\§§H)]da + Z f L(’H”da + fa:as3(u*)d3 + f:rafg(u*)(la 5
k= u oD D

r

(4.45) Ri(*) = Z kl Z a? @ Dy, + Z —’ka[Tas(V“))
k=0 k=0

+Ix§§) da + Zmzé‘ L) da,
k=0 "

-

r

(446) Ma(u*) = 5'30,/3{ Z A—J?k ZG(M ® D/} + Z —’l?-; f:llﬁ[T”(V(k))

k=0 s=1 ==()

+ K8 da + Z ——:v3 esLSY da — m37?,g(u*)} X
=l

r

1
(447) M) =3 a3 Z o @ Dy, + Z k,ms § [erapzal Ta(v*)

k=0 s=1 k=0 D

-(k
+Ix( '\ da + Z TR fe_:,aﬁwaLw da.
k= 0 D

5. The relaxed Almansi’s problem

The relaxed Almansi’s problem for the viscoelastic cylinder B consists in the determi-
nation of a quasi-static equilibrium displacement field u corresponding to the body force
and lateral boundary force of the form (2.12) that satisfies global conditions at each end
in the form

(CRY Ri(u) = —Ri(t), Mi(u)=-M;() on D(0),
where R; and M; are continuous functions prescribed on [0, 7"). Similar conditions are
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assumed on the end located at x5 = L, provided the global equilibrium of the cylinder is
assured.

In this section we proceed to determine a solution of the relaxed Almansi’s problem.
In view of the results of the above section, by means of the relations (4.15), (4.16), (4.18)
and (4.44)-(4.47), we see that a solution of the relaxed Almansi’s problem has the form

(5.2) u=u*, uwel,q,.

Thus, the solution of the relaxed Almansi’s problem is

n+2 n+2
— (k) k+2 ( ) k+1
Uy = 1)E3apT a3
n+2 n+l1
(5.3) Z Za(”@w(s) Fy Z ’U(k}l;,
k= (] ) k= U
n+2
uy =3 [P M)z, + ol ()25
et U )
n+2 n+1
LS o a4 3 Lok,
k= () ' s=1 k=0

We now proceed to describe the procedure for determination of the unknown functions
a¥t), s =1,2. 3,4 k=0,1,...,n + 2) and the unknown vector fields v(¥) (k =
0,1,...,n+ 1) in order the displacement defined by relation (5.3) to be a solution of the
relaxed Almansi’s problem.

We first note that the relations (4.15), (4.16) and (4.18) and (5.1) give

(5.4) R'=-R;, M!=-M,.
By means of the relations (4.44)-(4.47), the conditions (4.15) and (4.16) are satisfied
if

4
(5.5) S Dps®a® =HYP (m=1,234%k=01,.,2+2),
s=1

where

Hg)) 53aﬁﬁ’fﬁ _ f o[ Ts3(v n)) s I O 4 (0)] da.,

D

56) H®= —R;- f [TV + KO + L da,

H}”) - ]l/[3 — f£3a'@.‘l!a[T3,@(V(0]) + If:goﬁ) + L(”)] da
D
HY = — R, + e3,5Mp(f, p) — fi”a[TSS(V(”) + K;g;) + L%)] da,

(5.7) 1 N M, 7
HP = - Ry(t,p) — [[Tu(v®) + K§ + LY da,
D
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(5.7) HY

[cont]

— My(£.p) = [erap2alTss(v®) + K] + L)) da;
D

HED = = Rogeny(6p) + c3ap Mpr(f,p) — [a[Ts(v**)
D

= Rap(€,p) — [[Tua(v**D) + KGV + 2§ da,,

(5.8) H¥D

D
HED = — My(f.p) - ffzma-‘lfa[T.x;_f(v(k“’) + K8 + L) da,
D
k=1,2,....,n—1;
H[(;HU = e Ra(n—l)(f. p)+ 63a¢3]l-1,3,1(f, p) = fmcv[T.}}(V(nH)) i A’ggl*'l)] da,
D
(59) I = — Rau(fp) — [[Tu(v™Y) + KG™)da,
D
Hgnﬂ) = — M3, (f,p)— f53c\-f3i17a[730(v("+1)) % 1\"§2”’]da;
D
(5.10) HG) = —Rou(fp),  HD = H™ = 0.

In view of the notation (4.27), the relation (5.5) can be written in the following matrix
form:

t
(5.11) DOaM(@) + [Dt - 2)a®(z)dz = H¥(@), k=0,1,...,n+2,
0
where
a®(t) = @R@)T  and  HO@) = (HO@), HP @), H{(@), H{P0)"
Since D(0) is invertible, from relation (5.11) we deduce

15
(5.12) a® )+ [[DO)'D(t-2)a®(2)dz = [DO]HP @), k=0,1,...,n+2.

0

For H(¥)(t) continuous on [0, T'), the Volterra integral equation (5.12) has one and only
one solution a*)(t) continuous in [0, T'), which can be obtained by the method of succes-
sive approximation [7].

Now, by means of the relations (4.41) and (4.42), the quasi-static equilibrium equations
(2.9) and lateral boundary conditions (2. 10) are satisfied if

Toi ™) + (KE + L8, + Za(k“) ® Sa:(u®) + K

s=1

(5.13) + L& 4 Ty 4+ fiy =0 in D,
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(5.13) ToiW" g = —=(K® + L9y + pix ondD, k=0,1,....n—1;

[cont.]

Toi V™) + (KW + LT, + Z ) @ §3;(u)

s=1
(5.14) + K0+, + fi, =0 in D,
ToiV)ng = =(K% + L), + iy on dD;

4
011 cx(v(n+l)) + K (TH-I) + Z agn+2) ® S‘_}i(ll(s)) =0 in D,

O’l o
(5.15) s=1
Toi(v"*Mn, = Ixé’t”’na ondD.

It is easy to see that the necessary and sufficient conditions for the existence of a solution
for each plane boundary value problem defined by relations (5.13), (5.14) or (5.15) are
satisfied on the basis of the relations (5.5).

Finally, we remark that the calculation must be made in the following order. First, we

determine a{"*? (s =1, 2, 3, 4) as a solution of the Volterra integral equation (5.12) for

k = n + 2. Then we substitute these values into (5.15) and determine v(”H) as a solution

of the plane boundary-value problem defined by (5.15). Further, we determine a{"ty (s =
1, 2, 3, 4) fromrelation (5.12) for k = n+1 and then we get v( ™ as a solution of the plane
boundary-value problem defined by (5. 14) We determine a$" n’ (s =1, 2, 3, 4) from rela-

tion (5.12) for £ = n and then we get 1’5 ~Y from relation (5.13) for k = n—1, and so on.
Therefore, a solution of the relaxed Almansi’s problem has the form (5.3) in which

al )(t) (s=1,2,3,4 k=0,1,...,n+2) are determined from relation (5.12), and the

unknown functions vl(» Al k=0, 1, ...,n + 1) are determined from the plane boundary
value problems defined by relations (5.13)—(5.15).
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