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Direct and variational methods in forming theories of plates 

G. JEMIELITA (WARSZAWA) 

IN THE PRESENT paper general kinematic ao;sumptions used in theories of plates are adopted and, 
basing on them, rule for finding the energy-consistent governin~ equations is given by means of a 
direct method, hence circumventing the need of using the variatiOnal calculus. 

l. Introduction 

IN THE TIIEORIES of rods, plates and shells the original three-dimensional problems of 
deformable body mechanics are reduced to the one- or two-dimensional problems which 
are easier to handle. Therefore, all fields describing the response of slender or thin 
bodies should vary with respect to two or one direction in an a priori known manner. 
For instance, in the theory of plates all quantities should explicitly depend on the z 
coordinate characterizing the distance of a point from the reference plane. One can 
introduce this relation in various manners and that is why we face now a variety of plate 
theories developed in the past and being still refined. Various kinematic and static (stress) 
assumptions have been adopted. To arrive at the governing equations two approaches are 
at our disposal: 

• a direct approach, called here the effective causes method; 

• a variational approach (final causes method). 

The following beautiful words written by Euler in 1744 refer to both the approaches, 
cf. [1, p. 31]: 

"Since the fabric of the universe is most perfect, and is the work of a most wise Creator, 
nothing whatsoever takes place in the universe in which some relation of maximum and 
minimum does not appear. Wherefore there is absolutely no doubt that every effect in 
the universe can be explained as satisfactorily from final causes, by the aid of the method 
of maxima and minima, as it can from the effective causes themselves ... Therefore, two 
methods of studying effects in Nature lie open to us, one by means of effective causes, 
which is commonly called the direct method, the other by means of final causes . .. One 
ought to make a special effort to see that both ways of approach to the solution of the 
problem be laid open; for this not only is one solution greatly strengthened by the other, 
but, more than that, from the agreement between the two solutions we secure the very 
highest satisfaction." 

In the direct method the governing equations of the theory are obtained by using the 
local equations of the theory of elasticity. Some of these equations are satisfied pointwise 
and other are averaged. As usual we average the equilibrium equations by integrating 
over the thickness with the zn weighting functions. The weighted functions can be suitably 
chosen for particular equations. Hence the problem of choice of weight functions arises. 
This choice would be optimal if for a given kinematic hypothesis both methods would 
lead to the identical governing equations. 
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300 G. JEMIELITA 

The plan of the present paper is the following. We assume a certain general kinematic 
hypothesis suitable for plates. Then we put forward a method of construction of weighted 
functions and define a sequence of differential operations which make the governing 
equations obtained by the direct method coincide with those found by the variational 
method. 

The domain occupied by the plate will be parametrized by a right-handed normal 
coordinate system { x 0

, x 3 = z}. This system is defined by one family of planes parallel 
to a reference plane and by two families of cylindrical surfaces orthogonal to these planes. 
The x 3 coordinate will be denoted by z. Partial differentiation with respect to X 0 variables 
will be denoted briefly by a comma. In initial configuration the reference plane of the 
plate will by denoted by A. 

[l represent the domain occupied by the plate in this original configuration. It can be 
represented by a Cartesian product 

n = A X ( -h2(X 0
), ht(X 0

)), 

where z = h1(x 0
) parametrizes the lower face of the plate and z = -h2(x 0

) determines 
its upper face. The boundary surface [) Q can be defined as follows 

+ 
[)Q =AU AUAs, As= S x (-h2,hi). 

+ -
Here A, A stand for the upper and lower faces of the plate, As being its lateral cylin-
drical surface. S denotes the boundary line of the reference plane. This boundary line 
is determined by the intersection of the As surface and the reference plane. The loads 

of densities p 0 , p 3, p w p 3 per unit of the reference surfaces acting on the lower face 
(sign +) and on the upper face (sign -) are assumed to be conservative. 

The summation convention over repeated Greek indices running over 1, 2 will be 
adopted. 

2. Variational approach 

The virtual work equation of the elasticity theory can be written in the form 

(2.1) J [t.0°8Ua,,O + t308(tta,3 + U3,a) + t338u3,3]dlf 
!] 

= J [.X 0 8u 0 + X 38u3] dll + J [p0 8U 0 + p38u3] dA. 
n an 

Here ta.O, t30 , t 33 are components of stresses; Ua, u3 represent displacements; .X a, .. ¥3 
are components of the body force vector and Pa, p3 are components of the loads applied 
to the boundary surface of the body. 

Let us represent the components of the displacement vector in the form 
M p 

(2.2) Ua(x", z) = - L mk(z)VJtk(wk(x"),a)- L fk(z)~k(Oak(x")) 
k=l k=l 

N 

+ L nk(z)mk( <l>ak(x")), 
k-1 
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.Af p 

(2.3) u3(x'"Y, z) = L:sk(z)6k(wk(:r 'Y )) + L Pdz)~kCOJ:(x'Y) ,a ) 
k=l k=l 

R 

+ L rk( z)9lk(vk(x'Y)), 
k=l 

where mk(z), nk(z), h(z), Pk(z), sk(z) and rk(z) are known functions of the z variable 
and the functions Wb <l>ah Oak. Vk are unknown functions defined on the plane of 
reference; Af, N, P and R are arbitrary integers. 

The differential operators 9J1b ~h 6h ~k• ~k and 9lk are defined by 

Mk Nk Mk 

m1k = 2::: ai vzi, ~k = 2::: bi vzi, 6k = L Ci'\7
2
i, 

(2.4) 
i=O i=O i =O 

Rk pk pk 

rytk = l::divzi, 2::: 2i ~k = ei \1 , ~k = 2::: J i v zi, 

i =O i =O i =O 

where 111k,Nk,Rk and Pk are given integers and ai , bi,ci,di,ei and f i are given coef­
ficients. These operators will be called accompanying operators with proper functions of 
the z variable (e.g. operator 9J1k( .. ),a accompanies function mk(z) and so on). 

Let us define the averaged quantities 

(2.5) 

hi 

lv[f3a(x'Y) = J t f3a mk(z)dz, 
h2 

h 

H {3a(x'Y) = ] lf3afk(z) dz, 
k 

-h2 

On substituting (2.2), (2.3) into the virtual work equation (2.1), performing z-integration, 
making some rearrangements and using the notations (2.5), one arrives at 

!If """' J [9J1k(kJf3a {3a- Qa L1' + ma a)+ 6k(Ta a + qk)]bwk dA 
~ k , . ' k ' k , 
k=l A k 

(2.6) 
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N R 

(2.6) + L J 'Jtk(/f 13 a,/3- {a+ ~a)b</>k dA + L J ~h(ya ,a + gk)bvk dA 
[cont.) k=l A k k=l A 

p 

- L J [3' k(I[13 a,/3 - {a + Ta) + ~ k(Cj(3 ,/3a + qk ,a )]biJk dA + 
k=l A 

f [ ... ] dS + [[ ... ]] = 0. 
s 

The following new quantities have been introduced 

(2.7) 

ht 

Ta = mk(ht) P a + mk( -ht) p a + J mk(z)..-Ya dz, 
-h2 

T"' = fk<hdPa + fk<-h2)]i"' + I fk(z)Xa dz, 
-h2 

qk = 5k(ht) P3 + 5k( -h2) P 3 + I 5k(z),.-Y3 dz- ~' 
-h2 

qk = Pk(hdP3 + Pk(-h2)]i3 + I Pk(z)X3dz- I[, 
-h2 

ht 

Pk' = nk(ht) p a + nk( -h2) p a + J nk(z)..-Ya dz, 
-h2 

g = tk(ht) P 3 + tk( -h2) P 3 + I tk(z)X3 dz - R, 
k k 

-h2 

+ + + + + + - -
Pa = PaW, P3 = P3W, Pa =PaW, P3 = P3W, 

~ = .)1 + ht,aht,a, W = .)1 + hz,ah2,a. 

Since we shall not deal with boundary conditions, we shall not specify the integrands 
of the boundary integral and the possible jumps [[ ... ]] at points of the boundary. 

The equation (2.6) should be satisfied for arbitrary variations of displacements within 
the plate domain and at its boundary. Due to this arbitrariness all the integrals can be 
(separately) equated to zero. In general the variations bwk, b</>ak, bBak and bvk can 
be assumed as independent and arbitraty within the A domain. Hence we obtain the 
following local equations of equilibrium 

(2.8) 00tk(M/3a na- Qa a + ma a)+ 6k(Ta a + qk) = 0, k = 1, 2, ... , kl, k •tJ k , k ' k , 

(2.9) 'Jk(i[13 a,/3- {a+ Ta) + ~k(Cj13 ,/3a + qk,a) = 0, k = 1, 2, ... , P, 

(2.10) 
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(2.11) 9lk(Va a+ gk) = 0, k = 1,2, ... ,R. 
k ' 

If we assume for instance w 1 = w2 = 'W3 = w, <Pat = </>a2 = </>a, Vt = v2 = v then 
Eq. (2.6) implies the local equations of the form 

ID'tt(M,Ba f.la - Qa a + 1na a)+ <5t(Ta a + q1) 
1 •JJ 1 ' 1 ' 1 ' 

+9Jh(Jvfl3a f.la - Qa a + 1na a) + 62(Ta a + q2) 
2 IJJ 2 I 2 1 2 I 

+9Jt3(Af13 a ,/3a - ~a ,a + Ta ,a) + 63(ra ,a + q3) = 0, 

ID'tk(Jvf.Bk ,Ba - Qa a + ma a) + <5k(Ta a + qk) = 0, k = 4, 5, ... , M, 
k I k I k I k ' 

(2.12) ~ (N,Ba - pa + pa) + ~ (Nf3a - pa + pa) = 0 
1 1 ,/3 1 1 2 2 .,6 2 2 ' 

~k(!j{Ja ,,6 - fa +~a) = 0, k = 3, 4, ... , N, 

9l1 (\{a ,a + gt) + 9l2(\{a ,a + g2) = 0, 

9lk(~ra ,a + gk) = 0, k = 3, 4, ... , R, 

~k(i[13 a,/3- {a + Ta) + ~k(C(13 ,,Ba + Qk,a) = 0, k = 1, 2, ... , P. 

If we put 

(2.13) 

then one can reduce Eqs. (2.8), (2.9) to the form 

(2.14) 

(2.15) 

ID1k(Mf3a f.la + ma a + qk) = 0, k = 1, 2, ... , Af, 
k 1/J k I 

~ k(H 13 a f.l - Fa + p.B {Ja + ma + qk a) = 0, k = 1, 2, ... , P. 
k IJJ k k ' k ' 

All equations obtained above are energy-consistent. 

3. Direct method 

The differential equilibrium equations of the body can be written in the form 

(3.1) tf3a + t3a + xa = 0 ,/3 ,3 ' 

(3.2) t.63 ,/3 + t33 
,3 + ..tY3 = 0. 

Let us multiply Eq. (3.1) by mk and integrate with respect to z in the limits ( -h2, ht)· 
We obtain 
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The following identities hold 

Y J
h 

mk(z)t.Ba ,.adz = { mk(z)t.Ba dz} ,{3 

-~ -~ 

-mk(ht)ht,.atf3a(x'"'~, ht)- mk( -h2)hz,{3tf3a(x'Y, -hz) 

= Af.Ba ,.a - ht,/3mk(ht)tf3a(x'"Y, ht)- h2,f3mk( -hz)t.Bcx(x'"'~, -hz), 

(3.4) j mk(z)t3",3dz = - j t3"dm;;z) dz + mk(h1)e"(x", h1) 
-h2 -h2 

-mk( -hz)t3a(x'Y, -hz) 

= -Qa + mk(ht)t3a(x'"'~, ht)- mk( -hz)t3a(x'"'~, -hz). 
k 

The following boundary conditions should be satisfied on the faces z = h1(xa), z = 
-h2(xa) of the plate 

(3.5) 

+ t.B ( '"'! h ) + ( '"'! h ) + p a = a x , 1 n .a + t3a x , 1 n 3, 

p a = tf3 a(x'"'~' -hz) n .a + t3a(:r'"'~' -hz) n 3, 

p 3 = t.B 3(x'"'~, ht) ii f3 + t33(x'"'~, ht) ~ 3, 

- .a - -
p 3 = t3 (x'"'~, -h2) n {3 + t33(x'"'~, -ht ) n 3, 

+ + - -
where n a, n 3, n a' n 3 represent components of vectors outwardly normal to the lower 
and upper plate faces. These components are given by the formulae 

+ hta 
n a= ---:;:-, 

(3.6) w 
- hz a 
n a= --::-, 

w 

+ 1 
n3 = +' 

w 
1 

n3 = -=· 
w 

Using notation (2.5), (2.7) and considering (3.4 )-(3.6) one can rearrange Eq. (3.3) to 
the form 

(3.7) Nf.B a,,B- Qa +rna = 0, k = 1, 2, ... , Jrf. 
k k k 

Performing now the difierential operation rotk(· .. ),a for the subsequent values of k we 
obtain (do not sum over k) 

(3.8) VJlk(Af.Ba {3a - Qa a + 1na a) = 0, k = 1, 2., ... , Af, 
k ' k ' k ' 

Now, let us multiply both sides of Eq. (3.2) by Sb perform integration through the 
thickness and then perform the differential operation 6 k· After making rearranget:nents 
similar to those that had lead us to Eq. (3.3), we find the equation 

(3.9) ek<ra ,a + Qk) = o, k = 1, 2, ... , 111. 
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Adding Eqs. (3.8) and (3.9) we obtain Eq. (2.8). 
Let us average Eq. (3.1) with a weighting function fk(z) and then perform the differ­

ential operation J" k· We arrive at 

(3.10) ~(JJf3 a,{3- Fa+ rna) = 0, k = 1, 2, ... , P. 
k k k 

Let us average now Eq. (3.2) with a weighting function Pdz) and then perform the 
differential operation ~k(· .. ),a· We find 

(3.11) ~k(q13 ,{3a + qk,a) = 0, k = 1,2, ... ,P. 

Upon adding equations (3.10), (3.11) we obtain Eq. (2.9). 

Similarly, let us multiply Eq. (3.1) by nk(z) and perform the integration in f~~2 ( ••• ) dz, 
and then perform the differential operation 91k. After appropriate rearrangements the 
equation (2.10) is found. 

Let us multiply Eq. (3.2) by tk(z), integrate over the thickness and perform the oper­
ation 9lk. We arrive then at (2.11). 

Therefore one can readily see that correct, energy-consistent, two-dimensional equilib­
rium equations can be obtained by the direct method if we perform a series of operations 
as follows: 

1. The differential equilibrium equations (3.1) are multiplied by the known functions 
(mk(z), fk(z), nk(z)) of z variable and integrated across the plate thickness, respectively. 
As a result, for given o ( o = 1, 2) the three groups of differential equations of the two 
variables xa are obtained. 

2. The differential equilibrium equation (3.2) is multiplied by the known functions 
(Pk(z),sk(z), tk(z)) of z variable and integrated along the plate thickness, respectively. 
As a result, the next three groups of differential equations of the two variables xa are 
obtained. 

3. The differential equations obtained in the step 1 are subjected to the differen­
tiation operations by means of the accompanying operators 9Jlk( .. ),a, ~k, mk, respect­
ively. 

4. The differential equations obtained in the step 2 are subjected to the differen­
tiation operations by means of the accompanying operators 6k, ~k( .. ),a, 9lk, respect­
ively. 

5. Since the unknown function wk(xa) simultaneously described the displacements Ua 
and u3, hence we sum up the equations obtained as a result of the operations 9Jlk( .. ),a 
and 6 b respectively. 

6. Since the unknown function Bak(xf3) simultaneously described the displacements 
'lla and ·u3 , hence we sum up the equations obtained as a result of the operations~ k and 
~ k ( •• ), w respectively. 

7. If the unknown functions of the xa variables (e.g. Wt, w2) are the same (i.e. 
w 1 = w2 = w) but the differential operators or the known functions of z variable 
(accompanying them) are different, then we sum up the appropriate differential equations 
obtained in the way given above. 

Thus we conclude that the method described above, which augments the direct method, 
makes it possible to derive the correct differential equations coinciding with those derived 
via the variational calculus. 
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4. Examples 

The method of deriving energy-consistent equations of equilibrium will be illustrated 
by some examples. 

In many energy-inconsistent plate theories the equations of equilibrium are usually 
derived by averaging the Eqs. (3.1) with the weights (1, z) and averaging Eq. (3.2) with 
the weight (1). Then we obtain the following five differential equations 

(4.1) va + q = 0 
,a ' 

where 

(4.2) 

h 

N {3a(x 1') = ] tf3a dz, 
-h2 

M{3a(x"Y) = Y zt/3a dz, Qa(x"Y) = Y t3a dz, 

h 

Va(x"Y) = J ta3 dz = Qa(x"Y), 
-h2 

-h2 -h2 

Po= Po+ Po+ Y Xodz, 
-h2 

y + -
rna = ht p a - h2 p a + zXa dz, q=p3+p3+ Jx3dz. 

-h2 -h2 

These equations are compatible with the Hencky-Bolle hypothesis (2-4] 

Ua(X"Y, Z) = Ua(X"Y)- z<f>on 
() 

u3(x"Y, z) = w(x"Y), 
(4.3) 

which can be found from (2.2) by assuming 

n1 = 1, n2 = -z, ~I = ry't2 = 1, 9tt = 1, tl = 1, 

<f>al = Ua(x 13 ), 
II 

</>a2 = </>a, Vt = W, 

(4.4) R(x"Y) = 0, N {3a(x"Y) = N {3a(x"Y), N {3a(x"Y) = -M(Ja, gl = q, 
I I 2 

P a(x"Y) = 0, V a= Va = -Pa(x"Y) = Qa, Pa = Pa, Pa =-rna. 
I I 2 I 2 

In the case of Navier-Kirchhoff hypothesis 

Ua(x"Y, z) = ua(x"Y)- zw(x"Y) a, 
II ' 

u3(x"Y, z) = w(x"Y), 
(4.5) 

one should put 

m1 = z, 9Jt1 = 1, n1 = 1, ry't 1 = 1, s1 = 1, 

<St = 1, Vk = 0, </>at = Ua(x/3), Wt = w, M{3a(x"Y) = M
1 

{3a(x"Y), 
() 

N {3a(x"Y) = N {3a(x"Y), Q a(x"Y) = T a(x"Y), 
I I 

(4.6) 

P (x"Y) = 0 S(x"Y) = 0. 
k a ' k 

In this case, according to the rules indicated in Sec. 3, one should perform integration 
with respect to xa on Eq. (4.1)2, and then add this new equation to the Eq. (4.1)3. In 
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this way we arrive at the equilibrium equation of the Kirchhoff theory, cf. (2.14) 

(4.7) Mf3o:,f3o: + q + rno:,o: = 0. 

The theory of VLASOV [5, 6] is based upon the following kinematical assumption 

(4.S) !t,(x", z) = ~,(x")- ;~: w,, - z ( 1 - ;~: )<t>,, 
u3(:z:~', z) = w(x~'), 

where h1 = h2 = h/2 = const. 
By comparing ( 4.8) with (2.2) one finds 

(4.9) m1 = ;~:, n1 = 1, n2 = -z(1- ;~:), 
9)11 = ryt1 = ryt2 = 61 = 1, 'W = W1, </>o: = <f>o:h .5t = 1. 

On using ( 4.9) we can express the stress resultants (2.4) by the formulae 

( 4.10) 

4 Jh Af {3a(x~') = 
3

h
2 

z3t{3o: dz, !'( f]a(x~') = N f]o:(x~'), 
-h2 

If {3a(x") = - Y z ( 1 - ;~:) tf3a dz, f ,(x") = 0, 
-h2 

9.,(x") = : 2 Y z2
t3a dz, { ,(x") = - Y ( 1- <}3a dz, 

-~ -~ 

h 

1' o(x~') = 1 to3 dz, 
-h2 

S(x~') = 0. 
I 
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The energy-consistent equilibrium equations of the theory of Vlasov can be obtained 
via the variational method by using (2.7), (2.8), (4.9) and (4.10), or via the direct method 
following the rule of Sec. 3. Here the equations arect) 

(4.11) 

where 

Nf3o +Po: = 0 
,{3 ' 

M 13 o: f3o - Q0 o: + mo: o: + To: o: + ql = 0, 
1 ' 1 ' 1 ' 1 ' 

Nf3a - po +Po = 0 
1 ,/3 I 1 ' 

h/2 

q1=p3+p3+ j~Y3dz, 
-h/2 

( 1) In the paper of Vlasov the equations of equilibrium were given in the form ( 4.1 ). The displacement 
equations of the layered plate theory based on the Vlasov kinematical a~sumptions at </>ex = w,cx - 1/J,cx were 
derived by the BOLOTIN and NOVICHKOV (7) variational method and the BHIMARADDI and STEVENS (8) one. 
Certain ca~e of Eqs. ( 4.11) wa~ found by REDDY [9) by the variational method. 
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( 4.12) 
+ -

P a = Pa = P o + P o + 
1 

Mushtari assumed the following displacement field, [ 10] 

V -:-3 ( 4 ?'2) ~ 2 . .., 
U 0 = - zv 0 - V V a + z 1- - 12 ¢ 0 . , 

' 6(1-v) ' 3L 
( 4.13) 

v z2 

'ltJ = v + V 2v. 
2(1 - IJ) 

This field follows from (2.2), (2.3) by putting 

vz2 

mt(z) = z, m2(z ) = 
6

(
1 

_ v) , ( 
4z2) n1(z) = z 1-
3
h

2 
, 

(4.14) St(Z) = 1, 

9]11 = 1, 9]12 = \72, ~1 = 1, 6t = 1, 62 = \72. 

G. JEMIELITA 

To find by the direct method the energy-consistent equilibrium equations one should 
perform the following operations: 

1. Average Eq. (3 .1) with the weighted function m 1(z ) and then perform the differ­
ential operation 9Jl1 ( .. . ), 0 ; 

2. Average Eq. (3.1) with the weighted function m2(z ) and then perform the differ­
ential operation 9Jl2( ... ) ,o; 

3. Average Eq. (3.2) with the weighted function s 1(z) and then perform the differential 
operation 6 1( ••• ); 

4. Average Eq. (3.2) with the weighted functions2(z ) and then perform the differential 
operation 62( ... ); 

5. Average Eq. (3.1) with the weighted function n1(z) and then perform the differential 
operation ~t(· . . ). 

At the first four weighted functions (m" m2, St, s 2) the same function v(x 0
) appears. 

Hence all the four equations obtained according to the rules given above should be added. 
Then we find 

(4.15) 

The algorithm given in clause (point) 5 leads to the system of equations 

(4.16) (N 13 o ~~- Po +Po) = 0. 
1 '/J 1 1 

In Eqs. (4.15), (4.16) the following averaged quantities have been used 
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(4.17) 

h/2 h/2 

A[ ,o cv (x') = J z t,ocv dz, Af ,o~(x') = v J z3t,ocv dz, 
-h/2 2 6(1 - v) -h/2 

h/2 ( 4z2 ) h/2 
!'( ,O cv (x') .= J z 1-

3
h2 i[Jcvdz, Qcv(x') = T cv(x') = J tcv3 dz, 

-h/2 
1 1 

-h/2 

h/2 

Q (x') = T (x') = v J z2t dz S
1 
(x') = 0, 

2cv 2cv 2(1-v) cv
3 

' 
-h/2 

f a<x"') = r ( 1-<:) t,a dz, {<-~~) = 1 ~ v rzt,, dz, 
-h/2 -h/2 

h/2 h + - h/2 
mC\' = -(Pcv- Pcv) + J Z..tYcvdz, 
1 2 

-h/2 

qt = p 3 + p 3 + J .X3 dz, 
-h/2 

h/2 
v 3+ - v J 3 1ncv = h (p cv - ]J cv) + z X cv dz 

2 48(1 - v) 6(1 - v) -h/
2 

h/2 
v 2+ - v J 2 

Q2 = h (p 3 + p 3) + z ..~Y3 dz - S, 
8( 1 - v) 2( 1 - v) 2 

-h/2 

h + _ Jh ( 4z2) . 
Pcv = -(Pcv- Pcv) + Z 1-----;;}. ..-\cvdz, 
1 3 -h2 3 

+ + + + - +-
p C\' = p C\'' ]J 3 = p 3, p C\' = p C\'' p 3 = p 3, w = w = 1. 
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In the present author's paper [11] it has been assumed that in isotropic, homogeneous 
plates of constant thickness the following state of displacement holds.CZ) 

Ua = -ZV,a + Z ( 1 - ;~:)II a, 

v h2 ( z2) [ ( z2) cv 2 ] 'll3 = v + --- 1-4- 5-4- (} - 6V' v 
1- v 48 h2 h2 ,cv ' 

( 4.18) 

where 
v = u3(xcv, ±h/2). 

This hypothesis follows from (2.2), (2.3) by putting 

h 
h1 = h2 = z' m1(z) = z, St ( z) = 1, s2 = -

1 
~ v ~

2 

( 1 - 4 ~:) , 

( 4.19) ( 4z2) f1(z) = -z 1-
3

h2 , Pt ( z) = 1 ~ v ~; ( 1 - <:) ( 5 - 4 ~:) , 
9)11 = 1, ~1 = 1, 61 = 1, 62 = V' 2' ~1 = 1. 

(!) In this paper only the ca~e of bending was considered. We recall here a simplified version of the 
hypothesis used in [11). 
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Upon considering (4.19) in (2.5) we find the stress resultants 

h/2 

Jvf {3a(x'Y) = J zt{3a dz, 
-h/2 

h/2 ( 2) -f a (:z:'Y ) = - J 1- 4 ~2 t3a dz, 
-h/2 

h2 h/2( 2) 
(4.20) . r a(x'Y) = - 1 ~ lJ 8 J 1- 4 ~2 t a3 dz, 

-h/2 

, .'Y - v h2 h/2( z2) ( z2) 9 Q (X ) -
1 

_ lJ 
48 

J 1 - 4 h 2 5 - 4 h 2 t a 3 d Z, S 1 (X 'Y ) = 0, 
-h/2 

h/2 h/2 ( 4 2) 
S(x'Y) = _v_ J zt33 dz, J((x'Y) = _v_ J z 1- _!_ t33 dz. 
2 1 - lJ 1 1 - lJ 3h2 

-h/2 -h/2 

After performing the operations described in Sec. 3 on Eqs. (3.1), (3.2) we find, by 
a direct method, the energy-consistent equations of equilibrium relevant to the ( 4.18) 
hypothesis 

(4.21) 

where 

(4.22) 

(A1 13 a {3a - Qa a + mQ a )+ (TQ a + qi) + V\TL'~ a + q2) = 0, 
1 ' 1 ' 1 ' 1 ' 2 ' 

(H{3 a a -Fa + mQ) + (G {3 {3a + q, a) = 0, 
1 ,,.J 1 1 1 ' • 

h + - fh-, 
m.a=-(pa-Pa)+ zXC'(dz, 
1 2 

-h2 

ht 

qt = P 3 + P 3 + J }( 3 dz, 
-h2 

qt = _z;_h2 Jh (t- 4 z2) (5-4 z2)x3dz- /{, 
1 - lJ 48 h 2 h 2 1 

-h2 

+ - + + + + 
w=w=1, Pa=p('(, ]J3=p3, P a =Po, P3=P3· 

These equations were found by LEWINSKI [ 12] by the variational method. 
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