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Small amplitude wave propagation in the Eimer's cracked 
material 
(The instructive case of irremovable nonlinearity) 

A. BLINOWSKI (WARSZAWA) 

LoNGiTUDINAL small amplitude plane wave prol'agation in the elastic nonlinear material behaving 
linearly under any proportional strain (with positive proportionality coefficient) is considered. Purely 
mechanical model of the material behaving under uniaxial strain as a linear elastic medium every­
where outside zero is assumed. It is shown, that purely mechanical positive dissipation principle 
together with the displacement continuity and momentum conservation conditions yields the same 
qualitative discontinuity propagation conditions ac; the complete thermomechanical approach. Sev­
eral particular propagation schemes are considered. Some interesting qualitative effects are disclosed. 
Among them the reflection of a linear elac;tic wave from the moving strain discontinuity surface, severe 
dumping of periodic waves in purely elac;tic material and the qualitative change of the wave-motion 
scheme occurring in the compression and tension wave collisions for different amplitude ratios can 
be mentioned. 

1. Introduction 

DURING THE PAST two decades ~orne attention was paid to very specific class of the elastic 
materials- to the piece-wise linear materials (some, possibly incomplete, references can 
be found e.g. in (1 ]). Particularly the papers dealing with the discontinuity propagation by 
Z. WESOLOWSKI (2-4] and by Z. WESOLOWSKI and A. SZWEYCER (5] can be mentioned. 

The research interest in the subject was evoked by several causes, among them prob­
ably the efforts of the description of hypoelastic materials modeling the behavior of the 
elastic-plastic media under proportional loading should be mentioned. Among the men­
tioned materials the models of cracked materials proposed by C. EIMER [ 6-9] should be 
considered separately. The ideas standing behind the concept of Eimer's materials are 
very ·simple- he considered the material with perfectly two-dimensional (in unloaded 
state) plane stationary cracks with vanishing friction at their inner surfaces. Under some 
reasonable assumptions 'on the behavior of the cracks in initially linear elastic material, 
a nonlinear homogeneous elastic constitutive relation of degree one between the aver­
aged values of stress and small strain can be obtained, the theorem on the uniqueness of 
the solution of the linear elasticity problems being involved in the course of derivation. 
The material behaves linearly under any proportional deformation with positive propor­
tionality coefficient, its nonlinearity manifests itself under change of the direction in the 
strain space only, particularly when the sign of the deformation changes. For example, 
in the case of simple tension-compression test the Young modulus changes abruptly at 
zero point, while preserving constant values in these strain intervals which do not include 
this point. Thus, no matter how small is the one-dimensional deformation considered, 
the nonlinearity of the material behavior cannot be disregarded. Particularly, even for 
very small amplitude we can expect, in principle, different propagation velocities for ten­
sion and compression waves, this effect giving rise to several interesting qualitative effects 
occurring during plane longitudinal wave propagation. 
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332 A. BLlNOWSKl 

The present paper is devoted to the discussion of these facts . . In our considerations 
we shall have to do with a very simple situation, but it is author's ·hope that the results, 
which we shall be able to obtain, will prove to be not quite trivial. e) 

As it has already been mentioned, such nonlinearity as the on~ considered here is of 
innate nature and cannot be removed; moreover we can even call it drastic, because we 
have to do with an infinite curvature of stress-strain curve at point zero. On the other 
hand the linearity in constant sign regions makes it possible to apply some elementary 
concepts for the wave-motion scheme analysis and to obtain effective and sufficiently 
general results. 

2. Preliminary considerations 

Let us consider the following equation of one-dimensional motion 

(2.1) 2 .. 
C U,xx = U, 

where 'll = u(x, t) is the displacement along x-axis, comma denotes partial differentiation 
with respect to the space variable and dot stands for the time derivative. Contrary to the 
linear theory c is not constant here, it is a function of the strain £ = u ,x 

(2.2) c(£) = { c1 for£ < 0 
Cz for£> 0 (ci > Cz). 

We assumed, in accordance with the common sense and with the physical interpretation 
of the material as a model of the cracked medium that the sound velocity is higher in the 
compressed regions. We shall consider here the propagation of the plane wave through 
the elastic space, however all the considerations will be valid also for the case of the 
longitudinal wave propagation in the rod.e) 

It is a proper place here to mention that we consider a purely mechanical model, 
disregarding the thermal expansion effects and the possible dependence of the elastic 
properties on the temperature. 

The propagation of the wave in the regions of the constant strain sign does not differ 
from the well-known behavior of linear material, thus we shall assume in our considera­
tions that at the left-hand side of some plane, whose position will be denoted as x = Y(t), 
the material is compressed, while at the right-hand side it is extended. Of course, the op­
posite case is also possible in real life, but it can be simply obtained as a mirror reflection 
of the present situation. Let us notice that the effect of abrupt elastic properties change 
at zero strain can be interpreted according to the notions of the classical thermodynamics 
as a phase transformation, thus it is justified to refer to the plane x = Y (t) as to the 
interface surface. 

We do not know at the moment if the velocity and strain values are continuous or not 
at x = Y(t), we assume however, that the displacement field is continuous, i.e. that 

(2.3) UR = UL 
' 

( 1) We shall not use here the results obtained by Z. WESoLowsKI [2-5) for more general cases. Our subject 
stands rather aside from his considerations on the geometry of wavefronts, thus it is simpler to re-derive some 
particular relations than to "translate" them from the very general notation. 

e> In the last case the following relation is valid: c2 = E I p, where E denotes the Young modulus and p 
is the material density. 
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SMALL AMPLITUDE WAVE PROPAGATION 333 

where ·uR and uL denote, respectivewly, right and left-hand side limit of the function 
u(x, t) at x = Y(t). We have not employed here the usual notation u+ and u- because 
we do not know (at least as yet) the sign of the interface velocity U = dY(t)/dt, thus we 
cannot point out what is "in front of' and what is "behind" the moving interface (possibly 
being a discontinuity surface). For practical application we shall need condition (2.3) 
expressed in terms of strains and velocities. 

* 
If any quantity j(:1;, t) is given, then the rate of its change f(x, t) at the point x = Y (t) 

can be expressed as follows: 

* 
(2.4) j (X, t) = 0 j (X, t) jot + ij 0 j (X, t) /8 X, 

thus the displacement continuity condition (2.3) yields the following relation: 

(2.5) 

Linear relation (2.5) is valid also for finite strains; on the other hand, it is not difficult to 
show that it is a linear expression for the mass conservation condition at arbitrary surface 
(compare [10]). 

e<O E.>O 

cL=c1 CR=Cz 

FL(x-c1 f) FR(x-czt) .. 
X= Y(t) X 

I 

FtG. 1. Incoming and outgoing waves at the interface position Y(x). 

For the sake of brevity we shall also re-derive here the linear form of the second 
fundamental principle - the momentum conservation at the interface. Let us choose 
two material surfaces localized at the current time instant at x = a and x = b, where 
a < Y'(t) < b (Fig. 1). The integral momentum balance equation for the domain 
contained between these two surfaces can be expressed as follows: 

l Y~t) b l 
-u(a) + u(b) = ~~ [ J pvdx + J pvdx , 

a Y(t) 

(2.6) 

where a denotes the normal stress: a = pc2E.. Applying well-known differentiation rule 
to the variable limit integral and taking limiting values for a ---+ Y, b ---+ Y we are able to 
express (2.6) as follows: 

(2.7) 

where c1 and c2 replace cL and cR, according to our assumption about positive sign of 
E at the left side and negative at the right-hand side. Taking into account that, for one-
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dimensional deformation, p = p0(1 -c) (or p = p0 [1 - (1 - 2v)c] for the case of rod) 
and preserving only linear terms we can finally write: 

(2.8) ( C~cR - cfcL) + U ( VR - VL) = 0. 

Re-deriving relation (2.8) we have not plainly saved some efforts, we have also shown 
a useful approach, which will be applied to the next item in this paper. 

Let us recall that we deal with a purely mechanical model, thus the standard thermo­
dynamic entropy principle (Clausius-Duhem inequality) cannot be directly applied here. 
We have to formulate some purely mechanical dissipation principle instead. We plainly 
demand the dissipation rate to be positive, i.e. we demand the mechanical energy growth 
rate not to exceed, at any instant, the power of external forces: 

(2.9) - a(a)v(a) + a(b)v(b) 

d [ Y(t) 1 b 1 l -- J -(pc2c2 + pv2)dx + J -(pc2c2 + pv2)dx 2: 0. 
dt 2 y 2 a (t) 

Using the same reasoning as in the case of formula (2.6) and preserving only quadratic 
terms we obtain the following inequality: 

1 
(2.10) -cfcLVL + C~cRVR- ZU((cf(cL)2 + (vL)2)- (c~(ER)2 + _(vR)2)] 2: 0. 

At the first glance this quadratic inequality does not fit the previous linear consider­
ations and, within the framework of the approximation adopted, all the left-hand terms 
of (2.10) should be plainly considered as equal to zero. In fact, the situation here is not 
so simple, it is very similar to that in the thermomechanical theory of the small amplitude 
shock wave [ 10], where the Clausius-Duhem inequality having also quadratic form plays, 
nevertheless, a significant role. 

Eliminating the velocity difference from Eqs. (2.5) and (2.8) and recalling that the sign 
of c is different at different sides of the interface, we obtain the following useful relation: 

(2.11) 
c2- uz 

I <O 
, EL = c~ - ij2 - . 

This implies that the absolute value of the interface velocity must be contained between 
c1 and Cz. 

(2.12) 

Important case when I U I = c2 and c L = 0 will be discussed later. 
Rewriting (2.8) as follows: 

(2.13) 

and then multiplying one by one both the left and right-hand sides of Eqs. (2.5) and (2.13), 
one obtains: 

(2.14) 

Substituting the last relation into energy inequality (2.1 0) we obtain: 

(2.15) (c~- U2)ERVR- (ci- U2)cLVL 2: 0. 
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SMALL AMPLITUDE WAVE PROPAGATION 335 

Combining (2.15) with (2.11) and recalling that £L < 0 ~ £R, we easily arrive at the 
following linear inequality: 

(2.16) 

and finally, coming back to (2.5), we obtain an elegant result 

(2.17) u > 0. 

The last result is a counterpart of well-known fact of nonexistence of a rarefaction shock 
wave in gases, thus all our results obtained up to this point are closely related to the 
classical theory of moderate amplitude shock waves. Let us recall here that all the con­
siderations _beginning with eq. (2.11) are valid provided £L :f 0. 

3. General formulation of the problem and some useful relations 

We shall consider moving interface between the compressed · (at the left side) and 
extended (at the right side) regions. Both in the left and in the right-hand neighborhood 
of the interface, the usual equations of motion of linear elasticity should be fulfilled; thus, 
together with the interface motion, we have to consider (in the most general case) two 
incoming and two outgoing displacement waves at the vicinity of the interface: 

FL(x- c1t) the wave incoming from the left-hand side, 

FR(x - c2t) the wave outgoing towards the right-hand side, 

GR(x + c2t) the wave incoming from the right-hand side, 

GL(.-c + c1t) the wave outgoing towards the left-hand side. 

At this point we do not apply to any of the mentioned waves any particular interpretation 
such as "primary" or "secondary", "incident", "reflected" or "transmitted". Denoting by 
JR, JL, gR, gL the limiting values (taken at the interface) of the spatial derivatives of 
pR' pL' en, GL, respectively, we obtain at once the following values of time derivatives 
at the interface: 

aFL 1 at! = -c1JL, 
X= Y(t) 

acL 1 at! = c.gL, 
x=Y(t) 

(3.1) 
8FR loti = -c2JR, 

X= Y(t) 

acH 1 at! . = c2gn, 
x=l' (t) 

thus for £R, £L and vR, vL we get the following expressions 

£R = JR + gR, EL = JL + gL, 

R _ (JR R) L _ (JL L) v - -c2 - g , v - -c1 - g . 
(3.2) 

Substituting relations (3.2) into (2.5) and (2.8) we obtain, after some rearrangement, 
the following relations between the incoming wave strain amplitudes, interface velocity 
and the total strain values at both sides of the interface: 

R JR R 2(c2gR + CtfL) Ct - U 
£ = +g = ---, 

c1 + c2 c2- U 

£L = JL + gL = 2(c2gR + CtfL) C2 + U. 
Ct + C2 Ct + ij 

(3.3) 
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Relations (3.3) will serve in the next section as a convenient starting point for the 
investigations of the particular cases of the wave-motion schemes. There is however 
another fact, which can be established at this level of generality: it is the possibility of 
strain continuity at the interface. Let us notice that this is possible only if on both sides 
€ = 0; this, in turn, implies the stress continuity at zero level and, by virtue of (2.5), also 
the velocity continuity. One can see readily from Eq. (3.3) that this peculiar case needs a 
special relation between the strain amplitudes of the two incoming waves: 

(3.4) CtfL + C2[JR = 0. 

We shall discuss this particular case in the next section when considering collision of two 
waves of opposite signs and various strain amplitude ratios; just now we can say only that 
the strain, stress and velocity fields continuity at the interface can be expected to occur 
as an exception rather than as a rule. 

4. Some important particular examples 

4.1. The overtaking wave 

We shall begin our considerations with the case depicted at Fig. 2, i.e. the extension 
wave running towards the right side and the faster compression wave running behind it, 
and, eventually, overtaking it. When the compression wave reaches the slower extension 
wave, the discontinuity arises (see Fig. 2be), (4

)). According to (2.13) and (2.17), dis­
continuity moves towards the right side and its velocity exceeds the sound velocity in the 
extended zone, thus we do not observe any emitted wave at the right-hand side of the 
interface, i.e. we have, according to our assumptions, gR = 0 and the outgoing wave strain 
amplitude is equal to that of the primary extension wave. Thus in relations (3.3) we have 
two unknowns only, namely U and gL. Solving Eqs. (3.3) we obtain the following values: 

o(1 + a)jR- 2jL 
(4.1) lj = (1 + a)jR- 2jL Ct, 

where a is the sound velocity ratio a = c2/ Ct. and 

(1 - a)2 JL 
(4.2) gL = - (1 + a)2- 4(.fL / .fR) 

The wave GL outgoing at the left side with strain amplitude gL can be considered 
as the pL -wave partly reflected from the interface. The absolute value of gL is always 
smaller than the absolute value of FLCS), thus there is no contradiction with the starting 
assumptions: negative sign of the strain at the left side from the interface is preserved 
and the propagation velocity of G L -wave equals c1, despite the fact that this wave is, 
obviously, an extension wave. 

e) All the pictures of wave-motion demonstrated here, beginning with Fig. 2, were obtained directly by 
finite element method computations with no relation to the results of the present considerations, thus one can 
treat these pictures a" some kind of the experimental (in the sense of numerical experiment) verification of the 
results. As far as the author knows, the instabilities visible behind the discontinuity front are of computational 
origin and probably do not reflect any physical reality. · 

( 4 ) We do not use in this paper the usual pictures of the wavefront motion in { x , t} coordinates in order 
to show not only the wavefronts but also the wave profiles. 

( 5 ) In fact it is usually much smaller, for example if a= 0.5 and IJLI = IJRI, then gL = -0.04/L. 
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FtG. 2. The compression wave overtaking the extension wave. Four subsequent stages are shown. Dots depict 
the negative values of normal stress ( -un ), solid line shows velocity distribution in an arbitrarily taken scale. 

The backward running reflected extension wave is visible in Fig. 2c and 2d. 

If the domain of FL-wave is bounded from the left side, then GL would emerge 
eventually at some point, as a rule, close to the left edge of the mentioned domain where 
the total strain changes its sign, i.e. JL + gL = 0. Beginning from this point, GL-wave 
becomes a real extension wave propagating with · velocity c2, its strain amplitude however 
changes. To find this new amplitude we have to come back to relations (3.3) and (3.4); 
we should remember, however, that this time the situation is reversed in comparison to 
the one considered in Sec. 2 and 3, i.e. we have to do with compresssion at the right­
hand side and extension at the left and therefore quantities c1 and c2 in (3.3) and (3.4) 
should be interchanged. Denoting FL(x- ct) by FR(x- ct), GL(x + ct) by (;R(x + ct) 
etc. we obtain at once from the modified relations (3.3) and (3.4) the following simple 
results: 

(4.3) 
ct[jR + c2JL = 0, 

jL + gL = 0. 
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Remembering that total strain amplitude at the right-hand side is equal to zero, we obtain 
at once: 

(4.4) 
-L l_n 
g = -g ' 

0 

i.e. the extension wave emerging from the compression region increases its strain ampli­
tude 1/ a times. The considered wave- first renected, and then transformed at the next 
interface- travelling to the left with velocity c2 is clearly visible in Fig. 2c. 

4.2. Colliding waves (first case) 

As a next example we shall consider the case of the compression wave running from 
left to right and an extension wave travelling in the opposite direction. Here, depending 
on the amplitude relation between the two colliding waves, two cases are possible and 
should be analyzed separately. Thus we consider first the case of prevailing compression 
wave, i.e. we shall assume that 

(4.5) 

The discontinuity, as in the previous case, moves to the right with a velocity exceeding 
the sound velocity in the extended medium, thus if there is no primary wave travelling 
to the right at the right-hand side of the interface, then all the time f R is equal to zero, 
and we again have only two unknown functions U and gL in relations (3.3). From these 
relations we obtain 

(4.6) 
lj = 2(jL + o:gR)- o:(l + o:)gR Ct 

2(jL + agR)- (1 + o:)gR ' 

(1 + a)2gR jL 
gL = ----------------------

4(/L + agR)- (1 + a)2gR 
(4.7) 

One can easily verify that there is no contradiction in our results, i.e. that at the left side 
we indeed obtain negative £L (lgLI < IJLI). 

It should also be noticed that if c1JL + c2gR -+ 0, then £L also tends to zero and U 
tends to c2• In the previous example we have decided to consider GL-wave as the pL_ 
wave reflected at the interface; it was justified by the fact of absence of the incident wave 
at the right-hand side of the interface. In the present case we rather withdraw from such 
interpretation since it would make little sense to divide GL-wave into two parts- one 
due to reflection of a FL-wave, and another one due to transmission of a GR-wave. Four 
subsequent stages of the wave-motion in the considered case are depicted at Fig. 3 a, b, c. 

4.3. Colliding waves (second case) 

Lack of symmetry with respect to the strain sign expressed in our model by the relation 
(2.17) becomes clearly visible if one reverses the sign in inequality ( 4.5) of the previous 
example, switching from the case of prevailing compression wave to the case of prevailing 
extension wave. If we try to make use of relations (3.3) in the case of c1JL + czgR < 0 
then, taking into account that £L should be negative, we would obtain -c1 < U < -cz, 
but this result is in contradiction with condition (2.17). 
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Ftc. 3. Scheme of the collision of compression wave (left) and the extension wave running in the opposite 
direction, case 1: prevailing compression amplitude. Legend- the same a<; in Fig. 2. The amplitude 

change of the compression wave passed across the extension region can be pointed out in Fig. 3d. 

Thus, we have obtained the conclusion of nonexistence of a discontinuity. On the 
other hand, the continuity condition (3.4) is evidently not fulfilled. The common sense 
tells us, however, that the situation which we are trying to describe is quite feasible in 
reality and the real process should occur some way. Where is the answer then? 

The only solution of this dilemma is to assume that there exist more discontinuities. 
Any attempt to consider a set of discontinuities containing a discontinuity tied to the 
interface between the compressed and extended regions brings us back to the same point 
which we came from. The cue can be found in the concluding rerriark in Sec. 2, claiming 
that the condition (2.17) is not valid if cL is equal to zero()). The last condition, however, 
can be met only if gL = - JL, i.e. if FL-wave behaves at the interface as if it arrived 
at a free surface- it performs complete reflection without amplitude change, but with 
opposite strain sign. The reflected wave runs to the left with velocity c1• Substituting this 

( 6 ) Frankly speaking, this is quite obvious: there is no such a restriction for linear elastic material, thus we 
cannot expect any if the strain does not change its sign. 
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result into relations (3.3)C), we obtain at once 

(4.8) 

(4.9) 

U = -c2, 

jR=!_jL. 
Q 

A. BLlNOWSKl 

Strictly speaking, U does not denote here the interface velocity, but we preserved the same 
symbol to stress the point that it retains the same value as in the limit case described in 
Sec. 4.2. 

Let us mention at last that similar reasoning as the one shown in the Sec. 4.1 applied 
to the extension wave emerging from the compressed region, readily tells us that, in turn, 
the compression wave emerging from the extended zone decreases its strain amplitude n 
times. Thus if the moving extended zone is bounded, then a low intensity compression 
wave moving in the opposite direction passes it without any amplitude change, which is 
not true neither in the case of an overtaking wave in Sec. 4.1, nor in the previous case of 
wave collision when the compression wave was prevailing, as in the Sec. 4.2. 

a 

~.~.~.~ ~.~.~.~~~.~.~~.~.~.~:.~.~~·~·~·~·:;:-/------~~"\~~ 
··.. :· 

------ - ------ -- -------- - --- -~.-::.-::::.-:::-:.-:.-:_j-- -

t=250 
b 

--~-~ -~-~-~-~~-~-~~-~-~-~-~-~-~-~-~==~~~-
-- ---------------------- ~··········:::-.::::.:.7·--- ----

f=834 

c 

~-~~~:.:~~:.~.~-~i------y-~~~~~~E~~== 
------------------- -·~:. .................. L __ -- ------· 

t•418 

FtG. 4. The same collision scheme as in Fig. 3, case II : prevailing extension wave amplitude. Legend - the 
same as in Fig. 2. Complete reflection of the compression wave at the interface 

can be pointed out. The amplitude of the compression wave emerging frorn the extension region is almost 
the same (slightly lower due to viscosity effect) as that of the primary incident compression wave. 

The example of a wave-motion case described in this section is shown in Fig. 4. Aside 
from the effects discussed earlier, one interesting feature can be observed: the existence 
of the unstressed region between two wavefronts moving in positive direction as a rigid 
block (in the particular case of the constant amplitude incident wave). 

e) These relations are valid for any value of €L. 
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4.4. Harmonic wave excitation 

It is evident that no harmonic wave can propagate in the medium under considera­
tion; it can be interesting, however, to look what happens if a harmonic(H) excitation is 
applied at some plane in the medium. The complete theoretical analysis of this case is 
of course possible (as far as the transcendental equations can be considered solvable) but 
it would be rather boring and not very informative; we should rather look at the results 
of computations (Fig. 5 and 6) performed both for the case of harmonic stress oscillation 
and for the harmonic displacement of the boundary (at x = 0 in ou~ pictures). 

FIG. 5. Periodic wave propagation, the case of the symmetric stress cycle at the source. Legend -see Fig. 2. 

FIG. 6. Periodic wave propagation, the case of the symmetric displacement cycle at the source. 
Legend - see Fig. 2. 

- --- -- - - - - -- --~,:;-·~:--.-------- - - ------.-::.~·~.~ .~----

---·.a.:.--
-- -~·:_·._.,,Lo.:_'~ - --- ------ --- ---- ~·.:..& ,, ,._,,.:_::..: __ --- - -------- -

FIG. 7. Periodic wave in the linear material (c 1 = cz). Negligible dumping effect due 
to the same viscosity as that involved in the schemes in Fig. 5 and 6 is visible. 

The presented results need no comments but one: to obtain such a severe dumping 
in a viscoelastic material with symmetric characteristics, enormous viscosity should be 
involved. For reference, a viscoelastic wave propagation is shown at Fig. 7 for the same 
viscosity as that involved in the wave-motion pictures in Fig. 5 and 6 (for all computation 
procedures used here some material viscosity was assumed for the sake of suppressing the 
instability behind the discontinuity surface). 

(~)Strictly speaking it should be specified what exactly should be harmonic here: applied stress or displace­
ment, since the both cases yield different wave motion pictures. 
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S. Final remarks 

The author would be very glad if the presented results could bring their, even very 
modest, contribution to the understanding of some dynamic effects in damaged materials 
like the reflection of a compression wave from the extension wave, or the qualitative dis­
tinction between two cases of wave collision (as in Sec. 4.2 and 4.3 ), provided these effects 
can be observed in real experiments. The author hopes also that the described specific ef­
fects can be applied in material testing techniques, e.g. in damage diagnostics, particularly 
for the estimation of the broken fibres ratio in unidirectional fibre reinforced composites. 
For example, probably, the scheme of a modified split Hopkinson bar sketched in Fig. 8 
enabling the generation of overtaking wave scheme (compare Sec. 4.1) for the investi­
gation of the wave reflection at the discontinuity surface can be used. It is not clear, 
however, at least to the author, what should be the necessary signal level for the experi­
mental detection of the effects discussed. For the time being the question of the order 
of magnitude of the expected phenomena in real materials seems to be open for further 
theoretical and experimental investigations. 

Appendix. On the dissipation rate at the interface 

Within the framework of the presented purely mechanic model, the problem of mech­
anical energy dissipation at the discontinuity, which is usually partly obscured by the ther­
modynamic considerations, arises and is more clearly visible. We cannot assume of course 
that any purely elastic process takes place at the interface. In such a case we would have 
in relation (2.10) and, therefore, also in (2.16), an equality sign forbidding any velocity 
discontinuity. This result would contradict both the common sense (real process should 
occur some way) and the results of numerical experiments. 

In all cases quoted in Sec. 4 (except 4.3 where is no dissipation) the dissipation rate 
can be readily calculated despite the fact, that the dissipation mechanisms have been not 
specified earlier. In our considerations we have started with the fundamental principle 
of mechanics-the momentum balance law, and we have obtained the result that certain 
energy should be dissipated if the displacement continuity condition has to be preserved. 
Thus we have tacitly assumed that the real ·dissipative processes would adapt in such a 
way, that the proper dissipation rate would be secured and exactly such amount of en­
ergy, which should be dissipated, would be really dissipated. Without this assumption our 
model contains intrinsic contradiction. 

The situation met can be compared with the problem of rotating coin in an empty 
space. Let at any instant a coin of radius R and mass m rotate with the angular velocity 
w around its diameter having the moment of momentum equal to k1 = mR2w /4 and 
the kinetic energy E 1 = mR2w 2 /8. After some centuries one can expect to find the coin 
rotating around the normal to the plane with the angular velocity equal to w2 = Wt /2 hav­
ing the same moment of momentum k2 = k1 and two times lower energy E 2 = E 1 /2(9

). 

This result is valid of course independently of the details of the dissipation mechanisms, 
what is a direct result of the most fundamental principle of moment of momentum con-

(9 ) For reao;onable values of the angular velocity, the elao;tic strain energy of the rotating coin is by several 
orders of magnitude lower than the kinetic energy and hao; no influence on the qualitative effects. 
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FtG. 8. Idealized scheme of the generation of the overtaking wave sequence. In the system, consisting 
of the split rod and a rigid obstacle, the long compression pulse generated at the left end, 

after a series of reflections generates the extension wave travelling from 
right to left and the compression wave behind it, running in the same direction. 
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servation and the very existence of the dissipation of any kindct0) (a purely mathematical 
fact, that the moment of inertia of a thin uniform disc with respect to the normal axis is 
two times larger than that with respect to the diameter should be taken into considera­
tion). 

These two entirely different cases have the only common but very important feature: 
the overhelming role of the fundamental principles of mechanics enabling sometimes 
to obtain quantitative results with incomplete information on the material dissipative 
properties. 
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eo) The author does not know if the last example is widely known; if not then he wishes to inform, that he 
learnt it from V. V. Krotov [11] as the "pyatak" (five kopecks) case. 
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