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BRIEF NOTES 

Existence of a periodic solution for Kovalevskaya top 

F. M. EL-SABAA (CAIRO) 

THE EQUATIONS of motion of a heavy rigid body about a fixed point in Kovalevskaya's case are 
written in Deprit's canonical variables. The existence of periodic solution of equations of motion is 
demonstrated using the perturbation method due to Poincare. 

1. Introduction 

THE PROBLEM of the motion of a heavy rigid body with a fixed point in Kovalevskaya case 
is one of three cases, where the problem is reduced to quadratures (the other two cases are 
Euler-Poinsot case wherein the fixed point is located at the centre of mass and rotation 
occurs freely without the influence of the torque; the Lagrange-Poisson case when the 
rigid body is a symmetric top with the centre of mass on the axis of symmetry). It is proved 
that, when the ellipsoid of inertia is not symmetric, a new algebraic integral cannot exist 
except in the mentioned three cases. A lot of special cases of the problem of the motion 
of a rigid body has been treated by many authors during the last 75 years. The special 
cases of the problem help us to know more about the general solution of the problem. 

Returning to the case of Kovalevskaya problem of motion, the principal moments of 
inertia satisfy the relation A = B = 2C. The centre of mass of the body is Xc, Yc, 

Zc , where Yc = Zc = 0. The equations of motion was reduced to quadratures [1]. The 
general qualitative portrait of the problem in the Delane case ( k = 0, where k is the 
Kovalevskaya constant) was ascertained in [2]. In case k f. 0, a qualitative and numerical 
investigation of the motion was carried out in [3-6J. 

In 1967, DEPRIT [7] had investigated the motion of rigid body in Euler's case. He 
reduced the Hamiltonian function of the problem to a conservative function with only 
one degree of freedom by using new canonical variables L, G, If, l, g, h. This reduction 
helps a great deal in qualitative analysis in the phase plane. 

Deprit's canonical variables were used in mechanics of a rigid body and in celestial me­
chanics to study the perturbation motion, for computing the higher order approximation, 
and for establishing the existence of periodic solutions. In this article, the Deprit's vari­
ables are used to study the perturbed motion of Kovalevskaya's case. Poincare's method 
[8] of small parameter is used to show the existence of periodic solution. 

2. Statement of the problem 

We consider the motion of a heavy rigid body about a fixed point 0. Let 0 .XY Z be 
a fixed coordinate system with origin 0 fixed in the body, where the axis 0 Z is directed 
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vertically upwards. The moving system is Oxyz which is fixed relative to the body. The 
axes of the moving system are directed along the principal axes of inertia of the body. Let 
0, <p, 1/; be the Eulerian angles defining the position of the moving system Oxyz relative 
to the fixed one. 

The Hamiltonian function of the rigid body can be written in terms of (0, <p, 1/;, P8 , 

Pep, P'f/l), where Po, Pep and P'f/l are canonical momenta conjugated to Eulerian angles. 
Deprit introduced the canonical variables L, G, H, l, g, h; where G is the magnitude of the 
angular momentum of the body rotation; L and II are the projections of the angular mo­
mentum on z-axis and 0 Z -axis of the body, respectively; l, g and h are the canonical an­
gular variables conjugate to L, G and H. The transformation from (0 , <p , 1/;, Po, Pep, P'f/l) 
into ( L, G, H, l, g , h) is canonical. The kinetic energy T and the force function U of the 
problem are given by 

(2.1) 

(2.2) 

c2 _ £2 £2 
T = 

2
AB (Acos2l + B sin

2
l) + 

2
C, 

U = -P(Xc/1 + Yc/2 + Zc/3), 

where A, B, C are the principal moments of inertia, P is the body's weight; Xc, Yc, Zc 
are the coordinates of the centre of mass of the body; 11, 12, 13 are the direction cosines 
of the radius vector in the moving system which can be expressed in terms of canonical 
variables as follows [9]: 

G211 = [HJG2 - L2 sinl + JG2 - H2(Lcosgsinl + Gsingcosl)], 

(2.3) G212 = [HJG2 - L2cosl + JG2 - H2(Lcoslcosg- Gsinlsing)], 

G2/3 = ~~ V(G2- L2)(G2- H2)cosg. 

The Hamiltonian function of the system is 

(2.4) F = T- U. 

We consider the perturbed motion in Kovalevskaya case (A = B = 2C, Yc = Zc = 0), 
and assume that the body is almost axisymmetric and that its fixed point lies near its centre 
of mass. In this case, the Hamiltonian (2.4) can be written in the form which allows for 
the application of the Poincare method of small parameter · 

(2.5) 

(2.6) 

(2.7) 

F = F(, + JLFt, 
G2 _ £2 L2 

F(, = 2AB + 2C' 
A - B 2 2 2 Pxc _ 1 . 

p,Ft = 
2
AB (G - L )cos l + G2 [LvG2 - H2srnlcosg 

+GJG2- H2coslsing + HJG2- fl2sinl], 

where F(, defines the generating solution and p,F1 is the perturbed Hamiltonian. The 
small parameter JL is taken as 

JL =max{ A- B, Xc}· 
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3. Periodic solutions 

The equations of motion are 

dL 8F dG DF dH 8F 

(3.1) 
dt = fif' 
dl 8F 

dt = 8g' 

dg 8F 
dt - 8h' 

dh 8F 
dt =- 8L' dt =- 8G' dt --an· 

When J.-L = 0, the equations have a set of periodic solutions of period r: 

L = Lo, G = Go, H = Ho, 
l = n1 t + {3t, g = nzt + f3z, h = {33, 

(3.2) A-C Go 
n1 = ~Lo, nz = A' 

27rkt 27rkz 
k1n1 = kzn2 , T = -- = --, 

nz nz 
where k1 and k2 are integers (commensurability indicators), L0 , G0 , H0, f3b {32, {33 are 
arbitrary constants of integration. 

In accordance with Poincare's theorem (8], for small value of parameter J-t, the system 
(2.5) admits a periodic solution of period r if the generating solutions F(1 is nondegenerate, 

(3.3) 8(Ff,L0,o0 ) _ A - C L G ..J. O 
D(Lo, Go) - A2C 11 11 r ' 

and if the mean value F 1 of the Hamiltonian F1 over a period T does not depend on the 
angular variables H11 and f3i (i = 1, 2) 

(3.4) 8Ft = 0 8Ft = 0 
8H ' 8{3i . 

Put 

(nt - nz)T + f3t - f3z = A, (nt + nz)T + f3t + f3z = v, 
then the conditions (3.4) for periodicity gives the following relations: 

PxcLoHo [ 1 1 ] (3.5) · {cos v- cos(f3t- f3z)} + {cos A- cos(f3t- f3z)} 
2· lc2 _ H2 n1 + nz n1- nz v 0 () 

PxcHoGo [ 1 1 }] + {cos v- cos({31 - f3z} - {cos A- cos(f3t - f3z) 
2- fez_ nz nt + nz nt- nz v () () 

- Pxc Jc~- LUcos(ntT + f3t)- cos,Bt] = 0, 
nt 

A- B z z 
(3.6) AB (G11 - L0 )[cos2(ntT + ,81)- cos2{3t] 

4 n 1 

+ Px~~o J G~ - H1~ [ 1 
{sin v - sin(/31 + ,Bz)} + 

1 
{sin A - sin(,Bt - f3z)}] 

2 0 n1 + n2 n1 - nz 

+ PGxc Jc~- H1r[ 1 
{sinv- sin(/31 + ,82)} + 

1 
{sin A- sin(,Bt- f3z)}] 

2 0 n1 + nz n1 - nz 
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PxcHo. fc,z L2[ . ( {3 . {3 ] + cz y 0 - 11 sm n 1 T + t) - sm 1 = 0, 
nt o 

(3.6) 
[cont.] 

(3.7) p~~~~ Jet.- H1f [ 
1 

{sin v-sin(/J1 +{32)}-
1 

{sin .-\-sin(f3t-f3z)}l 
2 0 n 1 + n2 n 1 - n2 

+ PG~; J G~ - H1f [ 
1 

{sin I/- sin({31 + f3z)} + 
1 

{sin A- sin(f3t - f3z) }] = 0. 
2 0 n 1 + n2 n 1 - n2 

Under the additional assumption lk11 + lk2 1 ~ 4 concerning the nature of the commen-
surability of the frequencies, the equations (3.5), (3.6) and (3.7) give the following cases 
for k1 and kz: 

lktl = lkzl; lktl = 1, lkzl = 2; lktl = 2, lk2l = 1. 

These results are compatible with the basic idea of Poincare's method which consists 
in making a special choice for the arbitrary constants, such that the conditions (3.4) are 
satisfied for a certain commensurabilities of the unperturbed frequencies. 
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