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STRUCTURAL THEORIES IN POLYMER RHEOLOGY
. Andrzej Ziabicki
I. INTRODUCTION

Ehere are two, basically different{ though compiementg-
ry ways-of attack the main task of rheoldgj - building-up ‘a
-coﬁstituti?e equation. The first approach, phenomenological
(macroscopical) is based on genefal laws of mechanics and
phenomenological thermodynamics, like conservation laws, law
of material objectivitf etc. on 6ne side, and some model as-
sumptions concefning the material (e.g. isotropy, elasticity,
fading memory) on the other side. In one of more general at
‘the present day phenomenological treatments, viz. that by
N’oll1 the stfess tensor at the instant t, p(t), of an isﬁtro-
pic "gimple material"_may be expressed as ; tengor—valued .
funétional of the deformation gradient A taken over the time’

‘interval from - up to t

I i g

p(t) = EH [A(t - 8)] ' _(1)

8=0

So, for a "simple material® ‘defined through eq.(1) the stress
at any instant is determined by the eﬁtirg hiétory of strain.

 For practical purposes more simple than eq.(1) (while



less general) models are used. To build-up a constitutive
equation for a particular material on a phenémenological ba-
sis one should: _i)_ méke some model assumptions about the ma=-
terial involved, ;i) derive the constitutive equation for
-thﬁ corresponding class of materials, and iii) determine the
material functionélappearing in the equations 1ﬁ properly
planned experiments. _ ' ._ :

~ When the_modei assumptions are specific anough'there ap-
pear only few material fuhctiona in ‘the conatitﬁtive equation
and fhese can be. found from simple eiperiments. The more‘ge;
neral is the phenomenological model the more material func-
tions aﬁpear and the more complex is their experimentai mea=-
surement. So, for instance, the constitutive equatior of =a
non-linear viscous fluid (Reiner-Rivlin fluid) involves only
3 material functions, whereas that for a second-order "diffe-
rential® fluid (ﬁivlin-Erickaen fluid) involves 9 functions
ete. It should be emphasized that the model assumptions made
in the deriving of a phenomenologichl theory are in princip-
le quite srbitrary; they require an experimental proof g po=-
steriori consisting of determination of the material functi-
ons. Hhiie aﬁch a proof is easily avaiiéble for very eimple
models, it is practically inaccessible in more general cases.
Therefore the phenomenological approach, yielding many valu-
able informations in general understanding of mechanical’ﬁé-
havior, seems to be not very promising in building-up coga-'

titutive équations for particular materials with more comp-



lex properties.

The other, structural (microscopical) approach consi-
. ders discontinuous structure of matter and expresses its ma-
croscopical properties through averaged microseopical chara-
ctéristics. The characteristics specifical for a given " sys=-
.tem are physical parameters or the structural units involved
(atoma, molecules, molecular clusters) and in principle can
be found from independent sources., Unlike in the phenomeno-
logical treatment (eq.1) the macroscopic stress tehaor at
the moment t, p(t) can_be.expreséed as a fﬁnctiog (rather
than functibnaI) of some configurational variables £ for the
individuel structural elements, averaged over the whole en-

semble according to the statistical distribution function ¥
B(t} = <_12(§1sg'2! ek ;n,t)> (2)

<P>(t) = {dg1.._.£'g ¥(89855 oo gﬁ,t)dgn (3)
1 n .

The time-depehdent distribution function ¥ describes the ac-
tual at t structure of the system. This structure depends on
the actual deformation, deformation rate, etc. acting as bo-
undary conditions as well as on the past history of the sys-
tem, However the stress tensor as written in eq.(2) depends -
explicitly only on the gctual structure no matter how this
_particular structure has been reached; the "history" has on-
ly an indirect, implicit effect on the physical behavior via
structure (distribution function ¥). It is important to note



that the distribution function ¥, having a clear physical
sense, can in principle be found from independent measure-
_menta, if not in a complete form, then in form of some mo-
ments, & |
~ Since all the molecular parameters appearing in a struc-
h.tural theory have clear phyaical sense, the microscopical
constituti?e'equations have an absolute character and do not
involve constants whichlmust‘be found empirically. Also the
. choice of a moleeular mo&el for microscopical considerations
may be examined 2 priori if only molecular structure of the
system involved ia known. _

| The structural approach was used by Kirkwoodz to the
calculation of the stress tensor in monoatomic liquids and
then by Dahler and Scriven3 for'poiyatomic liquids. The mi=-
éroscbpical stress tensor in both these theories consists of
?wu parts: kinetig,resulting from thermal fluctuationé (par-
ticularly imporfant in gases), and interaction, associated
 with the intermolecular potential, U, It was éhown, that 8o
_ caleulatéd stress tensor is not necessarily aymmetric313= it
is symmetrical bnly.when- the interqolecﬁla.r p.ote-ntial U is
central and when 90 is collinear with the intermolecular ve- '
_ctor R.

In the above theories the averaging of the kinetic term
was accomplished according to the density distribution func-
tion j’“’, that in the interaction term, according to the
pair distribﬁtion function f‘z). Both these functions appear



in many problems of the molecular physics and can be studied
independently, using, e.g. optical methods. '

Thére are several factors which distinguish systems con-
taining large structural units from low-molecular ones. _

a) Large macromolecules built of many repeating unita_
have a great number of degfeea of freedom and many possible
conformations differing in molecular dimensions and thermo—
dynamic properties. Thergfore structural effects associated
e.g. with deformation or gpatial orientation of macromolecu-
les are of primary importance affecting non-linear behavior
strongly dependent on the geoﬁetry of deformation. An examp-.
le of such an effect is provided by shear and extensional
viscosities, essentially different in polymer systems
(e£.42?),

Figure 1. presents non=linear flow curves of molten po=

iystyrene4

in two prineipally different geometries.
b) In the systems containing both very large aﬁd small

molecules (solient) the interactions "solvent-solvent"” can
‘ uéually be neglected as compared witﬁ those "polymer-solvent™ -
and "polymer-polymer" and the solvent can be considered a
viscous continuum what considerably simplifies the theoreti-
cal treatment. - _

c) The consequence of large molecular dimensions is al-

80 long relaxation times of structural transformations what

leads to strongly pronounced viscoelasticity, transient ef-

fecta etc, Horeover, for the same reason polymer systems of-
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ten exist in states far from thermodynamic equilibrium, tho-
ugﬁ more or less stable kinetically. Slow structural changes
(affecting also mechanical behavior) may proce¢d in isother-
mal conditions of steady-state flow. Examples of such chan-
ges are commonlj met in polymer soience. We will name e.g.
an 1sothermal increase of zero-shear viscosity of PVA sbiu-
tions due to mqleculaf aggrégation6 (fig.2) and isothermal
increase of shear mﬁdulus of concentrated PAN aéiutions re-
sulting from network formgtion (gelation)7 (!13.3.). Such
a.non;equilibrium behavior, common iﬁ polymer systems can
hardly be treafed in terms of pﬁrely.phenbmenological theory.
On tﬁa other hand it will be shown that the structural aprro-
ach offers relativeiy simple ﬁossibility of describing iso-'J
thermal, non-equilibrium, as well'aalnbn-isothermal situati-
ons. _

Iﬂ the next section (II) of this pﬁper wé will discuss
general requirements and the construction of & polymer rheo-
logical theory on a structural basis, Sectidn_III'will inclu-~
" de.a brief review of the results and poseibilities of the

existing theories for various polymer syafema.

*II, CONSTRUCTION OF A STRUCTURAL RHEOLOGICAL THEORY FOR PO~
LYMER SYSTEMS

General requirements

We will discuss here several conditions which, 'in our
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belief, should be satisfied by any purely structural rheolo-
gicai theory. At the same time these conditions define  the

range of theories which will be reviewed in this paper.
i. The mélecuiar model making basis of the theory,

_should be physically realistic and founded on the physical .
knowledge about the real system involved. No assumptions or
parameters lacking clear physical sense are admissible.

11, The molecular model chosen for the description of
a real system should be consistent in all aspects of its phy-
sical behavior with experimental facts commonly obéervéd in
such systems. " | .

iii., The theory should consider the entire macroscopi-
'.cgl.sxstem-with proper boundary conditions rather than an

. iaolated structural element.

| iv. The theory should be so formulated that it be. ca-
pable of discussing three-dimensional deformations in any
geometry and non-steady-state processes. -

The above conditioﬁa:may seem to_be quite trivial- and
in facf they are 80, It is therefore aurﬁrising how few theo—

- ments.,

The first condition confines the range of theories
which have a "purely structural" character. It is obvious
that only the models which conform to i) can be discussed in
purely molecular terms and their applicability verified on

the basis of the structural data. There are numeroﬁs rheolo-



‘gical theories which are either based on combined molecular=-

89,66y, or,basing on

. ‘and phenomenological assumptions (e.g.
a purely phenomenological ground,ascribe a_posteriori some
molecular significance to. phenomenological constants
-(e.g. ). We will not discuss such theories in this paper.
‘The second condition is specifical for purely structu-
ral’ theories and does not. apply to phenomenological treat=-
“ments, Its significance can be explained on the example of
cbnﬁénfrated polymer solutions. It is well Xnown that the
‘rheological behavior of such systems atrdngly depends on the
molecular weight of the dissolved poiymer. So, e.g. the iero-
shear viscosity is often found to be p;oportionai to M3'4[-
' One of fhe ﬁolecular models proposed for such systems is e
"temporary enérgetical network" with dissociating and refor-
‘ming junctions11’12
this model is in principle incapaﬁle of predicting any mole-

« It can be shown quite éenera11y13 that

cular weight effects, and, according to condition ii) we
_iill consider this model generally improper for polymer so=-
Iutiqnsg.even if if predicts correctly some other phenomena
observed in solutions like streaming bifefringence or non=-
; linear rlow11 12
The third condition is important for concentrated sys-
tems with intermolecular interactions. In the case.oflinfini-
tely diluted suspensions'or'solutions,solvent is usually con-

sidered a Newtonian continuum which transmits affinely the

macroscopic boundary conditions to individual structural ele-
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ments. In consequence, non-interacting structural units . in
dilute systems can be treated as isolated and a single ele-
ment can be analyzed. The situation is quite different in mo-
re concentrated systems with interactions however. The boun=-
dary conditions are défined only for the macroscopic volume
and the kinematic and dynamie behavior of the_individﬁal _
structural élementa'fesulta‘from the interactions in the en-
tire aystem.‘There are theories which, assuming strongly in-
teracting (entangled) maqramolecuiar systems, ignore the sy-
_stem as such and consider only aingle macromolecules. - So, -
€sZe Bueche 4 and Middleman'® transmit to such systems the
concepts developed for dilute polymer aolutiéna Ehanging on-
ly the "effective" friction factor. More recent analysis of
entangled systema13'ahows that such systems should in prin-
ciple be treated as a whole and the resulting distribution

of deformation and velocities among the individual structu-
ral elements is of first order importance.

The last condition.arises from the importance of non-%i-
near and non-equilibrium effects in ﬁolymer systems., Nearly
all the early structural theories in polymer rheology were
confined to one-dimensional problems of shear flow. Now it
seems necessary to require that the modern gtructural theory -
-ﬁe more general. Somé of the early one-dimensional theofies
can easily be generalized (e.g.16'17) but others do not of-
fer such a possibility. Por this reason we will not discuss

in the present review the, otherwise interesting, viscosity
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theories of Eyring and hiélfollowers which hardly can-

be generalized as required in condition iv).

'Pﬁndamentgl equations of the siructural  theory

- Now we will discuss a general scheme of a structural-po—
lymer theoiy; As noted above in such a theory the kinetic
contribut;oﬁ %o the stress tensor can be neglected and there
will be cbnsidered only interactions of the type'"polymer-po-
lymer" and "polymer-solvent". | _

Consider the system which ﬁt the instant ¢ coﬁaista of
¥ structural elements (macromolecules, sub-chains, aggrega-
_teé, etc,) with average number concentration v(t). Assume
_ that any k-th element can be characterized by some vector Rk
(e.g. eﬁdeto-end vector of a flexible macromolecule, symme:-
ry axis of an ellipsoid, etc.) and the forces acting on the '
elenent from the side of other elements and 6f the solvent
can be represented by the tension fi between the peripheral
-points of the vector Rk It is easy to show that in the vi-
cinity of the k-th element appears then the "local" stress

By involving the dyadic (R f,) (eq.4)
O n®) =) () | (&)

The macroscopical stress in the system may be éxpressed . as

an average over the entire ensemble of structural elements

(Qg-S)n
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N
B8 = (W) T (BL) = v(6) <2 0> (5)

The firét step in building-up a structural theory is to
_define the tension fk through correspoﬁdingIconfigurational |
- variables é. In gen;fal, when there is N siructural elements
each having n degrees of freedom we wili have the dynamic -

equation in the form of eq.(6)
1 .1 - 2 N '
fk=£(§1rgzrcﬂsg1!“n§n.t) N (6)

The form of tne dynamic equﬁfion (6) depends on the molecu-
lar model involved (character oflétructural units, interac-
‘tions ete.).

The second step involves determination of the concentra-
tion of structural units, v, in given conditions.- In some
systems v is constant and predetermined (dilute suspensions
and solutions), in others (entangled systems, teﬁporary net-
works, etc.) the concentraﬁion v can strongly depend on the
external conditions and t;me. Generally speaking, the func-
tion v(t) is determined bf the kinetics of dissociation and
reformation processes., ' _

~ The third step is associated with e averaging of the
dyadic in the eq.(5) with the aid of the distribution func-

tion YN

<(R £)> (t) = I1d§:...IH(R £) Tl iyt a8 | A7)
- g o
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In the general case, ol is the distribution density function
in an (Nn)-dimensional configurational space, but for parti-
cﬁlar cases the problem can often be reduced to more simple
' distributions. The function AT to be found from the equa-
tion of continuity: e |

" where __1‘ = (a/ag}, ver 0/080)
and 5 = (!1, vos ! "
denote, respectively, the divergence operator and the velo-
city vector in the (ﬂh)—dimeﬁsional space, and iﬂ;n - the k:—_
netical term i.e. the net rate of formation and dissociation
of various structural elements. Iike the total concentration
of elements, v, the kinetic term iﬂ;n should be found from
- proper kinetical equations.
B To solve eq.(8) it is also necessary to define the set
of kinematical equations for the components of the veloecity
vector i, vhich involve the macroscopic boundary conditions.
Sb, any structural theory compfiseé a sét of simultane=-
ous differentiﬁl (or_integro-differential) equations: dyna=--
mic equation (eq.6), equation of continuity (eq.8), kinetic
equations (defining the v and Yﬂin terms) and kinematic equa-
tions for the velocity vector 5 The stress tensor E(t) re-

sults in the form given by eq.(5).
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Non-steady-state, . non-homogeneous

and non-isothermal conditions

When the macroscopic flow is steady-state and the wvelo-
city gradient q = gl'is homogeneous, the distribution func-
tion may be assumed constant and eq.(8) reduces to the form:

dta RS (9

At the same time the concentration of structural elements, v
and the velocity gradient are constants: |
v(t) = const.

(9a)
q = const.

If the flow is non-steady-state or/and non-homogeneous, the
distributioh function must be considered time-depéndent and
' full continuity ‘equation should be solved. In the case of
non-homogeneous velocity field it seems to be reasonable to
follow some macroscopical-volume element along its (macro-
scopical) trajectory. Then the total time-dependence . of the
vélocity gradient (appearing as a boundary condition in the
kinematic equations) may be written in the form:
Eg = E% + V.vq ' (10)
dt 9t ~ ~—
Such an approach has been successfully applied by Prﬁger
in his theory of dilute suspensions.



a)sphere,

Fig.4.

. Molecular models of rigid particles.
b) rigid dumbbell, ¢) cylinder, d) ellipsoid oflrevolutioﬂ
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If flow is accompanied by any vaiiationa of the variab-
les of state (teﬁperature. composition, ambient pressure,
ete.) also those effects can be'takeﬁ into account through

properly defined time-dependencies of the molecular paramé—
tefs involved in the thepry. If some molecular parameter, a
(molecular friction coefficient, ihterhai viscosity, etc.); '
depends on several variabies d: state, Xy then it can be

writtgn:

da dxi

z (1)
axi at

At the same time the former equations (4 - 8) do not lose
their validity, no matter how complex are extérnal'conditi-
_ oné. o '
The structural approach offers therefofe the possibili-
ty of treating rather &omplex.aituations (not rare in poly~-

mer systems) which hardly can be solved in other way.

III. RESULTS OF STRUCTURAL THEORIES FOR INDIVIZUAL POLYMER
" SYSTEMS

Dilute_suspensions

"The molecular model of a dilute suspension consists of
" rigid, non~-interacting particles suspended'in a Newtonian
solvent where velocity field is homogeneous. The most often

-analyzed particle shapes comprise sphere, dumbbell, cylindri-
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cal rod and ellipsoid (fig.4.). In non-interacting systems
the distribution function ¥ can be defined for a single par-
ticle and the degrees of freedom reduce to the spatial orien-
tation of the particle axes.

22 considering spherical

An early analysis by Einstein
farticles yielded Newtonian behavior, observed in fact in
very dilute spherical suspensions, Extension of the analysis
onto anisodiametrical forms led to non-linear viscosity and
normal stress effects in shear flow, a different non-linear
behavior in extensional fiow and stress relaxation effects,
In all cases the microscopical stress tensor was symmetrical
as defined through the dyadic (gg) formed by the characteri-
“8tical pgrticle vector R. _

The atruqtural analysis of rigid dumbbells in simple
shear flow was made by Kuhn and Knhn23, Kirkwood and Plock24
and Kotakaes. Mofe recently a general theory of.rigid_dumh-

17 217,

bells was formulated by Gieseku325 and Prager’''. Jeffery

solved the hydrodynamical part of the structural theory of
ellipsoids which made basis of further studies by Paterlinza,
Giesekus®? (shear flow) and Tekserman-Krozer and Ziabicki30.
(exfensional flow); An orientation distribution function for
rotational ellipsoids in a general velocity field was recent-
ly éa;culated by Pokrovskii’l,

In a steady-state shear flow as characterized by the ve-

locity vector:

Y= (q_‘h 0, 0) (12)
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the excess stress tensor for dilute suspension of rigid

dumbbells results in the form1T
1 1
-(q/D)+ see ‘1 - _(Q/D)z‘{' eee 0
5 . 60

: 1 ; _
p-p°=Kee|1- EE(q/D)2+ aw 0 0 | (13)

0 - 0 0

~ where q = perpendicular velocity gradient, D - diffusion con-
stant, ¢ = volume concentration, K = constant.

As evident in eq.(13) there appears only one non-zero
. normal stress component in shear flow (Weissenberg effect).
A differeﬁt result obtained for the same molecular model by
Gieaekus26 I
author admits himselfzg. In a steady extensional flow with

was evidently due to some numerical error as the

the velocity vector:

¥ = (a*x; - ¥q%y, - 2q*z) (14)
the stress tensor predicted by Prager17-reads=
0
p-p =Kg¥c X
1 1 2
1 + ""(q*/D) - _(q*/DJ +ese 0 0
5 70 :
1 1 1 2
X 0 - - _(q*/D) + """""(Q*/D) +o0e 0 (15)
2 20 280
1



Fig.5.

Molecular models of flexible macromolecules.

a) elastic dumbbell, b) semi-penetrable sphere; ¢) system of

_sﬁb-ehaina

-0z -
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“where g¥ is the parallel velocity gradient.

Two different normal stress components in shear flow
appear in the structural theory when various parts of the
particle are allowed to exhibit hydrodynamic interactions
through viscous medium. This is clearly evident in the theo-
ry of Kotaka®> who analyzed the "necklace" model, as well as
in the theories of ellipsoids by Giesekus®’ and Pokrovskii-',
_ Supposedly the same effect would be obtained if non-linear -
particle-solvent interactions were considered. At the pre-
sent moment it seems that the exisiing atrucfurai theories
of dilute suspensions rather well describe their rheological
behavior. It should be noted that the structural theory, com-
. bined with rheologicalland'Optical measurements is also wi-
dely used for characterization of the suspended particles
(cf. e.g.32).

Dilute_solutions of flexible, chain-macromolecules

 ILike in the preceding case the structural theories con-
sider independent macromolecules in a Newtonian solvent. The
molecular models of a chain-macromolecule comprise elastic
dumbbe1133. elastic, deformable aphere34 and a system of ela-
stic dumbbells, socalled "sub-chain" model>? (fige5+)«  The
tension : appearing in the dynamic equation comprises elas=-
tie=-, diffuaional, solvent friction- and -internal viscosity
terms, |

The early structural analysis of shear viscosity was
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due to Kuhn and Kuhn33, Herman836 and Kramers>! who analyzed
ideally elastic dumbbells and to Rouse C, Zimm - and Kirk-

wood and Riseman4

0 using more sophisticated sub-chain model,
Cerf41 introduced to the sub-chain model the internal visco-
- 8ity of macromolecular chains, a concept used by Kuhn and
Knhn42 in the analysis of elastic dumbbells. Structural ana-
lyéis of elastic dumbbells in steady extensional flow was
" made by Rivlin®’ and, independently, by Takserman-Krozert4
who considered more exact sub-chain system., More recently
this analysis waé'extended onto non-Gaussian chains by Peter-
lin45. Behavior“of elastic dumhbella-in a general velocity
field was studied by Giesekus46 and by Taksermah-Krozer16.
Also in the theories of elastic macromolecules the ex=-
cess atréss tensor is always symmetrical., In the absence of-
internal viscosity and with assumed linear elasticity of the

macromolecular chain (sub-chain) the stress tensor for stea-
16

dy shear flow as calculated by Takserman-Krozer '~ reads:
2q Tkt Ikt 0
i i .
p - p° = kTqv Tkt 0 0 (16)
b b ) i .

0 o - 0

and that for extensional f10w16=
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k.t
2 T —id 0 0
i1- 2q*'ri
_ o - .
p - 2% = kTq*v 0 -p il 0 (17)
K " g 11 +q*7y
k.1
0 0 D S .
i1+ q*ti

where v = number of:macromoleculea in unite volume, k -
Boltzmann constant, T - absolute.temperature, Ty - :elaxati-
on time in i-th mode of deformation, k, - i-th eigenvalue of
the problem. . '

As evident from eq.(16) the theory-predicta one non-ze-
"ro normal stress component and constant viscbaity‘dbeffici—
ent in shear flow; the elongational viscosity (eqe.17) incre-
ases wifh parallel velocity grﬁdient, q* and tends to infi-
‘nity at q*ry = 3., The latter result is a consequence of as-’
sumed linear elastic%ty (Gaussian chain statisties) which na-
turally fails at higher deformations. Application of more

45 removed this singulari-

exact non-linear model by Peterlin
ty. The theory of ideally flexible chains predicts also
stress relaxation effects and the existence of relaxation
"time spectra (many relaxation times T, for the indivi&ual mo-
des of deformation). |

~ The constant shear viscosity as predicted by all the
above theories contradicts the experimental facts commonly

observed in dilute polymer solutions, Shear-dependent &;sco—



gity was obtained first in more complex'theoriee involving

limited flexibility of macromolecular chaine (internal vis-
cosity)41'42, anisotropical diffusion of solvent within the
macromolecular coil?’~4? or non-Gaussian chain atatietica50
Bueche’ | obtained non-linear viscosity in steady shear flow
snalyzing ideally flexible, Gaussian chains, i.e. the model
. for which all other theories yielded constant viscosity va-

1ues 161 38-40

+ He neglected however the diffuaiqnal term. in
the dynamic_equation and made some arbitrary assumptions con-
cerning the periodieity of forces acting on the macromolecu=-
le, assumptions which do not follow from boundary conditions.
Consideration of the internal viscosity in the behavior
of dilute spiutionﬁ in a aneral velocity field led Takser~

16 to'somewhat'striking conclusion that the streas.

man-Krogzer
tensor can be asymmetrical, the antisymmetrical components .
vanishing for ideally flexible chains. It ean be shown that
thie result is incorrect and follows from the kinematical
aasumptiuma made by Cert?! in the introducing of the inter-
nal viscosity. Quite generally the internal viscosity term
cannot produce any asymmetrical stress effécts. In view of
this fact it seems that also other conclusions foliawing
from the Cerf method (e.g. non=linear shear viacosity) sho=-
uld be reexamined.

The theory of dilute polymer solutions explaining satis-

factorily zero=-shear viscosity and relaxation spectra, requi-

res further studies on other aspects of rheological behavior;
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first of all on non-linear flow.

- Moderately concentrated suspensions and solutions

There is no adequate structural_theo.ry of moderately
congentrated systems with interacting elements. In finitely
concentrated suspensions and solutions tﬁe stress is no more
a linear function of concentration as predicted for dilute
systems. The effect of molecular weight is also more complex
and non-linear and elastic effects are gtrongly pronounced
even in suspensions of spherical particles, %

There have been published several attempts to explain
the behavior of concentrated suspensions in shear rlow52'56;
they predict non-linear concentration deﬁendence'and non=-
Rewtonian shear viscosity. So, e.g. hydrodynamic interacti-
ons between spherical particles as considered by Krieger and
Doughertysz, and Gillespie53, lead to non-Newtonian viscosi-
ty resulting from formation of asymmetrical doublets or tri-
plets (éee £48s64)s .

_ The concentration effects were analyzed, among others
by Robinaon54, Brinkman’’ and Hboney56 who derived non-line-
ar theories of suspensions., A complete theory of such ayaQ
tems however is still not available.

Similar situation méy be observed in the theory of po-
lymer solutions with such concentrations that the intermole-

cular contacts are probable but do not guarantee formation

of continuous network system, From the molecular point of
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Fig.s. )
Hydrodynamic ihﬁeraction between two spheres suspended
in a viscous medium, '

a) rotation without interactions, b) interacting pair

?ig.7l

Model of a moderately concentirated solution

contzining partially entangled macromolecular coils
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view one may expect long, flexible chains in such systems to
entangle and disentangle one with another forming temporary
"entangled clusters" (£ig.7.).

Also in the case of solutions of chains polymers the
existing theories were confined to one-dimensional problems
of shear viscosity. Several authors 1421505760 o004 their
considerations of "entangled systems" on the models apparen-
tly more or less resembling our figure 7. although some of
them speak about "infinite entangled networks" 4257, since
ail these theories are based with some modifications on the
approach used in viscosity calculations for dilute solutions

. the applicability of their results to very concentrated sys-
~ tems is rather dubious, ‘

~The theory of Graessley57

predicts shear-dependent vis-
cosity as based on variable equilibrium of the entangling-
-disentangling processes, explains some "elasticity" and non-
linear effect of molecular weight. The other theories by
Bueche14’60, Middleman15, Herker58 and Hhkagakisg are confi-
ned to the prediction of the effects of molecular weight-
and molecular weight distribution on gzero-shear viscosity.
All_theae theories involve some arbitrary assumptions (e.g.
"slaloming" of macromolecules through entanglement contactaET
or rigid rotationsﬁoj and do not satisiy wousi of our coudi=-
tions. A consequent structural theory of partially entangled
systems, badly needed in polymer rheology, is not available

at the present moment,



Fig.8.
" A tetrafunctional network
composed of flexible chains

F:I.g. 9.

Three types of network junctiuna

a) an energetic junction, b) a topological
¢) a contact junction

(entanglement) junction,
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Amorphous bulk polymers, melts and very concentrated -

solutions

If volume fraciion of polymer exceeds some critical va=
_ lue the probability of intermolecular contacts becomes so
high that the entire system can be considered a continuous,
"instantaneous" network. Such a coﬁtinuoua, often fluctua-
ting, network seems to méke the most app;opriate and piomi-
sing structural model for céndensed polymer systems {fig.S).
The structural élément involved in this model is now a "net-
work chain" i,e, a portion of the macromolecule cogtaiﬁed
. between two adjacent junctions.

According to the nature of interactions between macro-
molecules in the system and to the chafacter of network junc-
tions, 3 classes of macromolecular networks can be.distingui-~

shedt,

Energetical networks (fig.%a) are formed by chemical or
quasi-chemical (van der Waals) cross=-links, An energetical
 junction is localized in a definite part of the macromolecu-
' le and does not slide; it can dissociate when enough energy
is supplied, and eventually reform in another place.'Hgnce -
the "temporary" character of the strucstural units (network
.chaina) aﬁd variable conbentration V. aa anyuptotic case

(infinite dissociation energy, no junction breaking) consti-

tutes socalled permanent network - the model widely used in

the theory of vulcanized rubbers.
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The second class of networks results of topological in-
teractions of long, flexible chains capable of forming loops
and entanglements (fig.gb). Junctions in the-gggégg;ggggg
gggggggg are no more 1ocalized but can slide along the cha-
ins, the sliding being associated with some friction and dis-
sipation of energy. The existence of free chain ends leads
to some probability of sliding-in and sliding-out of the en-
tanglements thus making source of variation of the concentra-
tion v,

Contact networks (fig.9c) form the third class. They

result from mere contacts of'impenetrable structural ele-
ments with frictional interactions. The formation and break-
age of such junctions is controlled by thermal motions which
déterminq‘their average lifetimes., Also these junctions are
not localized and chain-chain friction contributes to the
mechaniecal behavior,

The concept of a permanent, ideally flexible macr&mole;

62,63 to ex-

cular network was introduced in early thirties
plain the elasticity of vulcanized rubber. With the aésump-
tion of constant chain eoncentrafian v, (typical for perma-
nent networks), and linear behavior of an individual network
éhain, the theory fields the constitutive equation of a Hoo-.
kean solid, what agrees with mechanical behavior of chemical-
ly cross-linked systems at not too high deformations. Appli-
cation of non-linear elasticity of network chains leads to

the equation of non-linear elastic solid64'65.
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The recent analyaié of the theory of networks 1> shows
that in permanent networks also two other effects should be
taken into account. First effect is internal viscosit& of
néqurk chains as introduced in dilute solutions??, Some at-

tempts to apply this concept were made by Halpin66

and Pok-
povskiig, they were not lacking some arbifrarineas.however.
The other effect, not recognized in the Qarlier theories, is
.aasociated with intermolecular friction of the portions = of
macromolecules between network junctions. It may be shown13
67 that the aasumption of an affine displacement of the net-
 work Junctions, made as a rule in_all theories, is not gene-
raliy true, and local deviations from this affinity ecan con-
. tribute to the stress tensor and dissipation of energy. The“
theory of permenent networks completed with the abdve two ef-
‘fects is capable of predicting'retarded elasticity but exclu-
des relaxation and flow.

To account for the latter effects, Green and Tobolsky68
introduced the concept of a "temporary" network (in our no-
menclature: energetical network with finite dissociation |
energy). The theory of this model was further developed by
‘Scott and Steinsg. FurukawaTo, Lodge11 and Yamamoto12

- The most complete and general among egisting theories
of temporary energetical networks, viz.that by Yamamoto |-
predicts non-linear elasticity, stress relaxation and non-li-
near steady-state flow in various flow geometries, The non-

linear viscosity is controlled by variable probability of
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~Junction breakage, B, and, to less extent, yy non=-Gaussian
statistics of the individual network chains. When the chains
are Gaussian and the probability B is constant (whaﬁ corres=-
ponds to the eariier theories of Greén and Tobolsk&sa and

Lodge'!) the theory predicts for steady shear flow‘2
2 qta T 0
P~ p° = klqv | 't 0 0 (18)
0 0 0
and for steady extehsiona; flow
. 0- *
p=-p =kTg"v Xx :
2101 + q*t + 3(q*1)? +o04] 0 -0
% 0o et +.] O 1 (19)
0 0 alat+)

where T = 1/B - relaxation time.

Eqs.(18-19)laré almost identical with the results for
dilute polymer solutions modelled by elastic dumbbells- ‘(ef.
Cegs. 16=17 with i = 1 &nd k, = 1), The matrix in eq.(18) 1s
identical with that in eq.(16) and predicts the same behavi-
or in steady shear rlowa constant shear viscosity. and only .
_ one non-zero normal siress component. Components of the mna-
trix in eq.(1§) slightly differ from series expansion of the
‘correspondiﬁg closed expressiomns in eq.(17). Probablf ihis
discrepancy is due to some numerical error, since also asym—

ptotical behavior of the both :hnnzies for extensional rlow
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(gingularity at g%t = ) is identical.

d 'Ehe formal édnS1steney of the theory of energetical net-
" works with that of dilute golutions containing flexible cha-
ins 13 not aurprising* In tuct, both these theories consider
 the same molecular uodel - Gauasian chain, and differ only in
I'iho signitieance ot the cOncentration parameter v (concentra-
tion ot_ggggggg;ggglgg in dilute solutions and concentration
~of ﬁétwn?k.ggg;gg.in-the_other cangj.'Introducad by Yamamoto
__more gensrﬁl.aaauﬁptibnse'variahle-breakaég'probability, p}
"and/or monelinear elastioity of the network chains led o
'n&hﬁlhwtohianldhear viscosity and to the appearance of two _
different-nnrﬁalgstféau cbmponents‘a.'so, in temporary ener-
-gétioallneiworks appéara'én additional source of non-linear
behavior: kinetics ot breaking proceaa which did not exiat

- in dilute solutions,

' The model of temporary energetical networks,: poasibly
eompletad vith internal viscosity and intermolecular fric-

~ tion terms (c£.7%) can explain retarded elasticity as well

- a8 atreu'_'relaxdtion._ It should be emphasized here that in
énergetical‘netuorks with localized junctions (both pérna;
nent and temporary) the network chain constiintes an indepen-

dent structural unit and characteriatics of the primagx__ga-

cromolecule do not appear in the theory (to speak nothing

about the minor effeet of free ends), Therefore this theory
'cannot predict any effeeta of molecular weight and as such
'1t 13 inapplicable for polymer melts and concentrated solu- '
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‘tions. Apparently applicability of this theory is confined
to amorphous rubbers with breaking qhains, polar gels and
similar ayateﬁa where effects of molecular weight dovnnt
play any important role,- | .

Structural theory of‘ﬁntanglement networks at the pre-
sent moment does not exist. Some attempta of discussing such
systems were made by several authors. The consiﬁerationa of
Bueche 4760 Midaleman'® and Graessley’! as noted above, are
more appropriate'for moderately concentrated syste&a than to
~ infinite networks. At the same time the works of Hayashi!!
and Hoffmann'? dealing directly with entanglement Hatwosion’
involve some Berious_incorrectneBSer Both the authors nég-
lect chain sliding in the entanglement junctions and contact
points - perhaps the most important mechanism of energy dié-
sipation., Hayashi, applying the sub=chain formalism of thé
theory of dilute solufions made also several grbitrary as-
sumptions (e.g. the molecular'weight-dependent,friction fac-
.toi) and mathematical errors (diagonalization of several aif
ferent matrices with the same linearltransformation, Q).;
Hoffmann, &iscuaaing a one-dimensional deformation, neglects
in the kinetical eopsiderations formation of neﬁ network cha
ins due to sliding=-in into the entanglement, what excludes
the poasibility of a real steady-state flow with a constant
concentration of network chains, v. .

Still less has been made in the theory of contact net-
works. Apparently the molecular models assumed in ‘the papers



of Takemura?3 and Chdmpff and Duiaer74 correspond to what we
define as "contact networks", but the authors themselves use
the term "entanglement networks". Both the papers mentioned
were confined to the analyaiq of stress relaxation and no
dynanic analysis was ever made.

The general considerations of Taksefman-Krozer and the
author'>. give some outlines of the theory of entanglement-
and contact networks. It was shown that both these models
are capable of predicting non-linear viscoelasticity, steady-
state flow, stress relaxation, retarded elasticity as well
as non—lineér_effecta of molecular weight of primary macro-
molecules, It seems that developmen:t of these models should
explain many features of the rheological behavior of concen=.

Arated polymer solutions and melts,
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