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STRUCTURAL ~HEORIES IN FOLYMER RHEOLOGY 

·Andrzej ~iabicki· · 

I. INTRODUCTION 

· There · are two, basically different, though comple·menta­

ry ways of attack the main task of rheology- building-up ·a 

·consti tutive equation. The firet ap:proach," ,Ehenomenoloe;ical 

(macróscopical) is b~sed on general laws 6-t mechanice and 

phenomenoiogical thermodynamics, like conservatio'n lawa, law 

of material objectivity etc. on one side, and. some model as~ 

sumptions concernin~ the m~terial (e.g. isotropy, elastici~y, 

fading memory} on the other side. In one of niore · g~neral at . 

the present day phenomenological t re a tmen.ts, viz. tha·t by 

N0 111 the stress tensor at the instant t, p(t), of an isotro-.-
pic "simple material" may be expresse.d as a tensor-valued 

functional of the deformation gradient}: taken over the time · 

interval from -m up to t 

00 
p(t} · = ~- (!(t - s)J (1) 

s=o 

So, for a "simple material n · 'defined th:ough eq. ( 1) the stress 

at any instant i,s determined _by the entir~ history o:f.strain • 

. For practical purposes more simple than eq.(1) (while 
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1eae general) · mode~s are used. To build-up a oonsti.tutive 

equation -for a partioular material on a phenomenological .ba­

sis one should: .1) mak e some .model assumptions about the . ma~ 

terią.l involved, ~i) derive the ·oonatitutive equation for 

the ~orresponding ciass ot ma~erials, and ifi) determine the 

~terial functions a~pearing in the .equations in properly 

planned experintents • . 

· When the _model assumptions are speoifio enough there ap-· 

pear only tew mat·erial furiotions in ·the constitutive equatio:Q 

and these can be . .t'ound from simple experiments. The more .ge­

neral. is .. the phenomenologioal model the ·mo re ma te rial .t'unc­

tions appear and the more complex is their .experimental mea~ · 

surement. So, tor instance,. the consti tutive equation o! a 

non-linear-visoous fluid (Reiner-Rivlin fluid) involves only 

3 aterial tunotions, _whereas that. for a second-order "di~!e­

rential• fluid (Rivlin-Ericksen fluid) involves 9 tunctions 

_etc. It should be emphasized that the model _assumptions made . 
in the deriving ·ot a phenomenologioal theory are in princip- . 

le quite arbitrary; they require an experimental proof' !...Jł2.:. 

steriori· consisting ot determinationof_ the materfal functi­

ons. While such a proo.t' is e.asily available for very simple 

110dels-, 1 t is practically inacoessible in more general cases. 

!here.tore the phenomenological approach, yielding many ·valu-
. . 

•ble informa-t;!~ns in general understanding of' mechanical· be· 

haTior, seems to be not ver,y promising in building-up· cons­

titutive equations for particular materiale with more comp-
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lex propertiea. 

The other, structural (microscopical) approach eonai­

dera discontinuoua structure of matter and expresses its ma­

croscopical properties through averaged microseopical chara­

cteristics. The characteristics specifical for a given - sys-

. tem are physical parametera of the structural unita involYed 

(atoms, molecules, molecular clusters) and in principle can 

be found from independent sources. Unlike in the phenomeno-

logical treatment (eq.1) the macroscopic stress tensor at 

the moment t, p(t) can_be. expressed as a function (rather 

than functi.onal) o f some configurational variabies ~ for the 

individual structural elements, averaged over the whole en­

semble according to the statistical distribution :f'unction Y 

~(t) = <l(~,.~2' ••• . ~n' t)> 

<,!>(t)= Jd~1···{ · ! 1'(~1.~2' . 
~1 n 

(2) 

••• (3) 

The tilJle-dependent· distribution function 'f describes the ac­

tual at t structure of ·the system. This structure depends on 

the actual deformation, deformation rate, etc. acting as bo­

undary conditions as well as on the past history of the sys­

tem. However the stress tensor as written in eq.(2) depends 

explicitly only ort the actual structure no matter how this 

particular structure has been reached; the "history" has on­

ly an indirect, implicit effect on the physical behavior via 

structure (distribution function 'l). It is important to note 
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th&t .the distribution·funotion t, having a elear physioal 

sense, oan in prinoiple be found from independent measure­

inents, if not in a oompiete form, then in form of some mo-

. ·ments. 

Sinoe all the molecular.parameters appearing in a et~~­

. . .tilr$1 . theory have elear physioal sens e, the · inicrosoopioal 

. constitutive . equations have an absolute character and do not 

illvolve constants whioh must.be found empirically. Also the 

·choice of a moleoular model for microscopical considerations 
. \ . . . . 

.· llaY be exauiined a priori i.f ·only moleoular structure of the 

system involved is .known. 

The structural approaoh was used byKirkwood2 to the 

calculatfon of .the · stress tensor in monoatomie liquids and. 

thenby Da.hler and Scriven3 tor .poiyatomic liqui4,s. The_ mi~. 

croscopical stress tensor in both these theories consists of 
' . . . . 

- ~o parta: kinetią.resulting !rom thermal fluotuations (par-

ticularly important in gases), and l.nteraotiori, assooiated 

with the intermoleoular potential, u-. It was shown, that so 

ca1culat~d stress tensor is not necessarily symmetri~al;: it 

is symmetrical only when· the inte~oleoular potential U is 

central and when !U .ie collinęar with the intermolecular ve~ .. 

. ctor· !• 
In the above theories the averaging of the kineti~ term 

was accQmplished according to the density distribution func­

. t~on·!(1), tha:t in the interaction term, .accordJng .to the 

pair distrib~tion :tunction 1(2). Both these functions appear. 
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in many problema of the molecular physioa and oan be studied 

independently, using, e.g. optical methods. 

There are several faotors which distinguięh systems. eon~ 

taining large structural unita from low-molecular ones. 

a) Large macromolecules built of many repeating unita 

have a great number of degrees of freedom and many possibl~ 

cońformations differing in molecular ~imensions ~d thermo-­

dynamic · properties. Therefore structural e.ffeots associated 

. e.g. with deformation or spatial orientation ot maoromolecu­

les are_of primary importance affecting non-linear behavio~ 

strongly dependent on the geometry of deformation. An examp­

le of such an effect is provided by shear and extens-ional 

viscosities, essentiaily different in polymer systemś 

(cr.4,5.). 

Figure 1. presents non-linear flow curves of moiten po• 

lystyrene4 in two principally different geometries. 

b)· In the _systems containing both very large and sDiall 

moleculas (solvent) the .interactions "solvent•solvent" can 

usually be neglected as compared with those "polymer-solvent" -

and "polymer-polymer" and the solvent·can be eonaidered a 

viscoua continuum what considerably simplifies .the the_oreti­

oal trea tme·nt. · 

c) The consequence of l~rge molecular dimensions is al­

so long relaxation times of structural .transformations what · 

· leads to strongly pronounced viscoelastioity, transient e~­

feots etc. M0reover, for the same reason polymer systems of-
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. lion-linear flow behavior of ·mol ten polystyrerie 

in extensional and shear flow. After Ballman4. 
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ten exist in states far frotn thermodynamic equilibrium, tho­

ugh more or less stable kine·tically. Slow struot\\ral changes 

( affecting al s o mechanical behavior) may proceo<l in 1sother- . 

mal conditions of .steady-sta.te · !'low. Exarnplee ot e~ch chan-

. ges are commonly met in polymer soienoe. We will name e.g. 

· an isothermal increase of zero-shea.r viscosity .ot PVA solu­

tions due to rnolecular aggregation6 (fig.2) and ieothermal 

increase of shear modulus ot conoentrated PAN eolutions re~ 

sul ting from network form.ation (gelation) 1 (t;J.g. ;. ) • Such 

· a n_on-equilibrium behavior, common in polymer systems can 

hardly be treated in terma o f purely . phenomenological .theory • . 

On the other hand it will be ehown that tha strUotural ~pp~o­

ach offers relatively sirople poaeibility of describing iso--

. thermal, non-equilibl·ium, as well ·as non-ieothermal situati-

ona. 

In the next section {II) o! this pape.r we will discuss 

general requirements and the conatruction .of a . polymer rheo~ 

logical theory on a struetural basie. Seotion .III will inclu­

de .a brief review of the re ~ults and poseibilities of the 

existing theories tor· various polymer systems. 

- II. CONSTRUCTION OF A STRUCTURAL RHEOLOGICAL THEORY FOR PO­

LYMER SYSTEMS 

~eneral reguire~ents 

We will discusa here several condi t i ona which, ·in our 
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Variation of zero-ehear modulus G
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of polyacrylonitrile solutione 

with time as the result of network 

formation _(gelation).( ref. 6 ). 
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belief, should be satisfied by any Rureli s~~!l rheolo­

gical theory. At the same time these eonditions def'ine the 

range ot theories which will be reviewed in tlqs paper. 

1. The móleeular model making basie of' the theory, 

should be physically realistic and founded on the physieai . 

knowled.ge about the real system invo.lved. No assumptions or 

parametera lacking elear physical sense are adm1esible. 

11. The molecular model ohosen for the description o~ 

a real system should be eonaistent in all aepeet.s ot 1 ts phy.;. ·. 

siea.l behavior with experimental faets eommonly observed iD 

such systems. 

iii. ~he theory should consider the entire mącroscopi­

·. eal system with.proper boundary eonditions ratber than an 

ieolated structural element. 

iv. The theory should ' be so formulated that it be. ca­

pablę ot discussing three•dimensional de.tormations in any 

geome~ry and non-steaay-state p::rocesaee • 

. The above condi tions: may sęem to be qui te trivial ·and 

in fact they .are so. It is there!ore surprising how·~ew theo­

ries eonaidered as 1!21~~1!!~ do eonform to these require~ 

. ments. 

The firet condition confines the range o.t theories 

which have a "purely structural" charaeter. It is obvious 

that only the modela ·Which eonform to i) can be discussed in 

purely molecular terma and their applicability verified on 

the basie of the structural data. Thereare numerous rheolo-
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·gical theoriea which. are either based on combinad molecular­

. ·and. phenomenological assumptiona· (e~g.S,9, 66 ), or,basing on 

a purely phenomenologioal . ground,ascribe !-E2~1~~!2~! some 

molecular .significanoe ·to. phenomenological eonst.anta 
... . . 10 . . . . . 

. (e.g • . ). We wil_l not discusa suoh theorie_e in this paper. 

·The secon(l .oondition is speoifical for purelystructu­

ral· theoriee and do es not . apply to. phenomenological · · ·treat­

,~ ments. :Its ·.signi!icance can be explained on the example o f 

conćentrated polymer solutions. It is well known that the 

. · rheological behavior of suoh systems strongly dependa on the · 
. . 

molecular weight of the dissolve~ polyme.r. So, e.g. the zero-

s,hear viscosi ty is often fourid. to be p~oportionai to M3· 4 •. · 

~e of the molecular modela proposed for such aystems is e . 

"temporary energ~tical n.etwork" wi th dissociating and refor-

.ming junctions 11 , 12 • It can be shown quite gene·rally13 .that 

this model is in ·principle incapable of predic·ting · any mole­

·cular weight effects, and, according to condition ii) we 

will consider this model generally improper for polymer so-

. iutions; even i.f i t predicts correctly some other phenomena 

observed in solutions like streaming birefringence or non­

lina~ -flo~ 11 ' 12 • 

The third condition is important .for concentrated sys­

tems with intermolecular interactions. In the case ot infini­

tely diluted suspensiane or solutions,solvent is usually eon­

aidered a Newtonian continuum which transmits a.f.finely . the 

macroscopic ·boundary conditions to individual structural ·ele-
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menta. In consequence, non-interacting structural unita in 

dilute syatems can be treated as isolated and a single ele­

ment can be analyzed. The situation is quite dj.fferent in mo­

re concentrated syetems wi th ·interactions however-. The bouri• 

dary conditions are defined only for the macroscopic volume 

and t he kin e ma tic and dynamie behavior o f the. ind i vidual 

structural elements ·results from the interactions in the en­

tire system. There are theories which, assuming strongly in­

te+acting· (entangled) ma~romolecular ·aystems, ignore the sy-

_stem as such and considel' only single macromolecules. 

.e.g. Bueche 14 and Middleman 15 transmit to such aystems 

So, . · 

t he 

. concept.s developed for dilute polymer solutions changing on­

·ly the "effective" f'riction factor. More recent analysis of . 

entangled systems 13 shows that . such sys_tems should in prin­

ciple be treated as a whole· and the resulting diatribution 

of deformation and velocities among the individual structu-­

ral ·elements is of first order importance. 

The last condition-arises from the importance of non-~i­

near and non-equilibrillDl effects in polymer systems. Nearly 

all the early structural theories in polymer rheology were 

. confined to one~dimensional problems of shear flow. Now it 

seems necessary to require that the modern ~tructural theory 

· be more general. Some of the early one-dimensional theóries 

can easily be -generalized (e.g. 16• 17) but others do not ot­

ter· such a possibility. For this reason we will not discusa 

in the present review the, otherwise interesting, viscosity 

http://rcin.org.pl
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:theories of Eyring and his f'ollowers 18- 21 which hardiy can 

be generalized as required in condition iv). 

Iow we ·will discusa a general scheme of a structural po• 

lymer theory• As noted above in such a theory the kinetic 

contribut~on to the stress tensor can be neglected and there 

will be constdered only interactions. of the type "polymer-po~ 

lymer" and "polymer-solvent". 

Consider the system which at the instant t consiste Q! 

I _ atrłlctUral elements (macromole~ules, sub.:.chains, aggre-ga-

_tes, etc.) with average number concentrationv(t). Assume 

that any k-th eleme~t can be characterized by some vector ~ -(e.g. end-to-end vector of a flexible macromolecule, symmet-

ry ~s ot an ellipsoid, etc.) and the forces acting on the 

element :f'rom the side of other elements and of the solvent 

can be represented by the tension !k between the peripheral - . 
. pointa ot the vector ~· It is easy .to show that in the vi--cinity of the k-th element appears then·the "local" strees 

pt. involving the dyadic ·(!it:f'k) (eq.4) .... . . .... -
(4) 

!he macroscopical stres s in the system may be · expressed . as 

an average over the entire ensemble of structural elements 

(eq.5). 

http://rcin.org.pl
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N 
p(t) = (v/N) l; (łitfk) ·= v(t) · <(R .f)> 

~=1 -- --
(5) 

The .first s.tep in building-up a structural theory ia to 

. define the tension !k through corresponding con!ig\lrational 

variables ~. In general, when there .is N structural elementa 

·each hav.ing n degrees o f freedom we . will have the. dynamie 

equatio.n in the form of eq. ( 6) . 

(6) 

The form of trie dynamie equation (6) depends on the molecu­

lar model i!).volved (character of structural unita, interac­

·tions etc.). 

The second step involves determination of the concentra~ 

tion of structural uni ts, v·, in given condi tions. ·In so.11e 

systems \1 is constant and predetermined (dilute auspensions 

and solutions), in others (entangled systems, tamporary net­

worka, e·tc.) the concentration v can strongly depend on the 

external condi tions and t~me. Generally speaking, the func~ . 

tion v(t) is .. determined by the . kinetics of disso.ciation and 

reformation processes. 

The third step is associated wi th the ave·raging ot the . 
. . 

dyadic in the eq~{5) with the aid of the distribution flmc-

tion 'fN 

<(R f)> (t) (7) ' 

http://rcin.org.pl
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Inthe general case, !'N is the.distribution density function 

in an (Nn)-dimensional configurational space, but for parti­

cular cases the problem can often be reduced to more sirople 

distribution~ • . The function !N is to be found from the equa­

tion of continuity: 

(8) 

· where !N = (a/a~~' ••• a/a~!> 
• · •1 •N 

and 1 = ( ~ 1' . • • • ~n) 

~enote, respectively, the d~verg~~ce operator and the velo:.. 
. •N 

city vector in the (Nn)-dimensional space, and 'lkin - the k1• 

netical term i.e. the net rate of formation and dissociatio~ 

ot various structural elements. Like the total concentration 
•N 

o:t elements, "• the kinetic term !kin should be found from 

· proper kinetical equations. 

To sol v.e e q. (8) i t i s alao nec-essary to· define the set 

of kinematical equations for the components of the velocity 
• 

vector .{, which involve the macros co pic boundary c.ondi tions. 

So, any structural theory comprises a set of simultane­

ous di.f'ferential {or integro-differential) equations: dyna-· 

mic equation (eq.6), equation of continuity (eq.a), kinetic 
•N ) . · equations (de.fining the " and !kin terma· and kinemat~c equa- · 
• 

tions for·the velocity vector !· The stress tensor ,E(t) re-

sui ts ·in the form g i ven by e q. ( 5) • · 
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!2~=~!~~~l=~~~!~~~-~2~:h2~28~~~2~~ 

~~-~2g:!~2!h~~~!--~2~~!~!2~! 

Wh.en the macroscopic flow is steady~state and the velo­

city gradient q = 2}l is homogeneous, the distribution func­

tion may be assumed constant and eq .. (S) reduces to the form: 

. (9) 

At the same time the concentration of structural elements, v 

and the velocity gradient are constants: 

v(t) = const. 
(9a) 

q = const. 

If the flow is non-steady-state or/and non-homogeneous_, · the 

distribution function must be eonaidered time-dependent and 

_full continuity 'equation should be solved. In the case ot 

non~homogeneous velocity field it seems to be reasonable to 

follow some macroscopica.l-volume element alon~ its (macro­

·acopical) trajectory~ Then the total ·time-dependence . of the 

velocity gradient (appearing as a·boundary condition in the 

kinematic equations) may be written in the form: 

dq aq 
-== = -= + V. vq 
dt at 

Such an approach has been successfully applied by Prage:r· 

in his theory ot d.ilute suspensions. 

(10) 
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If flow is accompanied by any variations of the varia~­

les.of state ·(temperature, composition, ambient pressure, 

etc.) also those effe·cts can be taken into account through 

properly defined time•dependencies of the molecular parame­

tera involved in the theory. If some mo1ecular parameter, a 
. . 

(molecular friction coefficient, 1ńternal viscosity, etc.), 

depends on.several variables of state, x1 , then it can be 

written: 

( 11) . 

At the same time the former equations (4 - 8) do not lose 

. their validity, no matter how complex are external "co~diti-

ona. 

The structural approach offers therefore the posaibili-. 

ty of _·treating rather complex situations (not rare in poly­

mer systems) which hardly can be solved in other way. 

III. RESULTS OF STRUCTURAL.THEORIES. FOR INDIVIIUAL POLYMER 

SYSTE~IS 

·The molecular model of a dilute sus:pens1on -consists of 

rigid, non-interacting partielas suspended.in a Newtonian · 

solvent where velocity field is homogeneous. The most often 

·arialyzed particle shapes comprise sphere, dumbbell, cylindri-
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· cal ro!i and ellipsoid (fig.4.). In non-interacting systems 

the distributio·n function '1' can be defined for a single par­

ticle and the degrees of freedom reduce to the spatial orien- · 

tati.on of the particle axes. 

An early analysis by Einstein22. eonaidering sphe:r;ical 

partielas yielded Newtoriian -behavior, observed ~n fact in 

very dilute spherical suspensions. Extension of the analysis 

onto anisodiametrical forma led to non-linear viscosity and . 

normal stress effects in shear flow, a different non-linear 

behavior in extensional flow and stress relaxation effects. 

~l all cases the microscopical .stress tensor was symmetrical 

as defined through the dyadic (~) fo~med by the characteri-

. stical particle vector l• 
The structural analysis of rigid dumbbells in simple 

shear flow was made by Kuhn and Kuhn2;, ~irkwood and Plock24 

and Kotaka25 • Mo~e recently a general theory of .rigid dumb­

belis was formulated by Giesekus25 and Prager17. Jeffery27. 

solved the hydrodynamical part of the st1~ctural theory of 

ellipsoids which made basie of furtber studies by Peterlin28, 

Giesekus29 (shear flow) ru1d Takserman-Krozer and Ziabicki;o . 

(extensional flow). An orientation distribution function for 

rotational· ellipsoid.s in . a general veloci ty field was ... recent­

ly ealculated by Pokrovskii31. 

In .a steady-state shear flow as characterized by the ve­

locity vector: 

! = {qy, O, O) (12) 
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the excess stress tensor tor dilute suspension ot rigid 

dumbbells resul ts in the form 17; 

1 1 2 
-{q/D)+ • • • 1 --{q/D) + ••• ·o 
5 60 

o • Kqc 
. 1 ·2 o o p - p 1· - -{q/D) + ••• - - 60 

o o o 

{13) 

where q - perpendicular velocity gradient, D - diffusion con­

stant, c - volume concentration, K - constant. 

As evident in eq.(13) there appears only one non-zero 

. normal stresa component in shear flow (Weissenberg effect). 

A different re·s.ul t obtained for the same molecular model by 

Giesekus26 was evidently due to some numerical error as the 

author admits himselt29. In a steady extensional flow with 

the velocity vector: 

! = {q*x, - łq*y, - łq*z) (14) 

the streas tensor predicted by Prager17 . reads: 

p - p0 = Kq*c x 

1 1 2 
1 + -(q*/D) - --{q*/D) + ••• o o 

5 70 

)( o 
1 1 1 2 

-- + --(q*/D) + ---(q*/D) + ••• o (15) 
2 20 280 

1 
o o - 2 + ••• 
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Molec~lar modele of flexible maoromoleculea. 

a) elaetic dumbbell, b) eemi-penetrable sphere, c) system ot .sub-ohains 
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. where q* is the parallel velo.ci ty gradient. · 

Two different normal strees components in ehear flow 

appear in the etructural theory when various parte of the 

. particie ara allowed to exhibi t hydrodynamie interactions 

through · vi~cous medium. This fs clearly evident in t~e theo­

ry of. Kotaka25 who analyzed the "necklace'1 model, as weil _as 

in the theories of ellipsoids by Giesekus29 and Pokrovskii31. 

Supposedly the same effect would be obtained if non-linear .. 

particle-solvent interactions were considered. At the pre­

sent moment it seems that ·the existing structural theories 

ot dilute suspensione rather well describe their rheological 

behavior. It should be noted that the structural theory, com­

binad with rheological and · optical measurements is 'aleo wi­

dely used for characterization of the suspended partielas 

(cf • . e.g.32). 

Dilute aolutions of flexible chain-macromolecules 
--~---------~------~--------L-~-------------------

Like in the preceding case the structural theories eon­

sider independent m~cromolecules in a Newtonian eolvent. The 

molecular modela of a chain-macromolecule comprise elastic 

dumbbell33, elastic, def'ormable sphere34 and a system of ela­

sti~ dumbbells; socalled "su:b-chain" modet35 (fig.5.). The 

tension l appearing iri the dynamie equation comprises elas­

tic-, dif!usional, solvent friction- and ·internal viacosity 

terma. 

The early structural analysis ·or shear viscosity was 

http://rcin.org.pl



- 22 -

4ue to Kuhn and Kuhn'33 ,. Hermans36 and Kramers37 who analyzed 

ideally elastic dumbbells and to Rouse'38, Zimm39 and Kirk- . 

wood and Riseman4° using more sophisticated sub-chain model, 

Cerr41 introduced to the sub-chain model the interna! visco-

. sity of macrQmolecular chains, a concept ~sed by Kuhn and 

Kuhn42 in the analysis of . elastic dumbbells. Structural ana- . 

lysis of elastic dumbbells in steady extensional flow was 

· made by Rivlin43 and, independently, by Takserman-Xrozer44 

who eonaidered more exact sub-chain .system, More recently 

this analysis was· extert9.ed onto non-Gaussian chains by Peter­

lin45. Behavior'of elastic dumbbells in a general veloci ty · 

· field was studied by Giesekus 46 and by Taksermah-Krozer16• 

Also in the theories of elastic macromolecules the ex-

cess stress tensQr is always symmetrical. In the absence of· 

internal viscosity and with assumed linear elasticity of the 

macromolecular chain (sub-chain) the stress tensor for stea­

dy shear flow as calculated by Takserman-Krozer16 reade: 

2 
t ki'ti o 2q t ki 'ti 

i i 

p -po • kTqv ·t ki 'ti o o (16) 
i 

o o o 

and that for extensional flow16 : 
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ki"ti 
o o 

- 2q*"ti 

.F 
. o = kTq*v o - ]; 

ki"ti 
o {17) -:R 

i 1 + q*-ri .. 

o o - ~ 
ki-ri 

i 1 + q*"ti 

where v - number ot macromolecules in unite volu:me, k -

Bo l tzmann cons.tant, T - absolute temperatura, "fi - relaxati­

on time in i-th mode of deformation, k1 - · 1-th eigenvalue of 

·the problem. 

As evident from eq.{16) the theory predicts one non-ze-. · 

· ro normal stres s component and eonstan t viscosi ty.· coeffici- . 

ent in shear flo~; the elongational viscosity (eq.17) incre­

ases with parallel velocity gradient, q* and tends to inti-

. nity at q*"f1 :.: ł. The latter result is a conseqtience of as-· 

sumed linear elasticity (Gaussian chain statistics) which na~ 

turally f'ails at higher de.forrnations. Application o.f more 

exact non-linear model by Peterlin45 re~oved this sin~lari-· 

tY • The . theory o f ideally flexible chains predicts al s o · 

stress relaxation eff'ects and the existence of relaxation 

· time spectra (many relaxation times -r1 for the. individual mo­

des ot deformation). 

The constant · shear viscosity as predicted by al~ the 

above . theories contradieta the experimen.tal facts commonly 

observed in dilute polymer solutions. Shear-dependent visco-

http://rcin.org.pl



. - 24-

sity was obtained firet in more complex theories involving 

limited flexibility of ma.cromolecular chains (internal vie­

cosity)41,42, anieotropical diffusion of solvent within the 

macromolecular coii47-49 o~ non-Gaussian -chain statietics5°. 

Bueche51 obtained .· non~linear . visc~si ty in steady shear flow . 

analysing ideally flexible, Gaussian chains, i.e. the model 

for which all other theories yielded constant viscosity va-

lues16,3B-4°. Be neglected however the dif'fusional term . in 
. o 

the dynamie equation and made some arbitrary assumptione con­

cerning the periodicity of ·forces acting on the macromolecu~ 

le, assumptions which do not tollow .trom boundary condi tions. · 
. . 

Consi~eration . of the interna! viscosity in the b~havior 

ot dilute s~lutions in a general velocity field led Takser- · 

man-Kroz--er 16 to.· somewhat' s~riking conclusion that the streee . 

tensor can be asymmetrical, the· antisymme~rical components o 

vanishing for ideally flexible chains. It can be shown that 

this result is incorrect and rollowe from the kinematical 

a~sum~~ions made by Cerr41 in the introducing of the inter­

na! viscosity. Quite generally the internal viecosity term 

cannot produce any asymmetrical stress effects. In view of 

this .fact i t seems ·that .also other conclu·sions .f'ollowing 

.from the Cerf metbod (e.g. non-linear ~hear viscosity) sho­

uld be reexamined. 

The theory of dilute polymer solutions expla~ning satis­

.factorily zero-shear viscosi:ty and relaxation spectra, requi.:.. 

res further studies on other aspects or rheological behavior; 
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firet of all on non-linear flow. 

There is no ad~quate structural_theory of moderately 

concentrated systems with inter~oting elements. In finitely 

conoentrated suspensions and solutions the strees is .no more 

a linear funotion of oonoentration as preclicted for dilute 

systems. The .effect of molecular weight is also more complex 

and non-linear and elastio effects are st~ongly pronounoed 

even in suspensions of spherical partioles. 

There have been published several attempts to explain 

the behavior or concentrated suspensions in .shear flow5 2-56; 

they predict non-linear concentration dependence ··ana non­

Bewtonian shear visoosity. So, e.g. hydrodynamie interaoti­

ons between spherical particles as oońsidered by Krieger and 

Dougherty52, and Gillespie53, lead to :rion-Newtonian viscosi- · 

ty resulting from formation of aeymmetrical doublets or tri­

plets (see fig.6.) • . 

The concentration e·ffects were analyzed, among others 

·by Robinson54, Brinkman55 and MOoney5 6 who derived non-line­

ar · theories of suspensione. A. oomplete theory of such sys­

tems however is still not available. 

Similar situation may be observ~d. in the _theory of po­

lymer solutions with suoh conoentrations that the intermole­

cular contacts are probabie but do not guarantee formation 

ot continuous network system. Prom the moleoular point of 
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Fig.6, 

Hydrodynamie int·eraction between two spheres suspended 

in a visćous mediumi 

a) rotation without interactions, b) interacting pair 

~. · . 
·-.._ .__./ 

Fig.7. 

• 
~ 

Model of a moderately concentrated solution 

cont~ining partially entangled macromolecular coils 
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view one may expect long, flexible chains in such .systems to 

entangle and disentangle one with another forming tamporary 

"entangled clusters" (fig.7.). 

Also in the case of· solutions of chains polymers the 

existing theories were confined; to one-dimensional problems 

of shear viscosity. Several authors 14, 15;57-60 based the}.r 

considerations of "entangled systems" on the modela apparen­

tly more or less resembling our figure 7. although some of 

them speak about "infinite entangled networks" 14,57. Since 

all these theories are based with some .modifications on the 

approach used in viscosity calculations for dilute solutions 

. the applicability of their results to very concentrated sys­

tems is rather dubious. 

~he theory of Graessley57 predicts shear-dependent vis­

cosity as based on .variable equilibrium of the entangling- · 

disentangling processes, explains some "elasticity" and non­

lin~ar effect of mólecula~ weight. The other theories by 

Bueche 14• 60, Middleman15, Merker58 and Nakagaki59 are confi­

ned to the prediction of the effects of .molecular weight-

and mo1ecular weight distribution on zero-shear viscosity. 

All these theories involve some arbitrary assumptions (e.g. 

"elaloming" of macromolecules through entanglement contacts57 

or rigid rotations 60 ) and do not sat.~.:;..L,y i ttCu; ~ of· our COlldi• 

tions. A consequent structural theory of partially entangle~ 

systems, badly needed in polymer rheology, is not available 

at the present moment. 
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Fig.a. 

A. tetrafunctiena1 netwerk 

cemp~sed ef f1exib1e chains 

a. c. 

. Fig. 9. 

Three types of netwerk junctid.ns 

a) an energetic junctien, b) · ~ tepelegica1 

(entanglement)junctien, e) . a ceritact junction 

N 
(X) 

l 
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!!2~Eh2~~-~~!!_E2!~~~~~L-!!!!!-~~-!!~_2Q~~~B!~!!!~ 

!211!!!2!!! 

If volume fraction of polymer exceede some eritieal va- .· 
. ' 

lue the probability of intermolecular contacts ·becomes so 

high that the entire system can be eonaidered a continuoua, 

"instantaneous" network. Such a continuous, often fluctua­

ting, network seems to make the most appropriate and promi~ 
. . . . 

sing st.ructural model for condensed polymel! systems (f'ig.8). 

The structural element involved in this model is now a "net­

werk chain" 1. e. a port i on o f t he macromolecul·e eontainad 

. between two adjacent junctions. 

According to the nature o! interactions between macro­

tno-lecules in the system and to . the character o f' network junc­

tions, 3 classes of macromolecu1arnetworks can be .dist1ngui­

shed61. 

~!!~!:fi!!!~~!-!!~1~2!:!~ (f1g.9a) .are formed by chamioal or 

qua.si-ohemioal (van der Waals) erosa-linka. An energetical 

junction is localized in a definite part ot the maoromolecu­

le and does not slide; it can dissociate when enough energy 

ia SUI?Plied, and eventually reform in another place. Bence 

the "temporary" character ot the structural units (network 

chains) and v~riable concentration "'· .:;. ... 4 ClbJlJ.I~to-ti~ casa 

(infini te dissociation energy, · ·no junction breaking) consti­

tutes socalled E~-!:~~~!!!_!!!!~~2!:~ - ·the mo.del widely use.d in 

the theory of vulcanized rubbers. 
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The second class of networka results of topological in­

teractions of long, flexible chains capable of forming loops 

and entanglements (fig.9b). ~unctions in the·!n!~~!~!~~! 

a~!~2~!~ are no more localized but can slide along the cha­

tna, the sliding being associated with some friction and dis­

sipation of energy. The existenee of free chain ends leads 

to some probabili ty o·f aliding-in and aliding-out o f the en~ 

tanglements thus making source of variation of tlie concentra­

tion v. -. 

Q2a~~2!-~~!~2~~~ (fig.9c) form the third class. They 

result from mere contacts of ·impenetrable structural ele-

ments ~~th frictional interactions. T.he formation and break­

aga of such junctions is controlled by thermal motions which 

determine their average lifetimes • .Also these junctions are 

not localized and chain-chain friction contributes to .the 

mechanical behavior. 

The concept ot a permanent, ideally f'lexible maeromole­

eul~ networkwas introduced in_early thirtiea62 , 63 to ex­

plain the. elastici ty o f vulcanized rubber. Wi th the as sump­

ttoń of constant chain concęntration v, (typical for perma­

nent networks), and linear behavior of an individual net\'rork 

chain, the theory yields the constitutive equation of a Hoo-. 

kean solid, what agrees with mechanical behavior of chemical­

ly cross-linked systems at not too high deformations • .Appli­

cation of non-linear elasticity of network chains leads to 

the·equation of non-linear elastic solid64, 65. 
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The recent analysis of the theory of networks 13 shows 

that in permanent networka ~lso two other effects should be 

taken into account. Firet eft"ect is internal viscosity ot 

network chains as introduced in dilute solutions42• Some at­

tempts ~o apply this concept were made by Halpin66 and Pok­

~ovski19, they were not lacking some arbitrariness however. 

The other effect, not recognized in the earlier theories, is 

associated with intermolecular friction of the portions ot 

ma:c·romolecules between netwot•k junctions. It may be shown 13• 

67 that the aseumpt.ion of an affine displacemant of the net-

. work ;Junctions, made as a rule in all theories, is not gene­

rally true, and local deviations from this affinity can eon-

~ tribute to the stress tensor and dissipation of energy. The 

theory of permanent networka completed with the above tWo ef- . 

·fects is capable of predicting retarded elasticity but axelu­

des relaxation and flow. 

To account for the latter effects, Green arid Tobolsky68 · 

introduced the ooncept of a "temporary" net·work (in our no­

menclature: energetical n~twork with finite dissociation 
. . 

energy). The theory o.f this model was further developed by 

·Scott and Stein69, Furukawa 70, Lodge 11 and Yam~oto 12• · 

The most complete and general among existing theories 
. 12 of temparary energetical ·networks, viz.t~t by Yamamoto 

predicts non-linear elasticity, stresa rela.xation and non-11~ 

near ateady-state flow in various flow geometriea, The non­

linear viscosity is controlled by variable probability ot 
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junction breakage~ p, and, . to less extent, by non-Gaussian 

statistics of the individual rietwork chains. Wben. the chains 

are Gą.u~sian and the probabili ty ·p is eonstan t ( wha.t corres• 

ponda to the eariier theories -ot Green and . Tobo+stj68 . and 

1Ddge11) 'the theory pred~cts for ' ~teady shear tlow12 

·O 

o 

and for steady ex:t.ensiona~ flow 

p - p 0 
· = kT"q *v . ·~ 

2"t[ 1 +-q*~-+ 3 (q *"f) 2 + •• łi J . 

o)· . o 
o .. 

o 

X o 
o 

"f[-1 + ••• ] 

o · 

o 
o 't[.;.1 + ••• ] 

where "f a: 1/~ - ·relaxation time. 

(ta} 

Eqs. ( 18-19) are almost identical wi th the result.e tor 

dilute polymer solutio~ mode~led by · elastic dumbbells · ··(c.:r. 

eqs. 16-17~ with i = 1.and ki 11 1) •. T~e matri:x: j.n eq.(1'8) is 

identical with that .in eq.(16) and· predicts the .same behavi~ 

· .or in s~eady shear flow: constant shęar viscosity. and only 

one .non-zero normal stress component. · Co~ponents of . . the ma­

tri% ill eq.(19) slightly·differ from seriee expansion ot the 

corresponding.closed expressions in eq.(17). Probably .this 

discrepancy ie due to eome n~erical error, since also aayi.n­

ptotical behavior. C? f the botb . ib•or;ł es tor extensional tlo'W 
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. (~ingularl~ at q*-r • ł) ia identical. 

!he torinal . c.onśisteney ~t the · theory ot. energetical net­

worka with that ot ·d1lute ęolutions containing .tlexible cha-
. . . . 

. ina .ie . not surprising:. ·In· fact, both these theories consider . 

. .'the' a~. mol.ec..dar mociel ' - ~us.sian ch8.~,and · ~ifter' only· in 

· · 't~e aigniticance ot the .·conce:ntration parameter " (co~centra- · 
• ' • l o 

. . 

. · tio.n ot m&.cromolecules in dilute · aoiutions and concentration 
. . . . . . . ·-~---~~~----. . . . .. ' . . 

· · ot !!!!~~~2~!!!! in ·the. other cas~). · Introduced })y Yamamoto 

.. mo~e general. assumptions: · var1able . breakag~ probabili ty, Ił~ 

and/or non~iil;lear .elasticity' ot th~ network ' chę.ins led to 
· noń•łlew:toiu.an ~hear visco$1 ty· and to the appearance ot. ·· two ·. 

dlti'eren.t . nonB~ ... atresa compo~enta 12• ·so, :1D temporarr en~r~ 

~~~ioal netwo~ka appeara . ~ addi tional source . ot non-line~ 
. . . . . . . . . 

behaviora . kinettcs o~ brealting process wb,ich did not erlsł; . 

i11 d:Ś.lute soluti~ns • . 

!he iaode1 o:t t 'empOrary energetic~ networks, . poasibl;y 

compieted with .1nter1181 viscosity ~4 intermolecular · · :fric­

.tion·. terma (cd.''-> . can e~plaili retarded elastici ty' as well 

.: ·u str.esa _ :rel~t.ion •. It should be ·emph8.$ized here . t~t ·~ 

e~e~getical · networlts with l~calized junctions (both perma~ 

. n~n:t an.4. teui~»orUy) ~-!!!l!2!:łLSba~~2!!!!.! tut!!_!!!_!nd!.E!!~ 

Ś!!Ł!l!:!!ctur-!!-!!!!!_~-2~!S!.!!:-!!l!~!...2!..l!!!~Eri!_~~ ·: . .. .. .· . ' . . . . . : . . . ·• 

!!~!2!~!!!~~2-!!2!..!E.E!!!i._!!!_!~!..;th!2~ . (to spealt 'nothiDg 

abou.t th'e. ~inor e~te.ct ot t~ee ends) ~ 'rherefore thia theory 

. 'carmot p~edict any . eftects ot molecular weight and as such 

:l.t ia inappl.icable · tor . poly-mer me l ts and concentrated solu~ 
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·tions. Apparently applicability of this theory is contined. 

to amorphous rubbers wi th breaking chains, pol ar gels and 

similar systems where .effects of mo1ecular weight do not 

play any important role. · . 

Structural the·ory of entanglement networka at tne pre-·-, 
...... , 

sen t moment do es not exist. Some, ·atteinpi~ o f dis.cussing· su ch 

systems were made .by several authors. The ·considerations of 

Bueche14• 60, Middleman 15 ~d Graessley57 as noted abóve, are­

more appropriate for mode-rately concentrated systems than to 

Wini.te networks. At the same· time ·the worka of Hayashi 71 · 

and Hoff~ann72 dealing .directly with entanglement networka 

involve some serious incorrectnesses. Both the a:uthors neg­

lect ·chain sliding in the entanglement junctions and contact 

poin.te - _J>erhaps the most important mechanism of energy dis­

sipation. Hayashi, applyińg tne sub-chain formalism of the 

theory of dilute solutions made also several arbitrary as­

sumptions ( e.g. the lJlOlecular 'weight-dependent . friction fa·c..;. 

tor) and ma themB: t i cal errors (diagonali za t i on o f several ·d :t f'· 

ferent matrices w:Lth the same linear _ transformatio-n, ~) •. 

Hoffmann, discussing a one,;.dimensional deformation, n_eglects 

in the kinetical considerations forma:tion ofnew networkcha 

1ns due to eliding-in into the entanglement, what excludes . 

the possibility of a real ·steady-state flow with a constańt 

concentration of network chains, v. 

Still less has been made in the theory of contact net~ 

worka. Apparently the molecular lllOdels assumed in 'the papera 
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oi: Tśkemura73 and Champff and Duiser74 correspond to what we 

def'ine as "contact networks", but the . authors themselves usę 

the term "entanglement networks". Both the papers mentioned 

were co~ined to the analysis ot stress relaxation and no 

dynanJic analysia was ·. e-ver made. 

The ·general considerations o:r Takserman-Krozer and tha 

author 13. _give some outlinea o! the theory of entanglement-
. . 

anci contact networks.It was shown that both these modela 

are capable of predicting non-linear viscoelasticity, steady­

state f'low, stress relaxation, retarded elasticity as well 

as non-linear effects ot molecular weight of primary maero­

·molecules. I t seems •that · development o f . these modela should 

explaiń many features of the rheological behaviot- of concen• . 

_trated polymer solu.tions and melts •. 
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