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Two-fluid theory of the condensation and evaporation effects
in fluid flow

S. 1. PAI (MARYLAND)

A Two-FLUID theory for the effects of condensation and evaporation in the fluid flow has been
formulated. We consider a mixture of two fluids of which fluid 1 is a perfect gas while fluid 2
may exist in its liquid, vapor or a mixture of a liquid and its own vapor state. A dryness fraction
A is introduced. When 4 = 1, fluid 2 in gaseous state; when A4 = 0, fluid 2 is in liquid state and
when 0 < A < 1, fluid 2 is a mixture of a liquid and its own vapor. A relaxation time ¢, character-
izes the relaxation process of evaporation or condensation. With this formulation we may in-
vestigate the relaxation zone in the condensation shock in a supersonic wind tunnel as well as
the unsteady flow region due to condensation and evaporation when the mass concentration
of water in moist air is very high. The general fundamental equations of this two-fluid theory
are given. A special case of one-dimensional unsteady nozzle flow with condensation and evap-
oration is discussed in details. Finally, the sound speed of fluid 2 is briefly analyzed.

Sformulowano teorig¢ dwoch plynéw dla opisu zjawisk kondensacji i parowania w procesie
przeplywu. Rozpatrujemy mieszaning dwéch plynow, z ktérych jeden jest gazem doskonalym,
a drugi moze by¢ w stanie cieklym lub wystgpowa¢ jako para albo mieszanina cieczy z jej para.
Wprowadzono wspolczynnik suchosci A; gdy 4 = 1, plyn 2 jest w stanie gazowym, a gdy0 < 2 <
< 1, plyn 2 jest mieszaning cieczy i jej pary. Czas relaksacji #; charakteryzuje relaksacyjny pro-
ces parowania lub kondensacji. Przy takim sformulowaniu mozemy rozpatrywaé obszar relak-
sacji w kondensacyjnej fali uderzeniowej w naddiwickowym tunelu aerodynamicznym, jak
rowniez obszar przeplywu niestatecznego pojawiajacy sie wskutek kondensacji i parowania
przy wysokiej koncentracji wody w wilgotnym powietrzu. Podano ogélne rownania podstawowe
dla tej teorii. Szczegélowo przeanalizowano szczegblny przypadek jednowymiarowego niesta-
tecznego przeplywu przez dysz¢ z uwzglednieniem kondensacji i parowania. Przeanalizowano
rowniez predkos¢ dzwigku w plynie 2.

CdopmynupoBaHa Teopua OBYX MKHAKOCTEH [UIA ONHCAHMA SABJEHHI KOHIEHCAUMM M HCla-
penusd B npoliecce TeueHHA. PaccMaTpHBaeTCA CMech [ABYX KHIKOCTel, M3 KOTOPBIX O[HA
ABJIAETCA H/IeAJILHBIM I'a30M, & BTOPask MOYKET OBITh~B YKHIKOM COCTOSIHHH HJIH BBICTYNIATh KaK
nap MJIH CMeCh YKHOKOCTH C ee napom. Beeaen Koadduumest cyxoctu A; korma A = 0, »mg-
KOCTh 2 HAXOJWUTCHA B ra30oBOM COCTOAHHMH, a Korga 0 < A < 1, 3KMAKOCTh 2 ABJSETCA CMECBIO
FHAKOCTH M ee mapa. Bpemsa penakcaliuu f) XapaKTepH3YeT peJlaKCallMOHHLIH [poLecce Hcha-
peHnA unu KoHpeHcauuu. Ilpn Takoit dopmynHpoBKe MOX<eM paccMaTpHBaTh 0GJIACTh peslaK-
calHd B KOHJEHCAIHOHHOH YAapHOil BOJIHE B CBEPX3BYKOBOM a35DOJAMHAMHYECKOM TYHHeEE,
KaK TOXKe 00/1acTh HeYCTOHYHBOIO TEUYEHHHA, NOABJIAIOLIYIOCH BCJIEJCTBHE KOHACHCALHA M HC-
napeHHs IPH BEICOKOH KOHLEHTPALMH BOJALI BO BIIAXKHOM Bo3ayxe. IIpuBenensb! obliue 0CHOB-
Hble YpaBHEHHA IS 310l Teopuu. [ToxpoGHO MpoaHanM3HMPOBAaH YacTHLIH caydail ogHOMep-
HOTr0 HEYCTOHYHMBOIO TEUEHHMA 4Yepe3 COIUIO0 C YUeTOM KOHJeHcaluu u ucnapenus. Ilpoana-
JIH3UPOBAaHA TOXKE CKOPOCTh 3BYKAa B »KHAKOCTH 2.

1. Introduction

IN MANY practical fluid flow problems, the effects of condensation and/or evaporation
are important. One of such problems is that associated with meteorology and another
is the well-known condensation shock in a supersonic wind tunnel. If one considers
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the flow of moist air in a de Laval nozzle with an arbitrary degree of humidity, three dif-
ferent types of flow are observed [I, 2]:

a) the flow exhibits a steady and continuous behaviour;

b) a steady shock occurs at the start of the condensation region, and

c) the flow becomes unsteady even though the boundary conditions are steady.

There is no satisfactory theory to explain the possibility of these three different flow
patterns, particularly the prediction of the starting point of condensation and the con-
ditions when the unsteady periodic processes set in. Most of the theoretical analysis,
starting with the classical work of OswaTITSCH [3] and those of WEGENER and his associates
[4, 5], are concerned with both microscopic (formation of droplets) and macroscopic
(continuous flow) points of view. It seems to the author that such analysis is rather in-
consistent and difficult to deal with. In the present paper this problem will be investi-
gated using the continuum theory only. By means of a relaxation time we formulate the
problem using the two-fluid theory because the problem is quite similar to the well-known
analysis of flow with chemical reaction in which a relaxation time is used. In our approach
the effects of both condensation and evaporation will be considered depending on whether
A is increasing (evaporation) or decreasing (condensation). We are going to discuss first
the essential features of our two-fluid theory in Sect. 2 and then the fundamental equations
of this theory in Sect. 3, and finally the application of this theory to the steady and the
unsteady flows in the one-dimensional nozzle flow of moist air in Sects. 4 to 6.

2. Essential features of the two-fluid theory of condensation and evaporation effects in a fluid
flow

We consider the flow of a mixture of two fluids, i.e. fluid 1 and fluid 2. Fluid 1 is always
in the gaseous state in the whole flow field and subscript 1 or a is used for the value of
any flow variables of fluid 1. Fluid 2 may be in vapor, liquid or coexistence of liquid and
vapor state and subscript 2 or w is used for the value of any flow variables of fluid 2. For
each of these two fluids we have, in general, six flow variables: 3 velocity components
and three state variables, i.e.,

For fluid 1 we have q,(u,, vy, w,), py, 01, Ty; and

for fluid 2 we have q;(u;, v2, w,), P2, 02, T> (or A),
where q is the velocity vector with u, v, w as, respectively, the x-, y- and z-component
of the velocity vector; p is the pressure, ¢ is the density and T is the temperature. For
fluid 2, because of the phase change in the flow field, it is convenient to introduce a dryness
factor 4 such that
@.1) o= Va= Vet V=V = Vap. T, D),
where V' = 1/p 1s the specific volume of the fluid and the value of 1 lies between 0 and 1
in the following manner:

when
(2.2) T<T(p), A=0,
T=T(p), 0< i<l
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The saturated temperature of fluid 2, 7y, is a given function of the pressure p. Even though
we use seven variables for fluid 2, at any given point in the flow field, only six variables
of fluid 2 are independent variables.

For the two-fluid theory we have to distinguish the species density from the partial
density [6]. Let us consider an element of the mixture of fluid 1 and fluid 2 with the total
mass M = M 1-i-.M , and total volume ¥ = V1+V2 The value for the mixture is that
without subscript.

The species density of fluid 1 is

M
P2 =1 =0,
(2.3) 0 V. [
and the species density of fluid 2 is

M,
2.4 === fhg-.
(2.4) 02 v, e
The partial density of fluid 1 is

- M
2.5) 0 = -f,—’ = (1-2)¢,
and the partial density of fluid 2 is
- M

(2.6) Q2 = ?2 = Zp,
where
2.7 Z= % = volume fraction of fluid 2 in the mixture.

In the fundamental equations of the two-fluid theory, the partial density is always used.
The total density of the mixture is

(2.8) 0= = 0;+0; = (1—-2)p.+ Zo,.

~| =i

The total pressure of the mixture is
(2.9) P = pi+p2.

Since fluid 1 is always in the gaseous state, we assume that the perfect gas law holds for
fluid 1, i.e.

(2.10) Py =R T =(1-2)o,R, T, = (1-2)p,

where R, is the gas constant of fluid 1.
From Egs. (2.9) and (2.10) we have

@.11) P2 = Zp.

In our two-fluid theory it is convenient to use the following thirteen variables:

(212) q1(ul$ws wl); Tl!@l!p’ z; ‘lz(uz,f’zs“'z)’ TZ) 02, ;l
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3. Fundamental equations for the two-fluid theory with condensation and evaporation
effects

We have, in general, thirteen fundamental equations for the thirteen variables of
Eq. (2.12). These fundamental equations are as follows:
1. Eguation of state of fluid I is the perfect gas law of Eq. (2.10). i.e.

p=o0RT,.
2. Egquation of state of fluid 2 is given by Eq. (2.1) in terms of the dryness fraction 4,
ie.

L = —l'+;>( I__L)— Vz(TZ-P- A)

2z €L Qv oL
If the temperature T, of fluid 2 is larger than Ts(p), we have 4 = 1 and Eq. (2.1) becomes
—
(3-1} 92 - Qv . Rn T; ]

where R, is the gas constant of the vapor of fluid 2. We assume that the vapor obeys the
perfect gas law as a first approximation. If the temperature T, is less than T,(p),
we have 4 = 0 and

3.2 @2 = pr = constant.

Here we assume that the density of fluid 2 in liquid state is a constant.
When T, = Ty(p), A lies between 0 and 1, and there is a definite relation between
T, and p, i.e. the Clausius—Clapeyron relation [6]:

; dp L Lg
(33) (__) e 1 ST N PR 't I ]
dT
: (_'_._L T (1_&)—,-;
Qv QL oL
where L is the latent heat of evaporation of fluid 2 which is a function of the saturated

temperature T.
3. Equation for dryness fraction A

D) A
3.4 D = é‘ +( q:- V)i = —(A A,
t
i) a . . . TS
where V = i—— 3% +j— ax k—? is the gradient operator and A, is the equilibrium value

of A which is a function of the species density g, and the saturated temperature T,(p),
i.e.

(35) }‘e o _gi" _-Q__LS___ e(gh s)s
ovs  ous
where the subscript s refers to the value at the saturated temperature T so that g, s and

ovs are respectively the density of the saturated liquid and that of the saturated vapor
of fluid 2. Both p,5 and pys are functions of the saturated temperature T only.



TwO-FLUID THEORY OF THE CONDENSATION AND EVAPORATION EFFECTS 665

We introduce for the macroscopic theory a characteristic time or a relaxation time #,
for evaporation (when A increases) or condensation (when A decreases). For a first approxi-
mation we may assume that f; is a constant for a given problem. The value of 7, may be
determined experimentally. For f; = 0 we have A = ., the equilibrium flow of evapora-
tion or condensation. For 7, = oo, we have A = constant, the frozen flow of evaporation
or condensation. The concept of the relaxation time ¢, is similar to that in the flow with
chemical reaction.

4. The equation of continuity of fluid |1 is
(36) 6(1# +V- [(I —Z)Qaqn] = 0, = 0-
where q, = q, and we assume that the source function of fluid 1 is zero, i.e. g, = 0.

5. The equation of continuity of fluid 2 is

oz
(3.7) —aifi +V-[Z0,q,] = 0; = 0.

We also assume that the source function of fluid 2 is zero, i.e. o; = 0. In general the
density g, is given by Eq. (2.1).

If we add Egs. (3.6) and (3.7), we have the equation of continuity of the mixture of
Suid 1 and fluid 2 as follows:

do . _
(3.8) B +V - (0q) = 0,

where o is the density of the mixture which is given by Eq. (2.8) and the velocity vector
of the mixture as a whole, q is defined as follows:

(3.9) 0q = (1-2)0.9.+ Ze2q..
Now we define a mass concentration of fluid 2 in the mixture as
02 Z02
(3.10 k,=-=2 = =&
) = s
and the mass concentration of fluid 1 is k;, = 1—k,. We also define the diffusion velocity
of the r-th species as w,, i.e.
@.11) W, = ¢,—q.
Substituting Eqgs. (3.10) and (3.11) into Eq. (3.7), we have the diffussion equation for
fluid 2 as follows:

dok
(3.12) gt’ +V - (ky0q) = —V- (ks oW,).
From Egs. (3.9) and (3.11) we find the following relation between w, and w,:
(3.13) (1=2)o,Wo+ Zo,w, = 0.

From Egs. (3.8), (3.10), (3.12) and (3.13) we have

3.14) 02 = V- [(1-Z)eumd.
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The diffusion velocity may be expressed in terms of the diffusion coefficient D, between
fluid a and fluid 2 as follows:

(315) (lrz)enwa ~ QDG;VC¢1

where C, is the number concentration of the gaseous species @ in the mixture, i.e.
(3.16) Co=—,

where n, is the number density of the gas @ and »n is the number density of the mixture.
With the help of Eq. (3.15), the diffusion equation (3.14) becomes

Dk,

(3.17) (T

= V- [eD,,VC.].

If the diffusion velocity is negligible, Eq. (3.17) becomes

(3.18), B - 0
or
(3.18), k, = constant.

When the diffusion phenomenon is negligible, the mass concentration k, is a constant
in the whole flow field even if we have phase change. Since k,+k, = 1, the mass con-
centration of the gaseous species is also a constant when the diffusion phenomenon is
negligible.

6. The equation of motion of fluid a is

Dq, _ ,

(3.19) (1-2)e, 3 = —~(1-2)Vp+V " 7, +Fy,+F,,
where 1, is the viscous stress tensor of the fluid a; F,_ is the body force of fluid a, such as
the gravitational force, and F, is the interaction force between fluids @ and 2. We may
write

(3‘2‘0) Fﬂ s KF(‘]:‘Q«)-

The interaction factor Ky depends on the flow conditions between the two fluids a and 2
(see Ref. [6]).

7. The equation of motion of fluid 2 is
@3.21) Zo, 2 = —ZVp+V- 1, +F,, K.,
where 7, is the viscous stress tensor of fluid 2 and F,_ is the body force on fluid 2.

We may obtain the equation of motion of the mixture by adding Eqgs. (3.19) and
(3.21). The final equation of motion of the mixture would be identical in form as that
of the single fluid theory if we define a proper viscous stress tensor of the mixture including
the effects of diffusion velocity (see reference [6]).
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8. Equation of energy of fluid a is
62 2la-z (LT LI Y ) +-2 la-peatlin+-L @+é
22) ot Qa\ Uma b 9a a Bt Qalta | Uma 2 da +Qa
_u: .rij_’_ a”ui‘!pa_Q’{ﬂ] = KT(TZ_ T¢)+ €5
where U, is the internal energy per unit mass of fluid a. For simplicity, we may assume
Una = C,, T, where the specific heat at a constant volume for fluid ¢ may be assumed as

a constant; g, is the magnitude of the velocity vector of fluid a and ¢, is the potential
energy per unit mass of fluid a. Q/, is the j-th component of the heat conductive flux

+of fluid a such that 9, = —K, gﬁ'— and K, is the coefficient of heat conduction of fluid a;

Kr is the thermal friction coefficient between fluids @ and 2; g, is the energy source of
fluid aand 6" =0 ifi# jand 67 =1 if i = .
9. Equation of energy of fluid 2 is

d - 1 a 1 .
(3.23) F [ZQz(Um, + 5 q§+¢2)] s Bxl [ZQZui(Um, + 5 i+ ¢z)—“‘z 21

+ 0Yub p, — i,] = K{(T,— T,) + &,.

The symbols in Eq. (3.23) have the same meaning as those in Eq. (3.22) except that sub-
script 2 refers to the corresponding values for fluid 2.

We may obtain the energy equation for the mixture by adding Egs. (3.22) and (3.23).
The final form of the energy equation of the mixture will be identical in form as that of
the single fluid theory if we define the proper internal energy and the heat conductive
flux of the mixture by including the effects of diffusion velocities.

We are going to solve Egs. (2.1), (2.10), (2.16), (3.6), (3.7), (3.19), (3.21), (3.22) and
(3.23) for the variables o,, 0,, Z, p, Qa, 42, Ta, T, and A with proper initial and boundary
conditions. Equations (3.6) and (3.7) may be replaced by Egs. (3.8) and (3.17).

4. One-dimensional unsteady inviscid flow through a nozzle with condensation and evapora-
tion effects

We are going to apply our fundamental equations of Sect. 3 to a special case of one-
dimensional flow of moist air through a de Laval nozzle with a given cross-sectional

area A(x) from a reservoir of constant pressure p, at constant temperature 7, with a specific
humidity:

o 020 _ Qa0 _ 2020
e e e 2 S
Qa0+ 020 Qo 0o

The x is the distance along the axis of the nozzle. We shall consider only the main effect
of heat release or absorption due to the condensation or the evaporation of the water
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in the mixture in the flow field. Hence we may neglect the effects of viscosity, heat conduc-
tion and diffusion phenomena.

Our variables are:

1) p — pressure of the mixture,

2) T=T,= T, —temperature of the mixture,

3) ¢ — density of the mixture,

4) U = U, = U, — velocity of the mixture in the direction along the axis of the nozzle,

5) z— volume fraction of the water in the mixture,

6) A — dryness fraction of the water.
Here we assume that the flow is in equilibrium as far as the fluid dynamic variables are
concerned, ie. U= U, = U, and T = T, = T,,, where subscript a refers to the value
of the air and subscript w refers to the value of the water which may be in vapor, liquid
or coexistence of vapor and liquid. Without the diffusion effect, k, = k,, is a constant
in the whole flow field. Hence the volume fraction z is related to the other variables by
Eq. (3.10).

For one-dimensional unsteady flow of moist air in a de Laval nozzle, the fundamental
equations for the six variables, p, o, 7, U, Z and 1 are as follows:

- 1=Z"
G 1 OouA _
o A ox
o 0 0D
O T T T
4.1) _
WUp 0 OUn _ P (60 5d @9_)
a T 5% T o \a ox |’
oA oA 1
o +u . i ti-(k,—-ﬂ.),
_ ki
gw(P; 'T; A) ;
where
(4.2) Ry = (1=ka0)R,

and R, is the gas constant of the air.
The internal energy of the mixture per unit mass is

(4.3) Un = kzoUmet+(1=k20)Coa T,
where the internal energy of the water per unit mass is
(44) Umw = Umwl'+ A(Ullrwn_ Umwl)

and Upw; = C,w T is the internal energy per unit mass of the water in the liquid state,
and Uy = Cow, T is the internal energy per unit mass of the water in vapor state: Coy
and C,,, are respectively the specific heat at constant volume of the water in liquid and
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in vapor state. For simplicity, we may assume C,,; and C,,., as constants for a first ap-
proximation.

Equation (4.1) should be solved for given initial and boundary conditions. In order
to demonstrate the special feature of our two-fluid theory, we consider the following
case:

We have a de Laval nozzle of a given cross section.

At the entrance section, x = 0, we have a uniform flow of moist air with the following
values. We denote the value of the flow variables'at x = 0 by a subscript 0.

I. Ao = 1. The water is in the vapor state.

II. The mass concentration k,, is given and it will remain at this yalue in the whole
flow field.

III. The pressure is kept at the value p, for all times.

IV. The temperature is kept at the value T, and T, > T,(po,) where T.(p,) is the
saturated temperature of the water at p,.

V. The density of the mixture is go, i.e.

(4.5), 00 = (1=Z¢)0a0+Zo0wo-
The species density of the air g,o is given by Eq. (2.10), i.e.
(4'5)2 Po = Qa0 Rn TO'

We assume that the species density of the water vapor also satisfy the perfect gas law
(2.10), ie.

(4.5)3 @wo = Qwvo = Rf;"o .
The volume fraction of the water vapor at the entrance section is then
R
koo =2
k 20 R,
(4-5)4 Z, = ;o@o = R,
"o (1=kz0)+ k20 RD

At the exit section, x = b, there might be a steady uniform statg or not. We will check
whether such a steady uniform state exists or not in Section 5: The values of the flow
variables at the exit section are denoted by a subscript co. These values may be a function
of time if a steady uniform state does not exist.

I. A, may be a given constant or a function of ¢ but its value lies between 0 and 1.

II. The pressure at the exit is p, while the temperature is T,. We have the following
relations between A, po and T:

A=)
(4.6), To 2 T(Po), 0< A<,
Am - 0.
III. The density of the mixture at the exit is
(4.6), 00 = (1= Zx)0uw+ Zew Oweo s

9 Arch. Mech. Stos. nr 5-6/82
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where
i B
(46)3 Qas = Ra Toc s
and
1 1 1 1
4.6 = +2 ( = )
( )4 Oweo Owlw ” Owowo Owico

When 0 £ A, < 1, owr = owr(Ts) — the density of saturated liquid of water and pwy =
= pwyv(T;) — the density of the saturated vapor of water. When 1, = 0, gwe = Owirw
and when Ao = 1, gweo = Owvew-

IV. The volume fraction of the water in the mixture is

(4.6)s Y e k2000

QWGJ

V. The internal energy of the mixture U, is

(4.6) Unew = k20 Umwoo + (1 —k20) Cpo Tio
where

(4.6), Umweo = Upitoo + Ao (Unmwoco — Umioo) s
(4.6)s Unito = Coto Tos  Unweo = Coyw Teo

The relation Ty(ps) is given by Eq. (3.3).
It is convenient to reduce Eqgs. (4.1) and (3.3) in terms of the nondimensional forms
by introducing the following nondimensional variables:

- - t s ) - P = T

X =——, I = y = —, = —, T_—.,.___’
@1 b bju,y . Co P Po To
‘ =_ T, = _Us _ @ 7_ L

Timgpy WnSggm = g

where the bar refers to the nondimensional quantities.
Substituting Eqs. (4.7) into Egs. (3.3) and (4.1), we have

_-___‘—(l"'Zo)

P=eT-a—z"

% _ _;0% _o0u_ pudA

a0 - "ox Yox A4 dx’

ou _ o 1 19

aa  Ox yMs o X

aﬁ,,__ _au,, (1=kz0)(ya—1) P [Ou ld_A)
@) F =" H " O-z0 \G A&/

dA _ 01 1
ﬁ = —U'E_'x— +R—u (2.—11),
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kaeD
a8 zeg
ds L(1-Zo) ﬁ:
where
u

and @, = V/yoPo/0o is the sound speed of the mixture when both z and &, are negligibly
small. In general, the sound speed of the mixture is different from a, (see Ref. [6]):

Lo

(4.10) Ry = =2,

where R,; is the nondimensional relaxation time for condensation and evaporation.

From Eqgs. (4.8) we see that the important nondimensional parameters in our problem
are:

1. The initial Mach number M,.

2. The nondimensional relaxation time for condensation and evaporation R,;.

3. The mass concentration of water in the mixture k,,.

4. The nondimensional latent heat of water L.

We may calculate the one-dimensional unsteady or steady flow under various values
of My, R, k,o and L for given initial and boundary conditions. Before one makes any
numerical calculations, one should investigate the problem whether there is another
steady uniform state at a section far downstream for a given uniform state at the en-
trance section. To investigate the possibility of a steady uniform state far downstream,
it is convenient to solve this problem by comparing the analysis of our two-fluid theory
with the conventional single fluid theory.

5. Comparison of the two-fluid theory with the conventional single fluid theory

In the conventional single fluid theory of our problem [1], only the heat addition
effect due to condensation is studied. To compare our theory with the corresponding
single-fluid theory, we first reduce Eqs. (4.8) into forms similar to the corresponding
single fluid theory with heat addition. For simplicity, in this section, we consider the case
of a nozzle with a constant cross-sectional area, i.e. A(x) = constant.

In the ordinary single theory, the following approximations are usually made:

1. The volume fraction of the water is assumed to be negligibly small, i.e. z = 0,
zo 2 0.

2. The density of the mixture p is approximately equal to that of the air, i.e. ¢ = ga,
Ry = R,.

o=
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3. We do not calculate how the dryness fraction 4 varies in the flow field, that is, we
do not calculate the relaxation zone of condensation and evaporation but consider the
limiting equilibrium cases before and after the relaxation zone. Hence we take 4 = 1, = 1
before the ralaxation zone and A = A, = 0 after the relaxation zone.

With the above assumptions, for the case of steady flow, Eqs. (4.8) are reduced to
the following forms:

p=oR,T,
04U = PaoUo = constant,
(5.1) p.u*+p = p.ou%+Ppo = constant,
1 1
Hl-‘: E‘ W= Hlm"' ?“g"'kzoL,
where
(5-2) L = H,,,—H,,

is the latent heat of condensation of water in the mixture and H is the enthalpy. Equations
(5.1) are the equations of the single fluid theory [1] with heat addition due to the conden-
satino of water vapor, Q,, = k,o L. It is well known that if the initial Mach number M,
is supersonic, for a given Q, below a critical value Q,., the final Mach number M,
decreases with the increase of Q,, and when Q,, = Q,., M, = 1. When Q,, > Q..,c,' there
will be no steady state solution for the flow in this nozzle (see Ref. [1]).

The corresponding steady state equations of our two-fluid theory are as follows:

. oRy T
 1=Z°

pu = Pyl = constant,

ou?+p = pouf+po = constant,

(5.3) kgo U.w + (I et kzo) CIw T+ '% + "1—‘ ur = constant

2
i Py o) Late,
= ko Umwot+ (1 —k20) Cpoa To+ ~—— + -3,
00 2
a 1
“ox =7 LB
ko0
.| S
QW(P’ T’ l)

The main difference between Egs. (5.2) and (5.1) is that by the two-fluid theory,
Egs. (5.2), we may calculate the flow field in the relaxation zone. Furthermore, the assump-
tions (1) and (2) for the single fluid theory, Egs. (5.1), will introduce some errors in the
analysis if k,o, z or z, is not negligibly small. Since the heat addition Q,, is proportional
to kjo, it is interesting to note that the flow will be unsteady for the steady uniform
entrance condition when k,o and then z, is sufficiently large. For a large value of k3o,
Egs. (5.2) would be more accurate than those of Egs. (5.1). At the final equilibrium con-
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dition far downstream, the dryness fraction 1, may be a constant but different from zero.
From Egs. (5.3); to (5.3), we may calculate a critical 1. such that M, = 1 for any
given large value of k,,. Hence, for A, > Ay, the steady state uniform solution will
always exist far downstream. We will not be able to determine this A, in the conventional
single fluid theory of Egs. (5.1). When Q,, > Q. -0r 15, < 4., we have to use Egs. (4.8)
to study the unsteady flow field. The results of the calculation of the unsteady flow field
will be reported in another paper.

6. Sound speed of a fluid in the coexistence state of its liquid and vapor

It should be noticed that the sound speed of the second fluid which may be a mixture
of the liquid and its own vapor behaves quite differently from ordinary gas in a certain
domain. Let us discuss briefly this point as follows:

The sound speed a of a medium is defined as

where V = % is the specific volume of the medium and subscript S refers to an isentropic

process. S is entropy.
In general, we may consider that the pressure is a function of the specific volume V
and the temperature 7T, i.e. p = p(V, T). Then

6 (&), (5).+ (Grl ).

The first law of thermodynamics gives for isentropic process

(63) TdS= (BU ) dT+[(aU ) +p]dV= C,dT+[(dU'") +p]dV= 0.

T av dv
From Eq. (6.3) we have
dT | au,,
e (@), <[5,
. GRAY a*S

Since WorT = ATV’ we have from Eq. (6.3)

ou,, dp
®3) (5, +2 = (%),
From Eqgs. (6.4) and (6.5) we have

T\ _ 6p)
B (5 ~={3x),

From Egs. (6.1), (6.2) and (6.6) we have

dp dp"r_ap l@pzT
&h & "’[(w) (d—r) f:]‘(a?)ﬁ?(ﬁ)ea-
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For a perfect gas with the equation of state
(6.8) p = ¢RT,
Eq. (6.7) becomes

(6.9) a? = RT(1+ ci) = yRT.

Equation (6.9) is the well-known result of the sound speed of a perfect gas.
In the coexistence region of the liquid and its own vapor, the pressure p is a function
of temperature only, and Eq. (6.7) becomes

1 (dp\ [ T\"
T =g ldmla)”

In this coexistence region, p = p(T) is given by the Clausius-Clapeyron equation (3.3).
Hence, from Egs. (3.3) and (6.10), we have

g ten)

Qo

e
If we consider the case near the saturated vapor line, o, ~ ¢ and g, € ¢, and L =~ constant,
Eq. (6.11) becomes

1 1/2
(6.12) a= L(—C'DT) 2
Now the sound speed of the medium is inversely proportional to VT rather than propor-
tional to /T in the case of a perfect gas.
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