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Two-fluid theo.-y of the condensation and evaporation effects 
in fluid flow 

s. I. PAl (MARYLAND) 

A Two-FLUID theory for the effects of condensation and evaporation in the fluid flow has been 
formulated. We consider a mixture of two fluids of which fluid 1 is a perfect gas while fluid 2 
may exist in its liquid, vapor or a mixture of a liquid and its own vapor state. A dryness fraction 
.A is introduced. When .A= 1, fluid 2 in gaseous state; when .A = 0, fluid 2 is in liquid state and 
when 0 < .A < 1, fluid 2 is a mixture of a liquid and its own vapor. A relaxation time 1). character­
izes the relaxation process of evaporation or condensation. With this formulation we may in­
vestigate the relaxation zone in the condensation shock in a supersonic wind tunnel as well as 
the unsteady flow region due to condensation and evaporation when the mass concentration 
of water in moist air is very high. The general fundamental equations of this two-fluid theory 
are given. A special case of one-dimensional unsteady nozzle flow with condensation and evap­
oration is discussed in details. Finally, the sound speed of fluid 2 is briefly analyzed: 

Sformulowano teori~ dw6ch plyn6w dla opisu zjawisk kondensacji i parowania w procesie 
przeplywu. Rozpatrujemy mieszanin~ dw6ch plyn6w, z kt6rych jeden jest gazem doskohalym, 
a drugi moze bye w stanie cieklym lub wyst~powa€ jako para albo mieszanina cieczy z jej par(l. 
Wprowadzono wsp61czynnik suchosci .A; gdy .A = 1, plyn 2jest w stanie gazow'ym, a gdy 0 < }. < 
< 1, plyn 2 jest mieszanin(l ciec?:y i jej pary. Czas r~la~sacji tA charakteryzuje relaksacyjny pro­
ces parowania lub kondensacji. Przy takim sformulowaniu mo:lemy rozpatrywac obszar relak­
sacji w kondensacyjnej fali uderzeniowej w nadd:Zwi~kowym tunelu aerodynamicznym, jak 
r6wniez obszar przeplywu niestatecznego pojawiaj(lcy si~ wskutek kondensacji i parowania 
przy wysokiej koncentracji wody w wilg<;>tnym powietrzu. Podano og6lne r6wnania podstawowe 
dla tej teorii. Szczeg61owo przeanalizowano szczeg6lny przypadek jednowymiarowego niesta­
tecznego przeplywu przez dys~ z uwzgl~dnieniem kondensacji i parowania. Przeanalizowano 
r6wniez pr~dkosc di:wi~ku w plynie 2. 

CcpopMyJIHpoaaHa TeopHH gayx >I<Hg~<ocreii MH onHCaHHH HBJieHHH KOHgeHCall;HH H ·Hcna­
peHH}f B npouecce TeqeHHH. PaccMaTpHBaeTCH CMeCb gayx )J<Hg~<OCTeH, H3 KOTOpbiX OgHa 
HBJIHeTCH HgeaJILHbiM ra30M, a BTOpaH MO>I<eT 6biTL-B >I<Hgi<OM COCTOHHHH HJIH BbiCTynaTL KaK 
nap HJIH CMecL >I<HgKOCTH c ee napoM. BaegeH K03cpcpHUHeHT cyxocrH .A; Korga .A = 0, >I<Hg­
KOCTL 2 HaxOgHTCH B ra30BOM COCTOHHHH, a I<Orga 0 < A < 1, >I<Hgi<OCTb 2 HBJIHeTCH CMeCLIO 
>I<Hg«OCTH H ee napa. BpeMH peJiaKcaUHH 1). xapaKTepHayeT peJiaKCaUHOHHbiH npouecc Hcna­
peHHH HJIH KOHgeHCaUHH. IlpH Ta~OH cpopMyJIHpOBKe MO>I<eM paCCMaTpHBaTb 06JiaCTb peJiaK­
cau~ B I<OHgeHCaUHOHHOH ygapHOH BOJIHe B CBepX3BYKOBOM a3pOgHHaM~eCKOM TYHHeJie, 
KaK TO>I<e 06JiaCTb HeyCTOH~BOrO TeqeHHH, llOHBJIHIO:I_UyiOCH BCJiegCTBHe KOHgeHcaUHH H HC­
napeHHH npH BbiCOKOH KOHUeHTpauHH aog~>I ao BJia>I<HoM aoagyxe. IlpHaegeHhi o6IUHe oCHoB­
Hbie ypaBHeHHH gJIH 3TOH TeOpHH. Ilogpo6HO npoaHaJIH3HpOBaH qaCTHbiH CJiyqaH OgHOMep.:. 
HOrO HeyCTOH~BOrO TeqeHHH qepe3 COllJIO C yqeTOM I<OHgeHcaUHH H HCnapeHHH. IlpoaHa­
JIH3HpOBaHa TO>I<e CKOpOCTb 3ByKa B >I<Hgi<OCTH 2. 

1. Introduction 

IN MANY practical fluid flow problems, the effects of condensation and/or evaporation 
are important. One of such problems is that associated with meteorology and another 
is the well-known condensation shock in a supersonic wind tunnel. If one considers 
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662 S.l. PAI 

the flow of moist air in a de Laval nozzle with an arbitrary degree of humidity, three dif­
ferent types of flow are observed [1, 2]: 

a) the· flow exhibits a steady and continuous behaviour; 
b) a steady shock occurs at the start of the condensation region, and 

· c) the flow becomes unsteady even though the boundary conditions are steady. 
There is no satisfactory theory to explain the possibility of these three different flow 

patterns, particularly the prediction of the starting point of condensation and the con­
ditions when the unsteady periodic processes set in. Most of the theoretical analysis, 
starting with the classical work of OswATITSCH [3] and those of WEGENER and his associates 
[4, 5], are concerned with both microscopic (formation of droplets) and macroscopic 
(continuous flow) points of view. It se6ms to the author that such analysis is rather in­
consistent and difficult to deal with. In the present paper this problem will be investi­
gated using the continuum theory only. By means of a relaxation time we formulate the 
problem using the two-fluid theory because the problem is quite similar to the well-known 
analysis of flow with chemical reaction in which a relaxation time is used. In our approach 
the effects of both condensation and evaporation will be considered depending on whether 
A. is increasing (evaporation) or decreasing (condensation). We are going to discuss first 
the essential features of our two-fluid theory in Sect. 2 and then the fundamental equations 
of this theory il:l Sect. 3, and finally the application of this theory . to the steady and the 
unsteady ·flows in the one-dimensional nozzle flow of moist air in Sects. 4 to 6. 

2. Essential features of the two-fluid theory of condensation and evaporation effects in a fluid 
flow 

We consider the flow of a mixture of two fluids, i.e. fluid 1 and fluid 2. Fluid 1 is always 
in the gaseous state in the whole flow field and subscript 1 or a is used for the value of 
any flow variables of fluid 1. Fluid 2 may be in vapor, liquid or coexistence of liquid and 
vapor state and subscript 2 or w is used for the value of any flow variables of fluid 2. For 
each of these two fluids we have, in general, six flow variables: 3 velocity components 
and three state variables, i.e., 

For fluid 1 we have q1 (u1 , v 1 , w1), p 1 , (h, T1 ; and 
for fluid 2 we have q2 (u2 , v2 , w2 ), p 2 , e2 , T2 (or A), 

where q is the velqcity vector with u, v, w as, respectively, the x-, y- and z-component 
of the veloci~y vector; p is the pressure, e is the density and T is the temperature. For 
fluid 2, because of the phase change in the flow field, it is convenient to introduce a dryness 
factor A. such that 

(2.1) 

where V= Ife IS the specific volume of the fluid and the value of A. lies between 0 and 1 
in the following manner: 

when 

(2.2) 
T > T ,(p), 
T < Ys(p), 
T= Ts(p), 

A. = 1' 
A.= 0, 
0~.1.~1. 
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TWo-FLUID THEORY OF THE CONDENSAllON AND EVAPORATION EFFECTS 663 

The saturated temperature of fluid 2, Ts, is a given function of the pressure p. Even though 
we use seven variables for fluid 2, at any given point in the flow field, only six variables 
of fluid 2 are independent variables. 

For the two-fluid theory we have to distinguish the species density from the partial 
density [6]. Let us consider an element of the mixture of fluid 1 and fluid 2 with the total 
mass M = M 1 +M 2 and total volume V = vl + v2 . The value for the mixture is that 
without subscript. 

The species density of fluid is 

Ml 
(2.3) el = --=- = ea 

vl 
and the species density of fluid 2 is 

(2.4) 

The partial density of fluid is 

(2.5) 

and the partial density of fluid 2 is 

(2.6) - M2 z e2 = -=- = ew, 
V 

where 

(2.7) Z = ~2 
= volume fraction of fluid 2 in the mixture. 

V 

In the fundamental equations of the two-fluid theory, the partial density is always used. 
The total density of the mixture is 

(2.8) 

The total pressure of the mixture is 

(2.9) 

Since fluid 1 is always in the gaseous state, we assume that the perfect gas law holds for 
fluid 1, i.e. 

(2.10) 

where R 1 is the gas constant of fluid I. 
From Eqs. (2.9) and (2.10) we have 

(2.11) P2 = Zp. 

In our two-fluid theory it is convenient to use the following thirteen variables: 

(2.12) 
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3. Fundamental equations · for the two-fluid theory with condensation and evaporation 
effects 

We have, in general, thirteen fundamental equations for the thirteen variables of 
Eq. (2.12). These fundamental equations are as follows: 

1. Equation of state of fluid l is the perfect gas law of Eq. (2.10). i.e. 

p = rhRtT1 • 

2. Equation of state offluid 2 is given by Eq. (2.1) in terms of the dryness fraction A, 
i.e. 

_1_ = _1_ +A(- 1 _ _ 1_ ) = V2(T2,p, A). 
!]2 (!L ev eL 

If the temperature T2 of fluid 2 is larger than Ts(P ), we have A = I and Eq. (2.1) becomes 

(3.1) 

where Rv is the gas constant of the vapor of fluid 2. We assume that the vapor obeys the 
perfect gas law as a first approximation. If the temperature T 2 is less than Ts(p), 

we have A= 0 and 

(3.2) e2 = eL = COnStant. 

Here we assume that the density of fluid 2 in liquid state is a constant. 
When T2 = Ts(p), A lies between 0 and I, and there is a definite relation between 

T 2 and p, i.e. the Clausius-Clapeyron relation [6]: 

(3.3) ( :H = _ __ L __ _ 

(
_I _ _ I ) 1's 
ev eL 

where L is the latent heat of evaporation of fluid 2 which is a function of .the saturated 
temperature Ts. 

3. Equation for dryness fraction A 

(3.4) 

where V = i 0~ + j :x + k :z is the gradient operator and Ae is the equilibrium value 

of A which is a function of the species density e2 and the saturated temperature Ts(P ), 
i.e. 

(3.5) e2 eLs 1 ( -:I _ ____;:......,I_ = ll.e e2 ' Ts)' 

evs eLs 

where the subscripts .refers to the value at the saturated temperature Ts so that eLS and 
evs are respectively the density of the saturated liquid and that of the saturated vapor 
of fluid 2. Both {)Ls and {)vs are functions of the saturated temperature Ts only. 

http://rcin.org.pl



TWO-FLUID THEORY OF THE CONDENSATION AND EVAPORATION EFFECTS 665 

We introduce for the macroscopic theory a characteristic time or a relaxation time t;. 

for evaporation (when A increases) or condensation (when}~ decreases). For a first approxi­
mation we may assume that 1;. is a constant for a given problem. The value of 1;. may be 
determined experimentally. For 1;. = 0 we have A = Ae, the equilibrium flow of evapora­
tion or condensation. For t;. = oo, we have A = constant, the frozen flow of evaporation 
or condensation. The concept of the relaxation time 1;. is similar to that in the flow with 
chemical reaction. 

4. The equation of continuity of fluid 1 is 

(3.6) 

where qt = Qa and we assume that the source function of fluid I is zero, i.e. aa = 0. 
5. The equation of continuity of fluid 2 is 

(3.7) 

We also assume that the source function of fluid 2 is zero, i.e. a2 = 0. In general the 
density (h is given by Eq. (2.1). 

If we add Eqs. (3.6) and (3. 7), we have the equation of continuity of the mixture of 
fluid 1 and fluid 2 as follows: 

(3.8) ~; + v · (eq) = o, 

where e is the density of the mixture which is given by Eq. (2.8) and the velocity vector 
of the mixture as a whole, q is defined as follows: 

{3.9) 

Now we define a mass concentration of fluid 2 in the mixture as 

{3.10) 

and the mass concentration of fluid 1 is k 1 = 1-k2 • We also define the diffusion velocity 
of the r-th species as w, i.e. 

{3.11) 

Substituting Eqs. (3.10) and (3.11) into Eq. (3.7), we have the diffussion equation for 
fluid 2 as follows: 

(3.12) oek2 ----at +V· (k2eq) = -V•(k2ew2). 

From Eqs. (3.9) and (3.11) we find the following relation between Wa and w2 : 

(3.13) 

From Eqs. (3.8), (3.10), (3.12) and (3.13) we have 

(3.14) 
Dk2 e Dt- = V · [ ( 1 - Z) ea w a1 . 

http://rcin.org.pl



()66 S. I. PAl 

The diffusion velocity may be expressed in terms of the diffusion coefficient Da
2 

between 
tluid a and fluid 2 as follows: 

(3.15) 

where Ca is the number concentration of the gaseous species a in the mixture, i.e. 

(3.16) C = !!!!__ 
a ' n 

where na is the number density of the gas a and n is the number density of the mixture'. 
With the help of Eq. (3.15), the diffusion equation (3.14) becomes 

(3.17) 

If -the diffusion velocity is negligible, Eq. (3.17) becomes 

(3.18). Dk2 = O 
Dt 

or 

(3.18h k 2 = constant. 

When the diffusion phenomenon is negligible, the mass concentration k 2 is a constant 
in the whole flow field even if we have phase change. Since ka + k 2 = 1, the mass con­
centration of the gaseous species is also a constant when the diffusion phenomenon is 
negligible. 

6. The equation of motion of fluid a is 

(3.19) ( 1 - Z) ea ~~a = - (1- Z) V p +V · Ta + F ba +Fa, 

where Ta is the viscous stress tensor of the fluid a; Fba is the body force of fluid a, such as 
the gravitational force, and F~ is the interaction force between fluids a and 2. We may 
write 

(3.20) 

The interaction factor KF depends on the flow conditions between the two fluids a and 2 
(see Ref. [6]). 

7. The equation of motion of fluid 2 is 

(3.21) ·Ze2 i: = -ZVp+V · r2+Fb2 -Fa, 

where T 2 is the viscous stress tensor of fluid 2 and F b
2 

is the body force on fluid 2. 
We may obtain the equation of motion of the mixture by adding Eqs. (3.19) and 

(3.21). The final equation of motion of the mixture would be identical in form as that 
of the single fluid theory if we define a proper viscous stress tensor of the mixture including 
the effects of diffusion velocity (see reference [6]). 
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Two-FLUID THEORY OF THE CONDENSATION AND EVAPORATION EFFECTS 667 

8. Equation of energy · of fluid a is 

(3.22) !
1 
[(1-Z)e.(u •. + ~ q~+<P.)]+ L [(1-Z)e.u~(u~+ ~ q:+<P.) 

-u~ r~1 + 611u~p.-Q!.] = Kr(T2- T.)+ '•• 

where Uma is the internal energy per unit mass of fluid a. For simplicity, we may assume 
Uma = Cva Ta where the specific heat at a constant volume for fluid a may be assumed as 
a constant; qa is the magnitude of the velocity vector of fluid a and l/Ja is the potential 
energy f)er unit mass of fluid a. Q~a is the j-th component of the heat conductive flux 

·of fluid a such that Q~a = - Ka ~ T~ and Ka is the coefficient of heat conduction of fluid a; 
ux1 

KT is the thermal friction coefficient between fluids a and 2; Ea is the energy source of 
fluid a and bii = 0 if i =F j and bii = 1 if i = j. 

9. Equation of energy of fluid 2 is 

(3.23) :t [ Ze2 ( U., + ~ q~ +<P2)] + 0~1 [ Ze2ui ( u., + ~ qh <P2) -u~ r:/ 

+ 611u~p2 -Q~,] = Kr(T.- T2)+ •2· 

The symbols in Eq. (3.23) have the same meaning as those in Eq. (3.22) except that sub­
script 2 refers to the corresponding values for fluid 2. 

We may obtain the energy equation for the mixture by adding Eqs. (3.22) and (3.23). 
The final form of the energy equation of the mixture will be identical in form as that of 
the single fluid theory if we define the proper internal energy and the heat conductive 
flux of the mixture by including the effects of diffusion velocities. 

We are going to solve Eqs. (2.1), (2.10), (2.16), (3.6), (3.7), (3.19), (3.21), (3.22) and 
(3.23) for the variables ea, (]2, z;p, qa, q2 , Ta, T2 and}. with proper initial' and boundary 
conditions. Equations (3.6) and (3. 7) may be replaced by Eqs. (3.8) and (3.17). 

4. One-dimensional unsteady inviscid flow through a nozzle with condensation and evapora­
tion effects 

We a~e going to apply our fundamental equations of Sect. 3 to a special case of one­
dimensional flow of moist air through a de Laval nozzle with a given cross-sectional 
area A(x) from a reservoir of constant pressure Pr at constant temperature Tr with a specific 
humidity: 

The x is the distance along the axis of the nozzle. We shall consider only the main effect 
of heat release or absorption due to the condensation or the evaporation of the water 
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in the mixture in the flow field. Hence we may neglect the e"ffects of viscosity, heat conduc­
tion and diffusion phenomena. 

Our variables are: 
1) p - pressure of the mixture, 
2) T = Ta = T w - temperature of the mixture, 
3) f! - density of the mixture, 
4) U = Ua = Uw- velocity of the mixture in the direction along the axis of the nozzle, 
5) z - volume fraction of the water in the mixture, 
6) A - dryness fraction of the water. 

Here we assume that the flow is in equilibrium as far as the fluid dynamic vari~bles are 
concerned, i.e. U = Ua = Uw and T = Ta = Tw, where subscript a refers to the value 
of the air and subscript w refers to the value of the water which may be in vapor, liquid 
or coexistence of vapor and liquid. Without the diffusion effect, k 2 = k 20 is a constant 
in the whole flow field. Hence the volume fraction z is related to the other variables by 
Eq. (3.10). 

For one-dimensional unsteady flow of moist air in a de Laval nozzle, the fundamental 
equations for the six variables, p, f! , T, U, Z and A are as follows: 

(4.1) 

where 

(4.2) 

f!RM T 
p = 1-Z' 

iJe I iJeuA - o 
Tt + A--ax - ' 

iJu iJu iJp 
f! Tt +eu -ax = - ax' 

f! iJU m + f!U ~fj m = _IJ_ (~g_ +u j_g_), 
iJt iJx f! iJt iJx 

iJA iJA 1 
- +u - = - (A -A) 
iJt iJx t;. e ' 

and Ra is the gas constant of the air. 
The internal energy of the mixture per unit mass is 

(4.3) 

where the internal energy of the water per unit mass is 

(4.4) 

and Umwl = Cvwl T is the internal energy per unit mass of the water in the liquid state, 
and _Umwv = Cvwv T is the internal energy per unit mass of the water in vapor state: Cvwl 

and' Cvwv are respectively the specific heat at constant volume of the water in liquid and 
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in vapor state . . For simplicity, we may assuine Cvwl and Cvwv as constants for a first ap­
proximation. 

Equation (4.1) should be solved for given initial and boundary conditions. In order 
to demonstrate the special feature of our two-fluid theory, we consider the foliewing 
case: 

We have a de Laval nozzle of a give'?- cross section. 
At the entrance section, x = . 0, we have a uniform flow of moist air wit~ the following 

values. We denote the value of the flow variables· at x = 0 by a subscript 0. 
I. A.0 = 1. The water is in the vapor state. 
11. The mass concentration k 20 is given and it will remain at this yalue in the whol~ 

flow field. 
Ill. The pressure is kept at the value p0 for ·all times. 
1V. The temperature is kept at the value T0 and T0 > T11(p0 ) where T8 (p0 } is . the 

saturated temperature of the water at p0 • 

V. The density of · the mixture is eo, i.e. 

(4.5)1 (!o = (1-Zoh>~~o+Zof!wo· 

The species density of the air (!110 is given by Eq. (2.10), i.e. 

We assume that the species density of the water vapor also satisfy the perfect gas law 
(2.1,0), i.e. 

(4.5)3 _ . "' Po 
f!wo - f!wvo = R T. · 

. V 0 . 

The volume fraction of the water vapor at the entrance section is then 

(4.5) ... 
k 

Rv 
20-

Zo = k2of!o = ____ R_, 
f!wo --y. 

(l-k2o)+k2o y 
tl 

At the exit section, x = b, there might be a steady uniform state( or not. We will check 
whether such a steady uniform state exists or not in Section 5: The values of the .flow 
variables at the exit section are denoted by a subscript oo. These values may be a function 
of time if a steady uniform state does not exist. 

I. Aoo may be a given constant or a function of t 'but its value lies between 0 and 1. 
11. The pressure at the exit is Poo while the temperature is Too. We have the following 

relations between Aoo, Poo and Too : 

A00 = 1 ,, 

Too ~ Ts{poo), 0 ~ Aoo ~ 1, 

Aoo = 0. 

Ill. The density of the mixture at the exit is 

(4.6h 

9 Arch. Mech. Stos. nr 5-6/82 
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where 

(4.6h 

and 

Poo 
f!a oo = Ra Too ' 

--=-- +A. -----1 1 ( 1 1 ) 
f!woo f!wloo 

00 
f!wv oo f!wloo • 

S. I. PAI 

When 0 ~ Aoo ~ 1, f!wL = (!wL(Ts)- the density of saturated liquid of water and (!wv = 

= (!wv(Ts)- the density of the saturated vapor o:r water. When Aoo = 0, (!woo = (!wLoo 

and when Aoo ~ 1, (!woo = (!wvoo • 

IV. The volume fraction of the water in the mixture is 

Zoo = k2o (loo • 
f!woo 

V. The internal energy of the mixture Umoo is 

(4.6) 

where 

(4.6h 

(4.6)s 

The relation Ts(Poo) is given by Eq. (3.3). 
It .is convenient to reduce Eqs. (4.1) and (3.3) in terms of the nondimensional forms 

by introducing the following nondimensional variables: 

- X 
X=b' 

- (! 
(! = - , 

(!o 

- p 
p= - , 

Po 

- T 
T= ­

To' 
(4.7) 

Um 
.Um=cr, 

1/11 0 

- ew 
f!w = - , 

(!o 

- L 
L=RT, 

w 0 

where the bar refers to the nondimensional quantities. 
Substituting Eqs. (4.7) into Eqs. (3.-3) and (4.1), we have 

_ __ f (1-Zo) 
p- e (1- Z) ' 

oe _ oe _ ou e u dA 
Tt - u ox - e ox - A ax ' 
ou ou 1 1 op 
ot -u ox - YaM~ (! ox' 

(4.S) off m - oUm (1.- kio)(ya-1) p ( ou 1 dA) 
~ = -u ox - (1- Z 0) e ox +A dx ' 

oA. 
nt -ii ~~ + R1 (A.e- A.), 

vX tl 
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(4.8) z = k_:oe , 
(cont.) ew 

where 

(4.9) 

- R 
L(1- Z0) R~ 

a 

--- - --- Ys(l- k2o) ( 
1 1 ) ' 

ewvs ewls 

Uo 
Mo= 

YYoPo/eo 

671 

and a0 = y' y 0 p 0 /eo is the sound speed of the mixture when both z and k20 are negligibly 
small. In general, the sound speed of the mixture is different from a0 (see Ref. [6]): 

(4.10) R - t;.Uo 
tJ.- -b- ' 

where Ro. is the nondimensional relaxation time for condensation and evaporation. 
From Eqs. (4.8) we see that the important nondimensional parameters in our problem 

are: 
1. The initial Mach- number M 0 • 

2. The nondimensional relaxation time for condensation and evaporation R,;.. 
3. The mass concentration of water in the mixture k20 • 

4. Ttie nondimensional latent heat of water L. 
We may calculate the one-dimensi9nal unsteady or steady flow u11der various values 

of M 0 , Ra, k 20 ar:td L for given initial and boundary conditions. Before one makes any 
numerical calculations, one should investigate the problem whether there is another 
steady u~iform state at a section far downstream for a given uniform state at the en­
trance section. To investigate the possibility of a steady uniform state far downstream, 
it is convenient to solve this problem by comparing the analysis of our two-fluid theory 
with the conventional single fluid theory. 

5. Comparison of the two-fluid theory with the conventional single fluid theory 

In the conventional single fluid theory of our problem [1], only the heat addition 
effect due to condensation is studied. To compare our theory with the corresponding 
single-fluid the0ry, we first reduce Eqs. (4.8) into forms similar to the corresponding 
single fluid theory with heat addition. For simplicity, .in this section, we consider the case 
of a nozzle with a constant cross-sectional area; i.e. A (x) = constant. 

In the ordinary single theory; the following approximations are usually made: 
1. The volume fraction of the water is assumed to be negligibly small, i.e. z ~ 0, 

z0 ~ 0. 
2. The density of the mixture (! is approximately equal to that of the air, i.e. e ~ (!a, 

RM~Ra. 

9* 
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3. We do not calculate how the dryness fraction A varies in the flow field, · that is, we 
do not calculate the relaxation zone of conde!lsation and evaporation but consider the 
limiting equilibrium cases before and after the relaxation zone. Hence we take A = Ao = 1 
before the ralaxation zone and A = Aoo = 0 after the relaxation zone. 

Wi_th the above assumptions, · for the case of steady flow, Eqs. (4.8) are reduced to 
the following forms: 

p =eR, T, 

e,u = e,oU'o = constant, 

(5.1) e,u2+p = e,0u~+Po = constant, 

1 2 1 2 k 
H,~Tu = H,o+Tuo+ 2oL, 

where 

(5.2) L = Hwvo-Hwl 

is the latent heat of cpndensation of water in the mixture and His the enthalpy. Equations 
(5.1) are the equations of the single fluid theory [I] with heat addition due to the· conden­
satino of water vapor, Qw = k20 L. It is well known that if the initial Mach number M 0 

is...-supersonic, for a given Qw below a critical value Qwc' the final Mach number Moo 
decreases with the increas~ of Qw and when Qw = Qwc, Moo = 1. When Qw > Qwc~ there 
will be no steady state solution for the flow in this nozzle (see Ref. [1]). 

The corresponding steady state equations of our two-fluid theory are as follows: 

·(!RMT. 
p = 1-Z ' 

eu = (!oUo = Constant, 

eu2+p = eou~+Po = constant, 

(5.3) k2oUmv+(1-~0)Cv, T+l!_.+ 
2
1 

u2 = c'onstant . e 

= k2oUmwv+(l-k2o)Cv, To+~+ 
2

1 u~, 
. eo 

oA 1 
u- =-(A -A) 

OX t). e ' 

z _ ·· k2o!! · 
- ew{p, T, A). 

The main difference between Eqs. (5.2) and (5.1) is that by the two-fluid theory, 
Eqs. (5.2), we may calculate the flow field in. the relaxation zone. Furthermore, the assump­
tiens (1) and (2) for the single fluid tl~eory, Eqs. {5.1), will · introduce some errors in ·the 
analysis if k 20 , z or z0 is not negligibly small. Since the heat addition Qw is proportional 
to k20 , it is interesting to note that the flow will be unsteady for the steady uniform 
entrance condition when k2o· and then Zo is sufficiently large. For a large value of k2o, 
Eqs. (5.2) would be more accurate than those of Eqs . . (5.1). At the final equilibrium con-
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clition far downstream, the dryness fraction Aoo may be a constant but different from zero. 
From Eqs. (5.3)1 to (5.3)4 we may calculate . a critical Aooc such that M 00 = 1 for any 
given large value of k 20 • Hence, for Aoo > Aooc, the steady state uniform solution will 
always exist far downstream. We will not be able to determine this Aooc in the conventional 
single fluid theory of Eqs. (5.1). When Qw ·> Qwc··or Aoo < Aooc, we have to use Eqs. (4.8) 
to study the unsteady flow field. The results of the calculation of the unsteady flow field 
will be reported in another paper. 

6. Sound speed of a fluid in the coexistence state of its liquid and vapor 

It should be noticed that the sound spee.d of the second fluid which may be a mixture 
of the liquid and its own vapor behaves quite differently from ordinary gas in a certain 
domain. Let us discuss briefly this point as follows: 

The sound speed a of a medium is defined as 

(6.1) 

where V = _!._ is the specinc volume of the medium and subscript S refers to an isentropic 
(! 

process. S is entropy. 
In general, we may consider that the pressure is a function of the specific volume V 

and the temperature T, i.e. p = p(V, T). Then 

(6.2) 

The first law of thermodynamics gives for isentropic process 

(6.3) ras = ( 
0
0u; ).aT+ WauV L +P ]av = c,dT+ [( ~r; L +P] av = o. 

From Eq. (6.3) we have 

(6.4) 

. o2S o2S 
Smce iJVoT = oTav·, we have from Eq. (6.3) 

(6.5) (aum) (dp) a-v r + P = T dT v • 

From Eqs. (6.4) and (6.5) we have 

(6.6) (~~).= -(~~).~. 
From Eqs. (6.1), (6.2) and (6.6) we have 

(6.7) a2 = _ y2 [(!!!!___) _ (!!!!__)
2 _I_] = (!!!_) +_I (~)

2 

_!_ 
dV T dT Cv 0(! T (! 2 oT Q Cv . 
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For a perfect gas with the equation of state 

(6.8) p = eRT, 

Eq. (6.7) becomes 

(6.9) a2 
= RT(l+ ~J = yRT. 

Equation (6.9) is the well-known result of the sound speed of a perfect gas. 
In the coexistence region of the liquid and its own vapor, the pressure p is a function 

of temperature only, and Eq. (6.7) becomes 

(6.10) a=__!_(~) (_!_)112. 
e dT Q Cv 

In this coexistence region, p = p(T) is given by the Clausius-Clapeyron equation (3.3). 
Hence, from Eqs. (3.3) and (6.10}, we have 

(6.11) a- -
( 

(!v) L ( 1 )
1

/
2 

- e (I _ :: ) C. T 

If we consider the case near the saturated vapor line, (!v ~ f! and (!v ~ e L and L ~ constant, 
Eq. (6.11) becomes 

(6.12) - ( 1 )1/2 
a- L C T 

V 

Now the sound speed of the medium is inversely proportional to J/T rather than propor­
tional to vr in the case of a perfect gas. 
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