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On experimental two-dimensional models of intercrystalline sli.ding 
and fracture in polycrystalline metals(*} 

W. SZCZEPINSKI (WARSZAWA) 

SIMPLE experimental models of polycrystalline structure of metals composed of rigid hexagonal 
elements forming a regular aggregate are proposed in order to simulate intercrystalline sliding 
and fracture. The grain boundaries are simulated by layers of solid lubricate between adjacent 
hexagons or by rows of holes prepared in a solid block <'f a ductile metal. The behaviour of 
these models is compared with the properties of an analogous theoretical model. 

Rozpatrzono proste doswiadczalne modele struktury polikrystalicznej zloi:one ze sztywnych 
szeSciok(ltnych element6w tworZ'lcych regularny uklad. Modele · te symuluj(l mictdzykrysta­
liczne poslizgi i ~kanie w metalach. Granice ziaren SCl w tyob modelach syrnulowane przez 
warstwy stalego smaru umieszczonego mi~zy S(lsiednimi szeSciokCltami, albo przez szeregi 
otwor6w wykonanych w bloku z ci(lgliwego metalu. Zachowanie sict tych modeli por6wnano 
z wlasnoSciami analogicznego modelu teoretycznego. 

PaccMoTpeHbi npoCTbie 3I<cnepHMe.HTaJILHbre Mo~eJIH noJIHI<pHcra.mmqeci<oH: CTpyi<Typbi, 

COCTOHI.I.Uie H3 >KeCTI<HX IIIeCTicyi'OJibHbiX 3JieMeHToB, o6pa3yroli.UIX peryJIHPHYIO CHCTeMy. 

3TH MO~eJIH HMHTHPYIDT Me>KI<pHcra.mmqeci<He CI<OJib>KeHWI H paCTpeCI<HBaHIDI B MeTamiax. 

rpaHHUbi 3epeH B 3THX MO~e.JUIX HMHTHPYIDTC.fl CJIOHMH TBep~OH CM83I<H, noMe~eHHOH Me>K,Zzy 

COCeAHJ~MH IIIeCTHyrOJibHHI<aMH, HJIH pH~aMH OTBepcrHif, H3rOTOBJieHHbiX B 6JIOI<e H3 THry­

qero MeTaJIJia. lloBe~eHHe 3THX MO~eJieH cpaBHeHo CO CBOHCTBaMH aHaJIOrwniOH TeopeTH­

'lJeCI<OH MQ~eJIH. 

1. Introduction 

THE PHENOMENA of plastic deformation and t):_ac;ture of polycrystalline metals are very 
complex and still not fully examined. Depending on the temperature and the rate of defor­
mation, various mechanisms of deformation may be responsible for the particular behav­
iour of the material under given circumstances. Grain interior deformation and grain 
boundary. sliding may contribute to the plastic strain of the polycrystalline. aggregate, 
while transgranular 'rracture 0~ intercrystalline void formation may lead to the frac­
ture of the aggregate. The mechanism of intergranular fracture has been -,videly 
discussed in papers devoted to the creep phenomenon in metals (see [1, 2]). However, 
it is observed (see -for example [3)) that in some alloys the gener~tion of grain boundary 
cavities is connected with the plastic strain and not necessarily with the creep deformation. 
For example, intergranular fracture has been observed in wolfram tested in simple tension 
at the temperature of 2200°C [1]. · 

In order to obtain a deeper insight into the mechanism of the formation of intercry­
stalline voids and of plastic deformation of the polycrystalline aggregate due to grain 

(*)The paper was presented at the IUTAM Symposium on Crack Formation and Propaaation held 
in Tuczno (Poland) on March 23-27, 1981. 
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boundary sliding, two-dimensional models were considered. in several works, for example 
in [5, 6]. These works were devoted to the analysis of the growth of grain boundary cav­
ities during creep and were connected with the diffusional cavity growth rates. A similar 
model was used in· [7], for the analysis of strength of sintered carbides. 

In the present work similar two-dimensional models composed of rigid hexagonal 
elements will be used in order to study possible mechanisms of plastic deformation of 
polycrystalline·aggregates due to grain boundary sliding and intercrystalline void formation 
leading to the softening of the plastically deformed aggregate. 

2. Experimental model of intercrystalline sliding and fracture 

The possible role ·of iptercrystaHine sliding and fracture can be demonstrated to some 
extent with the·simple two-dimensional model composed of rigid hexagons joined together 
by layers of solid silicon lubricate (Fig. la), and located on a glass plate. In order to avoid 

a b 

. Solid lubricaTe 

FIG. 1. 

contact ·of the lubricate with the plate, the hexagons were designed in the manner shown 
in Fig. lb. Their cylindrical part (of the radius R = ay3 /2) was in contact with the plate. 
Since the thickness s of the layer of the lubricate is small as compared with the length 
a of the side of each hexagon, the models simu\ate to a certain degree grains and grain 
boundaries of a polycrystalline aggregate. 

Consecutive stages of deformation of the model under compression followed by ten­
sion ~re shown in Fig. 2. Figure 2a shows the initial configuration when hexagons are 
joined together by the thin layers of the lubricate along all five contact edges. The three 
following sketches demonstrate how a gap along the vertical boundary AB (Fig. 2d) is 
formed after the loading 'cy~le. Tlie adhesion of the l~bricate was not restored along AB, 
while along the remaining four inclined poundaries the adhesion was not damaged by 
the relatiye sliding of the hexagons. Thus the sliding process . along these boundaries is 
kinematically reversible, while along AB the process of separation is irreversible. 
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FIG. 3. 
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I 

In- a similar way a crack along AB is formed during the loading by tension in a hori-
zolital .direction followed by compres.sion in the same direction (Fig. 3) (1). 

3. Theoreti,cal model of intercrystalline sliding and fracture 

Let us co~sider now a theoretical model forming a regular array composed of n hexa­
gons in horizontal rows and m hexagons in vertical rows as shown in Fig. 4a (in the par­
ticular case shown iti the figure we have m = n = 3). As in the previous experimental 

a py 
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b•naV3 +(n-1)o 

model, the hexagons are assumed to be joined togetherj by thin layers ·of thickness s simu­
lating the grain ·boundaries. Let the model be loaded by the two-dimensional state of 
stresses p 1 and p2 such that deformation of the type shown in Fig. 4b takes place. 

The hexagons are taken as rigid and the ratio sja is assumed to be small. The material 
of the· layers b~tween hexagons is taken as rigid-plastic. Figure 5 presents in enlarged 
scale a · configuration of foqr hexagons after deformation, defined by\ the distance c be­
tween vertical edges (c > s). Let us assume that inside each layer between the hexagons 
there exists a system of voids or cracks perpendicular to the edge of the respective hexagon. 
Thus the layer may 15e tr~ated as a system of discontinuous individual elements of limited 
strength in tension. Therefore the stress along the boundary AB perpendicular to the 
direction of·elongation of the aggregate may be taken as uniformly distributed up to the 
limit value c0 of the distance c betwe~n the edges of the two adjacent hexagons by which 

(1) Such processes of deformation of the model have been demonstrated with the use of an overhead 
. projector at the IUTAM Symposium on Crack Formation and Propagation held in Tuczno Poland on · 
· ,.~M~ch 23__!..21, 1981, and at the 3rd Intemationa·l Seminar on Inelastic Analysis and Life Prediction held 
_: in .Paris, August 24-2S, 1981. 
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FIG. 5. 

the .cohesion forces decrease to zero. This means that at c = c0 total separation along 
AB takes place. Let q(c) be the cohesive force per unit length along AB for s ~ c ~ c0 • 

Now we can write the expression for the specific energy y required to separate adjacent 
hexagons along AB: 

eo 

y = J q(c)dc. 
9 

Along the inclined surfaces shear deformation takes place as shown in Fig. 5. The 
shear strain in each of the inclined layers may be approximately defined as 

). = __!__ c-s __ 1_ (~-l) 
2 s y'3 - 2 y'3 s . 

Thus it is equal to one half of the shear angle (c-s)/(s y'3). This shear strain in the inclined 
layer is directly connected with the average strain e2 of the model in the horizontal direc­
tion. The relation between ). and e2 resulting .from geometrical considerations .may be 
written as 

(2.1) c-s = 2Au, 
s+a y3 

where 

(2.2) U= 

is a structural parameter of the model. 

s 
~­

a 

Let us assume a linear strain hardening relation between the shear stress t on the in­
clined surface of each hexagon and the average strain e2 in the form 

(2.3) t = t0 (1 +re2), 
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where r = t 1 /t0 is the strain hardening factor . of layers undergoing shear deformation 
(see Fig. 6). 

Now we can write the equation of virtual work, which for s ~ c < c0 may be written 
as 

L1c 
(2.4) p2 10 (n -l)L1c-P1 bo---;=-

Jt3 

= [m(n-2)+ (m-l)(n-l)]aq(c)Lic+4(m-l)(n-l) ~; 10 (1 +re2 ) (a- ;; )· 
where, according to Fig. 4a, we have 

(2.5) 10 = a(3m-I), b0 = nay3. 

L.....----L---------
t.z 

FIG. 6. 

For simplicity the latter expression for /0 and b0 have been written ignoring the thickness 
s of the layers between hexagons. Since s is very small compared with the length of the 
side of hexagons, such a simplification is justified. 

Introducing Eq. (2.5) into Eq. (2.4) we obtain the yield condition for the initial stage 
of deformation of the model (for s ~ c < c0 ): 

(2.6) p2(3m-I)(n-I)-p1 n(m-1) = [m(n-2)+(m-l)(n-l)]q(c) 

+ y'; (m-l)(n-1)(1 +re2) ( 1- :a e2) lo. 

The . cohesion force per unit length along AB changes its value from q0 at the begin­
ning of the deformation process (c = s) to zero for c = c0 • Therefore the right hand side 
9f the yield condition (2.6) changes its value from 

[m(n-2)+(m-l)(n-I)]q0 + 4_ (m-l)(n-l)(l+re2)(1-_!_e2 ) t0 y3 ~a 

for c = s, to the value 

y'; (m-l)(n-1)(1 +re2) ( 1- :a e2 ) I~ 

for c = c0 • Thus our model displays the phenomenon of the upper and lower yield point 
at the beginning of deformation. This will be shown later on in Fig. 9 in which the stress­
strain diagram for uniaxial tension by the stress p2 is presented. 
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At the moment when c = c0 the yield condition may be written in the approximate 
form 

(2.7) 
n(m-1) 4 m-1 

p 2 -p1 (3m-l)(n-l) = t/3 3ni-I to. 

Assuming that c0 is small, we neglect the small amount of hardening in the inclin~d con­
tact layers. 

Equation (2. 7) shows how strongly the yield locus of the model depends on the number 
of hexagons forming the aggregate. For uniaxial tension by the stress p 2 we obtain 

(2.8) 

m-1 i 
3m-1 · ·1 L __ 

10 

4 m-1 
P2 = l/3 3m-1 to. 

2f) 30 

FIG. 7. 

40 

Figure 7 shows how the factor (m- l)/(3m-l) changes with the increasing number m 
of hexagons in vertical rows. It is clearly seen that the larger the number of hexagons, 
the higher the yield point of the aggregate. So if we compare two aggregates of the same 
external dimensions, the one composed of a larger number of hexagons with small length 
of the side a will be stronger than the other co:mposed of a smaller number of larger hexa- . 
gons. This corresponds to the well-known property of technical metals. Structures of 
metals with fine grains behave better than those with coarse grains. 

The yield condition (2. 7) is presented on the stress plane p 1 ~ p 2 in -Fig. 8. The lower 
line corresponds to the smallest possible number of hexagons forming the model (n = 2, 
m = 2), while the upper line corresponds to m = n = oo. 

FIG. 8. 
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For the adva~ced stage of deformation (for c > Co) the equation of virtual work 
takes the form . 

where, according to Fig. 4b, 

I= a(3m-1)+ (m-1) ~-, b = na y3 + (n-1)c. 
}'3 

Thus the yield condition for the advanced stage of deformation is 

(2.10) p2 [(3m-1)+(m-1)~~] (n-1) y3 a 

-p. [n ¥3 +(n-1) :] (m-1) ~ = ~ (m-1)(n-1)(1 +re2 ) (1- :a e2) t0 • 

Taking into account. Eqs. (2.1) and (2.2), we can write 

-
Since "is small as compared with y3, we can write with sufficient accuracy 

Finally the yield condition (2.10) may be written in the following approximate form: 

1 [n+(n-l)e2](m-1) 4 (m-1)(1+re2)(1-e2) 

(2.1l) . p 2 - n-1 (3m-1)+(m-l)e2 Pl = y3 (3m-1)+(m-1)e2 to. 

£1 
to 

1.0 

0.2. 

A - upper yield point 
8.- lower yield point 

/ as 1.0 ez 

· FIG. 9. 
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Let us consider a particular case of uniaxial tension by the stresses p 2 • Thus, from 
Eq. (2.11) we obtain the relation 

4 (m-1)(1 +re2)(1- e2 ) 

Pl = y'3 · (3m -1)+ (m-1) e2 to·, 

which is graphically presented in Fig. 9 for r = 3 and for the numbers of hexagons m = 2 
and m = oo, respectively. These stress-strain diagrams display two kinds of instability. 
At the beginning of the diagrams there appears a remarkable sudden drop of stresses 
connected with the decohesion process along the vertical boundaries between hexagons. 
The second type of instability appearing at the advanced stage of deformation results 
from the instability of the shearing process along inclined boundaries. 

4. Another .experimental model of intercrystalline sliding and fracture 

In the second type of the experimental model of intercrystalline sliding and fracture, 
the grain boundaries are simulated by the rows of holes prepared in a block of a ductile 
aluminium alloy PA2N (with content of ea 2% of Mg). A simple experimental setup is 
shown in Fig. 10. The block is compressed between two steel platens. 

FIG. 10. 

FIG. ' 11. 
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The block deformed up to the permanent strain Ep = 10.3% in the vertical direction 
is shown in Fig. 11. Total separation of ligaments between the holes along the vertical 
rows is clearly visible. There is no such decohesion along inclined rows of holes where 
strong shear deformation only is observed. Thus the present experimental model behaves 

·similarly as the first experimental model shown in Fig. 2. 

P{kN] 
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50 
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FIG. 12. 

In the force-elongation diagram shown in Fig. 12 there appears clearly visible insta­
bility between the points A and B. This instability is connected with the process of deco­
hesion along the vertical rows of holes. After the total separation along these vertical 
rows, the compressive force increases. This must be attributed to the hardening along 
the inclined rows of holes connected with the ':omplex process of shearing. 

A similar type of instability between the points A and B appeared in the stress-strain 
piagram (Fig. 9) calculated for the theoretical model discussed in the previous section. 

The dlformation mode shown in Fig. 11 takes place if the simulated grain boundaries 
are sufficiently "weak" or, in other words, if the diameter of holes is sufficiently large as 
compared with the spacing between the holes. Dimensions for the present case have been 

shown in Fig. 10. The ratio~ = 1-!!_ (ligament width/spacing between holes) was equal . c 
to 0.2. For example, te~ted specimens with this ratio equal to 0.4 displayed a completely 
different mode of deformation consisting in the plastic deformation of "grains" and simul­
taneous plastic deformation of "boundaries". No 

1

decoh~sion along vertical boundaries 
was observed. Thus our simple experimental model demonstrates how the possibility 
of intercrystalline fracture .of plastically-deformed polycrystalline metals depends on the 
"toughness" of grain boundaries. 

The effect of the ratio ~ is less visible in models pulled in tension. Figure 13a shows 
a simple tension specimen with prepared rows of holes and the ratio ~ = 0.47. In the 
fractured specimen; after the test (Fig. 13b}, a wide gap along the row of holes perpen­
dicular to the tension direction is visible. During the fracture precess decohesion along this 
row of holes is followed by a combined shearing-tensile fracture along inclined rows of 
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FIG. 13. 

holes. Such a sequence of various mechanisms of fracture al.ong differently-oriented 
"grain boundaries" leads finally to the total separation of the two parts of the specimen. 

Another type of perforated tensile specimens is shown in Fig. 14. In order to obtain 
a smoother course of final stage of the fractur~ process in the central perforated part, 

FIG. 14. 

each specimen has two-side strips. Thes.e strips assure the quasi-static run of the final 
stage of the fracture process even with the use of the standard ordinary hydraulic testing 
machine. In Fig. 14a we can observe decohesion along the rows of holes perpendicular 
to the tension direction.,and advanced shearing"without fracture along inclined rows of 
holes. The same mode o"f fracture and deformation takes place in the case whe the rows 
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of holes undergoing fracture are slightly inclined as shown in Fig. 14b. The angle of devia­
tion from the orientation perpendicular to the direction of the tensile force was equal 
to 10°. In both cases shown in Fig. 14 the ratio e was equal to e = 0.47. 

-----

S. ConclosioQs 

Basic continuum concepts concerning plastic deformation and the process of fracture 
have been in numerous works analysed in terms of microstructure of the material. Two­
dimensional experimental models discussed in the present work allow us to demonstrate 
and. study the possible contribution of the int~rcrystalline fracture and grain boundary 
sliding to the complex phenomena connected with the plastic deformation and fracture 
of polycrystalline metals. Since the mechanisms of grain boundary sliding and grain 
interior deformation are generally accepted to be mutually independent processes, it 
seems to be very convenient to analyse these mecharusms separately. In the models discussed 
in this work the grain interior deformation and transgranular fracture have been elim­
inated. The deformation of such artificial aggregates was connected with the sliding along 
boundaries between adjacent elements and the decohesion on these boundaries. The 
models demonstrate instability of the aggregate connected with the "intercrystalline" 
fracture and the influence of the grain size on the strength of the aggregate. The influence 
of the strength of the intercrystalline boundary on the mode of deforma~ion of the aggre­
gate bas also been demonstrated. 
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