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H-theorem and trend to equilibrium in the kinetic theory of gases 

C. CERCIGNANI (MILANO) 

THE PRESENT status of the H-theorem and its role in establishing the trend to equilibrium of 
a dilute gas are reviewed. In particular the alleged counter-examples are shown to contain some 
features which do not allow the use of the standard arguments. 

Omawia sict stan obecny twierdzenia Hi jego rolct w ocenie d(lZnOSci gaz6w rozrzedzonych do 
przyjmowania stanu r6wnowagi. Wykazano w szczeg61nosci, ze rzekome kontrargumenty za­
wieraj(l pewne cechy, kt6re nie pozwalaj(l na stosowanie standardowych metod rozumowania. 

PaccMaTpHBaeTcH cyrqecrByroi.uee cocro.mrn:e TeopeMbi H H ee poJIL npH OI~eHI<e crpeMJieHHH 

pa3pemeHHbiX ra30B I< . COCTOHHHIO paBHOBeCHH. Oco6em10 no,w~epi<HBQeTCH, t.ITO MHHMbie 

I<OHTpapryMeHTbl CO~epmaT Hei<OTOpbie OC06eHHOCTH He ll03BOJIHIOII.lHe llpHMeHHTL CTaH­

~apTHbiX MeTO~OB. 

1. Introduction 

IN A RECENT survey paper on "The physics of transition flow" [1], written in collaboration 
with R. HERCZYNSKf, Professor FISZDON examined the problem of the asymptotic behaviour 
of the derivative dHfdt of Boltzmann's Hfunction when t -+ oo. In that paper the authors 
state that if S is the entropy defined as follows 

(1.1) 

([M being the local Maxwellian) and His given as usual by 

(1.2) H = J flogfd';dx 

(f being the actual distribution function satisfying the Boltzmann equation), then "it is 
tempting to assume ... that 

(1.3) 
dH 
(it-

S+H 

where -r is some relaxation time .... However, it is not clear how to substantiate this 
choice starting from the Boltzmann equation". 

It is the aim of this paper to point out that, although there are no arguments to justify 
Eq. (1.3), it seems highly reasonable to expect that the following inequality holds (in .the 
absence of heat sources on the boundary): 

(1.4) 
dH 
--~ 
dt "<:: 

where -r is a suitable relaxation time. 

S+H 
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An inequality of the form shown in Eq. (1.4), though less handy than the corresponding 
equality, is useful in the discussion of the present status of the H-theorem and its use for 
the purpose of inferring the decay off to a Max~ellian distribution. In fact, the discussion 
of an inequality such as the one considered above offers the opportun.ity of providing 
a serene assessment of the present status of the H-theorem in connection with the study 
of the time asymptotic behaviour of the solutions of the Boltzma~n equation. Doubts on 
the use of the traditional interpretation of the H-theorem [2] have been cast in a recently 
published book [3] which exhibits, as counterexamples, previously known solutions of 
both the Boltzmann equation [4] and Ma'xwell's transfer equations for the moments [5]. 

It is this author's opinion that an entirely rigorous discussion of the asymptotic trend 
of the solutions of the Boltzmann equation can . find its place only in the framework of 
a mathematical approach starting with the proof of 3:n existence theorem in the large. 
Though this basic theory has registered some improvements [6-18] in the last few years, 
we are still far from such a theorem in the important case of the space inhomogeneous 
Boltzmann equation. 

In this paper no new theorems will be proven, but conditions will be given on the 
iriitial and boundary data which are conjectured to be sufficient, together with a judicious 
(but, unfortunately, not yet available) choice of the function space where solutions have 
to be located, for proving botl;l existence in the large and the H-theorem. If the possibil­
ity of reaching the latter difficult goal is granted, then further conditions a:re required 
in order to draw the traditional conclusions concerning the asymptotic behaviour for long 
times. While some of these conditions concern the smoothness of the solution and are 
therefore part and parcel of a still missing existence theory, there are also restrictions on 
boundary data (for a bounded domain) or on the behaviour of the initial data at large 
distances (for an unbounded domain). These conditions are such as to exclude the coun­
terexamples to existence and to decay to an equilibrium distribution given in the aforemen­
tioned book [3]. The present contribution is intended as a step toward the solution of the 
first main problem of kin'etic theory, as defined by Truesdell and Muncaster, i.e. "to discover 
and specify the circumstances that give rise to solutions which persist forever". 

In the ne_xt section the formal proof of the H-theorem as well as the cases in which 
the proof has been made rigorous are reviewed. Then the inequality (1.4) .is discussed. 
Finally, sufficient conditions for drawing consequences from the formal H-theorem are 
stated and co~nterexamples discussed. 

2. Formal and rigorous H-theorems 

We consider the· Boltzmann equation for a simple monatomic gas (for a recent treat­
ment of the case of polyatomic molecules see Ref. [19]): 

(2.1) 

where t is time, x the position vector and; the velocity vector of a molecule, X the force 
per unit mass acting on a molecule (a function of x and t; dependence on ; is allowed 
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provided (olo'FJ ·X = 0),/ = f(x, ;, t) the distribution function (a mass density in Q x R 3 , 

if Q is the space domain where the equation has to be solved). a 1 ox and a 1 a; are the 
gradient operators in ordinary and velocity space, Q(j, f) the collision operator [20, 21] 

(2.2) 

where ;* is the velocity of the target molecule in a collision, V = ; - ;* the relative ve­
locity and 

(2.3) 
;' = ;-cx(cx ·V), 

;~ = ;*+cx(cx ·V). 

Here ex is a unit vector forming an angle(} with V and e the angle of ex about V. 
If Q is not the entire space, there will be boundary conditions on oD which will be 

assumed to be local in time and space and linear in f.: 

1; · nl f(x, ;, t) = J R(;' ~ ;; x, t)f(x, ;', t) 1;' · nl d;' 
~' · n<O (2.4) 

(x e iJQ, ; · n > 0), 

where, if fw is a Maxwellian describing a gas in local equilibrium with the wall, 
R(;' ~ ; ; x, t) satisfies the two relations 

(2.5) j R(;' ~ ;; x, t)d; = 1, 
~ · n>O 

(2.6) J fw(;'; X, t)R(;'; X, t) 1;' · nl d;' = 1; · nl fw(;; X, t). 
~·n>O 

The formal proof of the H-theorem rests on t'Yo inequalities: the first is due to Boltz­
mann and reads 

(2.11 "Y = J logfQ(f,f)d; ~ 0 

equality holding if and only if f is (almost everywhere in velocity , space) a Maxwellian; 
the second one is much more recent ([22-25]; see discussion in Refs. [3 and 21]) and has 
th~ following form: 

(2.8) 

where Tw is the wall temperature, R the gas constant, q the heat flow vector, n the normal 
unit vector pointing into the gas. The subscript "solid" means that q · n, which is, in gen­
eral, discontinuous at the surface, has to be evaluated on the solid side. Equation (2.8) 
holds if the values off for ; · n :> 0 are related to those for ; · · n < 0 through Eq. (2.4). 
Equality applies if and only if f = fw (the "only if" part does not apply if R(;' ~ ;; x, t) 
is a delta function). , 

Some comments are in order here concerning the classical inequality (2. 7) which is 
a trivial consequence of the properties of the logarithm and of the identity [2, 3, 20, 21] 

J q;Q(f,f)d; = - ! f (q;' +q;~ -q;-~*) (f'f;-ff*) B(O, IVI)dedOd;d; •. 

Z Arch. Mech. Stos. nr 3/82 
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In order to prove this identity, one uses the fact that the absolute value of the Jacobian 
of ;' and ;~ with respect to ; and ;. for 'ji;xed ex is unity; a trivial consequence of the 
linearity of Eqs. (2.3) and· of the fact that the transformation expressed by these equations 
is its oWn inverse [20]. In addition, one exploits the fact that if()' is the angle between 
V' = ;'-;~and -ex, then() = ()'as well as the trivial observation that changing« into -« 
does not matter. In order to conclude that 

(2.10) I a(;',;~,()', e') 1- 1 
a(;,;.,(), e) - ' 

it only suffices to remark that we are not obliged to use () and e as angles to identify ·«J 
(though we may find it useful} and hence we can keep « fixed when we change variables 
from ·;, ;. to ;', ;~. To be more explicit: 

(2.11) sin()d()ded;d;* = sin?Jd?Jdlpd;d;* = sin?Jd?Jdlpd;'d;~ = sin()'d()'de'd;'d;~, 

where 1J and fP are polar angles independent of V and use has been made of the well-known 
rotation invariance of the area element of the unit sphere~ Equation (2.10) is a consequence 
of Eq. (2.11) and of()' = 0. 

We have spelled out the details of this argument because Eq. (2.10) is said to be the 
consequence "of direct if lengthy calculations" in the book by TRUESDELL and MuNcAS­
TER [3]. The above proof seems to have been misunderstood if one can judge from a few 
letters gf criticism from the readers of a book [20] where the proof itself is sketched. An 
indirect criticism without a precise reference seems to be contained in a paper by ScHNUTE 
[26] who remarks that it is not uncommon to infer that Eq. (2.1 0) is a consequence of the 
fact that the transformation (;,;.,(),e) -+ (;', ;~, ()', e') is its own inverse. This argu­
ment would indeed be false when applied to this (nonlinear) transforma~ion, but it is 
correct when applied to the.linear transformation(;,;.) -+ (;',;~)for a fixed ex. &hnute's 
criticism has been echoed by TRUESDELL and MUNCASTER [3]. 

Concerning the inequality (2.8), we remark that if the scattering kernel is a delta func­
tion, i.e. 

(2.12) 

where ;<;') is a (differentiable) function which we assume to be uniquely invertible, then 
Eq. (2.6) implies (adopting a reference frame where the wall is locally at rest): 

(2.13) 

(2.14) 

I :i-ll~(~') 0 nl = lli' 0 nl, 

1;(;')1 = 1;_'1. 

The restriction of Eqs. (2.13) and (2.14) to;'· n < 0 can be dropped by definng ;<;') 
to coincide with its own inverse when ;' · n > 0. All the transformations defincl in the 
entire R3 and satisfying Eq. (2.14) are known to be linear and to have a Jacoban with 
unit absolute value. If we restrict ourselves to the subset of these transformat..ons for 
which Eq. (2.13) is also satisfied (the Jacobian factor may now be suppressed), we find 
that 

(2.15)_ 
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i.e. the linear transformation ;' ~ ~(;') transforms ;' · n into - ;' · n. It is otherwise 
a rotation in a plane tangential to the wall. If we add the somewhat natural restriction 
that~(;') lie's in the plane ofn and;', we are left only with specular reflection and the parity 
transformation;' = -;,a result first discovered by ScHNUTE [26]. In either case Eq. (2.8) 
holds trivially because both sides vanish. 

Once Eqs. (2.7) and (2.8) are established we have only to assume th.at f is sufficiently 
well behaved to conclude that in a bounded domain 

(2.16) H ~ f (q. n)aolld dS 
. -...::: RT. , 

an w 

where dS is the surface. element on o!J and 

(2.17) H = J J flogfd;dx 

is the celebrated H-function (actually a functional of f) introduced by BOLTZMANN [27]. 
Equation (2.16) is an extension of Bolt:zmann's H-theorem and appears to have been prov­
ed formally in full detail for the first time in Ref. [24] (see, however, alsd Refs. [22] and 
[23] and discussion in Refs. [3] and [21]). Originally, the· theorem was established with 
no boundary term at all or in the presence of specularly reflecting boundaries [28, 2]. 
In unbounded regions, the condition lxl 2 flogfl; · nld; ~ 0 for lxl ~ oo has to be added 
for Eq. (2.16) to hold. 

In order to make the proof of Eq. (2.16) rigorous, one might specify sufficient condi­
tions for the formal steps to be correct. This would be easy to do but there is little a.dvan­
tage in it because the theorem might be true under more general conditions (perhaps in 
a weak sense). 

It is much better to examine the particular cases when the H-theorem has been actually 
proved. The starting point is, generally speaking, the proof of an existenc~ and uniqueness 
theorem under suitable res\rictions on initial and, if necessary, boundary data. Th~n 
under the same or more restrictive conditions, the existence of H for all times follows, 
together with Eq. (2.16). 

~n the space homogenequs case (of/ox = 0), the right hand side in Eq. (2.16) as well 
as the integration with respect toxin Eq. (2'.16) have to be omitted, of course. This is the 
only case in which · satisfactory results are available. 

It is true that the problem of a trend toward equilibrium of a spatially homogeneous 
gas is trivial from the fluid dynamic point of view because there is no change at all in 
density, velocity, temperature and hence no fluid-dynamics in the usual sense of the word, 
but i~teresting facts do occur in velocity space and the mathematics is by no means triv­
ial. 

The :first existence and uniqueness theorem for this problem was obtained by CARLE­

MAN [6] in the case of hard sphere molecules. He obtained a strong nonlinear result in the 
Banach space with the norm 

(2.18) 
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where ex > 3. Uniqueness and uniqueness in the large are shown in the cone of positive 
funCtions together with·tlie exist~nce of the H.;.functional as a non-increasing function oft 
and the te~dency · to a Maxwellian distribution for t ~ oo. 

WILD [29] and MoRGENSTERN [9] proved similar results for the simpler case of Max­
well's potential with angular cutoff, but their results are less complete than Carleman's as 
far as the tendency toward equilibrium is concerned. The best ayailable results for the 
space homogeneous case are those of ARKERYD [10] who was able to prove that, for a gas 
of rigid spheres or with angular cutoff, there is global existence of a positive solution if 
fo ~ 0, (1 + 1;12)/o and /ologfo belong to L1

• 

If ex can be taken to be not less than 2, then the solution is shown to be unique and the 
assumption on / 0 log/0 is not needed for existence. If the latter hypothesis is satisfied, how­
ever, it follows that flog/ is L1 for any t > 0 and the H-theorem is valid; in addition 
if ex > 2, there is a trend to equilibrium (i.e. f tends to a Maxwellian for t ~ oo) in the 
sense of weak convergence in L1 • 

Recently, L. ARKERYD has shown [30] how to handle noncutoff potentials. In partic­
ular, he showed that in the case of inverse power molecules with exponents s > 3 there 
exists a weak solution ofthe Boltzmann equatio~ providedfo(1 + IEI 2

) EL~ andfologfo EL1
• 

The solution conserves ma$s and momentum; ene~gy is only shown not to increase. 

The treatment .of space-dependent solutions is much more difficult and decidedly 
incomplete at this moment. Since we are here mainly interested in the asymptotic trend 
for large times, we leave aside any proof of existence lacking a global character, apart 
from the first proof, due to ORAD [7], and the only proof allowing the presence of a body 
force, due to 0LICKSON (31]. MORGENSTERN' (8] and POVZNER (11] solved the Cauc~y prob­
lem for a certain altered version of the Boltzmann equation, containing a "mollifying 
kernel" in the collision .term. This mollifier removes the main difficulty for an existence 
proof in L1 for the inhomogeneous problem, i.e. the impossibility of assigning a norm 
to a product such as f(x, ;, t)f(x, ;. , t). It is to be noted that for the space homoge­
neous case the mollifier disappears; accordingly, Morgenstern's and Povzner's results 
apply to the· unmodified Boltzmann equation if off ox = 0. 

Some studies [13,_ 15, 16] have mainly dealt with situations close to equilibrium by 
exploiting results previously obtained by ORAD [32]. These papers employ norms in spa­
ces whose physical relevance is qiffi.cult to envision and place restrictions on he deviation 
of the mitial data: from equilibrium. Minimal restrictions (/0 E £ 1

) are required by the 
global existence and uniqueness theorem -given in Refs. [17] and (34], where, however, 
the Boltimann equation is set on a (periodic) lattice, i.e. the term;· (off ox) is replaced 
by a finite . difference approximation in order to avoid the introduction of a mollifier. 
While the latter paper is restricted to cutoff Maxwell molecules, this assumption is relaxed 
in a subsequent study [18] where the collision term with B(O, lVI) < M(l + 1VIf1)(0 ~ P < 2) 
are treated under the additional assumption that (1.+ 1;1 2)/0 e L~. In the sam~ paper the 
existence of the limit when the lattice spacing goes to zero. is _investigated under the assump­
tions (1 + 1;1 2

)/0 e L~ and fo log/0 e £ 1
• If fcn> is the solution corresponding to a lattice 

with step 2-n and associated, in a suitable sense, to an initial -datum on a (continuous) 
cube with unit side, then there is a subsequence {fc,.") ~ (k = 1 , 2, ... ) converging weakly 
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in L1 to a limit.f. It is to be stressed, however, that it is Dot known in what sense, if any, 
this weak limit is a solution of the original Boltzmann equation. 

The H-theorem for the space inhomogeneous case is investigated by GuiRAuo [14] 
for a gas enclosed in a bounded convex domain with general boundary conditions of the 
form (2.4), under the usual restriction of an initial datum close to the wall Maxwellian fw 
(assumed to be uniform). As a matter of fact, he proves the existence and uniqueness of 
a solution J, which is also shown to be nonnegative and bounded from below by a const­
ant timesfw at least for long times (t > t). This result shows tha,t at least for t > tthe 
H-function is defined and tends to a definite limit. In · general, the gas exchanges energy 
with the wall and the H-theorem holds in the form (2.16); this does not contradict the 
existence of lim H(t) because the integral 

1-+00 

(2.19) 

is shown to be bounded. 

(q. n)soud dS ~ H( oo)-H(i) 
RTw 

It is to be remarked that all the global proofs reviewed here require one of the following 
tricks: 

a) introduction of a mollifier [8, 11], 
b) restriction to initial data suitably close to an equilibrium state [13, 15, 16], 
c) possibility of using an a priori bound on some moments (such as density and energy 

per unit mass) [6, 7, 9, 10, 17, 18]. 
The proofs based on tricks a) and c) are automatically valid for the full Boltzmann equa­

tion in the space homogeneous case and this explains the progress reached in this partic­
ular case. For the space dependent solutions, tricks a) and c) require an actual modi­
fication of the Boltzmann equation (mollified collision term, finite difference approxi­
mation); accordingly these tricks can be viewed as efforts toward a better understanding 
of the difficulties and could become tools for handling the unmodified Boltzmann equation 
if passage to the limit of a deltalike mollifier or a zero stepsize were shown to be correct. 
For the moment, if one does not want to accept modifications of the adamantine structure 
the -Boltzmann equation, he has no choice but to accept the restriction described under 
item b) above. 

One can guess that sooner or later it will be possible to provtt the existence (and u­
niqueness) of a solution J, belonging to a function set f/ of the initial value problem of Eq. 
(2.1) in the large (for a compact set Q or an unbonded region) provided the initial datum/o 
is chosen in f/ and boundary conditions are such as to ensure that the momentum, energy 
and H influxes (through the boundary aQ in the bounded case or an arbitrarily large 
sphere for an unbounded domain) remain bounded. The counterexample to global-exist­
ence, quoted by TRUESDELL and MuNCASTER [3] and going back to BoLT~ [4], i.e. 
a Maxwellian with mass velocity v = -xf(-r-t)(-r > 0, a constant) has a total mass 
influx which is already unbounded at t = 0. This solution actually describes a tremendous 
implosion with terrific mass supply from infinity. No wonder that it ceases to exist for 
t = T. 

http://rcin.org.pl



238 C. CEROGNANI 

3. Consequences of the H-theorem and counterexamples 

If one accepts the H-theorem, he can draw some consequences. These consequences 
amount to saying that, under certain conditions, the distribution function will tend to 
a Maxwellian. The difficult point is to make these conditions explicit. 

In the space homogeneous case and in the absence of body forces, the argument goes 
back to BOLTZMANN himself [27]: TR.UESDELL and MUNCASTER [3] criticize the traditional 
"proof", especially in the form given by CHAPMAN and CowLING [2]. The argument under 
discussion starts from the fact that H ~ 0 implies that H monotonously decreases in time 
unless f is a Maxwellian. It is then noted that His bounded from below and H tends to 
a limit H oo • ·This limit is asserted to correspond to a state of the gas in which ii = 0; 
this in turn is known to imply that f is a . Ma~wellian. 

There are three difficult points in the argument: the boundedness of H from below, 
the fact that H tends to some limit (which then must be zero) and the existence of a limit 
off when t-+ oo. 

In the space homogeneous case the first difficulty is easily disposed of. This aspect is 
discussed in some detail by Chapman and Cowling who remark that, roughly speaking, 

the existence of the integral f j;2 d'E., implies that of H. In order to make their argument 
rigorous, let us consider the elementary inequality: 

(3.1) 

where !M is a M.axwellian having the same density, bulk velocity and temperature as f. 
In the space homogeneous case these moments off are constant (because of the con­
servation equations) and !M is time independent. Integrating the above inequality delivers 
the following result: 

(3.2) 

where HM is the (constant) value of H corresponding to f = fM· Equation (3.2) says that H 
is bounded from below (assuming temperature to be finite). 

We ~re dealing. with the second difficulty (H-+ 0 for t -+ oo) that a deeper stuiy of the 
properties of the Boltzmann equation is needed. In fact, the existence of a limit of H for 
t -+ oo does not imply that if-+ 0. However, H is not just an arbitrary function of time 
but a functional off, ~hose time derivative equals another functional of f. Acmrdingly 
although the traditional argument is rather cavalier, objections based on .general re­
marks about the possible nonexistence of the limits off and ii for t-+ oo are not deci­
sive. In fact the quantity 

(3.3) h = J (flogf-flogfM+fM--f)d'E., = H -HM ~ 0 

is a convex functional of./, vanishi~g when f =!M and satisfying h ·= "Y where "Y is 
defined in Eq. (2.7). 

It is tempting to assume that 

(3.4) 1' = f logfQ(f,f)d'E., ~ -).eh, 
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where e is, as usual, the density and A. a suitable constant. If Eq. (13.4) is assumed to be 
true, then 

(3.5) 

and, e being constant, 

(3.6) 

Hence h ~ 0 when t ~ oo and H ~ HM. In addition, if f goes to a limit 1 when t ~ oo 
in a function set where h is a continuous functional, then 1 must ~e !M in agreement with 
the traditional argument. 

We examine now the conjecture that Eq. (3.4) holds. The ratio 

"Y J logfQ(f,f) d; 
eh = [J f d;] {J [flog(/// M)+ f M-f) d;} 

(3.7) 

is negative. The ratio is not well defined when f =!M: it seems reasonabl.e to argue that 
if"'"' /eh~ 0 for some ~ this will happen in a neighbourhood of !M (in a . suitable 
topology). 

If this is granted, then one is led to examine the functional 

(3.8) 

where pis the perturbation of !M (i.e. f = /M(l +p)), LM the collision operator linearized 
about !M and the scalar product notation 

(3.9) 

is used. The functional in Eq: (3.8) is obtained by neglecting terms of order higher than 
second in both the numerator and the denominator of "Y (eh. 

If the molecules are rigid spheres or interact with an inverse power law with the expo­
nent s ~ 5, then a constant A.M is known to exist such that J(p) ~ - A.M [20, 21]. This 
argument is, of course, not a proof of Eq. (3.4), but gives a strong support, in the author's · 
opinion, to the conjecture that Eq. (3.4) holds. 

We have to stress, however, that the validity of Eq. (3.4) is not enough to prove the 
trend to equilibrium since we have to assume thatfhas a limit! when t ~ oo. 

This is really the basic point of the use of the H theorem because, if f ~ 1 in a function 
set, where h and "Y are continuous functionals, then "Y and h must have a limit; if Ji has 
a limit, it must be zero. Hence "Y also tends to zero; then, ! equals !M. 

The proof of the existence of J, however, requires an existence proof. This explains 
why any rigorous use of the H-:-theorem must follow an existence theorem. This kind of 
result, as explained in the previous section, has been obtained in the space homogeneous 
case, while its achievement in general appears to b,e of supreme difficulty. 

We maintain that there is no objection to the extension of the consequences of the 
H-theorem in the space inhomogeneous case from a physical point of view, i.e. if we assume 
that a solution sufficiently smooth exists and we deduce its properties ·in a formal way. 
This of course can produce the objections of a critical mathematician who must first prove 
existence, smoothness, existence of an asymptotic behaviour, etc.; it is felt, however, 
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that in the absence of such a refined theory it is important to argue in a formally correct 
way, leaving to more capable mathematicians the proofs of existence which are required 
on a stricter level of rigor. 

In the space inhomogeneous case, in addition to smoothness, one has to impose an 
additional condition which is required in order to conclude that His a limit: the integral 
in the right hand side of Eq. (2.16) must be nonpositive (no His supplied to the gas). 
A sufficient condition is 

(3.iO) (q. n)solld ~ 0, 

i.e. there is no local influx of energy into the gas. In addition, of course, a constant Max­
wellian fM to which Eq. (3.1) applies must be available. 

In the space inhomogeneous case one has also to deal with the circumstance that the 
density goes to zero; then the H-theorem remains ·true if the function identical with zero 
in velocity space is considered to be a form of a degenerate Maxwellian. This circumstance 
appears in a gas expanding in ·a infinite space with Maxwellian distribution. As noted by 
PriTERI [33] and quoted by TRUESDELL and MUNCASTER [3] the ratio H/e is larger than 
HM!e even in the limit t-+ oo andf/e 4_oes not tend to a Maxwellian; H tends to HM = 0, 
however, and f-+ !M = 0 for t-+ 00. A zero density is a problem, anyway, as Eq. (3.5) 
shows. 

We also remark that the tendency to equilibrium is not applicable rto the solution 
corresponding to the homo-energetic simple shearing [5,~] because th~re is no constant 
Maxwellian fM which cari play a role similar to that played by the local Maxwellian in 
the previous argument. In fact, the temperature is unbounded in time because work is 
exerted on the gas at a constant rate. 

4. Concluding remarks 

In view of the renewed interest which has arisen about the basic aspects of the kinetic 
theory of gases, it has seemed worthwhile to discuss the present status of the H-theorem 
with particular concern for the doubts which have been recently cast on its traditional 
interpretation. While an inequality of the form (1.4), or, equivalently, Eq. (3.5) may be 
used to remove one of the difficulties, the present discussion confirms that complete rigor 
can be obtained only if the problem is examined in a strictly mathematical way; it seems 
fair to ~ay, hpwever, that we have no indication that the traditional interpretation is 
wrong. In particular, sufficient conditions for a .trend to equilibrium have been conjectur­
ed. 
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