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On baroclinic instability in the case of vanishing viscosity 

W. ECK.HAUS, H. P . . PENNING and F. V. VAN DBR WEL (UTRECHT) 

IN THE TWo-LAYER model, describing baroclinic instability; viscosity plays a subtle role. The 
marginal stability curves for the non-viscous model and the one for the viscous model with 
viscosity tending to zero, do not coincide. An explanation in terms of polynomials with complex 
coefficients is given and the growth-rate for decreasing viscosity is calculated. 

W modelu dwuwarstwowym opisuj(\cym niestatecmosc baroklinicznct, lepkosc odgrywa sub­
telnct rol~. K.rzywe stateczno§ci dla modelu nielepkiego oraz modelu z zanikajctCC\ lepko5cict nie 
pokrywaj(\ si~ ze sobct. Przedstawiono uzasadnienie tego zjawiska posluguj(\c si~ wielomianami 
o wsp61czynnikach zespolonych i obliczono pr~osc wzrostu fali przy malej(\cej lepko§ci. 

B ABYCJIOHHOii MOAeJIH, OIIHCbiBalO~eii 6apoi<JIHHHyiO HeyCToiftnmocn., BH3I<OCTL :urpaeT 
ACJIHI(aTHYro pom.. KpHBaH YCTO~OCTH HCBH3KOii MOAeJIH H MOAeJIH C WICe3alO~eii 13)13-
KOCTLlO He nOKpbiBalOTCH Me)l(,lzy co6oii. TipeACTaBJieHO AOKa3aTeJI&CTBO 3TOrO HBJiemtil 

C noMo~lO MHOroqneHOB C KOMnJieKCHbiMH K03<I><I>~eHTaMH, H pacqwraHa CKOpocn. pOCTa 
BOJim.I npH yMem.waro~eiiCH BH3KOCTH. 

1. Introduction 

THE PROBLEM of baroclinic ins~bility in the earth's atmosphere has been studied exten­
sively in the past, the theoretical work being often based on the well-known twollayer 
model introdljced by PHILIPS [8]. It has been noticed th.at viscosity plays a subtle role. 
The marginal stability curve computed in a nonviscous ·model does not coincide with the 
limit (as viscosity tends to zero) of the marginal stability curve in a model th~t takes 
viscosity into account. Some attention has been paid to this phenomenon (NBWELL [5], 
RoMBA [9], HART [3]), giving thus a "physical" explanation. 

The purpose of this paper is to present a mathematical explanation of the phenom­
enon. It turns out that the mathematical mechanism which produces the phenomenon 
is very simple. We start .the paper by collecting the relevant information on the mathe­
matical model describing baroclinic instability. In Sect. 2 the model is introduced and part 
of the linear stability analysis is given. In Sect. 3 we describe the singular behaviour due 
to viscosity, then, in Sect. 4, a mathematical explanation is given and the linear growth 
rate of the unstable wave is calculated. 

2. The two-layer model 

A model which has played an important role in linear and nonlinear stability analysis 
in geophysical fluid dynamics is the two-layer model introduced by PHILIPS [8]. It has been 
used by Pedlosky in a series of papers and later by many others. Experimental and theore­
tical work closely related to it was carried out by HART [1, 2]. 
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The model is essentially a two-layer approximation of the atmosphere, in a closed 
rectangular ring around the earth, at middle !attitudes. The ring has north-south width L 
and depth D. The two-layers are both incompressible and have slightly different densities, 
with the heaviest fluid at the bottom. It is assumeQ that viscosity can be described by a single 
parameter 'V for the two layers. 

It is possible to derive by a rational procedure, i.e. through systematic scaling, expan­
sion in small parameters and matching the interior flow with the boundary layers, the 
equations governing the fluid motion in the two-layer model, from the Navier-Stokes 
equations in spherical coordinates. In the process the following parameters appear: 

'JI kinematic viscosity, 

fo i P see Eq. (2.3), · 

(2.I) 
U typical horizontal velocity, 

e· = Uj(J0 L) Rossby-number, 

E = 2Pj(f0 D 2) Ekman-number, 

F = fl L 2
/ { (Lie/e2)g(D/2)} stratification parameter. 

The underlying assumptions are 

(2.2) 

. £1/2 < e ~ 1' 

L1e, <5 = D/L ~ I, · 

F,p· ~ 0(1). 

Thus the effects of viscosity are limited to boundary layers at the top and bottom of 
the ring, the aspect ratio (j is small and the ratio e of the inertial and the Coriolis force 
is small. We shall not reproduce the details of the analysis here. The result is identical 
to the set of equations PEoWSKY [6] derived for the infinite channel, rotating with angular 
velocity !J (Fig. I). 

(2.3) n = fo+Py, 

i.e. 

(2.4) 

The variation of !J with the north-south coordinate y, which is called the p-plane approxi­
mation, serves to bring into Eqs. (2.4) the term py, .which in our derivation is the only 
term resulting from working with spherical coordinates. Therefore p may be said to account 
for the earth's sphericity in the rectangular model. 

The "Pl (i = I, 2) are the (pressure-) stream functions in each layer. To zeroth Ol!tder 

in e, the motion in each Ia~er is geostrophic and hydrostaiic (meaning: u1 = - ~~~ , 

vi = ~~, ~~i = 0, u1 velocity ·in the ,x-direction, v1 in the y-direction ). 
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fiG. ·t. The two-layer model, with dimensional coordinates - ·oo < x < oo, 0 ~ ji ~ L, 0 ~ z ~ ·D 
and interface h. e 1 < e2. 

The boundary conditions used are 

iJ1p, = O 
OX ' 

(2.5) 

I
. 1 
Im­

x .:.. ao X 

X 

J iJ2tpi 
oyot dx = o, 

-x 

y = 0, 1, i = 1' 2, 

i.e. to ieroth and first order in e·, there is no transport of fluid across the north and south 
boundaries of the channel. SMITH (10, 11] has noted that these boundary conditions intro­
duce an artificial energy source in the model but that this does not influence the results 
in PEoLOSKY [7], qualitatively. 

The main advantages in using the two-layer model are ·that it leaves the study of the 
nonlinear developement of instabilities tractable, while on the other hand there is a good 
correspondence with experimental work. The lllOdel is closely related to, for example, 
the cylindrical configurations used by HART [1], and his 'results have influ~nced theoret-
ical developments. · . 

We conclude this section by giving the first part of the linear stability analysis: We are 
interested in the behaviour of smail perturbations cjJ 1 on a basic zonal flow 'f/JB, i, where 

(2.6) 'f/JB.i = -U,y, i == 1, 2. 

So the total stream function ts 

(2.7) 

Initially the two layers move with different velocities U1 and U2 along the channel. 
V ·= U1 - U2 is called the shear. 
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Substituting Eq. ·(2.7) in Eqs. (2.4)1 and (2.4h and subsequently linearizing t1he result 
gives 

[ a a ] -- a at(V2 -F)+({J ~FV)Tx +rV 2 4>1 +Fat 4>2 = 0 ,, 

(2.8) 

[(:,+V :x) ~2-F)+(II+FV) :x +rV2
] ~,+F( :, +V :J <f> 1 = 0, 

where r = E 112 fe. 
If we choose cPi pf the form 

(2.9) 
c/J 1 = Aei(kxx-wt>sinmny, 

c/J 2 = ye1<kxx-wt>sinmny, m E.#' 

and substitute this in Eq. (2.8), we obtain the following dispersion relation: 

(2.10) -k2(k'+2F) ~; + {k2 (k'+2F)V-(k'+F)2P-2 r;: (kl+F)i} ~ 

+ (k2 +F) V{J -FV2k2 -f:J2 + r~~
4 

+i r~
2 

{(k2 +F) V -2{3} = 0 
X X 

with 
k2 = k;+m2. 

Equation (2.10) is a second-degree polynomial in wfkx, with complex coefficients, so its 
roots will be complex, ~ut in general not complex conjugate. The roots are 

1 

(2.11) 
Wt,2 - V k2+F ( fJ ir) [vlk4(k"-4F2)+4Fl(P+ ~ rr 
~- T- k2+2F kl + kx ± · 2k2(k2+2f) · . 

with imaginary parts: 

(2.12) 

If one of the imaginary parts is greater than' zero, the corresponding perturbation will 
grow eJ.ponentially with a growth-rate determined by Eq. (2.12). In the linear model there 
is no way to st.op this growth. To achieve this, nonlinear effects must be taken into account. 
The growth-rate determines the time-scale on which nonlinear effects will begin to play 
their part. We will not gp into the detai.ls of the nonlinear analysis but only. indicate the 
results as far as they are influ~nced by the parameters p and r. 

For details we refer to PIIDLOSKY [6] and RoMEA [9]. 

3. Viscosity in the two-layer model 

We remark that the parameter fJ is the only effect of sphericity left in Eq. (2.4) and that 
the same goes for r = E 112 fe with respect to viscosity. The values of {J and r influence 
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the growth-rate and therefore the results of the nonlinear analysis (qualitatively and/or 
quantitatively). We distinguish at first two cases 

(3.1) 

(3.2) 

{3:1=0, ' r:I=O, 

p :1= 0, r = 0. 

The nonspherical model with p = 0 will be treated in Sect. 5. 
We want to pay attention to the following phenomenon: The transition from the 

case (3.1) to the case (3.2) via r !0 is not smooth. In other words, the marginal stability 

curve, on which Im ~ = 0, resulting from r !0 in the case (3.1) does not coincide with 

the curve in the nonviscous model (3.2). This singularity in r was first mentioned by 
HOLOPAINEN [4], in a two-layer model for the atmosphere, in the form of axi unexpected 

. destabilization of long waves upon introducing a small viscosity term. In the present 
context it was first discussed by NEWELL ['5]. 

We give the marginal stability curves for the cases (3.1) and (3.2) and the correspond­
ing growth rates for the growing and the decaying wave. From Eq. (2.12) it follows that 
the general form of the marginal stability curve is · 

4r2k 2 4F2{3 2 

(3.3) V2(p, r, k) = k~(2F -k2) + k2(k2 +F)2 (2F -k2). 

If the shear V is varied by a small amount L1 

(3.4) V= V(f3, r, k)+L1, L1 ~ V(p, r, k), 

we find 

(3 5) 1 W1,2 k
2
+F r [ k

2
+F r L1 L1 2 ] 

. m T = - k:2+2F kx ± k 2-+2F kx +glr +g2 + .... 

We find that the unstable wave has a growth-rate O(L1) (r = 0(1)), while the decaying wave 
decays like O(r). 

Now let r ! 0 in Eq. (3.3), then 

(3.6)' V(p, 0, k) = 2F{3 /(k(k2+F) (2F~k2){). 
If, on the other hand, we put r = 0 in Eq. (2.10), reducing it to a polynomial with real 
coefficients, we find 

(3.7) 

V0 has its minimum at k 2 = yl.F; and then V= {3/F, whereas V(p, 0,. k) has its minimum 

at k 2 = ((1 + y3)/2)F and then V~ 0.91 {3/F (see Fig. 2). So V(p, 0, k) and Vo are at 
a distance 0(1) when they have their minima and the wavelength of the most unstable 
wave is longer for V(p, 0, k) than for V0 • Finally we remark that the growth-rate in the 
nonviscous model (3.2) is not linear in L1 : 

V = Vo + L1 , L1 ~ Vo, 

(3.8) 

http://rcin.org.pl



248 W . . ECKHAUS, H. P. PENNING AND F. V. VAN DER WEL 

VF/[3 i V Va 

FIG. 2. Marginal stability curves for ttie nonviscous (V0 , R = 0) and the viscous-limit model (V, R{-0). 

(Note that in both cases a large f3 raises the minimum of the curve and so has a stabilizing 
influence. Furthermore, in all cases instability is impossible for k 2 > 2F, corresponding 
to the Eady-(short wave) cut-off). 

A ,physical" explanation of .t~e behaviour described above runs as follows (NEWELL 

[5], HART [3]): ,HOLOPAINEN [4] has noted that the limit £ 1
' 2 -+ 0 is singular in that long 

waves are more unstable than the inviscid theory would suggest. This comes from the 
constribution of the r · f3 term (cf. Eq. (2.11) here). The presence of friction nullifies the 
stabilizing influence of f3 at large wavelengths by allowing the fluid to move more easily 
across geostrophic (2D /depth)-contours. When f3 = 0, the frictional influence is non­
singular''. 

In the next section we will give a mathematical explanation and establish the relation 
between the limit- and the nonviscous case. 

4. Complex polynomials and the two-layer model 

We consider the dispersion relation (2.10). When r = 0, this is a second-degree poly­
nomial with real coefficients. The corresponding curve Im w = 0 is Eq. (3.7) in the pre­

. ceding section. When r > 0, r ~ 1 we can interpret this as a perturbation into the complex 
plane of the real coefficients of Eq. (2.1 0) with r = 0. This is what causes the jump in 
Fig. 2. 

In general it is sufficient to consider polynomials of the form 

(4.1) z 2 +a=0 aE!?t, 

where we have marginal stability for a = 0. 
The perturbed polynomial then looks like 

(4.2) z 2 +ibz+a+ic = 0, lbl, lcl ~ 1. 
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To have a root z1 EfH of Eq. (4.2) we must have 

(4.3) ibz1 +ic = 0 

c 
so z1 = --and . b 

(4.4) 

and this gives us the marginal stability curve. It is obvious from Eqs. (4.1), (4.2) and 
( 4.4) that we find the unperturbed polynomial as b, c -+ 0, but not necessarily the corre­
sponding marginal stability curve a = 0. This only happens in special cases, e.g. c = 0 
or b2 =c. 

So the mathematical mechanism that produces the difference between the nonviscous 
and the viscous-limit model is re~lly very simple. It amounts to the statement that for 
polynomials with complex coefficients, the treshold lm(root) = 0 does not depend in 
a continuous way on the imaginary parts of th~ coefficients. When the imaginary parts 
of the coefficients tend to zero, the curve representing the imaginary part• of the root is 
squeezed towards the axis, however, the intersection of the curve with the axis barely 
mov~s. 

We now study in detail the behaviour of the growth-r~te focsmall viscosity. Using 
the substitutions (4.5), Eq. (2.10) is transformed into Eq. (4.6) corresponding to Eq. (4.2): 

(4.5) 

(4.6) 

with 

k2 = cF, 

Fw 
Z = flkx' 

R = crF /(kxf3), 

C E (0, 2), 

S= FV 
f3 ' 

w2 +ib2Rw+c1(R)- ~t +(c2-b1 b2/2)Ri = 0 

c(c+2)b1 = -c(c+2)S+2(c+ 1), c(c+2)b2 = 2(c+ 1), 

(4.7) c(c+2)c1 (R) = -(c+ 1)S-cS2 -1 +R2 , c(c+2)c2 = -(c+ 1)S+2, 

w = z+b1 /2. 
Note that Eq. (4.4) now reads 

( 2 (c2 -bt b2/2) R 2 
et R) -b 1 /4 = b~ R 2 

and substituting the relation (4.7) indeed gives the marginal stability curve V({J, r, k), 
Eq. (3.3). 

For c = y2, the most unstable wave in the nonviscous case (3.2), we computed the 
growth-rCilte for decreasing values of R, as a function of the shear S. The result is shown 
in Fig. 3a, b. 

The limit curve Im c0 is the inviscid growth-rate (3.8). For R = 0.1 the growth-rate 

is linear in .1 = V- v(p, r, y2F) (cf. Eq. (3.5)), although instability already sets in below 
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FIG. 3.a. Growth-rate G = 2(JI'2+ l)Im z. For decreasing values of R the point G = 0 goes to S = 
VF/P ~ 0.9r, while forS < 1 G tends to zero. b. Growth-rate-106 • G, to illustrate the behaviour of G = 0 

for decreasing values of R . 

. [250] 
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the minimum of V0 • For smaller R, instability always sets in at S ~ 0.91 (cf. Sect. 3), 
but becomes less and less pronounced as R tends to zero. 

So for 0.9I < S < I there is always instability but the growth-rate tends to zero in 
this whole region as R!O. The adjustment to the square-root-like behaviour of Imc0 be­
comes more abrupt as R!O. For S > I, the in viscid growth-rate is found, determined by 
L1 =V- V0 • 

The nonlinear analysis for 0.91 < S < I is given in RoMEA [9]. Instead of the ampli­
tude oscillation found in PEDWSKY [6], for slow time T = L1 112 t -+ oo, a steady state is 
found for T = L1t-+ oo. For the details we refer to the two papers mentioned. 

5. Nonspherical models 

In the nonspherical models, i.e. {J = 0, we find nothing analogous to what was found 
in the previous sections. The two cases are 

(5.I) 

(5.2) 

{J = 0, r ¥= 0, 

{J = 0, r = 0. 

No difference exists between the case (3.1) with {J!O and Eq. (5.I) because the imaginary 
parts of the coefficients are not involved. We might expect a singularity in r, when 
letting r!O in Eq. {5.I) but there it turns out that we have one of the special ca~es mention­
ed in Sect. 4: C = 0 in Eq. (4.4). 

Proof: with coefficients Eqs. (4.5) and· (4.7) modified as follows: 

(5.3) 

(5.4) 

w·e find again Eq. 
Now form Eq. 

wF 
Z= ­

k ' X 

rF 
S = FV, R = kc, 

X 

b1 = -S, 

cS2 -R2 

ct(R) = c(c+2) , 

(4.6). 
(4.4) 

blb2 

c+I 
b2 = 2 c(c+2)' 

-S c+l 
c2 = c(c+2)' 

( )

2 

bf c2 --2- R 2 
· ( -S(c+l) -2S(c+l))/ 2 

<5·5) c1(R)-4 =- b~ . R 2 =- c(c+2) - 2c(c+2) b2 = O. 

So the marginal stability curves in Eqs. (5.1) ({J = 0, r!O) and (5.2) ({J = 0, r = 0) will 
coincide. 
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